
Proceedings
of the Prague Stringology Conference ’04

Edited by Milan Šimánek and Jan Holub

August 2004

Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University
Karlovo nám. 13
121 35 Prague 2
Czech Republic

Program Committee

Gabriela Andrejková, Jun-ichi Aoe, Maxime Crochemore, Jan Holub,
Costas S. Iliopoulos, Thierry Lecroq, Bořivoj Melichar (chair), Yoan J. Pinzon, Marie-
France Sagot, Bruce W. Watson

Organizing Committee

Miroslav Baĺık, Jan Holub, Bořivoj Melichar, Milan Šimánek

URL

http://cs.felk.cvut.cz/psc

Proceedings of the Prague Stringology Conference ’04

Published by Vydavatelstv́ı ČVUT, Zikova 4, 16635 Praha 6, Czech Republic
Edited by Milan Šimánek and Jan Holub
Contact: Prague Stringology Club

Katedra poč́ıtač̊u, ČVUT–FEL
Karlovo nám. 13, Praha 2, Czech Republic.

E-mail: psc@cs.felk.cvut.cz Phone: +420-2-2435-7470
Printed by Edičńı sťredisko ČVUT, Zikova 4, Praha 6

© Czech Technical University, Prague, Czech Republic, 2004

ISBN 80-01-03050-4

ii

Contents

Invited Talk 1

Theoretical Issues of Searching Aerial Photographs: A Bird’s Eye View
by Amihood Amir 1

Contributed Talks 24

Algorithms for the Constrained Longest Common Subsequence Prob-
lems by Abdullah N. Arslan and Ömer Eğecioğ lu 24

Efficient Algorithms for the δ-Approximate String Matching Problem in
Musical Sequences by Domenico Cantone, Salvatore Cristofaro and Simone
Faro 33

A Simple Lossless Compression Heuristic for Grey Scale Images by
L. Cinque, S. De Agostino, F. Liberati and B. Westgeest 48

BDD-Based Analysis of Gapped q-Gram Filters by Marc Fontaine, Stefan
Burkhardt and Juha Kärkkäinen 56

Sorting suffixes of two-pattern strings by Frantisek Franek and W. F. Smyth 69

A Note on Bit-Parallel Alignment Computation by Heikki Hyyrö 79

A First Approach to Finding Common Motifs With Gaps by Costas S. Il-
iopoulos, James McHugh, Pierre Peterlongo, Nadia Pisanti, Wojciech Rytter
and Marie-France Sagot 88

A Fully Compressed Pattern Matching Algorithm for Simple Collage
Systems by Shunsuke Inenaga, Ayumi Shinohara and Masayuki Takeda 98

Semi-Lossless Text Compression by Yair Kaufman and Shmuel T. Klein 114

Conditional Inequalities and the Shortest Common Superstring Prob-
lem by Uli Laube and Maik Weinard 124

Combinatorial Characterization of the Language Recognized by Factor
and Suffix Oracles by Alban Mancheron and Christophe Moan 139

A Framework for the Dynamic Implementation of Finite Automata for
Performance Enhancement by Ernest Ketcha Ngassam, Bruce W. Watson,
and Derrick G. Kourie 155

Arithmetic Coding in Parallel by Jan Šupol and Bořivoj Melichar 168

iii

iv

Preface

The Prague Stringology Conference 2004 (PSC’04) was held at the Department of
Computer Science and Engineering of the Czech Technical University in Prague,
Czech Republic, on August 30–September 1, 2004. The conference focused on stringol-
ogy and related topics. Stringology is a discipline concerned with algorithmic pro-
cessing of strings and sequences.

The papers submitted were reviewed by the programme committee and thirteen
were selected for presentation at the conference, based on originality and quality.
This volume contains not only these selected papers but also invited talk devoted to
2-dimensional pattern matching.

In the years 1996–2000 the Prague Stringology Club Workshops (PSCW’s) and the
Prague Stringology Conferences in 2001–2003 preceded this conference. The proceed-
ings of these workshops and the conferences had been published by Czech Technical
University and are available on WWW pages of the Prague Stringology Club (PSC).
Selected contributions were published in special issues of the journal Kybernetika, the
Nordic Journal of Computing and the Journal of Automata, Languages and Combi-
natorics.

The Prague Stringology Club was founded in 1996 as a research group at the
Department of Computer Science and Engineering of the Czech Technical University
in Prague. The goal of PSC is to study algorithms on strings and sequences with em-
phasis on finite automata theory. The first event organized by PSC was the workshop
PSCW’96 featuring only a handful invited talks. However, since PSCW’97 the papers
and talks are selected by a rigorous peer review process. The objective is not only to
present new results in stringology, but also to facilitate personal contacts among the
people working on these problems.

I would like to thank all those who had submitted papers for PSC’04 as well as
the reviewers. Special thanks goes to all the members of the programme committee,
without whose efforts it would not have been possible to put together such a stimu-
lating program of PSC’04. Last, but not least, my thanks go to the members of the
organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2004
Jan Holub

v

vi

Theoretical Issues of Searching Aerial

Photographs: A Bird’s Eye View∗

Amihood Amir

Bar-Ilan University and Georgia Tech
Department of Computer Science

52900 Ramat-Gan
ISRAEL

e-mail: amir@cs.biu.ac.il

Abstract. We review some pattern matching algorithms and techniques moti-
vated by the discrete theory of image processing.

The problem inspiring this research is that of searching an aerial photograph
for all appearances of some object.

The issues we discuss are digitization, local errors, rotation and scaling.

We review deterministic serial techniques that are used for multidimensional
pattern matching and discuss their strengths and weaknesses.

Keywords: multidimensional pattern matching, local errors, rotations, scal-
ing, digitization, discrete image processing.

1 Motivation

String Matching is one of the most widely studied problems in computer science [35].
Part of its appeal is in its direct applicability to “real world” problems. Some variation
of the Boyer-Moore [21] algorithm is directly implemented in the search command of
practically all text editors. The longest common subsequence dynamic programming
algorithm [22] is implemented in the UNIX “diff” command. The largest overlap
heuristic for finding the shortest common superstring [46] is used in DNA sequencing.
In this respect string matching is somewhat of an anomaly in theoretical computer
science. Theoretical algorithms can not often be used as “off-the-shelf” solutions for
practical problems.

We consider one of the important roles of theoretical computer science, that of pro-
viding an algorithmic theory for various application domains. Usually that process
starts with abstracting the practical problem into several “pure form” combinatorial
problems. It is hoped that understanding the solution of these problems will aid in
an efficient solution of the original application. In this paper we review some of the
algorithms and techniques that were motivated by image processing. Covering all
aspects of the problem is clearly a mammoth undertaking. We concentrate on serial

∗Partially supported by NSF grant CCR-01-04494 and ISF grant 82/01.

1

Proceedings of the Prague Stringology Conference ’04

deterministic algorithms. The reader should be aware that there is also a wide body
of work on probabilistic, randomized, and parallel approaches to the problem.

The main practical motivation for this survey is the problem of searching aerial
photographs. The (ambitious) practical goal of this application is to input an aerial
photograph and a template of some object (a pattern). The output is all locations
on the aerial photograph where the template object appears. In reality we need to
grapple with several problems:

1. Local errors. These may arise from atmospheric distortions, transmission noise,
level of detail, the digitization process, or occlusion of pattern parts by other
objects.

2. Scaling. The size of the object in the input aerial photo may differ from that
in the template.

3. Rotation. The object may be facing different directions in the aerial photograph
and in the template.

There are other issues of interest in two dimensional matching. Among them are:

Compressed Matching: Digitized images are known to be extremely space con-
suming. However, regularities in the images can be exploited to reduce the necessary
storage area. Thus we find that many systems store images in a compressed form
(e.g. jpeg). If searching for appearances of a pattern in an image can be done with-
out decompressing then compression becomes a time saving tool in addition to its
being a space saving device. We will not delve into compression issues in this pa-
per, although many of the techniques mentioned here have been used in compressed
matching algorithms.

Dictionary Matching: The aerial photograph model we described is by no means
the only possible vision paradigm. While it may be important to find an object in a
given image, biological vision is somewhat an “inverse” of that process. Rather than
searching for a small template in a large image, we have in our minds a tremendous
database of objects we have seen (or imagined). When presented with an image we
recognize it with amazing speed. Thus it is interesting to come up with efficient
algorithms for quickly recognizing objects from a preprocessed dictionary, in a given
image. As in the case of compressed matching, we will not have the opportunity to
say much of this exciting area of research, although here too many algorithms use
techniques that will be addressed herein.

For ease of perusal we enclose a table of contents for this paper:

1. Motivation

2. Exact Two Dimensional Matching

2.1 Linear Reductions

2.1.1 Automata Methods

2.1.2 Suffix Tree Methods

2.2 Convolutions

2.3 Periodicity Analysis

2

Theoretical Issues of Searching Aerial Photographs: A Bird’s Eye View

2.3.1 Two Dimensional Periodicity

2.3.2 The Dueling Method

3. Approximate Matching of Rectangular Patterns

4. Approximate Matching of Nonrectangular Patterns

4.1 Mismatches

4.2 Mismatches, Insertions and Deletions

5. Scaled Matching

6. The Geometric Model

6.1 Scaling

6.2 Rotation

7. Conclusions and Open Problems

2 Exact Matching

The most restrictive possible abstraction of the aerial photograph problem is that of
seeking an exact matching of the pattern in the image, where both pattern and image
are rectangles. Throughout this paper we define our problems in terms of squares
rather than rectangles. In almost all cases the reason is simply for convenience of
notation, and the results directly generalize. We explicitly mention those results that
only apply to squares.

The Exact Two Dimensional Matching Problem is defined as follows: Let Σ be an
alphabet. INPUT: Text array T [n × n] and pattern array P [m×m]. OUTPUT: All
locations [i, j] in T where there is an occurrence of the pattern, i.e. T [i+ k, j + l] =
P [k + 1, l + 1] 0 ≤ k, l ≤ n− 1.

2.1 Linear Reductions

A natural way of solving any generalized problem is by reducing it to a special case
whose solution is known. It is not surprising that the early solutions to the two
dimensional exact matching problem use exact string matching algorithms in one
way or another.

The Knuth-Morris-Pratt [39] algorithm basically follows the idea of matching the text
and pattern character by character until a mismatch occurs. Then the pattern is slid
forward for the greatest overlap with the old pattern position, and the comparison
resumes from there. This idea can be generalized in the following way:

Starting from the leftmost column and moving to the right, proceed down the columns
and compare a pattern row with a length-m text subrow starting at the scanned text
location. Proceed in this fashion until a mismatch occurs. Upon a mismatch, slide
the pattern down for the greatest overlap with the old pattern position and resume
comparisons from there.

The idea is obvious, but its straightforward implementation would take time O(n2m),
since this is a basic KMP on the text, but every comparison takes time O(m). It is

3

Proceedings of the Prague Stringology Conference ’04

an improvement over the naive O(n2m2) algorithm, but not good enough. What is
needed is a method for quick comparison of a pattern row and a length-m text subrow.
Two solutions are possible.

2.1.1 Automata Methods

Bird [20] and, independently, Baker [18] proposed the following solution. Preprocess
the text and identify all occurrences of all pattern rows. Represent each different row
by a new symbol and place this symbol at the text location where the row occurs. The
problem is now exactly that of string matching, where we are seeking all occurrences
of the string composed of the new symbols in the order that their respective rows
appear in the pattern. The string matching part can be done in time O(n2). The
only question is how to efficiently identify the occurrences of all pattern rows.

This was done by using the Aho and Corasick [2] dictionary matching algorithm. The
Dictionary Matching Problem is the following: Preprocess a dictionary of patterns
{P1 = p11 · · · p1m1 , P2 = p21 · · · p2m2 , ..., Pk = pk1 · · · pkmk

}. Subsequently, for every
INPUT: Text T = t1 · · · tn. OUTPUT: All locations in the text where there is a
match with any dictionary pattern.

Aho and Corasick preprocess the dictionary in time O(
∑k

i=1mi log |Σ|) and subse-
quently search an input text in time O(n log |Σ| + occ), where occ = number of
patterns that occur in the text. If all patterns are of the same length then only a
single pattern can end at any text location. The time then becomes O(n log |Σ|).
Returning to two dimensional matching. We may view each distinct pattern row as a
separate pattern in a dictionary. The result is a dictionary matching problem where
all dictionary patterns have the same length. Thus the Bird-Baker solution is the
following:

1. Find all occurrences of all pattern rows in the text. Mark the end of each
distinct row’s occurrence with a new special symbol.

2. Scan the text down the columns, from left to right. Run the Knuth-Morris-
Pratt (KMP) algorithm searching for the string composed of the new symbols
representing the distinct pattern rows.

Time: 1. Using Aho and Corasick, O(n2 log |Σ|). 2. O(n2).

Total Time: O(n2 log |Σ|).

2.1.2 Suffix Tree Methods

Recall that our aim is to use the KMP algorithm for solving the exact two dimensional
matching problem. What we seek is a method for constant time comparison of pattern
rows with length-m text subrows (and with each other). Bird and Baker solved this
problem by performing the comparisons in advance. In this section we will see a
method where this comparison can be done while scanning the text.

Definition: Let S = s1 · · · sn be a string. A suffix tree of S is a trie of all suffixes
of S (i.e. {sn, sn−1sn, sn−2sn−1sn, ..., s2s3 · · · sn, s1s2 · · · sn}) where every path of
single outdegree node is compressed to a single node.

4

Theoretical Issues of Searching Aerial Photographs: A Bird’s Eye View

Many different methods for constructing suffix trees and suffix arrays have been de-
veloped [49, 44, 26, 47]. The importance of suffix trees for our purpose is that they
has the following properties: 1) The leaves represent exactly the suffixes of S, and 2)
The lowest common ancestor (LCA) of any two nodes is the longest common prefix
of the strings they represent.

We can thus make the following observation [15]. Let S be a string composed of the
concatenation of all text rows followed by all pattern rows. The following queries are
equivalent:

1. Pattern row Pi0 equals text subrow Ti1j, where j0 ≤ j ≤ j0 + k − 1.

2. The length of the longest common prefix of the suffixes of S starting at Pi0 and
Ti1j1 is at least m.

3. The length of the LCA in S’s suffix tree of the nodes representing the suffixes
that start at Pi0 and Ti1j1 is at least m.

The suffix tree for the concatenation of the text and pattern rows can be constructed
in time O(n2 log log |Σ|). All we need now is a method for finding the lowest common
ancestor of two nodes in a tree in constant time.

It was pointed out by Landau and Vishkin [41], that the Harel and Tarjan [37] al-
gorithm does precisely that. Harel and Tarjan showed that given any n-node tree,
one can preprocess the tree in time O(n) in a manner that allows subsequent LCA
queries in time O(1).

We now have all the components for a different exact two dimensional matching
algorithm [15].

1. Construct the text and pattern suffix tree and preprocess for LCA.

2. Scan the text down the columns, from left to right. Run the KMP algorithm
modified in a way that symbol comparison is replaced by checking if the LCA
length is at least m.

Time: 1. O(n2 log log |Σ|) 2. O(n2).

Total Time: O(n2 log log |Σ|).
It should be stressed that more modern and direct methods for solving this problem
exist, using suffix arrays [38]. Also, other algorithms for computing the LCA in a tree
exist [45, 19, 24].

2.2 Convolutions

Convolutions were officially introduced to the field of pattern matching Fischer and
Paterson [27]. Denote by A ⊗ B the convolution of arrays A and B. A convolution
uses two initial functions, A and B, to produce a third function A⊗B. We formally
define a discrete convolution.

Definition: Let A be a real-valued function whose domain is {0, ..., n} and B a
real-valued function whose domain is {0, ..., m}. We may view A and B as arrays of

5

Proceedings of the Prague Stringology Conference ’04

numbers, whose lengths are n + 1 and m+ 1, respectively. The discrete convolution
of A and B is the polynomial multiplication

A⊗ B[j] =

m
∑

i=1

A[j + i]B[i], j = 0, ..., n−m.

In the general case, the convolution can be computed by using the Fast Fourier
Transform (FFT) [25]. This can be done in time O(n logm), in a computational model
with word size O(logm). Fischer and Paterson used convolutions for solving exact
string matching with “don’t cares” (a special character that matches all symbols) in
time O(log |Σ|n logm).

We can use the string matching with don’t care problem to solve the two dimensional
matching problem as follows (actually the same idea can be used for d-dimensional
matching [13]).

Without loss of generality, we may assume that the text is of size 2m× 2m. This can
be achieved by dividing the text into four overlapping grids of 2m× 2m matrices. In
the following discussion we assume,then, that n = 2m.

Let Tn×n be the text matrix, Pm×m be the pattern matrix. Let L[1:n2] be the linear
representation of T in row major order, and let M[1:(m−1)n+m] be the vector:

Mi =















































P1,i for i = 1 to m
φ for i = m+ 1 to n
P2,i−n for i = n+ 1 to m+ n
φ for i = n+m+ 1 to 2n
·
·
·
Pm,i−(m−1)n for i = (m− 1)n+ 1 to (m− 1)n+m

Matching M in L (and taking care of boundary conditions) is equivalent to matching
P in T . What is actually being done is padding the pattern with wildcards up to the
size of the text dimension. The boundary condition can then be handled on line.

Time: The reduction is to string matching with don’t cares with text of size n2

and pattern of size O(mn). This is solved by the convolutions method in time
O(| logΣ|n2 logm), but since n = 2m the time is O(| logΣ|m2 logm). For a gen-
eral n the time is O(| logΣ|n2 logm).

2.3 Periodicity Analysis

All the previously discussed two dimensional matching algorithms are reductions of
the problem into one dimension. These reductions all cost at least an additional log |Σ|
factor. A uniquely two dimensional approach to pattern matching was introduced [4].
This technique analyzes the two dimensional structure of the pattern and makes use
of it in the text scanning step. We will see that this allows an alphabet independent
text scanning. This technique also proved useful in compressed matching [7], and in
developing optimal parallel algorithms for two dimensional matching [8, 23].

6

Theoretical Issues of Searching Aerial Photographs: A Bird’s Eye View

The two-dimensional periodicity idea: A periodic pattern may contain loca-
tions, other than the origin, where the pattern can be superimposed on itself without
mismatch. Suppose our pattern is non periodic, i.e. there are no such locations, other
than the origin. We could then narrow down the number of potential candidates for
a pattern appearance in the text in a fashion that insures that all such candidates
are “sufficiently far” from each other. Verification of a candidate could then be done
in the naive character-by-character comparison, but the time would still be linear
because the candidates do not overlap.

In the next sections we will look more closely into two dimensional periodicity and
its application to exact matching.

2.3.1 Two Dimensional Periodicity

In a periodic string, a smallest period can be found whose concatenation generates
the entire string. In two dimensions, if an array were to extend infinitely so as to
cover the plane, the one-dimensional notion of a period could be generalized to a unit
cell of a lattice. But, a rectangular array is not infinite and may cut a unit cell in
many different ways at its edges.

Instead of defining two-dimensional periodicity on the basis of some subunit of the
array, Amir and Benson [4] use the idea of self-overlap. This idea applies also to
strings. A string w is periodic if the longest prefix p of w that is also a suffix of w
is at least half the length of w. For example, if w = abcabcabcab, then p = abcabcab
and since it is over half as long as w, w is periodic. This definition implies that w
may overlap itself starting in the fourth position.

The preceding idea easily generalizes to two-dimensions as illustrated by the following
preliminary definitions. Let A be an array. A prefix of A is a rectangular subarray
that contains one corner element of A. A suffix is a rectangular subarray that contains
the diagonally opposite corner. A is periodic if the largest prefix that is also a suffix
has dimensions greater than half those of A. Again, this implies that A may overlap
itself if the prefix of one copy of A is aligned with the suffix of a second copy of A.

Notice that the choice of the corner in which to put the prefix is arbitrary. Because of
the symmetry, the prefix may be assigned to either the upper left or lower left corners
of A. This clearly gives us two directions in which A can be periodic. Following [4]
we classify the type of periodicity of A based on whether it has periodicity in either
or both of these directions. To simplify the discussion, we describe square arrays.
The results can be extended to all rectangular arrays (see [4]).

We begin with some formal definitions of two-dimensional periodicity and related
concepts. Let A[0 . . .m−1, 0 . . .m−1] be an m×m square array. Each element of A
contains a symbol from an alphabet Σ. We can divide the array into four quadrants,
labeled in a counterclockwise direction from upper left, quadrants I,II,III, and IV.
Given two copies of A, one directly on top of the other. The two copies are said to
be in register because some (in this case all) of the elements overlap, and overlapping
elements contain the same symbol. If we can slide the upper copy over the lower
copy to a point where the copies are again in register, then at least one of the corner
elements of the upper array will overlap an element of the lower array. The element
in the lower copy that is under this corner is the source. We say that the array is

7

Proceedings of the Prague Stringology Conference ’04

quadrant I symmetric if an overlapping corner is element A(0, 0). The element in the
lower copy is a quadrant I source. Quadrants II, III and IV symmetry and sources
are similarly defined.

Let the array be quadrant I symmetric and let the upper and lower copies be in
register when element A(0, 0) overlaps element A(r, c), the source. Then there exists
a quadrant I symmetry vector ~vI = r~y + c~x where ~x is the horizontal unit vector
in the direction of increasing column index and ~y is the vertical unit vector in the
direction of increasing row index. If the array is quadrant II symmetric, then the
upper and lower copies are in register when A(m−1, 0) overlaps A(r, c). The quadrant
II symmetry vector is vII = (r − (m − 1))~y + c~x. Note that the coefficient on ~y is
negative for quadrant II. The quadrants III and IV symmetry vectors are defined
similarly.

The length of a symmetry vector is the maximum of the absolute values of its coeffi-
cients. If the length of a symmetry vector is < m

2
, then the vector is periodic.

For the classification scheme, we need to pick the shortest symmetry vector for each of
quadrants I and II. But, there may be several shortest vectors in a given quadrant.
Also, the same orthogonal vector may be shortest in both quadrants. Let BI be the
set of shortest non-vertical vectors in quadrant I and let BII be the set of shortest non-
horizontal vectors in quadrant II. The basis vectors for array A are vector ~v1 ∈ BI

(if any) with smallest r value and the vector ~v2 ∈ BII (if any) with smallest c value.
In other words, ~v1 is the closest to horizontal in BI and ~v2 is the closest to vertical
in BII .

The four categories of two-dimensional periodicity are:

� Non-periodic—A has no periodic vectors.

� Lattice periodic—Both quadrants I and II of A have a periodic basis vector.
All quadrant I sources which occur in quadrant I fall on the nodes of a lattice
which is defined by these vectors. The same is true for quadrant II sources in
quadrant II. Specifically, let ~v1 and ~v2 be the periodic basis vectors in quadrants
I and II respectively. Then, for all integers i, j such that (0, 0) + i~v1 + j~v2 is
an element of quadrant I, that element is a quadrant I source and no other
elements in quadrant I are quadrant I sources. Similarly, for all ı̂, ̂ such that
(m− 1, 0) + ı̂~v1 + ̂~v2 is an element of quadrant II, that element is a quadrant
II source and no others.

� Line periodic—One quadrant of A has a periodic vector and one does not. The
sources in the quadrant with the periodic vector all fall on one line. Specifically,
if quadrant I is the quadrant with the periodic basis vector ~v1, then for all i
such that (0, 0) + i~v1 is an element in quadrant I, that element is a quadrant I
source and no others.

� Radiant periodic—This category is identical to the line periodic category,
except that in the quadrant with the periodic vector, the sources fall on several
lines which all radiate from the quadrant’s corner. We do not describe the exact
location of the sources because these depend on the specific array, except we
note that none is a linear combination of both basis vectors for the array.

8

Theoretical Issues of Searching Aerial Photographs: A Bird’s Eye View

It should be noted that later applications required some finer grained characterizations
of periodicity [36, 14].

2.3.2 The Dueling Method

Dueling was first used by Vishkin for efficient parallel string matching algorithms [48].
The idea is to provide, in constant time, a method that eliminates one of two com-
peting candidates for pattern occurrence. This elimination is based on identifying
locations where the two candidates expect conflicting symbols. Vishkin used string
periodicity properties to guarantee that such locations exist for every two overlapping
candidates.

The dueling idea was extended to two dimensions by amir, Benson and Farach [6, 5].
It turned out that even where there is no periodicity, a judicious use of dueling can
provide a simple and alphabet-independent O(n2) algorithm for two dimensional exact
matching.

Text processing is accomplished in two stages: Candidate Consistency and Candidate
verification. A candidate is a location in the text where the pattern may occur.
We denote a candidate starting at text location T [r, c] by (r, c). We say that two
candidates (r, c) and (x, y) are consistent if they expect the same text characters in
their region of overlap (two candidates with no overlap are trivially consistent).

Initially, we have no information about the text and therefore all text locations are
candidates. However, not all text locations are consistent. During the candidate con-
sistency phase, we eliminate candidates until all remaining candidates are pairwise
consistent. During the candidate verification phase, we check the candidates against
the text to see which candidates represent actual occurrences of patterns. We ex-
ploit the consistency of the surviving candidates to rule out large sets of candidates
with single text comparisons (since all consistent candidates expect the same text
character).

Candidate Consistency: This is done with two sweeps of the text. The first
eliminates inconsistent candidates within each column, and the second eliminates all
inconsistent candidates in the text. The result of these two sweeps are potential
sources, none of which can conflict with any other. This means that if we verify
that one of these potential sources is indeed the source of a pattern occurrence then
all potential sources within the verified area are guaranteed to overlap the verified
area. Thus, verification need not ever backtrack. The details of the O(n2) candidate
consistency algorithms can be found in [6].

Candidate Verification: As mentioned above, we are guaranteed that all consistent
candidate sources overlap consistently with the pattern. We only need to verify that
they are indeed pattern sources. This can be done in linear time by the time-tested
sport cheer - the wave.

The idea of the wave is for each element to jump up and wave a pair 〈i, j〉 whose
meaning is that this element has to be tested against P [i, j]. There may be several
such options for some locations, but any will do because the candidate sources are now
all compatible. The waved pair, in addition to knowledge of candidate sources, causes
the element immediately below the waving location to wave its own pair. When all

9

Proceedings of the Prague Stringology Conference ’04

column waves are done we do row waves and every text element now needs a single
comparison. For further details on the wave, see [6, 11].

3 Approximate Matching of Rectangular Arrays

One possible string matching generalization that has been researched is approximate
string matching - finding all occurrences of a pattern in a text where differences are
allowed.

Three types of differences were distinguished [43]:

1. A pattern character corresponds to a different character in the text (mismatch).

2. A text character is deleted (deletion).

3. A pattern character is deleted (insertion).

Two problems were considered in the one dimensional case: The string matching with
k mismatches problem (the k mismatches problem) - find all occurrences of the pattern
in the text with at most k type-1 differences. The string matching with k differences
problem (the k differences problem) - find all occurrences of the pattern in the text
with at most k differences of type 1. 2. or 3.

Abrahamson [1] used a divide-and-conquer approach in conjunction with the convo-
lutions method to solve the string mismatches problem in time O(n

√
m logm). His

algorithm writes, for every text location, the number of mismatches that will occur
it the pattern is compared with the text starting at that location.

Landau and Vishkin [41] gave a O(nk) algorithm for the k-differences problem.

In this section we consider approximate pattern matching where both text and pattern
are rectangles.

INPUT: Text array T [n × n] and P [m × m] where all elements of P and T are in
alphabet Σ, and integer k. OUTPUT: All occurrences of the pattern in the text with
at most k differences.

The definition of insertion and deletion in multidimensions need clarification. The
effect of insertion and deletion may be different depending on the implementation.
We illustrate with a two dimensional example. If a matrix is transmitted serially a
deleted character means an appropriate shift of the entire array. However, it may be
the case that the array is transmitted column by column with an EOD indication
between them. In that case, a deletion or insertion affects only the column it appears
in. Following Krithivasan and Sitalakshmi [40] and Amir and Landau [13] we assume
the latter situation. It is clear that the case where a deletion or insertion affects only
the row it appears in can be handled in a similar manner.

Krithivasan and Sitalakshmi [40] solved this problem in time O(n2mk). This was im-
proved by Amir and Landau to O(n2k2) (O(n2k) if only mismatch errors are allowed).

The idea was using dynamic programming to handle the insertion and deletion prob-
lems, and suffix trees to identify runs of matching pattern and text substrings.

10

Theoretical Issues of Searching Aerial Photographs: A Bird’s Eye View

4 Approximate Matching of Non Rectangular Pat-

terns

The approximate two dimensional problem we saw in section 3 was defined with both
the pattern and text being rectangular matrices. In reality, it is usually necessary to
match non-rectangular shapes. The techniques presented in section 3 seem inadequate
in dealing with nonrectangular arrays.

4.1 Mismatches

In section 2.2 it was shown that multi-dimensional matching can be reduced to string
matching by appropriate padding with don’t care characters. Such a padding allows
solving the exact two-dimensional matching problem, or the k-mismatches problem
for any shape in time O(|Σ|n2 logm). We simply pad the matrix appropriately so
only the given shape is matched.

The |Σ| factor in the complexity results from the fact that we need to do |Σ| con-
volutions. In each one we count the number of pattern mismatches for a different
alphabet symbol ([13]).

This method is clearly efficient for bounded small alphabets. For unbounded alpha-
bets we may use the Abrahamson-Kosaraju divide-and-conquer technique to achieve
time O(n2

√
m logm).

4.2 Mismatches, Insertions and Deletions

Pattern matching provides many examples of powerful techniques that solves various
different problems. However, when some criteria are combined, there is no ready
solution. For example, convolutions solve the “don’t care” problem, and the mis-
matches problem, but can not be used when insertions and deletions are introduced.
Automata methods or suffix trees work mainly for exact matching. But if presented
with the problem of matching with differences and don’t cares then there is no known
efficient method that can solve it.

Amir and Farach [12] made the first advance in the direction of efficiently solving
the k-difference matching problem for non-rectangular patterns. A novel method was
used, that combines the power of convolutions, dynamic programming and subword
trees. It proved effective in solving the two-dimensional k-difference matching problem
for half-rectangular patterns in time O(kn2

√
m logm

√
k log k+k2n2), where n2 is the

area of the text and m is the height of the pattern.

Definition: A left half-rectangular pattern is a list of variable-length rows, P1, ..., Pm.
The pattern is represented by stacking each row Pi above row Pi+1 with Pi,1 directly
above Pi+1,1.

Intuitively, the leftmost border of the pattern is a vertical line, and every horizontal
cut of the figure is a single segment. One may similarly define a right, top or bottom
half-rectangle depending on whether the right, top or bottom border is a straight
edge.

11

Proceedings of the Prague Stringology Conference ’04

This algorithm is efficient for any pattern that can be split into a “small” number of
half-rectangular shapes. An example is any convex shape in an orientation where the
longest diameter is vertical. We are searching for all locations where a half-rectangular
pattern matches the text allowing no more than k mismatches, insertions (in rows)
and deletions (in rows) errors.

To achieve this result some new tools were needed. Efficient solutions to two problems
were provided. These problems are the smaller matching problem and the k-aligned
ones with location problem.

The smaller matching problem is: INPUT: Text string T = T0, .., .Tn−1 and pattern
string P = P0, ..., Pm−1 where Ti, Pi ∈ N . OUTPUT: All locations i in T where
Ti+k−1 ≥ Pk k = 1, ..., m. In words, every matched element of the pattern is not
greater than the corresponding text element.

The smaller matching problem with a forest partial order is defined similarly with
the exception that the order relation is that induced by a given forest. Both these
problems can be solved in time O(n

√
m logm).

The motivation for the k-aligned ones with locations problem stems from the use of
convolutions in pattern matching. The power behind all known convolution-based
string matching algorithms is multiplication of polynomials with binary coefficients
(0, 1). Polynomial multiplication can be done efficiently by using Fast Fourier Trans-
form [3]. The result of such a polynomial multiplication is the number of 1’s in the
pattern that are aligned with 1’s in the text at each position. However, all informa-
tion about the location of these aligned 1’s is lost. These locations were found in time
O(k3n logm log k) in [12].

Specifically, the k-aligned ones with location problem is: INPUT: Text string
T = T0, ..., Tn−1 and pattern string P0, ..., Pm−1 where Ti, Pi ∈ {0, 1}. OUTPUT:

All locations i in T where
m

∑

l=0

Tl+iPl ≤ k

and for each such i, all indices i1, ..., ik where Pij = Tl+ij = 1.

Recently, using superimposed codes, the k-aligned ones with locations problem has
been solved O(kn logm log k) [17].

5 Scaled Matching

All the problems we have seen so far were useful mainly in solving matching with
“local errors” prolems. We mentioned that in reality we may be interested in matching
patterns whose occurrence in the text is of different scale than provided by the pattern.
For example, reading a newspaper one encounters letters of the alphabet in various
sizes.

A “clean” version of the problem may be defined as follows [15]:

The string aa...a where the symbol a is repeated k times (to be denoted ak), is referred
to as a scaled to k. Similarly, consider a string A = a1 · · · al. A scaled to k (Ak) is
the string ak

1, ..., a
k
l .

12

Theoretical Issues of Searching Aerial Photographs: A Bird’s Eye View

Let P [m×m] be a two-dimensional matrix over a finite alphabet Σ. Then P scaled
to k (P k) is the km × km matrix where every symbol P [i, j] of P is replaced by a
k × k matrix whose elements all equal the symbol in P [i, j]. More precisely,

P k[i, j] = P [⌈ i
k
⌉, ⌈ j

k
⌉].

The problem of two-dimensional pattern matching with scaling is defined as follows:
INPUT: Pattern matrix P [i, j] i = 1, ...m; j = 1, ..., m and Text matrix T [i, j] i =
1, ..., n; j = 1, ..., n where n > m. OUTPUT: all locations in T where an occurrence
of P scaled to k starts, for any k = 1, ..., ⌊ n

m
⌋.

The basic algorithmic design strategy of Amir-Landau-Vishkin [15] can be viewed
as realizing the following approach: For each scale k, try to select only a fraction
of 1

k
among the n columns and seek k-occurrences only in these columns. Since

each selected column intersects n rows, this leads to consideration of O(n2

k
) elements.

Summing over all scales, we get O(n2) multiplied by the harmonic sum
∑

n
m

i=1
1
i
, whose

limit is log n
m

making the total number of elements scanned O(n2 log n
m

).

A final intuitive step was to select also a 1
k

fraction of the rows. Since
∑

n
m

i=1
1
i2

is
bounded by a constant, the number of elements decreases now to

O(n2

n
m

∑

i=1

1

i2
) = O(n2).

A simpler, alphabet-independent algorithm, that can be generalized to dictionary
scaled matching was presented in [11].

A key technique in all discrete scaling algorithms is the Range Minimum Problem.
Defined as follows:

Definition: Let L = [l1, ..., ln] be an array of n numbers. A Range Minimum query
is of the form:

Given a range of indices [i, ..., j], where 1 ≤ i ≤ j ≤ n, return an index k i ≤
k ≤ j such that lk = min{li, ..., lj}.

In [34] it was shown that a list of length n can be preprocessed in time O(n) such
that subsequent range minimum queries can be answered in constant time.

In scaled matching we are naturally interested in locations where there are many
consecutive rows (columns) with the same elements. The range-minimum queries
allow finding these areas in constant time. This can be achieved by preprocessing
for every text location the longest common prefix of it, and the subrow immediately
above it.

6 The Geometric Model

Everything we have seen so far suffers greatly from the encounter with “real-life prob-
lems”. There is some justification for dealing with discrete scales in a combinatorial

13

Proceedings of the Prague Stringology Conference ’04

sense, since it is not clear what is a fraction of a pixel. However, in reality an object
may appear in non-discrete scales. It is necessary to, both, define the combinatorial
meaning of such scaling, and present efficient algorithms for the problem’s solution.
The rotation problem, presents similar challenges. What is the discrete meaning of
a rotated pattern? The answer to both above problems involves a Geometric Model
for two-dimensional matching.

Until now, we considered the text and pattern to be matrices of alphabet symbols.
The new idea, first proposed by Landau and Vishkin [42] is to consider the text and
pattern as large rectangles composed of unit squares. These unit squares are “colored”
by a picture of reality. For the sake of scaling and rotation, we consider the color of
the center of a unit square as the color of the square. We will define the meaning of
this geometric model for scaling and rotation in more detail in sections 6.1 and 6.2.
However, for historical reasons we mention that Landau and Vishkin’s motivation
for defining the geometric model was the digitization process. For all intents the
granularity of the world is so fine as to be considered continuous. Nevertheless,
when a photo is taken, the image is projected onto a pixel map with much coarser
granularity. Landau and Vishkin viewed the process as sampling unit squares and
assigning an image pixel the color of its sampled center. This idea is used for the
geometric definition of rotation and scaling to sizes that are not natural numbers.

6.1 Scaling

Amir, Butman, Lewenstein and Porat [10] present a definition for scaled pattern
matching with arbitrary real scales. The definition is pleasing in a “real-world” sense.
Below see “lenna” scaled to non-discrete scales by this definition and the results look
natural (see Figure 1). This definition was inspired by the idea of digitizing analog
signals by sampling, however, it does not assume an underlying continuous function
thus stays on the combinatorial pattern matching field. This seems to be the natural
way to define combinatorially the meaning of scaling in the signal processing sense.

Figure 1: An original image, scaled by 1.3 and scaled by 2, using the combinatorial
definition of scaling.

This definition, that had been sought by researchers in pattern matching since at
least 1990, captures scaling as it occurs in images, yet has the necessary combinatorial

14

Theoretical Issues of Searching Aerial Photographs: A Bird’s Eye View

features that allows developing deterministic algorithms and analysing their worst-
case complexity. Indeed Amir, Butman, Lewenstein and Porat [10] present a two
dimensional efficient algorithm for real scaled pattern matching.

The definition of two-dimensional scaled matching is an extension of the one dimen-
sional definition.

Definition Let T be a two-dimensional n× n array over some finite alphabet Σ.

1. The unit pixels array for T (T 1X) consists of n2 unit squares, called pixels in the
real plane R2. The corners of the pixel T [i, j] are (i−1, j−1), (i, j−1), (i−1, j),
and (i, j). Hence the pixels of T form a regular n × n array covering the area
between (0, 0), (n, 0), (0, n), and (n, n). Point (0, 0) is the origin of the unit
pixel array. The center of each pixel is the geometric center point of its square
location. Each pixel T [i, j] is identified with the value from Σ that the original
array T had in that position. We say that the pixel has a color from Σ. See
figure 2 for an example of the grid and pixel centers of a 7× 7 array.

2. Let r ∈ ℜ, r > 1. The r-ary pixels array for T (T rX) consists of n2 r-squares,
each of dimension r × r whose origin is (0, 0) and covering the area between
(0, 0), (nr, 0), (0, nr), and (nr, nr). The corners of the pixel T [i, j] are ((i −
1)r, (j − 1)r), (ir, (j − 1)r), ((i− 1)r, jr), and (ir, jr). The center of each pixel
is the geometric center point of its square location.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

T[1,1] T[1,2] T[1,3]

T[2,1] T[2,2] T[2,3]

T[3,1] T[3,20 T[3,3]

T[7,7]

T[5,4]

Figure 2: The grid and pixel centers of a unit pixel array for a 7× 7 array.

Notation: Let r ∈ ℜ. ‖r‖ denotes the rounding of r, i.e.

‖r‖ =

{

⌊r⌋ if the fraction part of r is less than .5;
⌈r⌉ otherwise.

15

Proceedings of the Prague Stringology Conference ’04

In this definition we round 0.5 up. There may be cases where we need to round 0.5
down. For this we denote:

|⌊r⌋| =
{

⌊r⌋ if the fraction part of r is not more than .5;
⌈r⌉ otherwise.

Definition Let T be an n × n text array and P be an m × m pattern array over
alphabet Σ. Let r ∈ ℜ, 1 ≤ r ≤ n

m
.

We say that there is an occurrence of P scaled to r at text location [i, j] if the following
condition hold:

Let T 1X be the unit pixels array of T and P rX be the r-ary pixel arrays of P . Translate
P rX onto T 1X in a manner that the origin of P rX coincides with location (i−1, j−1)
of T 1X . Every center of a pixel in T 1X which is within the area covered by (i− 1, j−
1), (i− 1, j − 1 +mr), (i− 1 +mr, j − 1) and (i− 1 +mr, j − 1 +mr) has the same
color as the r-square of P rX in which it falls.

The colors of the centers of the pixels in T 1X which are within the area covered by
(i− 1, j− 1), (i− 1, j − 1+mr), (i− 1+mr, j − 1) and (i− 1+mr, j − 1+mr) define
a ‖mr‖ × ‖mr‖ array over Σ. This array is denoted by P r and called P scaled to r.

It is possible to find all scaled occurrences of an m ×m pattern in an n × n text in
time O(n2m2). Such an algorithm, while not trivial, is nonetheless achievable with
known techniques. In [10] an O(nm3 +n2m logm) algorithm was presented. Suitable
trade-offs lead to an algorithm whose running time is O(n1.5m2

√
logm).

The efficiency of the algorithm results from the properties of scaling. The scaling
definition needs to accommodate a conflict between two notions, the continuous (rep-
resented by the real-number scale), and the discrete (represented by the array rep-
resentation of the images). Understanding, and properly using, the shift from the
continuous to the discrete and back are key to the efficiency of the algorithms.

6.2 Rotation

The pattern matching with rotation problem is that of finding all occurrences of a
two dimensional pattern in a text, in all possible rotations. An efficient solution to
the problem proved elusive even though many researchers were thinking about it for
over a decade. Part of the problem was lack of a rigorous definition to capture the
concept of rotation in a discrete pattern.

The major breakthrough came when Fredriksson and Ukkonen [31] resorted to a
geometric interpretation of text and pattern and provided the following definition.

Let P be a two-dimensional m ×m array and T be a two-dimensional n × n array
over some finite alphabet Σ. As in the previous section, the array of unit pixels for
T consists of n2 unit squares, called pixels in the real plane R2. The corners of the
pixel for T [i, j] are (i−1, j−1), (i, j−1), (i−1, j), and (i, j). Hence the pixels for T
form a regular n× n array covering the area between (0, 0), (n, 0), (0, n), and (n, n).
The center of each pixel is the geometric center point of the pixel. Each pixel T [i, j]
is identified with the value from Σ that the original text had in that position. We say
that the pixel has a color from Σ.

16

Theoretical Issues of Searching Aerial Photographs: A Bird’s Eye View

The array of pixels for pattern P is defined similarly. A different treatment is neces-
sary for patterns with odd sizes and for patterns with even sizes. For simplicity’s sake
we assume throughout the rest of this paper that the pattern is of size m×m and m
is even. The rotation pivot of the pattern is its exact center, the point (m

2
, m

2
) ∈ R2.

See Figure 3 for an example of the rotation pivot of a 4× 4 pattern P .

0 1 2 3 4

0

1

2

3

4

P

rotation pivot

Figure 3: The rotation pivot of a 4× 4 pattern P .

Consider now a rigid motion (translation and rotation) that moves P on top of T .
Consider the special case where the translation moves the grid of P precisely on top
of the grid of T , such that the grid lines coincide.

Assume that the rotation pivot of P is at location (i, j) on the text grid, and that the
pattern lies under the text. The pattern is now rotated, centered at (i, j), creating
an angle α between the x-axes of T and P . P is said to be at location ((i, j), α)
under T . Pattern P is said to have an occurrence at location ((i, j), α) if the center
of each pixel in T has the same color as the pixel of P under it, if there is such a
pixel. When the center of a text pixel is exactly over a vertical (horizontal) border
between text pixels, the color of the pattern pixel left (below) to the border is chosen.
Consider some occurrence of P at location ((i0, j0), α). This occurrence defines a
non-rectangular substring of T that consists of all the pixel of T whose centers are
inside pixels of P . We call this string P rotated by α, and denote it by P α. Note that
there is an occurrence of P at location ((i, j), α) if and only if P α occurs at (i, j).

Fredriksson, Navarro and Ukkonen [29] give two possible definitions for rotation. One
is as described above and the second is, in some way, the opposite. P is placed over
the text T . More precisely, assume that the rotation pivot of P is on top of location
(i, j) on the text grid. The pattern is now rotated, centered at (i, j), creating an
angle α between the x-axes of T and P . P is said to be at location ((i, j), α) over
T . Pattern P is said to have an occurrence at location ((i, j), α) if the center of each
pixel in P has the same color as the pixel of T under it.

While the two definitions of rotation, “over” and “under”, seem to be quite similar,
they are not identical. For example, in the “pattern over text” model there exist
angles for which two pattern pixel centers may find themselves in the same text pixel.
Alternately, there are angles where there are “holes” in the rotated pattern, namely
there is a text pixel that does not have in it a center of a pattern pixel, but all text
pixels around it have centers of pattern pixels. See Figure 4 for an example.

17

Proceedings of the Prague Stringology Conference ’04

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

b

a

Figure 4: An example of a “hole” in the pattern. Text pixel T [3, 5] has no pattern
pixel over it, but the pixels T [2, 5] and T [3, 6] have pattern pixel centers.

The challenges of “discretizing” a continuous image are not simple. In the Image
Processing field, stochastic and probabilistic tools need to be used because the images
are “smoothed” to compensate for the fact that the image is presented in a far coarser
granularity than in reality. The aim of the the pattern matching community has been
to fully discretize the process, thus our different definitions. However, this puts us
in a situation where some “gut” decisions need to be made regarding the model that
best represents “reality”. It is our feeling that in this context the “pattern under
text” model is more intuitive since it does not allow anomalies such as having two
pattern centers over the same text pixel (a contradiction) nor does it create “holes”
in the rotated pattern For examples of the rotated patterns in the two models see
Figure 5.

Most of the algorithms for rotated matching are filtering algorithms that behave well
on average but that have a bad worst case complexity (e.g. [32, 29, 33]). In three
papers ([30, 9, 28]), there is a O(n2m3) worst case algorithm for rotated matching.
All worst-case algorithms basically work by enumerating all possible rotated patterns
and solving a two dimensional dictionary matching problem on the text. In [9] it was
proven that there are Θ(m3) such rotated patterns. The high complexity results from
the fact that the dictionary patterns have “don’t care” symbols in them and thus,
essentially, every pattern needs to be sought separately.

In [16], Amir, Kapah and Tsur present the first rotated matching algorithms whose
time is better than O(n2m3). The scanning time of their algorithms is O(n2m2).
These results are achieved by identifying monotonicity properties on the rotated pat-
terns. These properties allow using transitivity-based dictionary matching algorithms,
cutting the worst-case time by an m factor.

7 Conclusions and Open Problems

We have scanned some of the problems and techniques in two dimensional matching.
Clearly, we are still far from our motivation of actually finding a given template in an

18

Theoretical Issues of Searching Aerial Photographs: A Bird’s Eye View

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a)

1,2 3

5 6 7 4,8

13,9 10 11 12

14 15,16

(b)

5 1 2 3

9 6 7 4

13 10 11 8

14 15 16 12

(
)

1

5 2 3

9 6 7 4

13 10 11 8

14 15 12

16

(d)

5 2 3 3

5 6 7 8

9 10 11 12

14 14 15 12

(e)

1 2

9 6 7 4

13 10 11 8

15 16

(f)

Figure 5: An example of some possible 2-dimensional arrays that represent one pat-
tern. Fig (a) — the original pattern. Figures (b)–(d) are computed in the “pattern
over the text” model. Fig (b) — a representation of the pattern rotated by 190.
Fig (c) — Pattern rotated by 210. Fig (d) — Pattern rotated by 260. Figures (e)–(f)
are computed in the “pattern under the text” model. Fig (e) — Pattern rotated by
170. Fig (f) — Pattern rotated by 260.

image. What we have are various techniques for solving different subproblems, but we
need one method to solve them all. We need a scaled-rotated-approximate-dictionary
matching of nonrectangular patterns and that seems a great challenge indeed.

There are many technical open problems that were left in the wake of the results de-
scribed in this survey, such as a real-time suffix tree construction algorithm, approxi-
mate indexing and dictionary matching algorihtms, and even more efficient algorithms
for rotations. Other problems are new methods for general convolutions, multidimen-
sional extensions that are dimension-independent, dictionary matching with “don’t
cares”. But the grand inspiration continues to be integration of these solutions to a
general matching algorithm.

We may never reach that goal, but the way sure is exciting...

References

[1] K. Abrahamson. Generalized string matching. SIAM J. Comp., 16(6):1039–1051,
1987.

[2] A.V. Aho and M.J. Corasick. Efficient string matching. Comm. ACM, 18(6):333–
340, 1975.

[3] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Com-
puter Algorithms. Addison-Wesley, 1974.

19

Proceedings of the Prague Stringology Conference ’04

[4] A. Amir and G. Benson. Two-dimensional periodicity and its application. Proc.
of 3rd Symposium on Discrete Algorithms, Orlando, FL, pages 440–452, Jan
1992.

[5] A. Amir, G. Benson, and M. Farach. The truth, the whole truth, and nothing
but the truth: Alphabet independent two dimensional witness table construction.
Technical Report GIT-CC-92/52, Georgia Institute of Technology, August 1992.

[6] A. Amir, G. Benson, and M. Farach. An alphabet independent approach to two
dimensional pattern matching. SIAM J. Comp., 23(2):313–323, 1994.

[7] A. Amir, G. Benson, and M. Farach. Optimal two-dimensional compressed
matching. Proc. ICALP 94, pages 215–226, 1994.

[8] A. Amir, G. Benson, and M. Farach. Optimal parallel two dimensional text
searching on a crew pram. Information and Computation, 144(1):1–17, July
1998.

[9] A. Amir, A. Butman, M. Crocehmore, G.M. Landau, and M. Schaps. Two-
dimensional pattern matching with rotations. In Proc. 14th Annual Symposium
on Combinatorial Pattern Matching (CPM 2003), number 2676 in LNCS, pages
17–31. Springer, 2003.

[10] A. Amir, A. Butman, M. Lewenstein, and E. Porat. Real two dimensional scaled
matching. In Proc. 8th Workshop on Algorithms and Data Structures (WADS),
pages 353–364, 2003.

[11] A. Amir and G. Calinescu. Alphabet independent and dictionary scaled match-
ing. J. of Algorithms, 36:34–62, 2000.

[12] A. Amir and M. Farach. Efficient 2-dimensional approximate matching of non-
rectangular figures. Proc. of 2nd Symposium on Discrete Algorithms, San Fran-
cisco, CA, pages 212–223, Jan 1991.

[13] A. Amir and G. Landau. Fast parallel and serial multidimensional approximate
array matching. Theoretical Computer Science, 81:97–115, 1991.

[14] A. Amir, G. Landau, and D. Sokol. Inplace run-length 2d compressed search.
Theoretical Computer Science, 290(3):1361–1383, 2003.

[15] A. Amir, G.M. Landau, and U. Vishkin. Efficient pattern matching with scaling.
Proceedings of First Symposium on Discrete Algorithms, San Fransisco, CA,
pages 344–357, 1990.

[16] A. Amir, D. Tsur, and O. Kapah. Faster two dimensional pattern matching with
rotations. In Proc. 15th Annual Symposium on Combinatorial Pattern Matching
(CPM), 2004. to appear.

[17] Y. Aumann, M. Lewenstein, N. Lewenstein, and D. Tsur. Pealing codes with
applications to finding witnesses. submitted for publication, 2004.

20

Theoretical Issues of Searching Aerial Photographs: A Bird’s Eye View

[18] T.J. Baker. A technique for extending rapid exact-match string matching to
arrays of more than one dimension. SIAM J. Comp., 7:533–541, 1978.

[19] O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin. Highly par-
allelizable problems. Proc. 21st ACM Symposium on Theory of Computation,
pages 309–319, 1989.

[20] R.S. Bird. Two dimensional pattern matching. Information Processing Letters,
6(5):168–170, 1977.

[21] R.S. Boyer and J.S. Moore. A fast string searching algorithm. Comm. ACM,
20:762–772, 1977.

[22] V. Chvatal, D.A. Klarner, and D.E. Knuth. Selected combinatorial research
problems. Technical Report STAN-CS-72-292, Stanford University, 1972.

[23] R. Cole, M. Crochemore, Z. Galil, L. Ga̧sieniec, R. Harihan, S. Muthukrishnan,
K. Park, and W. Rytter. Optimally fast parallel algorithms for preprocessing
and pattern matching in one and two dimensions. Proc. 34th IEEE FOCS, pages
248–258, 1993.

[24] R. Cole and R. Hariharan. Dynamic lca queries in trees. In Proc. 10th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 235–244, 1999.

[25] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press and McGraw-Hill, 1992.

[26] M. Farach. Optimal suffix tree construction with large alphabets. Proc. 38th
IEEE Symposium on Foundations of Computer Science, pages 137–143, 1997.

[27] M.J. Fischer and M.S. Paterson. String matching and other products. Complexity
of Computation, R.M. Karp (editor), SIAM-AMS Proceedings, 7:113–125, 1974.

[28] K. Fredriksson, V. Mäkinen, and G. Navarro. Rotation and lighting invari-
ant template matching. In Proceedings of the 6th Latin American Symposium
on Theoretical Informatics (LATIN’04), LNCS, 2004. To appear. Available at
http://www.dcc.uchile.cl/ gnavarro/ps/latin04.ps.gzx.

[29] K. Fredriksson, G. Navarro, and E. Ukkonen. An index for two dimensional
string matching allowing rotations. In Prof. IFIP International Conference on
Theoretical Computer Science (IFIP TCS), volume 1872 of LNCS, pages 59–75.
Springer, 2000.

[30] K. Fredriksson, G. Navarro, and E. Ukkonen. Optimal exact and fast approxi-
mate two dimensional pattern matching allowing rotations. In Proc. 13th Annual
Symposium on Combinatorial Pattern Matching (CPM), volume 2373 of LNCS,
pages 235–248. Springer, 2002.

[31] K. Fredriksson and E. Ukkonen. A rotation invariant filter for two-dimensional
string matching. In Proc. 9th Annual Symposium on Combinatorial Pattern
Matching (CPM 98), pages 118–125. Springer, LNCS 1448, 1998.

21

Proceedings of the Prague Stringology Conference ’04

[32] K. Fredriksson and E. Ukkonen. A rotation invariant filter for two-dimensional
string matching. In Proc. 9th Annual Symposium on Combinatorial Pattern
Matching (CPM), volume 1448 of LNCS, pages 118–125. Springer, 1998.

[33] K. Fredriksson and E. Ukkonen. Combinatorial methods for approximate pattern
matching under rotations and translations in 3d arrays. In Proc. 7th Symposium
on String Processing and Information Retrieval (SPIRE’2000), pages 96–104.
IEEE CS Press, 2000.

[34] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques
for geometry problems. Proc. 16th ACM Symposium on Theory of Computing,
67:135–143, 1984.

[35] Z. Galil. Open problems in stringology. In Z. Galil A. Apostolico, editor, Com-
binatorial Algorithms on Words, volume 12, pages 1–8. NATO ASI Series F,
1985.

[36] Z. Galil and K. Park. Alphabet-independent two-dimensional witness computa-
tion. SIAM J. Comp., 25(5):907–935, October 1996.

[37] D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common ancestor.
Computer and System Science, 13:338–355, 1984.

[38] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array construction.
In Proc. 30th International Colloquium on Automata, Languages and Program-
ming (ICALP 03), pages 943–955, 2003. LNCS 2719.

[39] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings.
SIAM J. Comp., 6:323–350, 1977.

[40] K. Krithivansan and R. Sitalakshmi. Efficient two dimensional pattern matching
in the presence of errors. Information Sciences, 13:169–184, 1987.

[41] G. M. Landau and U. Vishkin. Fast parallel and serial approximate string match-
ing. Journal of Algorithms, 10(2):157–169, 1989.

[42] G. M. Landau and U. Vishkin. Pattern matching in a digitized image. Algorith-
mica, 12(3/4):375–408, 1994.

[43] V. I. Levenshtein. Binary codes capable of correcting, deletions, insertions and
reversals. Soviet Phys. Dokl., 10:707–710, 1966.

[44] E. M. McCreight. A space-economical suffix tree construction algorithm. J. of
the ACM, 23:262–272, 1976.

[45] B. Schieber and U. Vishkin. On finding lowest common ancestors: Simplification
and parallelization. SIAM J. Comp., 17:1253–1262, 1988.

[46] E. Ukkonen. A linear-time algorithm for finding approximate shortest common
superstrings. Algorithmica, 5:313–323, 1990.

[47] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.

22

Theoretical Issues of Searching Aerial Photographs: A Bird’s Eye View

[48] U. Vishkin. Optimal parallel pattern matching in strings. Proc. 12th ICALP,
pages 91–113, 1985.

[49] P. Weiner. Linear pattern matching algorithm. Proc. 14 IEEE Symposium on
Switching and Automata Theory, pages 1–11, 1973.

23

Algorithms for the Constrained Longest Common

Subsequence Problems

Abdullah N. Arslan1 and Ömer Eğecioğlu2∗

1 Department of Computer Science
University of Vermont

Burlington, VT 05405, USA
e-mail: aarslan@cs.uvm.edu

2 Department of Computer Science
University of California, Santa Barbara

Santa Barbara, CA 93106, USA
e-mail: omer@cs.ucsb.edu

Abstract. Given strings S1, S2, and P , the constrained longest common sub-
sequence problem for S1 and S2 with respect to P is to find a longest common
subsequence lcs of S1 and S2 such that P is a subsequence of this lcs. We
present an algorithm which improves the time complexity of the problem from
the previously known O(rn2m2) to O(rnm) where r, n, and m are the lengths
of P, S1, and S2, respectively. As a generalization of this, we extend the defi-
nition of the problem so that the lcs sought contains a subsequence whose edit
distance from P is less than a given parameter d. For the latter problem, we
propose an algorithm whose time complexity is O(drnm).

Keywords: Longest common subsequence, constrained subsequence, edit dis-
tance, dynamic programming.

1 Introduction

A subsequence of a string S is obtained by deleting zero or more symbols of S.
The longest common subsequence (lcs) problem for two strings is to find a common
subsequence in both strings having maximum possible length. The lcs problem has
many applications, and it has been studied extensively, see for example [1, 4, 2, 3, 5, 7].
The problem has a simple dynamic programming formulation. To compute an lcs
between two strings of lengths n, and m, we use the edit graph. The edit graph is a
directed acyclic graph having (n + 1)(m + 1) lattice points (i, j) for 0 ≤ i ≤ n, and
0 ≤ j ≤ m as vertices. Vertex (0, 0) appears at the top-left corner, and the vertex
(n,m) is at the bottom-right corner of this rectangular grid. To vertex (i, j) there
are incoming arcs from its neighbors at (i − 1, j), (i, j − 1), and (i − 1, j − 1) which
represent, respectively, insert, delete, and either substitute or match operations. The
lcs calculation counts the number of matches on the paths from vertex (0, 0) to (n,m),
and the problem aims to maximize this number. The time complexity lower bound

∗Work done in part while on sabbatical at Sabanci University, Istanbul, Turkey during 2003-2004.

24

Algorithms for the Constrained Longest Common Subsequence Problems

for the problem is Ω(n2) for n ≥ m if the elementary operations are “equal/unequal”,
and the alphabet size is unrestricted [1]. If the alphabet is fixed the best known time
complexity is O(n2/ logn) when n = m [5]. A survey of practical lcs algorithms can
be found in [2].

Given strings S1, S2, and P , the constrained longest common subsequence problem
[6] for S1 and S2 with respect to P is to find a longest common subsequence lcs of S1

and S2 such that P is a subsequence of this lcs. For example, for S1 = bbaba, and
S2 = abbaa, bbaa is an (unrestricted) lcs for S1 and S2, and aba is an lcs for S1 and
S2 with respect to P = ab, as shown in Figure 1.

S1 = b b a b a S1 = b b a b a

S2 = a b b a a P = a b2 = a b b a aS

Figure 1: For S1 = bbaba, and S2 = abbaa, the length of an lcs is 4 (left). When
constrained to contain P = ab as a subsequence, the length of an lcs drops to 3
(right).

The problem is motivated by practical applications: For example in the computa-
tion of the homology of two biological sequences it is important to take into account
a common specific or putative structure [6].

Let n,m, r denote the lengths of the strings S1, S2, and P , respectively. Tsai
[6] gave a dynamic programming formulation for the constrained longest common
subsequence problem and a resulting algorithm whose time complexity is O(rn2m2).
In this paper we present a different dynamic programming formulation with which we
improve the time complexity of the problem down to O(rnm). We achieve improved
results by changing the order of the dimensions in the formulation. We also extend
the definition of the problem so that the lcs sought is forced to contain a subsequence
whose edit distance from P is less than a given positive integer parameter d. For this
latter problem we propose an algorithm whose time complexity is O(drnm). Taking
d = 1 specializes to the original constrained lcs problem as this choice of d forces the
subsequence to contain P itself. We describe these results in section 2.

2 Algorithms

Let |S1| = n, |S2| = m with n ≥ m, and |P | = r. Let S[i] denote the ith symbol of
string S. Let S[i..j] = S[i]S[i+ 1] · · ·S[j] be the substring of consecutive letters in S
from position i to position j inclusive for i ≤ j, and the empty string otherwise.

Denote by Li,j,k the length of an lcs for S1[1..i] and S2[1..j] with respect to P [1..k].
This simply means that the common subsequence is constrained to contain P as
a subsequence in turn. We calculate the values Li,j,k by a dynamic programming
formulation. Then Ln,m,r is the length of an lcs of S1 and S2 containing P as a
subsequence.

Theorem 1 For all i, j, k, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ r, Li,j,k satisfies

Li,j,k = max{L′
i,j,k, Li,j−1,k, Li−1,j,k} (1)

25

Proceedings of the Prague Stringology Conference ’04

where
L′

i,j,k = max{L′′
i,j,k, L

′′′
i,j,k} (2)

and

L′′
i,j,k =

{

1 + Li−1,j−1,k−1 if (k = 1 or (k > 1 and Li−1,j−1,k−1 > 0))
and S1[i] = S2[j] = P [k]

0 otherwise

L′′′
i,j,k =

{

1 + Li−1,j−1,k if (k = 0 or Li−1,j−1,k > 0) and S1[i] = S2[j]
0 otherwise

with boundary conditions Li,0,k = 0, L0,j,k = 0, for all i, j, k, 0 ≤ i ≤ n, 0 ≤ j ≤ m,
0 ≤ k ≤ r.

Proof We prove the correctness of our formulation by induction on k for all i, j.
We will consider all possible ways of obtaining an lcs with respect to P [1..k] at

any node i, j. Essentially there are three cases to consider:

1. An lcs ending at the node (i, j − 1) is extended with the horizontal arc ((i, j −
1), (i, j)) ending at node (i, j),

2. An lcs ending at (i − 1, j) is extended with the vertical arc ((i − 1, j), (i, j))
ending at node (i, j),

3. An lcs ending at node (i−1, j−1) is extended with the diagonal arc ((i−1, j−
1), (i, j)) ending at node (i, j). In this case we distinguish between subcases
depending on whether the diagonal arc is a matching for the given strings along
with the pattern, or is a matching for the given strings only at the current
indices.

The possible lcs extensions referred to in items 1 and 2 above are accounted for by
Li,j−1,k and Li−1,j,k respectively in the statement of the theorem. The quantities L′′

i,j,k

and L′′′
i,j,k in the statement of the theorem keep track of the two further possibilities

described in item 3.
In the base case: when k = 0 (i.e. when P is the empty string) L′′

i,j,k is identically
0. Therefore L′

i,j,k = L′′′
i,j,k in (2). Since k = 0, the conjunction in the definition of

L′′′
i,j,k is always satisfied. We see that putting Li,j = Li,j,0, (1) becomes

Li,j = max{L′
i,j, Li,j−1, Li−1,j}

where

L′
i,j =

{

1 + Li−1,j−1 if S1[i] = S2[j]
0 otherwise

which is the classical dynamic programming formulation for the ordinary lcs between
S1 and S2 [7].

Assume that for k− 1 (k ≥ 1), Li,j,k−1 computed by (1) is the length of an lcs for
S1[1..i] and S2[1..j] with respect to P [1..k− 1] for all i, j and consider the calculation
of Li,j,k when k > 1.

We define a path at node (i, j) as a simple path in the edit graph which includes
at least one matching arc, starts at node (0, 0), and ends at node (i, j). A path with

26

Algorithms for the Constrained Longest Common Subsequence Problems

respect to P [1..k] includes matching diagonal arcs ending at a sequence of k ≥ 1
distinct nodes (a1, b1), (a2, b2), . . . , (ak, bk) such that for all ℓ, 1 ≤ ℓ ≤ k, S1[aℓ] =
S2[bℓ] = P [ℓ]. We define #match on a path as the number of matches between the
symbols of S1, and S2, not necessarily involving symbols in P . An lcs path with
respect to P [1..k] ending at node (i, j) is a path with respect to P [1..k] ending at
node (i, j) with maximum #match. Thus Li,j,k is #match on an lcs path at node
(i, j) with respect to P [1..k]. Evidently #match = #match(i, j, k) is a function of the
indices i, j, k. We will omit these parameters when they are clear from the context.

We can extend any lcs path with respect to P [1..k] ending at node (i, j − 1)
with the horizontal arc ((i, j − 1), (i, j)) to obtain a path with respect to P [1..k]
ending at node (i, j). Such an extension does not change #match on the path, and
Li,j,k ≥ Li,j−1,k.

Similarly we can extend any lcs path with respect to P [1..k] ending at node
(i − 1, j) with the vertical arc ((i − 1, j), (i, j)) to obtain a path with respect to
P [1..k] ending at node (i, j). This extension does not change #match on the path
either, and Li,j,k ≥ Li−1,j,k. Therefore, Li,j,k ≥ max{Li,j−1,k, Li−1,j,k}.

By using a matching arc ((i−1, j−1), (i, j)), we can obtain paths with respect to
P [1..k] at node (i, j) by extending lcs paths with either respect to P [1..k−1], or with
respect to P [1..k] ending at node (i− 1, j − 1). These two possibilities are accounted
for by L′′

i,j,k and L′′′
i,j,k in the dynamic programming formulation, respectively.

First consider lcs paths with respect to P [1..k − 1] ending at node (i− 1, j − 1).
We will show that L′′

i,j,k stores the maximum #match on paths obtained at node (i, j)
by extending these paths.

If S1[i] = S2[j] = P [k] then: If k = 1 then this is the first time the letter P [1]
appears as a matching arc on a path ending at node (i, j) since we are considering lcs
paths with respect to P [1..k−1] ending at node (i−1, j−1) and S1[i] = S2[j] = P [1].
Therefore, the lcs length relative to P [1] at (i, j) is L′′

i,j,1 = 1+Li−1,j−1,0, which is one
more than the length of an ordinary lcs between S1[1..i− 1] and S2[1..j− 1]. If k > 1
and if there is an lcs path with respect to P [1..k−1] ending at node (i−1, j−1) (i.e.
if Li−1,j−1,k−1 > 0) then we can extend this path with a new match, and #match in
the resulting path ending at node (i, j) becomes L′′

i,j,k = 1 + Li−1,j−1,k−1.

Next we consider lcs paths with respect to P [1..k] ending at node (i − 1, j − 1).
We will show that L′′′

i,j,k stores the maximum #match on paths obtained at node (i, j)
by extending these paths.

If S1[i] = S2[j] then: Since the k = 0 case is considered earlier in the base case
of the induction, we only consider the case when k > 1. If there is an lcs path with
respect to P [1..k] ending at node (i−1, j−1) (i.e. if Li−1,j−1,k > 0) then we can extend
this path by adding a new match (which does not involve P), and #match in the
resulting path relative to P [1..k] ending at node (i, j) becomes L′′′

i,j,k = 1 + Li−1,j−1,k.
After setting L′

i,j,k = max{L′′
i,j,k, L

′′′
i,j,k}, the quantity L′

i,j,k is equal to the max-
imum #match on paths with respect to P [1..k] ending at node (i, j) ending with
the arc ((i − 1, j − 1), (i, j)). If there is no such path then L′

i,j,k = 0. Therefore
Li,j,k ≥ max{L′

i,j,k, Li,j−1,k, Li−1,j,k}.
From all possible lcs paths ending at neighboring nodes of (i, j) we can find their

extensions ending at node (i, j), and we can obtain an lcs path ending at node (i, j)
with respect to P [1..k] for all k. We calculate, and store in Li,j,k such lcs lengths. Now
consider the structure of an lcs path with respect to P [1..k] ending at node (i, j). As

27

Proceedings of the Prague Stringology Conference ’04

b b a b a
a 0 0 1 1 1
b 1 1 1 2 2
b 1 2 2 2 2
a 1 2 3 3 3
a 1 2 3 3 4

b b a b a
a 0 0 1 1 1
b 0 0 1 2 2
b 0 0 1 2 2
a 0 0 3 3 3
a 0 0 3 3 4

b b a b a
a 0 0 0 0 0
b 0 0 0 2 2
b 0 0 0 2 2
a 0 0 0 2 3
a 0 0 0 2 3

k = 0 k = 1 k = 2

Figure 2: For S1 = abbaa, S2 = bbaba, and P = ab, the tables of values Li,j,k = the
length of an lcs for S1[1..i] and S2[1..j] with respect to P [1..k].

typical in dynamic programming formulations, we consider the possible cases of the
last arc on such a path to obtain Li,j,k ≤ max{L′

i,j,k, Li,j−1,k, Li−1,j,k} which proves
the theorem. •

Example: Figure 2 shows the contents of the dynamic programming tables for S1 =
bbaba, and S2 = abbaa, and P = ab for k = 0, 1, 2. For k = 0, the calculated values
are simply the ordinary dynamic programming lcs table for S1 and S2.

All Li,j,k can be computed in O(rnm) time, using O(rm) space using the formula-
tion in Theorem 1 by noting that we only need rows i−1, and i during the calculations
at row i. If actual lcs is desired then we can carry the lcs information for each k along
with the calculations. This requires O(rnm) space. By keeping track, on lcs for each
k, of only the match points (i′, j′) of P [u] for all u, 1 ≤ u ≤ r, the space complexity
can be reduced to O(r2m). In this case, the lcs for k = r needs to be recovered using
ordinary lcs computations to connect the consecutive match points.
Remark: Space complexity can further be improved by applying a technique used in
unconstrained lcs computation [3]. We can compute, instead of the entire lcs for each
k, middle vertex (n/2, j) (assume for simplicity that n is even) at which an lcs with
respect to P [1..k] passes. This can be done in O(rm) space, and we can compute for
all k the lcs length Ln/2,j,k from vertex (0, 0) to vertex (n/2, j), and lcs length from
(n/2, j) to (n,m). The latter is done in the reverse edit graph by calculating lcs from
(n,m) to (n/2, j), hence we denote it by Lreverse

n/2,j,l for 0 ≤ ℓ ≤ k. Then for every k,

max
j,0≤ℓ≤k

Ln/2,j,l + Lreverse
n/2,j,k−l

is the lcs length for k, and it identifies a middle vertex. After the middle vertex
(n/2, j) on lcs for every k is found, the problem of finding the lcs from (0, 0) to
(n,m) can be solved in two parts: find the lcs from (0, 0) to (n/2, j), and find the
lcs from (n/2, j) to (n,m) for all k. These two subproblems can be solved recursively
by finding the middle points. This way lcs can be obtained using O(rm) space. The
time complexity remains O(rnm) because n is halved each time, and the area (in
terms of number of vertices) covered in the edit graph is O(nm), and at each vertex
the total time spent is O(r).

Next we propose a generalization of the constrained longest common subsequence
problem. Given strings S1, S2, and P , and a positive integer d the edit distance

28

Algorithms for the Constrained Longest Common Subsequence Problems

constrained longest common subsequence problem for S1 and S2 with respect to string
P , and distance d is to find a longest common subsequence lcs of S1 and S2 such that
this lcs has a subsequence whose edit distance from P is smaller than d. Edit distance
between two strings is the minimum number of edit operations required to transform
one string to the other. The edit operations are insert, delete, and substitute.

Let Li,j,k,t be the length of an lcs for S1[1..i] and S2[1..j] such that the common
subsequence contains a subsequence whose edit distance from P [1..k] is exactly t.

Example: Suppose S1 = bbaba, S2 = abbaa and P = ab. We have calculated
before that the length of an lcs for S1 and S2 relative to P is 3. Thus L5,5,2,0 = 3. On
the other hand the lcs bbaa of S1 and S2 contains the subsequence a, which is edit
distance 1 away from P . Therefore L5,5,2,1 = 4.

We calculate all Li,j,k,t by a dynamic programming formulation. Optimal value of
the edit distance constrained lcs problem is max

0≤t<d
Ln,m,r,t.

Theorem 2 For all i, j, k, t, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ r, 0 ≤ t < d, Li,j,k,t

satisfies

Li,j,k,t = max{L′
i,j,k,t, Li,j−1,k,t, Li−1,j,k,t} (3)

where

L′
i,j,k,t = max{L′′

i,j,k,t, L
′′′
i,j,k,t, L

′′′′
i,j,k,t} (4)

where

L′′
i,j,k,t =



















1 + Li−1,j−1,k−1,t if ((k = 1 and t = 0) or
(k > 1 and Li−1,j−1,k−1,t > 0))

and S1[i] = S2[j] = P [k]

0 otherwise

L′′′
i,j,k,t =











1 + Li−1,j−1,0,0 if (k = 0 and t = 1) and S1[i] = S2[j]
1 + Li−1,j−1,k,t else if (k = 0 or Li−1,j−1,k,t > 0)

and S1[i] = S2[j]
0 otherwise

L′′′′
i,j,k,t = max{Di,j,k,t, Xi,j,k,t, Ii,j,k,t} (5)

where

Di,j,k,t =
{

Li,j,k−1,t−1 if t ≥ 1
0 otherwise

Xi,j,k,t =
{

Li,j,k−1,t−1 if t ≥ 1 and S1[i] = S2[j]
0 otherwise

Ii,j,k,t =
{

Li,j,k,t−1 if t ≥ 1 and S1[i] = S2[j]
0 otherwise

with boundary conditions Li,0,k,0 = 0, L0,j,k,0 = 0, for all i, j, k, 0 ≤ i ≤ n, 0 ≤ j ≤ m,
0 ≤ k ≤ r.

29

Proceedings of the Prague Stringology Conference ’04

Proof We claim that Li,j,k,t is the optimum length for any lcs for S1[1..i] and S2[1..j]
such that the lcs contains a subsequence whose edit distance is t from P [1..k]. We
prove the correctness of our formulation by induction on t for all i, j, k.

In the base case: when t = 0 the formulation becomes the same formulation as
in Theorem 1, since now the lcs is required to contain P itself as a subsequence.
Therefore, the correctness of this case follows from Theorem 1.

Assume that for t − 1 (t ≥ 1), for all i, j, k, Li,j,k,t−1 is the optimum length for
any lcs for S1[1..i] and S2[1..j] such that the lcs contains a subsequence whose edit
distance is t from P [1..k]. Consider the calculation of Li,j,k,t for all i, j, k when t > 1.

Our formulation uses the following observation: Let cs be a subsequence of an
lcs of S1 and S2. The minimum edit distance between cs and P can be calculated
using insert, delete, and substitute operations in P , and using no operations in cs.
To see this consider the edit operations between the symbols in cs, and in P . If an
edit distance calculation deletes a symbol s in cs, we can instead insert the symbol s
in P ; if a minimum edit distance calculation inserts a symbol s in cs, we can instead
delete the symbol s in P ; and if a minimum edit distance calculation substitutes a
symbol s′ for s in cs, we can instead substitute a symbol s for s′ in P to obtain the
same edit distance.

We define an edit path at node (i, j) at distance t from P [1..k] as a simple
path from node (0, 0) to node (i, j), which includes a sequence of l ≥ 1 distinct
nodes (a1, b1), (a2, b2), · · · , (al, bl) such that the edit distance between the string
S1[a1]S2[a2] . . . S1[al] (= S2[b1] S2[b2] . . . S2[bl]), and P [1..k] is exactly t. We define
#match on a given edit path to node (i, j) as the number of matching diagonal arcs
on the path between the symbols in S1[1..i], and the symbols in S2[1..j], not nec-
essarily involving matches in P . An optimal edit path at node (i, j) at distance t
from P [1..k] is an edit path at node (i, j) at distance t from P [1..k] with maximum
#match. Thus Li,j,k,t is #match on an optimal edit path at node (i, j) at distance
t from P [1..k]. In this case, #match = #match(i, j, k, t) is a function of the indices
i, j, k, t, but we omit these parameters when they are clear from the context.

We can extend any optimal edit path at node (i, j − 1) at distance t from P [1..k]
with the horizontal arc ((i, j−1), (i, j)) to obtain an edit path at node (i, j) at distance
t from P [1..k]. Such an extension does not change #match on the resulting edit path,
and Li,j,k,t ≥ Li,j−1,k,t.

Similarly we can extend any optimal edit path at node (i−1, j) at distance t from
P [1..k] with the vertical arc ((i− 1, j), (i, j)) to obtain an edit path at node (i, j) at
distance t from P [1..k]. This extension does not change #match on the resulting edit
path, and Li,j,k,t ≥ Li−1,j,k,t. Therefore, Li,j,k,t ≥ max{Li,j−1,k,t, Li−1,j,k,t}.

By using a matching arc ((i − 1, j − 1), (i, j)), we can obtain edit paths at node
(i, j) at distance t from P [1..k] by extending optimal edit paths at node (i− 1, j− 1)
at distance t− 1, or t from P [1..k − 1], or P [1..k].

First consider optimal edit paths at node (i−1, j−1) at distance t from P [1..k−1].
We will show that L′′

i,j,k,t stores the maximum #match obtained at node (i, j) by
extending these edit paths.

If S1[i] = S2[j] = P [k] then: We do not need to consider the case when k = 1
and t = 0 since t = 0 case is considered in the base case of the induction. If k > 1
and if there is an optimal edit path at node (i, j) at distance t from P [1..k] (i.e. if

30

Algorithms for the Constrained Longest Common Subsequence Problems

Li−1,j−1,k−1,t > 0) then we can extend this edit path with a new match, and #match
on the resulting edit path at node (i, j) at distance t from P [1..k] becomes L′′

i,j,k,t =
1 + Li−1,j−1,k−1,t.

Next we consider optimal edit paths at node (i − 1, j − 1) at distance t from
P [1..k]. We will show that L′′′

i,j,k,t stores the maximum #match obtained at node
(i, j) by extending these edit paths.

If S1[i] = S2[j] then: If k = 0 and t = 1 then: We can extend an lcs path ending
at node (i−1, j−1) with respect to P [1..k] with a match. In this case, #match in the
resulting edit path is one more than Li−1,j−1,0,0. Therefore, L′′′

i,j,0,1 = 1 + Li−1,j−1,0,0.
Otherwise if k = 0 then we can extend an optimal edit path at node (i − 1, j − 1)
at distance t from P [1..k] with a match, and #match on the resulting edit path is
L′′′

i,j,k,t = 1 + Li−1,j−1,k,t.
Any edit path at node (i, j) at distance t − 1 from P [1..k − 1], or P [1..k] can be

modified by applying an edit operation in P . We can modify an edit path at node
(i, j) at distance t − 1 from P [1..k − 1] by deleting P [k]. Then on the resulting edit
path #match remains the same, and the distance increases by 1. Therefore, we set
Di,j,k,t = Li,j,k−1,t−1, and take it into account in L′′′′

i,j,k,t. We can modify an edit path
at node (i, j) at distance t − 1 from P [1..k − 1] by substituting S1[i] = S2[j] for
P [k]. Then on the resulting edit path #match remains the same, and the distance
increases by 1. Therefore, we set Xi,j,k,t = Li,j,k−1,t−1 if S1[i] = S2[j], and take it into
account in L′′′′

i,j,k,t. We can also modify an edit path at node (i, j) at distance t − 1
from P [1..k] by inserting S1[i] = S2[j] in P after position k. Then on the resulting
edit path #match remains the same, and the distance increases by 1. Therefore, we
set Ii,j,k,t = Li,j,k,t−1 if S1[i] = S2[j], and take it into account in L′′′′

i,j,k,t. Combining all
these L′′′′

i,j,k,t = max{Di,j,k,t, Xi,j,k,t, Ii,j,k,t}.
After setting L′

i,j,k,t = max{L′′
i,j,k,t, L

′′′
i,j,k,t, L

′′′′
i,j,k,t}, L′

i,j,k,t stores the maximum
#match on edit paths at node (i, j) at distance t from P [1..k] whose last arc is
((i− 1, j − 1), (i, j)). If there is no such edit path then L′

i,j,k,t = 0.
From all possible optimal edit paths at neighboring nodes of (i, j) we can obtain

their extensions ending at node (i, j), and we can find an optimal edit path at node
(i, j) at distance t from P [1..k] for all k, t. We calculate, and store in Li,j,k,t maximum
#match in such optimal edit paths. Considering the possible cases of the last arc on
an optimal edit path at node (i, j) at distance t from P [1..k] we also have Li,j,k,t ≤
max{L′

i,j,k,t, Li,j−1,k,t, Li−1,j,k,t}. This concludes the proof of the theorem. •
All Ln,m,r,t for t = 0, 1, · · · , d − 1 can be computed in O(drnm) time, and using

O(drm) space using the formulation in Theorem 2 by noting that we only need rows
i − 1, and i during the calculations at row i. If an actual optimal edit path is
desired then we can carry the edit path information for every k and t along with the
calculations. This requires O(drnm) space since edit paths can be of length O(n).

If we store match points (where the symbols of S1, S2, and P match) on these edit
paths then we can reduce the required space to O(dr2m). In this case, the optimal
edit path of the problem needs to be recovered using ordinary lcs computations to
connect the consecutive match points.
Remark: Space complexity can further be improved by using the technique we used
in our first algorithm. We can compute, instead of the entire edit path for each k,
and t, a middle vertex (n/2, j) (assume for simplicity that n is even) at which an edit
path at distance t from P [1..k] passes. This can be done in O(drm) space, and we

31

Proceedings of the Prague Stringology Conference ’04

can compute for all k, and t, #match Ln/2,j,l,u on optimal edit path from vertex (0, 0)
to vertex (n/2, j), and #match on optimal edit path from (n/2, j) to (n,m) where
0 ≤ ℓ ≤ k, and 0 ≤ u ≤ t. The latter, denoted by Lreverse

n/2,j,k−l,t−u, can be calculated in
the reverse edit graph. Then for all k, t,

max
j,0≤ℓ≤k,0≤u≤t

Ln/2,j,l,u + Lreverse
n/2,j,k−l,t−u

is the optimum #match for k, t, and it identifies a middle vertex. After the middle
vertex (n/2, j) on optimal edit path for every k, t is found, the problem of finding an
optimal edit path from (0, 0) to (n,m) can be solved in two parts: find an optimal
edit path from (0, 0) to (n/2, j), and find and optimal edit path from (n/2, j) to
(n,m) for all k, t. These two subproblems can be solved recursively. As a results an
optimal edit path can be obtained using O(drm) space. The time complexity remains
O(rnm) because n is halved each time, and the area (in terms of number of vertices)
covered in the edit graph is O(nm), and at each vertex the total time spent is O(dr).

3 Conclusion

We have improved the time complexity of the constrained lcs problem from O(rn2m2)
to O(rnm) where n, and m are the lengths of the given strings, and r is the pattern
length. This improvement is achieved by a dynamic programming formulation which
is different from what was proposed in [6]. In our formulation, the dimensions are
ordered differently. We also extended the problem definition to use edit distances,
and presented an O(drnm) time algorithm for the resulting edit distance constrained
lcs problem.

References

[1] A.V. Aho, D.S. Hirschberg, and J.D. Ullman. Bounds on the complexity of the
longest common subsequence problem. J. ACM, 23(1):1–12, 1976.

[2] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence
algorithms. SPIRE, A Coruna, Spain, pp. 39–48, 2000.

[3] D.S. Hirschberg. A linear space algorithm for computing maximal common sub-
sequences. Communications of ACM, 18:341–343, 1975.

[4] D.S. Hirschberg. Algorithms for the longest common subsequence problem. J.
ACM, 24:664–675, 1977.

[5] W.J. Masek and M.S. Paterson. A faster algorithm computing string edit dis-
tances. J. Comput. System Sci., 20:18–31, 1980.

[6] Yin-Te Tsai. The constrained common sequence problem. Information Processing
Letters, 88:173–176, 2003.

[7] R.A. Wagner and M.J. Fisher. The string-to-string correction problem. J. ACM,
21:168–173, 1974.

32

Efficient Algorithms for the δ-Approximate String

Matching Problem in Musical Sequences

Domenico Cantone, Salvatore Cristofaro and Simone Faro

Dipartimento di Matematica e Informatica, Università di Catania, Italy

e-mail: {cantone, cristofaro, faro}@dmi.unict.it

Abstract. The δ-approximate string matching problem, recently introduced in
connection with applications to music retrieval, is a generalization of the exact
string matching problem for alphabets of integer numbers. In the δ-approximate
variant, (exact) matching between any pair of symbols/integers a and b is re-
placed by the notion of δ-matching =δ, where a =δ b if and only if |a− b| ≤ δ
for a given value of the approximation bound δ.
After surveying the state-of-the-art, we describe some new effective algorithms
for the δ-matching problem, obtained by adapting existing string matching algo-
rithms. The algorithms discussed in the paper are then compared with respect
to a large set of experimental tests. From these, in particular it turns out that
two of our newly proposed algorithms often achieve the best performances, es-
pecially in the case of large alphabets and short patterns, which typically occurs
in practical situations in music retrieval.

Keywords: String algorithms, approximate string matching, musical informa-
tion retrieval.

1 Introduction

Given a text T and a pattern P over some alphabet Σ, the string matching prob-
lem consists in finding all occurrences of the pattern P in the text T . It is a very
extensively studied problem in computer science, mainly due to its direct applica-
tions to such diverse areas as text, image and signal processing, speech analysis and
recognition, information retrieval, computational biology and chemistry, etc.

In the last few years also the approximate pattern matching problem has received
much attention and algorithms which find all approximate repetitions of a given
pattern in a sequence have been proposed, based on notions of approximation par-
ticularly useful in specific fields such as molecular biology [KMGL88, MJ93], musical
applications [CIR98], or image processing [KPR00].

In this paper we focus on a variant of the approximate string matching problem
which naturally arises in music information retrieval, namely the δ-approximate string
matching problem.

Musical sequences can be schematically viewed as sequences of integer numbers,
representing either the notes in the chromatic or diatonic notation (absolute pitch
encoding), or the intervals, in number of semitones, between consecutive notes (pitch

33

Proceedings of the Prague Stringology Conference ’04

Figure 1: Representation of the C-minor and B-sus4 chords in the absolute pitch
encoding (a.p.e.) and in the pitch interval encoding (i.p.e.)

interval encoding); see the examples in Figure 1. The second representation is gener-
ally of greater interest for applications in tonal music, since absolute pitch encoding
disregards tonal qualities of pitches. Note durations and note accents can also be
encoded in a numeric form, giving rise to more meaningful alphabets whose symbols
can be really regarded as sets of parameters. This is the reason why alphabets used
for music representation are generally quite large.

δ-approximate string matching algorithms are very effective to search for all similar
but not necessarily identical occurrences of given (short) melodies in musical scores.
We recall that in the δ-approximate matching problem two numeric strings of the same
length match if corresponding integers differ by at most a fixed bound δ. For instance,
the chords C-minor and B-sus4 match if a tolerance of δ = 1 is allowed in the ab-
solute pitch encoding (where C-minor= (60, 63, 67, 72) and B-sus4= (59, 64, 66, 71)),
whereas if we use the pitch interval encoding, a tolerance of δ = 2 is needed to get a
match (in this case we have C-minor= (3, 4, 5) and B-sus4= (5, 2, 5)); see Figure 1.
Notice that when δ = 0, the δ-approximate string matching problem reduces to the
exact string matching problem.

A stronger restriction can be introduced to δ-approximate matching by imposing
a limit γ to the sum of the absolute differences between corresponding integers. This
further restriction is generally referred to as (δ, γ)-approximate matching. However,
in this paper we consider only the general case in which γ = +∞.

A significant amount of research has been devoted to adapt solutions for ex-
act string matching to δ-approximate matching (see for instance [CCI+99, CILP01,
CIL+02]). In this respect, Boyer-Moore-type algorithms are of particular interest,
since they are very fast. We recall that they are based on variations of the well-
known ideas introduced in the Boyer-Moore algorithm [BM77], namely right-to-left
scanning, bad-character and good-suffix heuristics. For instance, the Fast-Search and
the Forward-Fast-Search algorithms [CF03a, CF03b] require that the bad-character
heuristics is used only if the mismatching character is the last character of the pat-
tern, otherwise the good-suffix heuristics is to be used.

The main results of this paper are adaptations of the Fast-Search and Forward-Fast-
Search algorithms to δ-approximate matching. In addition, we propose adaptations of
the Quick-Search and the Berry-Ravindran algorithms [Sun90, BR99], which are among
the most efficient algorithms for exact string matching.

The paper is organized as follows. In Section 2 we introduce the basic notions
and give a formal definition of the δ-approximate matching problem. In Section 3 we

34

Efficient Algorithms for the δ-Approximate String Matching Problem in Musical Sequences

survey some of the most efficient algorithms for computing δ-approximate repetitions
in musical sequences. Then in Sections 4 and 5 we present new efficient variants, by
suitably adapting known exact string matching algorithms. Experimental data ob-
tained by running under various conditions the most efficient reviewed algorithms are
presented and compared in Section 6. Finally, we draw our conclusions in Section 7.

2 Basic definitions and properties

Before entering into details, we need a bit of notations and terminology. A string P
is represented as a finite array P [0 .. m− 1], with m ≥ 0. In such a case we say that
P has length m and write length(P) = m. In particular, for m = 0 we obtain the
empty string, also denoted by ε. By P [i] we denote the (i + 1)-st character of P ,
for 0 ≤ i < length(P). Likewise, by P [i .. j] we denote the substring of P contained
between the (i+ 1)-st and the (j + 1)-st characters of P , for 0 ≤ i ≤ j < length(P).
Moreover, for any i, j ∈ Z, we put

P [i .. j] =

{

ε if i > j
P [max(i, 0),min(j, length(P)− 1)] otherwise.

For any two strings P and Q, we write Q ⊐ P to indicate that Q is a suffix of P , i.e.,
Q = P [i .. length(P)− 1], for some 0 ≤ i ≤ length(P). Similarly, we write Q ⊏ P to
indicate that Q is a prefix of P , i.e., Q = P [0 .. i − 1], for some 0 ≤ i ≤ length(P).
In addition, we write P.Q to denote the concatenation of P and Q and P k to denote
the concatenation of k copies of P . A prefix Q of P is a period of P if P is a prefix
of Qk, for a sufficiently large k. The shortest period of P is called the period of P .

Let Σ be an alphabet of integer numbers and let δ ≥ 0 be an integer. Two symbols
a and b of Σ are said to be δ-approximate (or that a and b δ-match), in which case
we write a =δ b, if |a− b| ≤ δ. Two strings P and Q over the alphabet Σ are said to

be δ-approximate (or that P and Q δ-match), in which case we write P
δ
= Q, if

length(P) = length(Q), and P [i] =δ Q[i], for i = 0, ..., length(P)− 1 .

Moreover, we write Q
δ
⊐ P , and say that Q is a δ-suffix of P , if Q

δ
= P [i .. length(P)−

1], for some 0 ≤ i ≤ length(P). The following elementary property can be verified
immediately.

Property 2.1 Let P , Q, and R be strings over an alphabet Σ of integer numbers and

let δ ≥ 0 be a given integer number. If P
δ
= Q and R

δ
⊐ Q, then R

2δ
⊐ P .

Let T be a text of length n and let P be a pattern of length m (over a given
alphabet of integers). When the symbol P [0] is aligned with the symbol T [s] of the
text, so that the symbol P [i] is aligned with the symbol T [s+ i], for i = 0, . . . , m− 1,
we say that the pattern P has shift s in T . In this case, the substring T [s .. s+m−1]

is called the current window of the text. If T [s .. s+m−1]
δ
= P , we say that the shift

s is δ-valid. Then the problem of δ-approximate pattern matching consists in finding
all δ-valid shifts of text T for a given pattern P .

35

Proceedings of the Prague Stringology Conference ’04

3 Fast δ-Approximate Pattern Matching

The problem of δ-approximate matching in musical sequences has been formally de-
fined in [CCI+99], where an algorithm based on the bitwise technique, the Shift-And
algorithm, has been presented. The Shift-And algorithm uses a constant time state
computation, for each character in the text, so that the overall time complexity of
the searching phase is O(n).

Two years later, a number of efficient algorithms for the exact string matching
problem have been adapted in [CILP01] to the δ-approximate matching problem,
obtaining three algorithms based on occurrence heuristics (δ-Tuned-Boyer-Moore, δ-
Skip-Search, and δ-Maximal-Shift) which are faster than the Shift-And algorithm.

Still later, other adaptations of exact string matching algorithms to the δ-
approximate matching problem have been proposed in [CIL+02]. The resulting algo-
rithms, based on the substring heuristics, are δ-BM1, δ-BM2, and δ-BM3.

Finally, a bit-parallel algorithm, δ-BNDM, which outperforms previous algorithms,
has been recently presented in [CIPN03].

Next, we briefly review the most efficient algorithms for δ-approximate matching
mentioned above.

3.1 δ-Boyer-Moore Algorithms

The Boyer-Moore algorithm [BM77] for exact pattern matching is the progenitor of
several algorithmic variants which aim at computing efficiently shift increments which
are close to optimal. Specifically, the Boyer-Moore algorithm checks whether a shift
s of a text T is valid by scanning the pattern P from right to left. At the end of
the matching phase, the Boyer-Moore algorithm computes the shift increment as the
maximum value suggested by the good-suffix rule and the bad-character rule.

The Boyer-Moore bad-character rule can beeasily adapted to δ-approximate match-
ing. Suppose that the first δ-mismatch occurs at position i of the pattern, i.e.

P [i + 1, ..., m − 1]
δ
= T [s + i + 1, ..., s + m − 1] and T [s + i] 6=δ P [i]. Then the

δ-bad-character rule suggests the shift increment δ-bcP (T [s+ i]) + i−m+ 1, where

δ-bcP (c) =Def min({0 ≤ k < m | P [m− 1− k] =δ c} ∪ {m}) ,

for c ∈ Σ.

The δ-Tuned-Boyer-Moore [CILP01] is an adaptation of Tuned-Boyer-Moore [HS91],
which in turn is a very efficient simplification of the original Boyer-Moore algorithm
although it runs in time O(nm) in the worst case. Specifically, each of its iterations
can be divided into two phases: last character localization and δ-matching phase. The
first phase searches for a δ-match of the character P [m−1], by applying until needed
rounds of three consecutive shifts based on the δ-bad-character rule, where the check
δ-bcP (T [s+m− 1]) = 0 is performed only at the end of each round. The subsequent
matching phase then tries to δ-match the rest of the pattern P [0 .. m − 2] with the
corresponding characters of the text, proceeding from right to left. At the end of the
matching phase, the δ-Tuned-Boyer-Moore algorithm computes the shift advancement
in such a way that character T [s+m− 1] is aligned with the rightmost position i on
P [0 .. m− 2] such that P [m − 1] =2δ P [i], if present. If such position is not present,
the shift is incremented by m.

36

Efficient Algorithms for the δ-Approximate String Matching Problem in Musical Sequences

The δ-Maximal-Shift algorithm, presented in [CILP01], is a modification of
the Maximal-Shift algorithm [Sun90]. Rather than scanning the pattern from right
to left, the δ-Maximal-Shift algorithm scans the pattern according to an ordering
which guarantees larger shifts advancements. This is better formalized by means of
a permutation π : {0, 1, ..., m} → {0, 1, ..., m} and a function δ-max : {0, 1, ..., m} →
{0, 1, ..., m} such that, for 0 ≤ i < m,

δ-max(π(i)) = min{l |P [π(j)−l] =2δ P [π(j)] and P [π(i)−l] 6=δ P [π(i)], for 1≤j <i}

and, for 0 ≤ i < m− 1,

δ-max(π(i)) ≤ δ-max(π(i+ 1)) ,

where P is a given pattern of length m. Furthermore, one sets π(m) = m and
δ-max(m) equal to the length of the period of P .

During the matching phase, characters are scanned in the pattern following the
ordering π(0), π(1), . . . , π(m − 1). Moreover, if the first δ-mismatch occurs while
comparing characters P [π(i)] and T [s+ π(i)], then the current shift s is incremented
by max{δ-max(π(i)), δ-bc(T [s+m])}. It turns out that the δ-Maximal-Shift algorithm
has O(nm) time complexity.

3.2 δ-Reverse-Factor and δ-Alpha-Skip-Search Algorithms

Unlike the Boyer-Moore algorithm, the Reverse-Factor algorithm [CCG+94] and the
Alpha-Skip-Search algorithm [CLP98] compute shifts which match prefixes of the pat-
tern, rather than suffixes. These algorithms have a quadratic worst-case time com-
plexity, but are very fast in practice (cf. [Lec00]). Moreover, it has been shown that
on the average the Reverse-Factor algorithm inspects O(n log(m)/m) text characters,
reaching the best bound shown by Yao in 1979 (cf. [Yao79]).

Adaptations of Reverse-Factor and Alpha-Skip-Search algorithms are presented in
[CIL+02] under the names δ-BM2 and δ-BM1, respectively.

The δ-BM1 algorithm, or δ-Alpha-Skip-Search algorithm, preliminary computes a
δ-suffix trie Tx of all the factors of length ℓ = ⌊log|Σ|m⌋ occurring in the pattern
P , where Σ is the alphabet. The leaves of the δ-suffix trie Tx represent all strings y

such that y
δ
= x, for some factor x of P of length ℓ. For each leaf of Tx, a bucket

is maintained which stores all positions at which the factor associated to the leaf
occurs in P . The searching phase of the δ-Alpha-Skip-Search algorithm consists then
in looking for each shift position s into the bucket of the factor T [s..s+ ℓ− 1], if any,
and in checking naively the corresponding windows of the text. A shift advancement
of size m− ℓ+ 1 then takes place.

The δ-BM2 algorithm, or δ-Reverse-Factor algorithm, computes the smallest δ-
suffix automaton of the reverse of the pattern P by simply minimizing the δ-suffix
trie Tx. In this way one obtains a deterministic finite automaton whose accepted

language is the set of strings y such that y
δ
= x, for some factor x of P of length

⌊log|Σ|m⌋. Then, much the same strategy of the Reverse-Factor algorithm can be
applied to the case of δ-approximate matching.

37

Proceedings of the Prague Stringology Conference ’04

3.3 δ-Hashing Algorithms

To describe the δ-BM3 algorithm, we need some further notation. Let P be a pattern
over an alphabet Σ of integer numbers, let k < length(P) be a fixed integer, and
let δ ≥ 0 be a given approximation bound. We denote by sub(P, k) the set of all
substrings of P of length k and we define the following intervals:

I = [k ·min Σ .. k ·max Σ]
Ix = [max{hash(x)− kδ, k ·min Σ} .. min{hash(x) + kδ, k ·max Σ}] ,

for x ∈ sub(P, k) and where hash(x) denotes the sum of the symbols of x. It can be
easily shown that Ix ⊆ I, for each x ∈ sub(P, k).

The δ-BM3 algorithm [CIL+02] begins by constructing the following hash table
H, indexed by the interval I. For each i ∈ I, the i-th bucket of the table H collects
the positions of all subwords x ∈ sub(P, k) such that i ∈ Ix. Then, given a text T , for
each shift position s the searching phase of the δ-BM3 algorithm consists in examining
the subword y = T [s+m−k .. s+m−1]. For each element j in the bucket at position
hash(y), the algorithm checks naively whether P occurs at position s + m − k − j
in T . It turns out that the choice of k influences the running-time of the algorithm.
Generally, a value of k = 2 constitutes a good choice.

The δ-Skip-Search algorithm [CILP01] is an adaptation of the Skip-Search algo-
rithm [CLP98] to δ-approximate matching. However, it can also be seen as a variant
of the δ-BM3 algorithm, with k = 1.

Both δ-Skip-Search and δ-BM3 algorithms are fast in practice although their worst-
case time complexity is O(nm).

3.4 The δ-BNDM Algorithm

The Backward Nondeterministic DAWG Matching algorithm (BNDM for short) for
exact string matching has been presented in [NR98] as a combination of the bit-
parallel algorithm Shift-Or [BYG89] and the BDM algorithm [CCG+94] based on
suffix automata. The aim of the BNDM algorithm is to combine the property of skip-
ping characters (as in the BDM algorithm) with that of simulating nondeterministic
automata (as the Shift-Or algorithm). It turns out that the BNDM algorithm obtains
better results in terms of running time than the Shift-Or and the BDM algorithms.
Its complexity is O(nm) in the worst case.

An adaptation of the BNDM algorithm to δ-approximate matching, the δ-BNDM
algorithm, has been presented in [CIPN03]. The δ-BNDM algorithms is very simple
and efficient, especially in the case of long patterns, and is considered a stronger
choice for the δ-approximate matching problem.

4 δ-Fast-Search algorithms

The Fast-Search [CF03a] and the Forward-Fast-Search [CF03b] algorithms are very
recent members of the large family of Boyer-Moore type string matching algorithms.
Their searching strategy is based on an efficient mixing of the bad-character and good-
suffix rules, as given in the original Boyer-Moore algorithm. Recent experimental
results [CF03b] conducted over an extensive family of string matching algorithms
show that the Fast-Search algorithms obtain, in most cases, the best results in terms

38

Efficient Algorithms for the δ-Approximate String Matching Problem in Musical Sequences

of running times and number of text character inspections.
After reviewing the main features of the Fast-Search algorithms, we shall show

how they can be adapted to δ-approximate matching problem.

4.1 Fast-Search and Forward-Fast-Search algorithms

The Fast-Search algorithm is a very simple, yet efficient, variant of the Boyer-Moore
algorithm. Again, let P be a pattern of length m and let T be a text of length n
over a finite alphabet Σ. The Fast-Search algorithm computes its shift increments
by applying the bad-character rule if and only if a mismatch occurs during the first
character comparison, namely, while comparing characters P [m−1] and T [s+m−1],
where s is the current shift. Otherwise it uses the good-suffix rule.

Specifically, if the first mismatch occurs at position i < m−1 of the pattern P , the
good-suffix rule suggests to align the substring T [s+i+1 .. s+m−1] = P [i+1 .. m−1]
with its rightmost occurrence in P preceded by a character different from P [i]. If such
an occurrence does not exist, the good-suffix rule suggests a shift increment which
allows to match the longest suffix of T [s+ i+ 1 .. s+m− 1] with a prefix of P .

More formally, if the first mismatch occurs at position i of the pattern P , the
good-suffix rule states that the shift can be safely incremented by gsP (i+1) positions,
where

gsP (j) =Def min{0 < k ≤ m | P [j − k ..m− k − 1] ⊐ P

and (k ≤ j − 1→ P [j − 1] 6= P [j − 1− k])} ,

for j = 0, 1, . . . , m. (The situation in which an occurrence of the pattern P is found
can be regarded as a mismatch at position −1.)

A more effective implementation of the Fast-Search algorithm is obtained along
the same lines of the Tuned-Boyer-Moore algorithm: the bad-character rule can be
iterated until the last character P [m− 1] of the pattern is matched correctly against
the text. At this point it is known that T [s+m−1] = P [m−1], so that the subsequent
matching phase can start with the (m−2)-nd character of the pattern. At the end of
the matching phase the algorithm uses the good-suffix rule for shifting. Moreover the
Fast-Search algorithm benefits from the introduction of an external sentinel, which
allows to compute correctly the last shifts with no extra checks.

The Forward-Fast-Search algorithm maintains the same structure of the Fast-Search
algorithm, but it is based upon a modified version of the good-suffix rule, called
forward good-suffix rule, which uses a look-ahead character to determine larger shift
advancements. Thus, if the first mismatch occurs at position i < m−1 of the pattern
P , the forward good-suffix rule suggests to align the substring T [s + i + 1 .. s + m]
with its rightmost occurrence in P preceded by a character different from P [i]. If such
an occurrence does not exist, the forward good-suffix rule proposes a shift increment
which allows to match the longest suffix of T [s + i + 1 .. s + m] with a prefix of P .
This corresponds to advance the shift s by

−→
gsP (i+ 1, T [s+m]) positions, where

−→
gsP (j, c) =Def min({0 < k ≤ m | P [j − k ..m− k − 1] ⊐ P

and (k ≤ j − 1→ P [j − 1] 6= P [j − 1− k])
and P [m− k] = c} ∪ {m+ 1}) ,

39

Proceedings of the Prague Stringology Conference ’04

for j = 0, 1, . . . , m and c ∈ Σ.
The good-suffix rule and the forward good-suffix rule require tables of size m and

m · |Σ|, respectively. These can be constructed in time O(m) and O(m ·max(m, |Σ|)),
respectively.

4.2 Adaptations to δ-approximate matching

In this section we show how to adapt the Fast-Search and Forward-Fast-Search algo-
rithms to δ-approximate matching.

A modification of the bad-character rule to δ-approximate matching has been
already presented in Section 3.1. Now we show how the good-suffix rule and the
forward good-suffix rule can also be adapted to match δ-approximate repetitions of
suffixes of the pattern.

Let us suppose that while comparing the pattern P with the window T [s .. s +
m − 1], proceeding from right to left, the first δ-mismatch occurs at position i, i.e.

P [i] 6=δ T [s + i] and P [i + 1 .. m − 1]
δ
= T [s + i + 1 .. s + m − 1] (if we have a δ-

match, then i = 0 and the condition P [i] 6=δ T [s + i] should not be considered). Let

0 < k ≤ m be such that s+ k +m− 1 ≤ n and P [i+ 1− k ..m− 1− k]
2δ

6⊐ P , where
δ
⊐ is the δ-suffix relation defined in Section 2. Then the shift s + k is not δ-valid.
Indeed, if s + k were δ-valid, we would have P

δ
= T [s + k .. s + k + m − 1], so that

P [i+1−k ..m−1−k] δ
⊐ T [s+ i+1 .. s+m−1]. Therefore, by Property 2.1, we would

get P [i+1−k ..m−1−k] 2δ
⊐ P [i+1 .. m−1], which yields P [i+1−k ..m−1−k] 2δ

⊐ P , a
contradiction. It is also easy to verify that if an integer k satisfies both 0 < k ≤ i and
P [i] = P [i − k], then again the shift s + k is not δ-valid. The above considerations
allow us to state the following δ-good-suffix rule: if the first δ-mismatch occurs at
position i of the pattern P , then the shift can be safely incremented by δ-gsP (i+ 1)
positions, where

δ-gsP (j) =Def min{0 < k ≤ m | P [j − k ..m− k − 1]
2δ
⊐ P [j ...m− 1]

and (k ≤ j − 1→ P [j − 1] 6= P [j − 1− k])} ,

for j = 0, 1, . . . , m.
Much in the same way, one can verify the correctness of the following δ-forward

good-suffix rule: if the first δ-mismatch occurs at position i of the pattern P , then
the shift can be safely incremented by δ-

−→
gsP (i+ 1, T [s+m]) positions, where

δ-
−→
gsP (j, c) =Def min({0 < k ≤ m | P [j − k ..m− k − 1]

2δ
⊐ P [j ...m− 1]

and (k ≤ j − 1→ P [j − 1] 6= P [j − 1− k])
and P [m− k] =δ c} ∪ {m+ 1}) ,

for j = 0, 1, . . . , m and c ∈ Σ.
The δ-good-suffix rule and the δ-forward good-suffix rule require tables of size

m and (m · |Σ|), respectively. These can be easily constructed in time O(m) and
O(δ ·m ·max(m, |Σ|)), respectively.

The δ-Fast-Search and δ-Forward-Fast-Search algorithms can be implemented
much along the same lines of the δ-Tuned-Boyer-Moore algorithm.

40

Efficient Algorithms for the δ-Approximate String Matching Problem in Musical Sequences

δ-Fast-Search (P , T) δ-Forward-Fast-Search (P , T)
n = length(T) n = length(T)
m = length(P) m = length(P)
T ′ = T.P [m− 1]m+1 T ′ = T.P [m− 1]m+1

δ-bc = precompute-δ-bad-character(P) δ-bc = precompute-δ-bad-character(P)

δ-gs = precompute-δ-good-suffix(P) δ-
−→
gs = precompute-δ-forward-good-suffix(P)

s = 0 s = 0
while δ-bc[T ′[s + m− 1]] > 0 do while δ-bc[T ′[s + m− 1]] > 0 do

s = s + δ-bc[T ′[s + m− 1]] s = s + δ-bc[T ′[s + m− 1]]
while s ≤ n−m do while s ≤ n−m do

j = m− 2 j = m− 2
while j ≥ 0 and P [j] =δ T ′[s + j] while j ≥ 0 and P [j] =δ T ′[s + j]

do j = j − 1 do j = j − 1
if j < 0 then if j < 0 then

print(s) print(s)

s = s + δ-gs [j + 1] s = s + δ-
−→
gs[j + 1, T [s + m]]

while δ-bc[T ′[s + m− 1]] > 0 do while δ-bc[T ′[s + m− 1]] > 0 do
s = s + δ-bc[T ′[s + m− 1]] s = s + δ-bc[T ′[s + m− 1]]

Figure 2: δ-Fast-Search and δ-Forward-Fast-Search algorithms

Each iteration of both algorithms can be divided into two phases. In the first
phase, called character localization phase, the δ-bad-character rule is iterated until
the last character P [m − 1] of the pattern is δ-matched correctly against the text.
More precisely, starting from a shift position s, if we denote by ji the total shift
advancement after the i-th iteration of the δ-bad-character rule, then we have the
following recurrence:

ji = ji−1 + δ-bcP (T [s+ ji−1 +m− 1]) .

Therefore, the δ-bad-character rule is applied k times in a row, where k = min{i | T [s+
ji +m− 1] =δ P [m− 1]}, with an overall shift advancement of jk.

At this point we have that T [s+ jk +m− 1] =δ P [m− 1], so that the subsequent
δ-matching phase can test for a δ-occurrence of the pattern by comparing only the
remaining (m − 1) characters of the pattern. At the end of the δ-matching phase,
the δ-good-suffix or the δ-forward-good-suffix rule is applied for computing the next
shift.

In order to compute correctly the last shift with no extra checks, it is convenient to
add m+1 copies of the character P [m−1] at the end of the text T , obtaining the new
text T ′ = T.P [m−1]m+1. Plainly, all the δ-valid shifts of P in T are exactly the δ-valid
shifts s of P in T ′ such that s ≤ n−m, where, as usual, n and m denote respectively
the lengths of T and P . The codes of the δ-Fast-Search and δ-Forward-Fast-Search
algorithms are presented in Figure 2.

5 Other interesting efficient variants

In this section we present adaptations to δ-approximate matching of two efficient
exact string matching algorithms based on the bad-character rule, i.e. the Quick-
Search algorithm and the Berry-Ravindran algorithm.

41

Proceedings of the Prague Stringology Conference ’04

The Quick-Search algorithm, presented in [Sun90], uses a simple modification of
the original heuristics of the Boyer-Moore algorithm. Specifically, it is based on the
following observation: when a mismatch character is encountered, the pattern is
always shifted to the right by at least one character, but never by more than m
characters. Thus, the character T [s + m] is always involved in testing for the next
alignment. So, one can apply the bad-character rule to T [s + m], rather than to
the mismatching character, obtaining larger shift advancements. Moreover the good-
suffix rule of the original Boyer-Moore algorithm is not used at all.

Extending this idea to δ-approximate matching we obtain the δ-Quick-Search al-
gorithm which, after each δ-matching phase, advances the shift by δ-qbcP (T [s+m])
positions, where

δ-qbcP (c) =Def min({0 < k ≤ m | P [m− k] =δ c} ∪ {m+ 1}) .
The function δ-qbcP can be precomputed in O(m · δ + |Σ|)-time and O(|Σ|)-space
complexity.

The δ-Berry-Ravindran algorithm is a modification of the Berry-Ravindran algo-
rithm [BR99]. It extends the δ-Quick-Search algorithm in that its bad-character rule
uses the two characters T [s+m] and T [s+m+ 1] rather than just the last character
T [s + m] of the window. Thus, at the end of each matching phase with shift s, the
δ-Berry-Ravindran algorithm advances the pattern in such a way that the substring of
the text T [s + m.. s + m + 1] is aligned with the rightmost δ-occurrence in P of a

substring c1c2 such that T [s+m... s+m+ 1]
δ
= c1c2.

The precomputation of the table used by this version of δ-bad-character rule
requires O(m · δ2 + |Σ|2)-time and O(|Σ|2)-space complexity.

Experimental results confirm the good practical behavior of the Quick-Search and
Berry-Ravindran algorithms even in the case of their δ-variants (see next section).

6 Experimental Results

In this section we report experimental data related to the most efficient δ-approximate
string matching algorithms described above, namely δ-Tuned-Boyer-Moore (δ-TBM),
δ-Quick-Search (δ-QS), δ-Berry-Ravindran (δ-BR), δ-BNDM (δ-BNDM), δ-Fast-Search
(δ-FS), and δ-Forward-Fast-Search (δ-FFS).

We have chosen to compare them in terms of their running time. All algorithms
have been implemented in the C programming language and were used to search
for the same patterns in large fixed text sequences on a PC with a Pentium IV
processor at 2.6GHz. In particular, they have been tested on three Randσ prob-
lems, for σ = 30, 60, 120, and on a real music sequence with patterns of length
m = 2, 4, 6, 8, 10, 15, 20, 25, and 30.

Each Randσ problem consists in searching a set of 300 random patterns of a given
length in a 20Mb random text sequence over a common alphabet of size σ.

The tests on the real music text buffer have been performed on a 9.3Mb file ob-
tained by combining a set of classical pieces, in MIDI format, by J.S. Bach. The
resulting text buffer has been translated in the pitch interval encoding with an al-
phabet of 55 symbols. For each pattern length m, we have randomly selected 200
substrings of length m in the file which subsequently have been searched for in the
same file.

42

Efficient Algorithms for the δ-Approximate String Matching Problem in Musical Sequences

For both Randσ problems and real music problems, the value of the bound δ has
been set to 1, 2, and 4.

In the following tables running times have been expressed in milliseconds and, for
each length of the pattern, the best results have been bold-faced.

From the experimental results, it turns out that the δ-BNDM algorithm is a very
good choice for the δ-approximate matching problem, especially when the pattern is
long or the size of the alphabet is small.

However, the δ-Fast-Search algorithms compares well with the δ-BNDM algorithm
and outperforms it in the case of quite short patterns and large alphabets, which
occurs most frequently in real musical information retrieval problems.

Observe also that the δ-Tuned-Boyer-Moore algorithm and the δ-Quick-Search al-
gorithm obtain good results in most cases and, additionally, the δ-Quick-Search algo-
rithm reaches competitive results in the case of long patterns and large alphabets.

σ = 30, δ = 1 2 4 6 8 10 15 20 25 30
δ-QS 93.08 68.88 59.19 54.48 51.71 49.12 48.23 48.16 47.85

δ-TBM 75.83 55.44 49.84 47.82 47.42 46.63 46.02 45.57 46.02
δ-BR 140.67 102.82 84.48 73.38 65.99 55.33 51.11 48.68 47.44
δ-FFS 74.67 54.84 49.45 47.42 46.57 45.85 45.39 45.73 45.10
δ-FS 74.35 54.11 49.21 47.63 46.92 46.00 45.56 45.54 45.64

δ-BNDM 125.89 90.41 73.61 62.92 55.80 48.03 46.10 45.29 44.46

Rand30 problem with δ = 1

σ = 30, δ = 2 2 4 6 8 10 15 20 25 30
δ-QS 118.91 87.03 73.50 67.25 63.04 58.90 57.20 56.82 56.26

δ-TBM 94.59 69.52 59.58 56.80 54.40 53.07 52.49 52.40 52.00
δ-BR 171.74 125.04 102.18 87.26 78.73 65.21 57.87 53.57 51.79
δ-FFS 93.44 67.40 58.26 54.41 52.21 49.68 48.36 48.10 47.92
δ-FS 93.80 68.19 58.54 55.76 52.95 51.40 51.29 50.05 49.91

δ-BNDM 158.89 107.54 80.57 66.42 58.79 50.21 47.57 46.78 45.26

Rand30 problem with δ = 2

σ = 30, δ = 4 2 4 6 8 10 15 20 25 30
δ-QS 166.00 132.47 112.36 105.59 101.12 98.74 97.91 98.79 97.91

δ-TBM 124.15 103.95 92.90 91.22 88.08 88.79 87.16 87.17 86.58
δ-BR 229.80 178.12 145.58 126.55 114.72 96.98 88.09 83.17 79.27
δ-FFS 127.36 101.16 85.88 80.17 75.31 70.70 67.14 65.06 63.38
δ-FS 131.92 105.31 92.44 88.90 84.92 84.04 80.76 80.22 78.55

δ-BNDM 215.78 134.42 98.63 82.78 72.84 58.07 51.43 48.19 47.18

Rand30 problem with δ = 4

σ = 60, δ = 1 2 4 6 8 10 15 20 25 30
δ-QS 74.92 57.49 51.07 48.74 47.46 46.02 45.45 45.35 45.27

δ-TBM 62.48 49.22 46.21 45.96 46.53 45.54 44.85 44.95 44.49
δ-BR 122.15 89.97 74.42 65.24 58.70 50.39 48.54 46.46 46.25
δ-FFS 62.63 49.08 46.71 45.39 45.16 45.14 44.14 44.71 44.17
δ-FS 62.01 48.71 45.60 45.17 45.40 44.99 44.49 44.35 44.10

δ-BNDM 102.68 72.16 62.16 56.48 52.32 47.60 45.79 44.60 44.22

Rand60 problem with δ = 1

43

Proceedings of the Prague Stringology Conference ’04

σ = 60, δ = 2 2 4 6 8 10 15 20 25 30
δ-QS 86.46 64.67 55.84 52.05 50.04 47.76 47.03 46.48 46.11

δ-TBM 71.12 52.55 48.45 46.71 46.81 46.10 45.41 45.50 45.56
δ-BR 134.57 98.74 81.02 70.64 63.66 53.73 50.15 48.07 46.85
δ-FFS 70.06 52.58 48.42 46.31 45.85 45.60 45.40 44.77 45.03
δ-FS 70.21 51.79 47.32 46.36 46.02 45.17 44.97 44.91 44.43

δ-BNDM 117.93 84.61 70.87 62.07 55.01 47.77 45.73 44.98 44.77

Rand60 problem with δ = 2

σ = 60, δ = 4 2 4 6 8 10 15 20 25 30
δ-QS 112.38 82.29 70.06 62.81 59.55 55.80 54.66 53.67 53.60

δ-TBM 89.94 65.92 56.49 53.92 52.14 50.57 49.99 50.34 49.69
δ-BR 164.51 120.44 98.35 84.06 75.90 62.74 56.23 52.55 50.81
δ-FFS 88.41 63.94 54.83 52.07 50.56 48.34 47.63 47.05 46.61
δ-FS 88.33 64.39 56.29 52.89 51.29 49.69 48.79 48.80 48.47

δ-BNDM 150.64 103.41 78.90 65.46 56.91 49.35 46.95 46.40 45.50

Rand60 problem with δ = 4

σ = 120, δ = 1 2 4 6 8 10 15 20 25 30
δ-QS 67.32 52.41 48.78 46.86 46.42 45.28 44.31 44.61 43.92

δ-TBM 57.44 47.79 46.17 45.60 45.85 45.21 45.72 44.51 44.28
δ-BR 114.24 85.12 70.86 62.88 56.61 49.86 46.96 47.11 46.31
δ-FFS 57.62 47.74 45.39 45.16 45.67 44.56 45.06 44.32 43.89
δ-FS 57.15 47.86 45.96 44.82 45.06 44.78 43.20 44.13 43.95

δ-BNDM 91.98 62.92 53.25 49.97 48.40 45.89 46.07 44.85 44.68

Rand120 problem with δ = 1

σ = 120, δ = 2 2 4 6 8 10 15 20 25 30
δ-QS 72.31 55.66 50.43 48.24 47.56 46.54 45.39 43.60 44.89

δ-TBM 60.73 48.71 46.57 45.60 45.82 44.80 45.39 46.17 44.93
δ-BR 119.57 89.09 73.42 64.91 58.82 50.80 47.82 46.08 45.98
δ-FFS 60.76 48.53 46.17 45.57 45.65 45.46 44.60 45.71 44.71
δ-FS 60.30 48.25 45.89 45.06 44.91 44.69 44.86 42.88 43.89

δ-BNDM 99.36 69.31 58.94 54.62 51.12 47.22 45.74 46.49 44.49

Rand120 problem with δ = 2

σ = 120, δ = 4 2 4 6 8 10 15 20 25 30
δ-QS 82.92 62.78 54.59 50.91 49.22 47.32 46.66 46.28 46.06

δ-TBM 69.13 51.62 48.01 47.07 46.36 45.63 45.76 45.30 45.28
δ-BR 132.63 97.17 80.17 69.71 62.69 53.69 49.81 48.12 47.18
δ-FFS 67.86 51.45 47.40 46.29 46.53 45.64 45.14 44.88 44.67
δ-FS 67.61 50.91 47.32 45.92 45.60 45.43 44.99 44.95 44.78

δ-BNDM 114.37 82.24 69.07 60.88 54.61 47.62 45.96 44.79 44.42

Rand120 problem with δ = 4

σ = 55, δ = 1 2 4 6 8 10 15 20 25 30
δ-QS 11.62 8.30 7.54 7.17 6.66 5.68 5.95 5.59 5.36

δ-TBM 9.40 7.33 6.47 5.82 5.62 5.51 5.29 5.51 5.83
δ-BR 16.16 12.56 10.10 8.79 7.64 6.97 6.11 5.87 5.44
δ-FFS 8.76 6.58 6.44 6.22 5.61 5.29 5.26 5.19 5.18
δ-FS 9.16 6.72 5.79 5.51 5.59 5.06 5.19 5.11 5.26

δ-BNDM 15.17 10.33 8.08 6.97 6.54 6.08 5.47 5.11 5.01

Results on the Real Music problem with δ = 1

44

Efficient Algorithms for the δ-Approximate String Matching Problem in Musical Sequences

σ = 55, δ = 2 2 4 6 8 10 15 20 25 30
δ-QS 14.53 11.41 9.79 9.51 8.63 8.03 7.61 7.68 7.20

δ-TBM 11.55 9.39 8.42 8.39 7.86 7.17 7.28 6.78 6.93
δ-BR 20.36 16.21 13.20 12.26 10.68 9.00 8.39 7.42 7.14
δ-FFS 11.35 8.78 7.21 6.64 6.73 5.34 5.43 6.10 5.89
δ-FS 11.23 8.97 7.78 7.74 7.78 6.88 6.60 6.38 6.34

δ-BNDM 18.36 12.85 9.72 8.06 6.71 6.19 5.09 5.24 5.42

Results on the Real Music problem with δ = 2

σ = 55, δ = 4 2 4 6 8 10 15 20 25 30
δ-QS 17.64 16.70 15.79 14.99 14.63 13.69 12.90 13.39 12.83

δ-TBM 15.18 15.19 14.30 13.80 13.02 12.54 11.76 11.92 11.54
δ-BR 26.12 23.17 21.36 19.73 18.33 15.60 14.12 14.22 13.14
δ-FFS 14.02 13.28 12.23 11.33 10.32 9.84 9.57 9.18 9.26
δ-FS 14.52 14.20 13.37 12.43 12.18 11.46 10.42 10.39 9.83

δ-BNDM 21.92 17.03 14.60 11.86 9.80 7.79 6.75 5.85 5.60

Results on the Real Music problem with δ = 4

7 Conclusion

As reported in [CIL+02], typical problems arising in musical analysis and musical
information retrieval generally use representations of musical scores requiring large
alphabets. In such problems the length of the pattern is generally short (10-20 notes):
thus the need of approximate searching algorithms that perform well for small patterns
and large alphabets.

In this paper we have focused our attention on δ-approximate string matching
algorithms, which are very effective in searching for all similar but not necessarily
identical occurrences of given melodies in musical scores. In particular we have pre-
sented two new efficient algorithms, δ-Fast-Search and δ-Forward-Fast-Search, which
outperform known algorithms in the case of small patterns and large alphabets.

References

[BM77] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun.
ACM, 20(10):762–772, 1977.

[BR99] T. Berry and S. Ravindran. A fast string matching algorithm and ex-
perimental results. In J. Holub and M. Šimánek, editors, Proceedings of
the Prague Stringology Club Workshop ’99, pages 16–28, Czech Technical
University, Prague, Czech Republic, 1999. Collaborative Report DC–99–
05.

[BYG89] R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching.
In N. J. Belkin and C. J. van Rijsbergen, editors, Proceedings of the 12th
International Conference on Research and Development in Information
Retrieval, pages 168–175, Cambridge, MA, 1989. ACM Press.

45

Proceedings of the Prague Stringology Conference ’04

[CCG+94] M. Crochemore, A. Czumaj, L. Ga̧sieniec, S. Jarominek, T. Lecroq,
W. Plandowski, and W. Rytter. Speeding up two string matching algo-
rithms. Algorithmica, 12(4/5):247–267, 1994.

[CCI+99] E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos, L. Mouchard, and
Y. J. Pinzon. Algorithms for computing approximate repetitions in mu-
sical sequences. In R. Raman and J. Simpson, editors, Proceedings of the
10th Australasian Workshop On Combinatorial Algorithms, pages 129–
144, Pert, WA, Australia, 1999.

[CF03a] D. Cantone and S. Faro. Fast-Search: A new efficient variant of the Boyer-
Moore string matching algorithm. In K. Jansen, M. Margraf, M. Mas-
trolli, and J.D.P. Rolim, editors, Proceedings of the 9th Workshop on
Experimental Algorithms (WEA 2003), volume 2647 of Lecture Notes in
Computer Science, pages 47–58. Springer-Verlag, Berlin, 2003.

[CF03b] D. Cantone and S. Faro. Forward-Fast-Search: Another fast variant of
the Boyer-Moore string matching algorithm. In M. Šimánek, editor, Pro-
ceedings of the Prague Stringology Conference ’03, pages 10–24, Czech
Technical University, Prague, Czech Republic, 2003.

[CIL+02] M. Crochemore, C. S. Iliopoulos, T. Lecroq, W. Plandowski, and W. Ryt-
ter. Three heuristics for δ-matching: δ-BM algorithms. In A. Apostolico
and M. Takeda, editors, Proceedings of the 13th Annual Symposium on
Combinatorial Pattern Matching, number 2373 in Lecture Notes in Com-
puter Science, pages 178–189, Fukuoka, Japan, 2002. Springer-Verlag,
Berlin.

[CILP01] M. Crochemore, C. S. Iliopoulos, T. Lecroq, and Y. J. Pinzon. Approxi-
mate string matching in musical sequences. In M. Baĺık and M. Šimánek,
editors, Proceedings of the Prague Stringology Conference ’01, pages 26–
36, Prague, Czech Republic, 2001. Annual Report DC–2001–06.

[CIPN03] M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, and G. Navarro. A bit-
parallel suffix automaton approach for (δ, γ)-matching in music retrieval.
In Edleno S. De Moura and A. L. Oliveira, editors, Proc. of the 10th
International Symposium on String Processing and Information Retrieval
(SPIRE’03), number 2857 in lncs, pages 211–223. Svb, 2003.

[CIR98] T. Crawford, C. Iliopoulos, and R. Raman. String matching techniques
for musical similarity and melodic recognition. Computing in Musicology,
11:71–100, 1998.

[CLP98] C. Charras, T. Lecroq, and J.D. Pehoushek. A very fast string matching
algorithm for small alphabets and long patterns. In M. Farach-Colton,
editor, Proceedings of the 9th Annual Symposium on Combinatorial Pat-
tern Matching, number 1448 in Lecture Notes in Computer Science, pages
55–64. Springer-Verlag, Berlin, 1998.

[HS91] A. Hume and D. M. Sunday. Fast string searching. Softw. Pract. Exp.,
21(11):1221–1248, 1991.

46

Efficient Algorithms for the δ-Approximate String Matching Problem in Musical Sequences

[KMGL88] S. Karlin, M. Morris, G. Ghandour, and M. Y. Leung. Efficient algorithms
for molecular sequence analysis. Proceedings of the National Academy of
Science, 85:841–845, 1988.

[KPR00] J. Karhumäki, W. Plandowski, and W. Rytter. Pattern-matching prob-
lems for two-dimensional images described by finite automata. Nordic J.
Comput., 7(1):1–13, 2000.

[Lec00] T. Lecroq. New experimental results on exact string-matching. Rapport
LIFAR 2000.03, Université de Rouen, France, 2000.

[MJ93] A. Milosavljevic and J. Jurka. Discovering simple DNA sequences by
the algorithmic significance method. Comp. Appl. BioSci., 9(4):407–411,
1993.

[NR98] G. Navarro and M. Raffinot. A bit-parallel approach to suffix automata:
Fast extended string matching. Technical Report TR/DC–98–1, Depart-
ment of Computer Science, University of Chile, 1998.

[Sun90] D. M. Sunday. A very fast substring search algorithm. Commun. ACM,
33(8):132–142, 1990.

[Yao79] A. C. Yao. The complexity of pattern matching for a random string.
SIAM J. Comput., 8(3):368–387, 1979.

47

A Simple Lossless Compression Heuristic

for Grey Scale Images

L. Cinque1, S. De Agostino1, F. Liberati1 and B. Westgeest2

1 Computer Science Department
University “La Sapienza”

Via Salaria 113, 00198 Rome, Italy
e-mail: deagostino@di.uniroma1.it

2 Computer Science Department
Armstrong Atlantic State University

Savannah, Georgia 31419, USA

Abstract. In this paper, we show a simple lossless compression heuristic for
gray scale images. The main advantage of this approach is that it provides
a highly parallelizable compressor and decompressor. In fact, it can be ap-
plied independently to each block of 8x8 pixels, achieving 80 percent of the
compression obtained with LOCO-I (JPEG-LS), the current lossless standard
in low-complexity applications. The compressed form of each block employs
a header and a fixed length code, and the sequential implementations of the
encoder and decoder are 50 to 60 percent faster than LOCO-I.

Keywords: grey scale image, lossless compression, differential coding, paral-
lelization

1 Introduction

Lossless image compression is often realized by extending string compression meth-
ods to two-dimensional data. Standard lossless image compression methods extend
model driven text compression [1], consisting of two distinct and independent phases:
modeling [13] and coding [12]. In the coding phase, arithmetic encoders enable the
best model driven compressors both for bi-level images (JBIG [7]) and for grey scale
and color images (CALIC [18]), but they are often ruled out because too complex.
The compression gap between simpler techniques and state of the art compressors
can be significant. Storer [15] and Storer and Helfgott [16] extended dictionary text
compression [14] to bi-level images to avoid arithmetic encoders, achieving 70 percent
of the compression of JBIG1 on the CCITT bi-level image test set. Such method is
suitable for high speed applications by means of a simple hashing scheme. A polyloga-
rithmic time work-optimal parallel implementation of this method was also presented
to further speed up the computation on the PRAM EREW [3, 4]. Such implementa-
tion requires more sophisticated architectures (pyramids or meshes of trees) [9] than
a simple array of processors to be executed on a distributed memory system. The

48

A Simple Lossless Compression Heuristic for Grey Scale Images

extension of this method to grey scale and color images was left as an open prob-
lem, but it seems not feasible since the high cardinality of the alphabet causes an
unpractical exponential blow-up of the hash table used in the implementation.

With grey scale and color images, the modeling phase consists of three compo-
nents: the determination of the context of the next pixel, the prediction of the next
pixel and a probabilistic model for the prediction residual, which is the value dif-
ference between the actual pixel and the predicted one. In the coding phase, the
prediction residuals are encoded. A first step toward a good low complexity compres-
sion scheme was FELICS [8], which involves Golomb-Rice codes [6, 10] rather than
arithmetic ones . With the same complexity level for compression (but with a 10
percent slower decompressor) LOCO-I [17] attains significantly better compression
than FELICS, only a few percentage points of CALIC. As explained in section 2, also
polylogarithmic time parallel implementations of FELICS and LOCO would require
more sophisticated architectures than a simple array of processors.

The use of prediction residuals for grey scale and color image compression relies
on the fact that most of the times there are minimal variations of color in the neigh-
borood of one pixel. Therefore, differently than for bi-level images we should be able
to implement an extremely local procedure which is able to achieve a satisfying de-
gree of compression by working independently on different very small blocks. In this
paper, we show such procedure. We present the heuristic for grey scale images, but
it could be applied to color images by working on the different components [2]. The
main advantage of this approach is that it provides a highly parallelizable compres-
sor and decompressor. In fact, it can be applied independently to each block of 8x8
pixels, achieving 80 percent of the compression obtained with LOCO-I (JPEG-LS),
the current lossless standard in low-complexity applications. The compressed form of
each block employs a header and a fixed length code, and the sequential implemen-
tations of the encoder and decoder are 50 to 60 percent faster than LOCO-I. Two
different techniques might be applied to compress the block. One is the simple idea of
reducing the alphabet size by looking at the values occurring in the block. The other
one is to encode the difference between the pixel value and the smallest one in the
block. Observe that this second technique can be interpreted in terms of the model
driven method, where the block is the context, the smallest value is the prediction
and the fixed length code encodes the prediction residual. More precisely, since the
code is fixed length the method can be seen as a two-dimensional extension of differ-
ential coding [5]. Differential coding, often applied to multimedia data compression,
transmits the difference between a given signal sample and another sample.

In section 2, we sketch how FELICS and LOCO-I work and discuss their parallel
complexity. In section 3, we explain our heuristic. Conclusions are given in section 4.

2 FELICS and LOCO-I

In this section, we sketch how FELICS and LOCO-I work and discuss their parallel
complexity. As explained in the introduction, these are context-based method.

In FELICS the context for the current pixel P is determined by the last two pixels
N1 and N2 read in a raster scan. If P is in the range defined by N1 and N2, then it is
encoded with an adjusted binary code. Otherwise, the value distance from the closer
of values N1 and N2 is encoded using a Golomb-Rice code. Golomb-Rice codes use a

49

Proceedings of the Prague Stringology Conference ’04

positive integer parameter m to encode a non-negative integer n. Given the value m,
⌊n/m⌋ is encoded in unary and n mod m in binary. A typical method of computing
the parameter for Golomb-Rice code is to divide the image in 8x8 pixel blocks and
select in a set of reasonable values the best one for each block with an exaustive search
[11]. This method is not used in [8] because a better exaustive search is proposed for
a sequential implementation. That is, to mantain for each context a cumulative total
of the code length we would have at the current step for each reasonable parameter
and to pick the best one each time.

Observe that the coding process would be highly parallelizable with the parameter
selection of [11], since for each pixel of a block the parameter selection is completely
independent from the rest of the image. A distributed memory system as simple as an
array of processors would be able to perform the algorithm. With the other method
instead, the design of a highly parallelized procedure becomes a much more complex
issue, involving prefix computation and more sophisticated architectures than a simple
array of processors [9]. However, with both methods the decoding process is hardly
parallelizable, since to decode the current pixel the knowledge of the two previous
pixels is required.

LOCO-I employs a more involved context modeling procedure where the context
of pixel P in position (i, j) is determined by the pixels in positions (i, j−1), (i, j−2),
(i − 1, j − 1), (i − 1, j) and (i − 1, j + 1). A count of prediction residuals and an
accumulated sum of magnitudes of prediction residuals seen so far is maintained in
order to select the parameter for the Golomb-Rice code. Moreover, in order to im-
prove the compression performance a count of context occurences and an accumulated
sum of prediction residuals encoded so far for each context also is maintained. These
computations are used to reduce the prediction error. Further improvement is ob-
tained by switching the Golomb-Rice code to encode characters from an extended
alphabet when long runs of a character from the original alphabet are detected. All
these operations require prefix computation in a highly parallelized version of the
algorithm.

In conclusion, FELICS and LOCO methods do not provide highly parallelizable
encoders and decoders implementable on a simple array of processors. The heuristic
we present in the next section works independently on each 8x8 block of pixels. Since
no information is shared among the blocks, a simple array of processors suffices to
realize a constant time work-optimal parallel implementation.

3 A Simple Heuristic for Grey Scale Images

As previously mentioned, the heuristic applies independently to blocks of 8x8 pixels
of the image. We can assume the heuristic reads the image with a raster scan on each
block. The heuristic apply at most three different ways of compressing the block and
chooses the best one. The first one is the following.

The smallest pixel value is computed on the block. The header consists of three
fields of 1 bit, 3 bits and 8 bits repectively. The first bit is set to 1 to indicate that
we compress a block of 64 pixels. This is because one of the three methods will
partition the block in four sub-blocks of 16 pixels each and compress each of these
smaller areas. The 3-bits field stores the minimum number of bits required to encode
in binary the distance between the smallest pixel value and every other pixel value

50

A Simple Lossless Compression Heuristic for Grey Scale Images

255 255 255 254 254 110 110 110

255 255 255 254 254 110 110 110

255 255 255 254 254 110 110 110

255 255 255 254 254 110 110 110

255 255 254 128 127 128 129 130

255 253 253 128 128 129 130 131

254 253 252 129 129 130 131 132

253 252 251 130 130 130 254 255

Figure 1: An 8x8 pixel block of a grey scale image.

in the block. The 8-bits field stores the smallest pixel value. If the number of bits
required to encode the distance, say k, is at most 5, then a code of fixed length k is
used to encode the 64 pixels, by giving the difference between the pixel value and the
smallest one in the block. To speed up the procedure, if k is less or equal to 2 the
other techniques are not tried because we reach a satisfying compression ratio on the
block. Otherwise, two more techniques are experimented on the block.

One technique is to detect all the different pixel values in the 8x8 block and create
a reduced alphabet. Then, encode each pixel in the block using a fixed length code
for this alphabet. The employment of this technique is declared by setting the 1-bit
field to 1 and the 3-bits field to 110. Then, an additional three bits field stores the
reduced alphabet size d with an adjusted binary code in the range 2 ≤ d ≤ 9. The
last componenent of the header is the alphabet itself, a concatenation of d bytes.
Then, a code of fixed length ⌈log d⌉ bits is used to encode the 64 pixels.

The other technique compresses the four 4x4 pixel sub-blocks. The 1-bit field is
set to 0. Four fields follow the flag bit, one for each 4x4 block. The two previous
techniques are applied to the blocks and the best one is chosen. If the first technique
is applied to a block, the corresponding field stores values from 0 to 7 rather than
from 0 to 5 as for the 8x8 block. If such value is in between 0 and 6, the field stores
three bits. Otherwise, the three bits (111) are followed by three more. This is because
111 is used to denote the application of the second technique to the block as well,
which is less frequent to happen. In this case, the reduced alphabet size stored in
this three additional bits has range from 2 to 7, it is encoded with an adjusted binary
code from 000 to 101 and the alphabet follows. 110 denotes the application of the
first technique with distances expressed in seven bits and 111 denotes that the block
is not compressed. After the four fields, the compressed forms of the blocks follow,
which are similar to the ones described for the 8x8 block. When the 8x8 block is not
compressed, 111 follows the flag bit set to 1.

51

Proceedings of the Prague Stringology Conference ’04

Image OURS LOCO

1 1.22 1.52

2 1.57 2.00

3 1.75 2.31

4 1.52 1.93

5 1.22 1.55

6 1.39 1.75

7 1.57 2.22

8 1.19 1.51

9 1.60 2.05

10 1.56 2.04

11 1.43 1.83

12 1.63 2.10

13 1.15 1.34

14 1.30 1.63

15 1.67 2.07

16 1.51 1.97

17 1.51 1.96

18 1.30 1.58

19 1.41 1.80

20 2.00 2.55

21 1.45 1.77

22 1.41 1.76

23 1.75 2.29

24 1.39 1.74

Avg 1.48 1.89

Figure 2: Compression ratios (uncompressed / compressed).

We now show how the heuristic works on the example of Figure 1.

Since the difference between 110, the smallest pixel value, and 255 requires a code
with fixed length 8 and the number of different values in the 8x8 block is 12, the tech-
nique employed to compress the block is to work separately on the 4x4 sub-blocks.
Each block will be encoded with a raster scan (row by row). The upper left block has
254 as smallest pixel value and 255 is the only other value. Therefore, after setting the
1-bit field to zero the corresponding field is set to 001. The compressed form after the
header is 1110111011101110. The reduced alphabet technique is more expensive since
the raw pixel values must be given. On the hand, the upper right block needs the
reduced alphabet technique. In fact, one byte is required to express the difference be-
tween 110 and 254. Therefore, the corresponding field is set to 111000, which indicates
that the reduced alphabet size is 2, and the sequence of two bytes 0110111011111110
follows. The compressed form after the header is 1000100010001000. The lower left
block has 8 different values so we do not use the reduced alphabet technique since
the alphabet size should be between 2 and 7. The smallest pixel value in the block is
128 and the largest difference is 127 with the pixel value 255. Since a code of fixed
length 7 is required, the corresponding field is 111110. The compressed form after
the header is (we introduce a space between pixel encodings in the text to make it
more readable): 1111111 1111111 1111110 0000000 1111111 1111101 1111101 0000000
1111110 1111101 1111100 0000001 1111101 1111100 1111011 0000010. Observe that

52

A Simple Lossless Compression Heuristic for Grey Scale Images

Image OURS LOCO

1 33.8 64.7

2 32.9 60.5

3 32.2 59.5

4 33.0 60.6

5 34.1 67.4

6 32.2 60.7

7 34.9 60.1

8 34.7 67.0

9 32.7 58.6

10 35.3 60.0

11 33.2 62.5

12 34.4 60.3

13 34.0 68.2

14 33.9 64.5

15 32.3 60.5

16 33.3 60.5

17 33.3 60.0

18 33.4 64.9

19 33.2 61.9

20 25.5 48.1

21 32.8 61.1

22 33.4 62.8

23 33.2 56.6

24 33.2 63.8

Avg. 33.1 61.4

Figure 3: Compression times (ms.).

the compression of the block would have been the same if we had allowed the reduced
alphabet size to grow up to 8. However, experimentally we found more advantageous
to exclude this case in favor of the other technique. Our heuristic does not compress
the lower right block since it has 8 different values and the difference between pixel
values 127 and 255 requires 8 bits. Therefore, the corresponding field is 111111 and
the uncompressed block follows.

We experimented this technique on the kodak image test set, which is an exten-
sion of the standard jpeg image test set. We reached 70 to 85 percent of LOCO-I
compression ratio (Figure 2) (78 percent in average). The executions of our algorithm
and LOCO were compared with a Intel Pentium 4, 2.00 GHz processor on a RedHat
Linux platform. Our compression heuristic turned out to be about 50 percent faster
(Figure 3). When we compared the decompression times, we obtain an even greater
speedup (around 60 percent) in comparison with LOCO (Figure 4). This is not sur-
prising since, as we mentioned in the introduction, while the LOCO compressor is
more or less as fast as FELICS, the decompressor is 10 percent slower.

Conclusions

In this paper, we showed a simple lossless compression heuristic for grey scale images.
The main advantage of this approach is that it provides a highly parallelizable com-
pressor and decompressor since it can be applied independently to each block of 8x8

53

Proceedings of the Prague Stringology Conference ’04

Image OURS LOCO

1 30.8 69.7

2 26.3 65.3

3 24.4 64.2

4 26.0 65.2

5 31.2 69.2

6 33.8 64.9

7 25.7 65.1

8 32.1 69.9

9 26.4 64.2

10 25.4 64.7

11 26.9 66.6

12 26.1 63.8

13 32.6 70.5

14 29.6 67.7

15 23.6 68.4

16 26.1 64.6

17 25.7 66.0

18 28.7 68.8

19 27.0 66.1

20 20.1 52.2

21 26.3 65.3

22 27.0 67.0

23 22.9 62.9

24 27.3 67.7

Avg. 27.2 65.8

Figure 4: Decompression times (ms.).

pixels. The compressed form of each block employs a header and a fixed length code.
Two different techniques might be applied to compress the block. One is the simple
idea of reducing the alphabet size by looking at the values occurring in the block. The
other one is to encode the difference between the pixel value and the smallest one in
the block. It was interesting to see that this technique achieves about 80 percent of
the compression performance of LOCO-I and the compressor and decompressor are
50 to 60 percent faster. Also, our technique is definitely the easiest to implement and
can be applied as well to color images.

References

[1] Bell T.C., Cleary J.G. and Witten I.H [1990]. Text Compression, Prentice Hall.

[2] Cinque L., De Agostino S. and Liberati F. [2004]. “A Simple Lossless Compres-
sion Heuristic for RGB Images”, IEEE Data Compression Conference, 533.

[3] De Agostino S. [2002]. “A Work-Optimal Parallel Implementation of Lossless
Image Compression by String Matching”, Proceedings Prague Stringology Club
Conference, 1-8.

[4] Cinque L., De Agostino S. and Liberati F. [2003]. “A Work-Optimal Parallel
Implementation of Lossless Image Compression by String Matching”, Nordic
Journal of Computing, 10, 13-20.

54

A Simple Lossless Compression Heuristic for Grey Scale Images

[5] Gibson J. D. [1980]. “Adaptive prediction in speech differential encoding system”,
Proceedings of the IEEE, 68, 488-525.

[6] Golomb S. W. [1966]. “Run-Length Encodings”, IEEE Transactions on Infor-
mation Theory 12, 399-401.

[7] Howard P. G., Kossentini F., Martinis B., Forchammer S., Rucklidge W. J. and
Ono F. [1998]. “The Emerging JBIG2 Standard”, IEEE Transactions on Circuits
and Systems for Video Technology, 8, 838-848.

[8] Howard P. G. and Vitter J. S. [1993]. “Fast and Efficient Lossles Image Com-
pression”, IEEE Data Compression Conference, 351-360.

[9] Leighton F. T. [1992]. Introduction to Parallel Algorithms and Architectures,
Morgan-Kaufmann.

[10] Rice R. F. [1979]. “Some Practical Universal Noiseless Coding Technique - part
I”, Technical Report JPL-79-22, Jet Propulsion Laboratory, Pasadena, Califor-
nia, USA.

[11] Rice R. F. [1991]. “Some Practical Universal Noiseless Coding Technique - part
III”, Technical Report JPL-91-3, Jet Propulsion Laboratory, Pasadena, Califor-
nia, USA.

[12] Rissanen J. [1976]. “Generalized Kraft Inequality and Arithmetic Coding”, IBM
Journal on Research and Development 20, 198-203.

[13] Rissanen J. and Langdon G. G. [1981]. “Universal Modeling and Coding”, IEEE
Transactions on Information Theory 27, 12-23.

[14] Storer J.A. [1988]. Data Compression: Methods and Theory (Computer Science
Press).

[15] Storer J. A.[1996] “Lossless Image Compression using Generalized LZ1-Type
Methods”, IEEE Data Compression Conference, 290-299.

[16] Storer J. A. and Helfgott H. [1997] “Lossless Image Compression by Block Match-
ing”, The Computer Journal 40, 137-145.

[17] Wimberger M. J., Seroussi G and Sapiro G. [1996] “LOCO-I: A Low Complexity,
Context Based, Lossless Image Compression Algorithm”, IEEE Data Compres-
sion Conference, 140-149.

[18] Wu X. and Memon N. D. [1997] “Context-Based, Adaptive, Lossless Image Cod-
ing”, IEEE Transactions on Communications, 45, 437-444.

55

BDD-Based Analysis of Gapped q-Gram Filters∗

Marc Fontaine1, Stefan Burkhardt2 and Juha Kärkkäinen2

1 Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

e-mail: stburk@mpi-sb.mpg.de
e-mail: fontaine@studcs.uni-sb.de

2 Department of Computer Science
P.O.Box 68 (Gustaf Hällströmin katu 2 B)
FI-00014 University of Helsinki, Finland

e-mail: Juha.Karkkainen@cs.helsinki.fi

Abstract. Recently, there has been a surge of interest in gapped q-gram filters
for approximate string matching. Important design parameters for filters are
for example the value of q, the filter-threshold and in particular the shape (aka
seed) of the filter. A good choice of parameters can improve the performance
of a q-gram filter by orders of magnitude and optimising these parameters is
a nontrivial combinatorial problem. We describe a new method for analysing
gapped q-gram filters. This method is simple and generic. It applies to a
variety of filters, overcomes many restrictions that are present in existing al-
gorithms and can easily be extended to new filter variants. To implement our
approach, we use an extended version of BDDs (Binary Decision Diagrams), a
data structure that efficiently represents sets of bit-strings. In a second step,
we define a new class of multi-shape filters and analyse these filters with the
BDD-based approach. Experiments show that multi-shape filters can outper-
form the best single-shape filters, which are currently in use, in many aspects.
The BDD-based algorithm is crucial for the design and analysis of these new
and better multi-shape filters. Our results apply to the k-mismatches problem,
i.e. approximate string matching with Hamming distance.

1 Introduction

String matching involves searching a given string or textual database T for occurrences
of substrings that match a search pattern P . The approximate string matching prob-
lem allows the search pattern and the matches to have some difference or distance
according to a given distance function.

Many applications depend on efficient solutions of this problem, especially in the
field of bio-informatics, where databases may consist of sequences of 109 nucleotides
of DNA or of long sequences of amino acids.

∗This work was conducted in part at the MPI for computer science, Saarbrücken with support
from the Future and Emerging Technologies programme of the EU under contract number IST-1999-
14186 (ALCOM-FT) and at the University of Helsinki supported by the Academy of Finland grant
201560.

56

BDD-Based Analysis of Gapped q-Gram Filters

Filter algorithms are a common approach for approximate string matching. They
speedup string matching by quickly generating a set of potential matches and dis-
carding the rest of the database. The true matches can then be found in a second
step, the verification phase, by inspecting all potential matches. Designing a good
filter usually means optimising the tradeoff between the complexity of the filtration
phase and the efficiency of the filter.

Many efficient filters work with precomputed indexes, in particular, indexes that
are based on gapped q-grams or shapes. For example the three 3-grams of string
ACAGCT for shape ##-# are AC-G,CA-C and AG-T. A matching pair of q-grams between
a pattern and a substring of T is called a hit. The q-gram index stores the positions
of all q-grams of the database and allows to find hits efficiently. If the number of
hits between the search pattern and a substring of the database exceeds a certain
threshold t, that substring is called a potential match.

As first shown in [6, 7], the performance of the filter depends crucially on the
shape. Good shapes are found by analysing large sets of shapes, because no method
for directly generating good shapes has been found yet. Even analysing a single shape
is non-trivial and a lot of effort has gone into developing methods for this purpose.
Recently gapped shapes have been the focus of quite a bit of attention [16, 9, 10, 12].

In [6, 7], Burkhardt and Kärkkäinen compute the optimal threshold. It is the
highest threshold that still allows the filter to return all true matches, i.e., substrings
that are within a fixed Hamming distance from the pattern. They also compute a
measure called the minimum coverage, which provides a rough estimate of how many
false matches get through the filter. The true positive rates and the false positive
rates were determined experimentally for selected shapes.

If the threshold or Hamming distance is increased, the filter also discards some
true matches, which are then called false negatives. In [5] an abstract measure for
the false negative probability, the so-called recognition rate was defined and analysed
experimentally. The exact computation of both false positive and false negative rates
was done by Ma, Tromp and Li [15]. However, their algorithms are restricted to
filters that count only non-overlapping hits. This is a significant restriction as the
lower correlation of overlapping q-grams is a big advantage of gapped q-grams over
ungapped ones [7].

Brejová, Brown and Vinař [1, 2] develop new variants of the algorithm of Ma,
Tromp and Li. In [1], a true match is defined not directly by a Hamming distance
but as a probability distribution represented by a hidden Markov model. In [2], they
further generalise the approach to approximate hits and multiple shapes. However,
the restriction to non-overlapping hits remains in all of their work. Very recently, we
became aware of several papers using multiple gapped shapes for approximate string
matching in various different approaches [13, 17, 18, 14].

We present a new and flexible method for computing various properties of q-gram
filters. This algorithm is based on a simple natural abstraction of the problem and
applies to a general class of filters. At the same time, it overcomes many restrictions
present in previous algorithms in particular the non-overlapping hit restriction.

Our method consists of two steps. The first step is an algorithm based on sets
of bit-strings. These sets can be of exponential size and we have to use a compact
and efficient representation of the sets to actually implement our algorithm. A data

57

Proceedings of the Prague Stringology Conference ’04

structure called BDDs [3, 4] (Binary decision diagrams or Binary decomposition di-
agrams) implements such a representation of sets. Only the use of a data structure
like BDDs makes it feasible to run our algorithm.

In the second step the BDDs generated in the first step can be used to efficiently
compute interesting properties of the sets they represent. Most properties can be
computed in linear time of the size of the BDDs. This clear split of the problem
into two steps distinguishes our method from previous algorithms, which were mostly
based on dynamic programming.

In the second part of this work, we apply our method to design new and better
filters. The basic idea in this part is to filter with a set of shapes simultaneously.
Multi-shape filters have been used before [8]. Our new idea is to use a carefully
selected set of shapes together with a specifically computed filtration criterion. This
filtration criterion replaces the optimal threshold of a single shape filter.

The BDD-based algorithm allows us to compute the best filtration criterion for a
set of shapes and at the same time determine the important quality measures of the
resulting multi-shape filter. To investigate the potential of multi-shape filters based on
a specific filtration criterion, we analyse large sets of randomly generated filters. These
experiments show that good multi-shape filters are very rare, but the experiments also
yield filters that are superior to single-shape filters in several important aspects.

2 Representing Match-Mismatch-Patterns with

BDDs

Let A and B be two strings of length l. We call the bit-string p(A,B) ∈ {0, 1}l the
match-mismatch-pattern of the two strings. A “1” in p(A,B) denotes a matching
position and “0” a mismatch. The Hamming distance of A and B is then the number
of zeros in p(A,B). We represent the number of zeros and ones in a bit-string p by |p|0
and |p|1. The k-differences version of approximate string matching allows a pattern
string and a match to have a Hamming distance of at most k.

For most filters, the match-mismatch-pattern of an alignment between the pat-
tern string and the database at some position x contains enough information to decide
whether x is returned as a potential match or not. Therefore it is, in principle, suffi-
cient to enumerate all possible match-mismatch-patterns to analyse the performance
of filters for the k-differences problem.

A drawback of this brute-force-approach is, that there are 2l possible match-
mismatch-patterns for strings of length l and realistic filters usually work with pattern
length l ≥ 50.

To overcome this complexity-problem we use a data structure called BDDs. BDDs
allow a compact and efficient representation of sets of equal-length bit-strings. They
can be seen as an abstract data structure that supports the following operations.

� Creation of a new BDD for the base-cases ∅ and {ǫ}.

� Composition of two BDDs S = comp(S0, S1)

� Decomposition of a BDD into two BDDs according to the first position of the
bit-strings in the BDD.

58

BDD-Based Analysis of Gapped q-Gram Filters

� Computing ∪ and ∩ of two BDDs and the complement ¬ of a BDD

The composition comp(S0, S1) represents the set:

comp(S0, S1) = {s | (s = 0a ∧ a ∈ S0) ∨ (s = 1b ∧ b ∈ S1)}
For two sets A and B that are given as decompositions A = comp(A0, A1) and

B = comp(B0, B1), A ∪B and A ∩ B can be computed recursively as:

A ∪B = comp(A0 ∪B0, A1 ∪ B1)

and:
A ∩B = comp(A0 ∩B0, A1 ∩ B1)

BDDs are implemented with DAGs (Directed Acyclic Graphs) and they are similar
to finite automata without loops. In a BDD always the minimal, smallest possible
DAG is used to represent a set of bit-strings and equal sets are represented by one
canonical node of the DAG. A collection of BDDs can share the structure of a single
DAG and BDD-implementations usually make use of hash-tables to maintain the
canonical-representation-property. Hash tables are also used to avoid re-computations
during the computation of ∪ and ∩.

1100

0000
0001
0010
0011
0100
0110
1000
1001
1010
1011

1110

0

0

0

∅

0 1

1

1

1

0 1

ǫǫǫ

0 1

A simple BDD and the set it represents

BDDs have many different applications where they often make it possible to handle
exponential size sets within non-exponential complexity. An introduction to BDDs
can be found in [3, 4], where BDDs are used to represent boolean functions over a
finite set of variables. The actual performance of BDDs in an application depends on
the structure of the sets they represent. For sets of size 2l the space complexity of
BDDs can range from O(l) to Θ(2l).

It is important to note, that we use BBDs only to analyse q-gram filters. This is
a one-time computation and the complexity of the BDDs does not interfere with the
complexity of the filters under consideration. The theoretical complexity of BDDs
is therefore secondary in our application. Our experience is, that BDDs work well
to reduce the complexity of filter analysis. They make is possible to analyse all
interesting filters within reasonable time and space limits.

In [11] Fontaine described a extension of standard BDDs, which uses {0, 1}∗ as
an additional base case for the decomposition (so called ∗-BDDs). This extension
allows more compact representation than standard BDDs and it was used for all our
experiments. For code listings and runtime measurements of a prototype ∗-BDD
implementation see [11]. The prototype implementation only consists of about 10kb
of C++ code and computing the filter properties for a typical shape only takes a few
seconds.

59

Proceedings of the Prague Stringology Conference ’04

3 q-Gram Similarity-Based Filters

We use strings from {#, -}∗ to denote different shapes. # stands for a position that
must match, whereas - is a “don’t care” or wild-card position. span(s) = |s| is the
span of a shape s.

Let A and B be two strings of length l and s a shape. A position 0 ≤ i ≤ l−span(s)
is a hit of shape s if ∀0 ≤ n < span(s) : s(n) = #⇒ A(i+ n) = B(i+ n).

The number of different hits of a shape s for two strings A and B is called the
q-gram similarity qgss(A,B) of the two strings. For strings of length l the q-gram-
similarity can be at most l − span(s) + 1.

A= ACTGTACTGCCGTACT

B= ACTGTAATGCAGTACT

p(A,B)= 1111110111011111

shape s= ###---##--##

qgss(A,B)= 2

ACTGTACTGCCGTACT

###---?#--?#

###---##--## <- hit

###---##--## <- hit

###---#?--##

##?---?#--##

ACTGTAATGCAGTACT

Match-mismatch-pattern and q-gram-similarity

A q-gram filter computes the set of potential matches with the help of a threshold
t. A potential match is the position of a substring in the database with a q-gram
similarity of at least t with the pattern string. Increasing the threshold of a filter
reduces the number of potential matches at the cost of a decreased filter sensitivity,
i.e. the filter is more likely to overlook true matches.

The match-mismatch-pattern of two strings contains sufficient information to com-
pute their q-gram-similarity. Therefore a filter can be analysed by looking at all
possible match-mismatch-patterns. We can partition the set of all possible match-
mismatch-patterns according to the q-gram-similarity they represent for a given
shape.

For any fixed shape s and any h, l ∈ N0 we define:

P h
l = {p ∈ {0, 1}l | s produces exactly h hits in p}

It follows that the set PM of match-mismatch-pattern that represent a potential
match is:

PM =
⋃

h≥t

P h
l

A set P h
l can easily be computed based on the sets P h−1

l−1 and P h
l−1. A match-

mismatch-pattern p ∈ {0, 1}l is in P h
l if:

either: its suffix of length l − 1 is in P h−1
l−1 and it has an additional hit of shape s at

position 0
or: its suffix of length l−1 is in P h

l−1 and it does not have an additional hit at position
0.

This algorithm can be formulated as a simple equation for sets

P h
l = (expand(P h−1

l−1) ∩ Sl(s)) ∪ (expand(P h
l−1) ∩ S̄l(s))

60

BDD-Based Analysis of Gapped q-Gram Filters

with the following three definitions:

Sl(s) = {p ∈ {0, 1}l | s has a hit in p at position 0}

S̄l(s) = {p ∈ {0, 1}l | s does not have a hit in p at position 0}
expand(M) = {x | x = 0m ∨ x = 1m,m ∈M}

BDDs directly support ∪ and ∩, and expand(M) can be implemented as expand(M)=
comp(M,M). BDDs also support the creation of Sl(s) and S̄l(s) for any shape s. Sl(s)
can be computed recursively as:

Sl(s) =



















{0, 1}l if s = ǫ

∅ if l < span(s)

comp(∅, Sl−1(r)) if s = #r

comp(Sl−1(r), Sl−1(r)) if s = -r

Shape=#-##

P 1
4 = S4 = {1011, 1111}
expand(P 1

4) = {01011, 01111, 11011, 11111}
P 1

5 = {01011, 01111, 11011, 10110, 11110, 10111}
P 2

5 = {11111}
P 0

5 = {00000, 00001, 00010, . . .} 0

1

∅

∅

∅

0

0

0

1

1

Sl

1

{0, 1}l−span(s)

P h
l and Sl(s) for shape #-##

As an alternative to our definition of the q-gram-similarity qgs(A,B) it is possible
to require individual hits to be non-overlapping [15, 1]. For such filters the set PM
can be computed with an algorithm similar to the one described above. (Compute

the sets P
(h,i)
l , where i is the offset of the first hit.)

4 Filter Analysis with BDDs

The algorithm described in the previous section allows us to generate BDD-
representations for the sets P h

l . These BDD-representations can be used to compute
many interesting properties of the sets and thereby the underlying filters. Note that
the computation of the various properties is independent of what filter the sets P h

l rep-
resent and how they were computed. This is in contrast to previous approaches using
dynamic programming where the filter definition is deeply involved in the property
computation.

4.1 Specificity

The specificity of a filter describes its ability to reduce a large database to a small set
of potential matches. For a given random model, the filter specificity is equivalent to
the probability that a random substring of length l is a potential match of a random
search pattern.

61

Proceedings of the Prague Stringology Conference ’04

Every match-mismatch-pattern p describes one possible event that can occur while
aligning a database and a search pattern and we can use several probability models
to assign probabilities to these events. We can then simply extend these probabilities
from one match-mismatch-pattern to sets of match-mismatch-patterns by summing
up the probabilities of the elements of the sets.

For example, to analyse a filter for a DNA database, we might assume that the
database and pattern string are independent random strings with an even distribution
of the letters {A,C,G, T}. It follows that every single character has a 1

4
chance of

being a match and the probability of any match-mismatch-pattern p is:

prob(p) = (
1

4
)|p|1(

3

4
)|p|0

With this we can compute the probability of a potential match, i.e the specificity of
the filters as:

specificity =
∑

p∈PM

prob(p)

Given the binary decomposition comp(P0, P1) of a set P the probability Prob(P)
of the set is:

Prob(P) = (
3

4
) ∗ Prob(P0) + (

1

4
) ∗ Prob(P1)

The base-cases for the binary decomposition are also the base-cases for this recursion:

Prob(∅) = 0 Prob(ǫ) = 1

This shows that, if BDDs are used to represent the sets, Prob(P) =
∑

p∈P prob(p)
can be computed in linear time of the size of the BDDs.

It can be seen that a similar approach allows to compute the probabilities of sets
for many different probability models efficiently. In particular it is also possible to
use hidden Markov models (HMMs) as probability model. HMMs have been used
in [1] to model real DNA sequences of different species.

4.2 Recognition Rate

For approximate string matching with Hamming distance we can define the recogni-
tion rate r(j) of a filter as the expected fraction of potential matches among substrings
of the database with exactly Hamming distance j. The match-mismatch-patterns of
length l and Hamming distance j can easily be computed with the single-character
shape # as P l−j

l (#). It follows that a filter with potential matches PM has the recog-
nition rate:

r(j) =
Prob(PM ∩ P l−j

l (#))

Prob(P l−j
l (#))

Recognition rates have been defined and determined experimentally in [5].

4.3 Threshold

The set of potential matches of a filter with shape s, and with it the recognition rates
of the filter, heavily depends on the threshold t.

62

BDD-Based Analysis of Gapped q-Gram Filters

A filter is lossless for a threshold t and Hamming distance k if ∀j ≤ k : r(j) = 1,
otherwise it is lossy. If one is interested in a fixed maximal Hamming distance k and
lossless filtering, then there exists an optimal threshold tbest. A dynamic programming
algorithm for computing tbest is described in [7].

BDD-based threshold computation is also possible. For each set P h
l we compute:

m(P) = min
p∈P
|p|0

We use the notation |p|0 for the number of occurrences of “0” in string p. m(P h
l) is the

minimum number of mismatching positions of any match-mismatch-pattern p ∈ P h
l .

This minimum can be found in linear time in the size of the BDD. Any set P h
l with

m(P h
l) ≤ k contains at least one match-mismatch-pattern with Hamming distance

at most k. The optimal threshold tbest for a lossless filter is the smallest h such that
m(P h

l) ≤ k.

shape s = #-#---#-#-#------#

span(s) = 18
pattern length l = 50
number of hits h ∈ {0, . . . , 33}
h 0 1 2 3 4 5 6 7 8 9 ... 31 32 33
m(P h

l) 8 7 7 6 6 6 5 5 5 4 ... 1 1 0
k = 7 tbest = 1
k = 6 tbest = 3
k = 5 tbest = 6
k = 4 tbest = 9

Computing the threshold tbest

5 Multi-shape Filters

Shapes can be better than contiguous q-grams because they introduce irregularity
in the way the mismatching positions affect the q-grams. For good shapes, only a
few worst case configurations of the mismatching characters affect many q-grams.
A reasonable approach to further improve the performance of filters is therefore to
use two or more somehow orthogonal shapes in parallel. The idea is, that those
configurations of mismatches, that are particularly bad for one shape, are better
covered by a second shape and vice versa.

Designing a good multi-shape filter is a nontrivial combinatorial problem, just like
finding good individual shapes. One could assume that the best individual shapes
also form the best multi-shape filter, however our experiments suggest that this is
often not the case.

Multi-shape filters are the most important application for our BDD-based ap-
proach. The extension of our algorithm to multi-shape filters is straight-forward and
it leads to a new concept: the generic filtration criterion C. The generic filtration
criterion C replaces the threshold t of a single-shape filter. It enables a multi-shape
filter to make full use of the relations between the single shapes.

63

Proceedings of the Prague Stringology Conference ’04

A filter with n shapes s1 . . . sn can use the q-gram similarities h1 = qgss1(M,P) . . .
hn = qgssn

(M,P) to decide whether M is a potential match or not. (P is the pattern
string and M is any substring of the database.) We call a set C ⊂ N

n a filtration
criterion for the shapes s1 . . . sn and define:

M is a potential match ⇔ (h1, . . . , hn) ∈ C

This generic filtration criterion C can model many different strategies for multi-
shape filters. For example it can model filters that require at least one hit of one
shape, filters the require one hit of each shape, filters that sum up the hits of the
shapes, or filters that use each shape with its individual threshold tbest.

In Section 3 we used the notation P h
l (s) for the set of all match-mismatch-patterns

with exactly h hits of a single fixed shape s. To analyse multi-shape filters we extend
this notation to sets of shapes {s1, . . . , sn}. We define P

(h1,...,hn)
l (s1, . . . , sn) as the set

of all match match-mismatch-patterns with exactly hi hits of shape si (1 ≤ i ≤ n).

The sets P
(h1,...,hn)
l (s1, . . . , sn) can be computed as:

P
(h1,...,hn)
l (s1, . . . , sn) =

⋂

1≤i≤n

P hi

l (si)

With this, the set of match-mismatch-patterns, that represent a potential match
according to a filtration criterion C is:

PM =
⋃

(h1,...,hn)∈C

P
(h1,...,hn)
l (s1, . . . , sn)

Together with the set PM , all statistical performance measures (recognition rate,
specificity), which we computed for single-shape filters in Section 3, are now also
available for our model of multi-shape filters.

The definition of P
(h1,...,hn)
l (s1, . . . , sn) also makes it possible to compute a optimal

filtration criterion Cbest for a lossless filter with some fixed Hamming distance k. It
is:

Cbest = {(h1 . . . hn) | m(P
(h1,...,hn)
l (s1, . . . , sn)) ≤ k}

Cbest replaces the threshold tbest of single shape filters. To reduce the high complex-
ity involved in the computation of Cbest Fontaine [11] describes a straight forward
approximation.

6 Designing Better Filters

The design of a filter is always a compromise between three objectives:

� high sensitivity

� fast filtration phase

� high specificity of the filter, i.e. a fast verification phase

64

BDD-Based Analysis of Gapped q-Gram Filters

There are several trade-offs between these objectives. For example, a higher sensitivity
is usually at the cost of a lower specificity and a faster filtration often yields lower
sensitivities and specificities [5, 15, 8].

Using a well chosen shape for the q-grams and the appropriate threshold can
greatly improve overall filter performance compared to filtering with ungapped q-
grams [6, 7]. In this section we will show that multi-shape filters with a carefully
selected set of shapes and a specifically computed filtration criterion can further
boost filter performance for all three objectives compared to single-shape filters.

A good estimate for the runtime of a q-gram filter is the number of hits in the
database that have to be processed. It is roughly proportional to |Σ|−q. (This assumes
a database with a random distribution of letters from Σ and it is also a good estimate
for example for DNA sequences [7].) High values of q are desirable because they make
the filtration fast however they also mean lower sensitivities.

In this section we only consider q-gram filters that work lossless for a fixed Ham-
ming distance k and we use k to compare the sensitivities of such filters (a higher
value of k means a higher sensitivity). To compare the specificities of different filters,
we always use the shapes with the optimal threshold tbest (the optimal filtration cri-
terion Cbest for multi-shape filters) that still guarantees lossless filtering for the fixed
k. For all experiments in this section, we use a pattern length l = 50 and assume a
DNA-like database with |Σ| = 4.

There is a trade-off between k and the highest value of q that can be used for
lossless filtering. For example for pattern length l = 50 and k = 5 the highest
possible q for a lossless single-shape filter is q = 10, for k = 6 it is q = 9. Similar
constraints between q and k also exist for multi-shape filters. However we found
that they can have higher values of both q and k than is possible for single shapes.
Therefore multi-shape filters make it possible to increase q, which makes them faster,
or increase k, i.e the sensitivity. In some cases it is even possible to increase q and k
at the same time. This is not at the cost of a lower specificity, but instead it is even
possible to increase the specificity also.

Pairs of shapes: q = 10, k = 6

Consider for example the following three lossless two-shape filters for k = 6:

Three good two-shapes filters
k = 6, l = 50 ,|Σ| = 4

s1 s2 specificity
a) ##-##---##-#### ###-#-###----#--## 8.091782 ∗ 10−8

b) #-##-###-#### ####----###--##-# 9.306443 ∗ 10−8

c) #-##-##--##### ####--#--#---##--## 7.763605 ∗ 10−8

¬Cbest

a) and c) {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0)} not (0, 2)!
b) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)}

The best single shape filter for this problem is ######-#-## with q = 9, tbest = 2
and a specificity of 3.838350 ∗ 10−6. Compared to this single shape filter, each of
these three multi-shape filters with two (q = 10)-shapes improves the specificity by
a factor of 50. The runtime of a multi-shape filter is approximately the sum of the

65

Proceedings of the Prague Stringology Conference ’04

run-times computed for its individual shapes. This means that the filters with two
(q = 10)-shapes for |Σ| = 4 are also about two times as fast as a q = 9 single-shape
filter.

The three multi-shape filters of this example were found by scanning 5000 pairs
of random (q = 10)-shapes. In this sample set, good pairs were extremely rare. 3439
of the pairs, i.e. more than two-thirds, did not yield a lossless filter for k = 6 at all.
It is interesting that none of the six shapes that comprise the three best pairs, we
found, work particularly well as a single-shape filter. This suggests that combining
good single-shape filters is not necessarily the best method to construct a good multi-
shape filter. Also note, that 5000 pairs of shapes is a relatively small random set. It
is very likely that much better two-shape filters can be found with more extensive
experiments.

4-tuples of shapes: q = 10, k = 8

In a second experiment we fixed q to 10 and tried to increase k. We generated
1, 500, 000 filters with 4-tuples of random (q = 10)-shapes and analysed each of these
4-tuples with our algorithm. In this sample set, the good 4-tuple filters were again
rare. Nevertheless, we found 15 lossless filters for k = 8 with specificities of about
10−3. For comparison, the highest possible k for a lossless single-shape filter with
q = 9 is k = 6. (A single-shape filter with q = 9, is about as fast as our 4-tuple
filters.) The filtration criterion of the 15 4-tuples filters for k = 8 is that they require
at least one hit of any of the four shapes.

4-tuples of shapes: q = 10, k = 7

Alternatively, each of the 15 good 4-tuple filters, we found, can also be used for k =
7 with a stricter filtration criterion. Although the computation of the exact filtration
criterion Cbest for this problem has a high complexity, it is easy to compute an suitable
approximation Capprox [11]. The complement ¬Capprox of one such approximation
consists of 40 elements. This filtration criterion ¬Capprox guarantees lossless filtering
for k = 7 and a specificity of 5.2288 ∗ 10−8.

The best set of four shapes out of 1,500,000 random
l = 50, k = 7, specificity = 5.228823e− 08

s1=##-#-###---#--#----## s2=##-#--#--#-#-#--###

s3=###-#-##-#-### s4=##-###-----##--#-#--#

¬C for the best 4-tuple filter and k = 7
{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 0, 0, 3), (0, 0, 0, 4), (0, 0, 0, 5), (0, 0, 1, 0),
(0, 0, 1, 1), (0, 0, 1, 2), (0, 0, 2, 0), (0, 0, 2, 1), (0, 0, 3, 0), (0, 0, 3, 1), (0, 0, 4, 0),
(0, 0, 4, 1), (0, 0, 5, 0), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 0, 2), (0, 1, 1, 0), (0, 1, 1, 1),
(0, 1, 2, 0), (0, 1, 3, 0), (0, 1, 4, 0), (0, 2, 0, 0), (0, 2, 0, 1), (0, 2, 1, 0), (0, 3, 0, 0),
(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 0, 2), (1, 0, 0, 4), (1, 0, 1, 0), (1, 0, 2, 0), (1, 0, 4, 0),

(1, 1, 0, 0), (1, 1, 0, 1), (1, 2, 0, 0), (2, 0, 0, 0), (5, 0, 0, 0)}
The experiments show that multi-shape filters can have significantly better speci-

ficities and work for higher values of k than single-shape filters. At the same time they
can also speed up the filtration. It remains an open question if there is an algorithm
to construct good sets of shapes for multi-shape filters.

66

BDD-Based Analysis of Gapped q-Gram Filters

7 Conclusion

We described a new method for the analysis of gapped q-gram filters. This method
uses bit-strings, we call them match-mismatch-patterns, to describe possible align-
ments between the database and the search patterns. Sets of match-mismatch-
patterns provide a simple abstraction of filter algorithms for the k-differences problem.

The first step of our approach is to generate sets of match-mismatch-patterns,
in particular the set of match-mismatch-patterns representing the potential matches.
To implement this step efficiently, we use BDDs as a data structure to represent sets
of bit-strings. In the second step, we can then use these BDD representations to
compute many interesting properties of filters like the recognition rate and specificity
for various probability models.

Our approach is simple and general and applies to a variety of filter algorithms.
For example, it can model single-shape filters with any threshold and generic multi-
shape filters. Previous algorithms for filter-related problems were often based on
dynamic programming. Compared to dynamic programming, our approach is more
general and more natural and allows many interesting extensions.

The most important application of our approach is the analysis of multi-shape
filters, which work with a set of shapes in parallel. For any set of shapes, our approach
can compute an optimal filtration criterion Cbest, which guarantees lossless filtering
for the k-differences problem and also the sensitivities and specificities of the resulting
multi-shape filter.

We found, that good multi-shape filters with a carefully selected set of shapes and
a specifically computed filtration criterion Cbest are much better than single-shape
filters. They allow higher specificities and sensitivities than single shape filters and
higher values of k are possible (for lossless filtering). Multi-shape filters can also be
faster than single shape filters, because they still work with higher values of q.

The BDD-based approach makes it possible to find good multi-shape filters by
scanning a large number of randomly generated candidates. However, only a small
fraction of these candidates show the desired properties. Since full enumeration as for
single-shape filters [6] is not possible for multi-shape filters, a constructive algorithm
to generate good sets of shapes remains an interesting open problem.

References

[1] B. Brejová, D. G. Brown, and T. Vinař. Optimal spaced seeds for hidden Markow
models, with applications to homologous coding regions. In Proc. 14th Annual
Symposium on Combinatorial Pattern Matching, volume 2676 of LNCS, pages
42–54. Springer, 2003.

[2] B. Brejová, D. G. Brown, and T. Vinař. Vector seeds: an extension to spaced
seeds allows substantial improvements in sensitivity and specificity. In Proc.
3rd International Workshop on Algorithms and Bioinformatics, volume 2812 of
Lecture Notes in Bioinformatics, pages 39–54. Springer, 2003.

[3] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35:677–691, 1986(8).

67

Proceedings of the Prague Stringology Conference ’04

[4] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24:293–318, 1992(3).

[5] S. Burkhardt. Filter Algorithms for Approximate String Matching. PhD thesis,
Department of Computer Science, Saarland University, 2002. http://www.mpi-
sb.mpg.de/˜stburk/thesis.ps.

[6] S. Burkhardt and J. Kärkkäinen. Better filtering with gapped q-grams. In
Proc. 12th Annual Symposium on Combinatorial Pattern Matching, volume 2089
of LNCS, pages 73–85. Springer, 2001.

[7] S. Burkhardt and J. Kärkkäinen. Better filtering with gapped q-grams. Funda-
menta Informaticae, 56(1–2):51–70, 2003.

[8] A. Califano and I. Rigoutsos. FLASH: A fast look-up algorithm for string homol-
ogy. In Proc. 1st International Conference on Intelligent Systems for Molecular
Biology, pages 56–64. AAAI Press, 1993.

[9] K. P. Choi, F. Zeng, and L. Zhang. Good spaced seeds for homology search.
Bioinformatics, 20(7):1054–1059, 2004.

[10] K. P. Choi and L. Zhang. Sensitivity analysis and efficient method for identifying
optimal spaced seeds. Journal of Computer and System Sciences, 68:22–40, 2004.

[11] M. Fontaine. Computing the filtration efficiency of shape-index-filters for ap-
proximate string matching. Master’s thesis, Dept. of Computer Science, Saarland
University, Nov 2003. http://www.mpi-sb.mpg.de/˜fontaine/thesis.ps.

[12] U. Keich, M. Li, B. Ma, and J. Tromp. On spaced seeds for similarity search.
Discrete Applied Mathematics, 138(3):253–263, 2004.

[13] G. Kucherov, L. Noé, and M. Roytberg. Multi-seed lossless filtration. To appear
in CPM 2004.

[14] M. Li, B. Ma, D. Kisman, and J. Tromp. PatternHunter II: Highly Sensitive and
Fast Homology Search. Journal of Bioinformatics and Computational Biology,
2004. To appear. Early version in GIW 2003.

[15] B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive homology
search. Bioinformatics, 18:440–445, 2002.

[16] L. Noè and G. Kucherov. YASS: Similarity search in DNA sequences. Technical
report, INRIA Tech report 4852, 2003.

[17] Y. Sun and J. Buhler. Designing multiple simultaneous seeds for DNA simi-
larity search. In Proceedings of the eighth annual international conference on
Computational molecular biology, pages 76–84, 2004.

[18] J. Xu, D. Brown, M. Li, and B. Ma. Optimizing multiple spaced seeds for
homology search. To appear in CPM 2004.

68

Sorting suffixes of two-pattern strings

Frantisek Franek and W. F. Smyth∗

Algorithms Research Group
Department of Computing & Software

McMaster University
Hamilton, Ontario
Canada L8S 4L7

e-mail: {franek, smyth}@mcmaster.ca

Abstract. Recently, several authors presented linear recursive algorithms for
sorting suffixes of a string. All these algorithms employ a similar three-step
approach, based on an initial division of the suffixes of x into two sets: in step
1 sort the first set using recursive reduction of the problem, in step 2 determine
the order of the suffixes in the second set based on the order of the suffixes in
the first set, and in step 3 merge the two sets together. To optimize such an
algorithm either for space or time, it may not be sufficient to optimize one of
the three steps, since in doing so, one might increase the resources required for
the others to an unacceptable extent.

Franek, Lu, and Smyth introduced two-pattern strings as a generalization of
Sturmian strings. Like Sturmian strings, two-pattern strings are generated by
iterated morphisms, but they exhibit a much richer structure.

In this paper we show that the suffixes of two-pattern strings can be sorted in
linear time using a variant of the three step approach outlined above. It turns
out that, given the order of the suffixes in a two-pattern string, one can almost
directly list in linear time all the suffixes of its expansion under a two-pattern
morphism.

1 Introduction

Ever since Manber and Myers in [MM93] introduced suffix arrays as data structures
comparable to suffix trees for most pattern matching tasks in strings, yet requiring
significantly less memory, the search was on for a linear time algorithm for their con-
struction. Such an algorithm for suffix tree construction had been known since 1997
[F97]. In 2003 to our knowledge three different groups of researchers independently
proposed linear recursive algorithms to sort string suffixes: [KA03, KSPP03, KS03].
Though different, all three algorithms employ three steps, based on a separation of
the suffixes into two sets. In step 1 the first set is ordered using recursive reduction of
the problem, in step 2 the suffixes of the second set are sorted based on the order of
the suffixes in the first set, and in step 3 both ordered sets are merged together. The
fact that all three algorithms follow this basic approach, yet use a completely different

∗also Department of Computing, Curtin University, Perth WA 6845, Australia.

69

Proceedings of the Prague Stringology Conference ’04

separation into sets, a different way of ordering the second set based on the first set,
and a different merge technique, points to some common fundamental aspect of these
algorithms. To optimize such an algorithm either for space or time, it may not be
sufficient to optimize one of the three steps, since in doing so, one might increase the
resources required for the others to an unacceptable extent.

Two-pattern strings were introduced in [FLS03] as a generalization of Sturmian
strings. Like Sturmian strings, two-pattern strings are generated by iterated mor-
phisms, but they exhibit a much richer structure. It was shown in [FLS04] that the
iterated construction of these strings could be used to compute all the repetitions and
near-repetitions in time linear in string length.

This paper was motivated by our investigation of the three different linear suffix
sorting algorithms discussed above and our desire to fully understand the underly-
ing phenomena. Thus, we investigated whether the recursive nature of two-pattern
strings could be used in sorting of the suffixes in the approach of the three algorithms
mentioned. As it turned out, the “natural” recursive reduction of two-pattern strings
can be used for step 1, and then steps 2 and 3 can be simplified into a single step:
from having the suffixes of the reduced string ordered, one can almost directly list
the suffixes of the two-pattern string in the right order.

For the sake of completeness, let us recall the definition of a two-pattern string
(see [FLS03]), including all supporting definitions. Throughout this paper, a binary
string means a string over the alphabet {a, b}.

Definition 1.1 A binary string q is said to be p-regular if and only if q = upvu

for some choice of (possibly empty) substrings u and v.

Definition 1.2 An ordered pair (p, q) of nonempty binary strings is said to be suit-
able if and only if

� p is primitive (that is, p has no nonempty border);

� p is not a suffix of q;

� q is neither a prefix nor a suffix of p;

� q is not p-regular.

Note: Since a two-pattern string is a concatenation of blocks piq and pjq, the above
two definitions make sure that p and q are dissimilar enough to be recognized effi-
ciently.

Definition 1.3 σ = [p, q, i, j]λ is an expansion of scope λ, if (p, q) is suitable,
|p| ≤ λ, |q| ≤ λ, 1 ≤ i, j, i 6= j are integers, and λ is an integer ≥ 1.

Note: An expansion σ = [p, q, i, j] is applied to a binary string x in the following
fashion: each occurrence of a in x is replaced by piq and each occurrence of b by pjq.
The resulting string is denoted as σ(x). We define σ(ε) = ε. The composition of
two expansions σ1 and σ2, (σ1◦σ2)(x) is defined by (σ1◦σ2)(x) = σ1(σ2(x)). The
role of the scope λ is to limit the size of p and q that can be used in the following
definition.

70

Sorting suffixes of two-pattern strings

Definition 1.4 A binary string x is a two-pattern string of scope λ if there exists
a sequence {σ1, σ2, . . . , σm} of expansions of scope λ so that x = σ1 ◦ · · · ◦σm(a).

It was mentioned at the end of [FLS03] that if the definition of p-regularity were made
more restrictive, a larger class of complete two-pattern strings could be obtained.
The more restrictive definition, sufficient to give two-pattern strings all their desired
properties, contained a few typographical errors as it was given in [FLS03], and so
we provide a corrected definition here:

Definition 1.5 A binary string q is said to be p-regular (p a binary string) if and
only if there exist (possibly empty) strings u,v together with nonnegative integers
n1, n2, . . . , nk, k ≥ 1, r ≥ 0, such that

� the integers ni assume at most two distinct values — that is,

∣

∣{ni : i ∈ 1..k}
∣

∣ ≤ 2;

� q = (uprvpn1)(uprvpn2) · · · (uprvpnk)u for some u, v, r ≥ 0, where v = ε if
r = 0.

Note: the definition 1.5 can be used to replace the definition 1.1. In fact, all the proofs
accompanying this paper are compliant with the more restrictive definition 1.5.

Certain finite fragments of the well-known infinite Fibonacci string and the equally
well-known infinite Sturmian strings are in fact complete two-pattern strings of scope
λ = 1 (see [FLS03]).

Here are a few simple examples of two-pattern strings:

1. a, now apply σ2 = [ab, ba, 2, 3] to it, we get

2. σ2(a) = ababba, now apply σ1 = [abb, aa, 1, 4] to it, we get

3. σ1(σ2(ababba)) = abbaa(abb)4aaabbaa(abb)4aa(abb)4aaabbaa.

Strings 1, 2, and 3 are all two-pattern strings of scope 3 (string 2 is in fact of scope
2, and string 1 is in fact of scope 1).

It was shown in [FLS03] that complete two-pattern strings can be recognized
in linear time: the recognition algorithm outputs an essentially unique sequence of
expansions to construct the string from a. So in the following we can assume that not
only do we have a complete two-pattern string, but also the sequence of expansions
that iteratively generates the string.

In the next section we describe the principles underlying the algorithm for sorting
suffixes of a two-pattern string. In Section 3 we provide an overview of the algorithm
itself, while Section 5 we list some of the main lemmas on which the algorithm is
based. We conclude with Section 6.

2 The Principles Underlying the Algorithm

For the sake of clarity and brevity, we introduce several symbols: we use the symbol
u < v for strings u, v to express that u is lexicographically smaller than v. We use
the symbol ≺ in u ≺ v (or ≻ in u ≻ v) to express the fact that u < v yet u is not

71

Proceedings of the Prague Stringology Conference ’04

a prefix of v (or v < u yet v is not a prefix of u). Note that u < v iff (u ≺ v or u

is a prefix of v). We use the symbol u ≻≺ v to indicate that either u ≺ v or u ≻ v.
For a binary string u, we will use u to denote its ones-complement; that is, the

string formed by interchanging a’s and b’s in u.
In accordance with [FLS03], if x, y are complete two-pattern strings, σ an ex-

pansion, and y = σ(x), then the occurrences of copies of p and copies of q in the
concatenation of blocks piq and pjq as defined by σ(x) are called restrained copies.
Any other occurrence of p or q is referred to as free. A consecutive sequence of
restrained copies of p’s and/or q’s will also be referred to as a restrained configu-
ration or a restrained substring of y.

Throughout the following discussion we assume that the scope λ is fixed and that
y = σ(x), where x is a complete two-pattern string of scope λ and σ = [p, q, i, j]λ an
expansion of scope λ. Moreover we assume that all suffixes of x are lexicographically
sorted: ρ1 < · · · < ρ|x|. We then describe how to order the suffixes of y. We may
assume further that q < p. If it were not the case, according to Lemma 5.2 (see
section 5), q < p, we sort all of the suffixes of y = σ(x), where σ = [p, q, i, j]λ, and
reversing the order, we get all suffixes of y ordered properly.

Since we are assuming q < p, according to Lemma 5.1 (see section 5), for any
suffixes ρ1, ρ2 of x, if ρ1 < ρ2, then σ(ρ1) < σ(ρ2). In simple terms, the assumption
q < p makes all expansions to preserve the order of suffixes.

We put all the suffixes of y into disjoint buckets of five types A–E. Their defini-
tions follow (note that the expansion σ = [p, q, i, j]λ is fixed):

� For every nontrivial suffix δ of p and for every integer k, 0 < k < i,
Aδ,k

= {δpkqσ(ρ) : ρ is a proper suffix of x or ρ = ε};

� for every nontrivial suffix δ of p that is also a suffix of q,
Aδ,i

= {δpiqσ(ρ) : ρ is a proper suffix of x or ρ = ε};

� for every nontrivial suffix δ of p that is not a suffix of q,
Aδ,i

= {δpiqσ(ρ) : bρ is a proper suffix of x,ρ can be empty};

� for every nontrivial suffix δ of p and for every integer k, i < k < j,
Aδ,k

= {δpkqσ(ρ) : bρ is a proper suffix of x,ρ can be empty}.

� for every nontrivial suffix δ of p,
Bδ = {δqσ(ρ) : ρ is a proper nontrivial suffix of x};

� for every nontrivial suffix δ of q that is not a suffix of p,
Cδ = {δpiqσ(ρ) : aρ is a proper suffix of x,ρ can be empty};

� for every nontrivial suffix δ of q,
Dδ = {δpjqσ(ρ) : bρ is a proper suffix of x,ρ can be empty};

� E = {δq : δ is a nontrivial suffix of p} ∪ {δ : δ is a nontrivial suffix
of q}.

(where the term proper suffix refers to a suffix that is not equal to the whole string
and the term trivial suffix refers to the empty suffix).

72

Sorting suffixes of two-pattern strings

It is straightforward to check that any suffix of y belongs to one of the buckets
A–E (for proof see the supplement, see below). We are going to order the suffixes in
buckets A–D based on the ordering of the suffixes for x (Step 1), then merge in the
suffixes from E (Steps 2 & 3); since |E| ≤ 2λ, this will not destroy the linearity of
the algorithm. Note that the order within each bucket is determined by the order of
suffixes of x:

in the bucket Aδ,k
: δpkqσ(ρ1) < δpkqσ(ρ2) if ρ1 < ρ2;

in the bucket Bδ: δqσ(ρ1) < δqσ(ρ2) if ρ1 < ρ2;
in the bucket Cδ: δpiqσ(ρ1) < δpiqσ(ρ2) if ρ1 < ρ2;
and in the bucket Dδ: δpjqσ(ρ1) < δpjqσ(ρ2) if ρ1 < ρ2.

Thus, it is straightforward to list the suffixes in each bucket in the correct order, given
the order of the suffixes of x.

We make use of the following notation: if X, Y are sets of suffixes of y, we write
X ≪ Y iff (∀x ∈ X)(∀y ∈ Y)(x < y). The major observation our algorithm is based
on is that the buckets are linearly ordered by ≪; that is, pairwise orderings can be
made between bucket pairs of types

AA,AB,AC,AD,BB,BC,BD,CC,CD,DD, (1)

based on five mutually exclusive (and exhaustive) conditions on any pair δ1, δ2 of
suffixes of p and/or q:

(C1) δ1 ≺ δ2;

(C2) δ1 ≻ δ2;

(C3) δ1 is a proper prefix of δ2;

(C4) δ2 is a proper prefix of δ1;

(C5) δ1 = δ2 = δ.

Observe that, given δ1 and δ2, to determine which of these conditions holds requires
at most λ letter comparisons (since |δ1| ≤ λ, |δ2| ≤ λ).

Thus, for example, two A buckets can be compared as follows:

(C1) Aδ1,k1
≪ Aδ2,k2

.

(C2) Aδ2,k2
≪ Aδ1,k1

.

(C3) Let δ2 = δ1δ
′
1 for some nonempty δ′

1:

(a) if δ′
1 ≺ p, then Aδ2,k2

≪ Aδ1,k1
;

(b) otherwise, Aδ1,k1
≪ Aδ2,k2

.

(C4) Let δ1 = δ2δ
′
2 for some nonempty δ′

2:

(a) If δ′
2 ≺ p, then Aδ1,k1

≪ Aδ2,k2
;

(b) otherwise, Aδ2,k2
≪ Aδ1,k1

.

73

Proceedings of the Prague Stringology Conference ’04

(C5) (a) If k1 < k2, then Aδ,k1
≪ Aδ,k2

;

(b) if k1 = k2, then Aδ,k1
= Aδ,k2

;

(c) if k1 > k2, then Aδ,k2
≪ Aδ,k1

.

It is not very hard to prove that this ordering is correct. The demonstration for
cases (C1), (C2) and (C5) is straightforward. For (C3), observe that we are comparing
δ1p

k1q· · · with δ2p
k2q· · ·, hence pk1q· · · with δ′

1p
k2q· · ·. Since δ′

1 is a suffix of δ2, it
is also a suffix of p and so cannot be a prefix of p. It follows that either δ′

1 ≺ p or
δ′

1 ≻ p, and the result follows. The proof for (C4) is exactly analogous.
Furthermore the AA ordering is efficient, since the cases (a) and (b) in (C3) and

(C4) can be processed in at most λ constant-time steps in addition to the λ steps
that may be required to identify which condition holds: thus a total of at most 2λ
steps altogether.

The results for the other pairs listed in (1) are similar: the details vary slightly
from one case to another. The main result is that any of the pairs can be processed
in at most 3λ steps, a constant. To avoid distracting the reader with unnecessary and
uninteresting detail, we do not include the other cases here. For those details, please
access the web supplement of this paper at

http://www.cas.mcmaster.ca/˜franek/web-publications.html

This supplement will be soon available as a technical report of Department of Com-
puting and Software, McMaster University, Hamilton, Ontario, L8S 4K1 Canada.

3 The High-Level Logic of the Algorithm

We describe only the recursive step (Step 1) that takes us from x and its sorted
suffixes to the corresponding sorted suffixes of y = σ(x), where σ = [p, q, i, j]λ.
Recall that we assume q < p.

1. Create names (A, δ) for every suffix δ of p. (This requires at most λ steps. Each
name will be eventually replaced by a sequence of buckets, see below.)

2. Sort the names according to the order described in the previous section for
mutual comparison of the four A buckets (of course, according to (C1)-(C4)
only). (This requires at most 2λ3 steps as we are sorting λ names and each
comparison requires ≤ 2λ steps.)

3. Replace every name (A, δ) by a sequence of names (A, δ, k), 1 ≤ k < j. Let us
call the resulting sequence BUCKETS. (Now we have the names of A buckets
in the proper order. This requires at most |y| steps as the size of BUCKETS is
≤ |y|. Each name (A, δ, k) will eventually be replaced by a corresponding bucket
Aδ,k, see below.)

4. Create names (B, δ) for every suffix δ of p. (This requires at most λ steps.
Each name (B, δ) will eventually be replaced by a corresponding bucket Bδ, see
below.)

74

Sorting suffixes of two-pattern strings

5. Merge into BUCKETS all names (B, δ) according to comparisons as described
in comparing A buckets to B buckets. (This requires at most |BUCKETS|3λ2

steps, as we are merging in λ names and each comparison requires ≤ 3λ steps,
hence at most |y|3λ2 steps.)

6. Create names (C, δ) for every suffix δ of q that is not a suffix of p. (This
requires at most λ2 steps. Each name (C, δ) will eventually be replaced by a
bucket Cδ, see below.)

7. Merge into BUCKETS all names (C, δ) according to comparisons as described
in comparing A buckets to C buckets and B buckets to C buckets. (This
requires at most |BUCKETS|3λ2 steps, hence at most |y|3λ2 steps.)

8. Create names (D, δ) for every suffix δ of q. (This requires at most λ steps.
Each name (D, δ) will eventually be replaced by a bucket Dδ, see below.)

9. Merge into BUCKETS all names (D, δ) according to comparisons as described
in comparing A buckets to D buckets, B buckets to D buckets, C buckets to
D buckets. (Now we have all required bucket names, except E, in proper order.
This requires at most |BUCKETS|3λ2 steps, hence at most |y|3λ2 steps.)

10. Traverse BUCKETS and replace each name by a sequence of suffixes according
to the sequence of suffixes of x. Let us call this sequence SUFFIXES. (We
turned the names into proper buckets and merged them all together in a single
list. Now we have all suffixes from buckets A–D in proper order. This requires
at most |y| steps as the size of SUFFIXES is ≤ |y|.)

11. Merge into SUFFIXES the suffixes from the bucket E. (This requires at most
|SUFFIXES|4λ2 steps, as we are merging in 2λ suffixes, each of length ≤ 2λ,
hence at most |y|4λ2 steps.)

SUFFIXES is now a sorted list of all suffixes of y and it took less than α|y| steps,
where we set α = 2λ3 + 14λ2 + 3λ + 2. Since every reduction of a complete two-
pattern string at least halves its length, altogether the algorithm with all iterative
steps included took less than αn + αn

2
+ αn

4
+ · · · < 2αn steps, where n is the size

of the input string.

4 An example

Let x = ababa, and let σ = [ba, ab, 1, 2]. (Thus q = ab < p = ba.) Hence y = σ(x) =
baabbabaabbaabbabaabbaab.
All nontrivial proper suffixes of x are a, aba, b, and baba. All nontrivial suffixes of p

are ba and a, and all nontrivial suffixes of q are ab and b. Let see the buckets:
Aba,1 = {babaabσ(a), babaabσ(aba)} =
{babaabbaab, babaabbaabbabaabbaab} = {y[15..24],y[5..24]}.

Aa,1 = {abaabσ(a), abaabσ(aba)} = {abaabbaab, abaabbaabbabaabbaab} =
{y[16..24],y[6..24]}.

Bba = {baabσ(a), baabσ(aba), baabσ(ba), baabσ(baba)} =
{baabbaab, baabbaabbabaabbaab, baabbabaabbaab,

75

Proceedings of the Prague Stringology Conference ’04

baabbabaabbaabbabaabbaab} = {y[17..24],y[7..24],y[11..24],y[1..24]}
Ba = {aabσ(a), aabσ(aba), aabσ(ba), aabσ(baba)} =
{aabbaab, aabbaabbabaabbaab, aabbabaabbaab,
aabbabaabbaabbabaabbaab} = {y[18..24],y[8..24],y[12..24],y[2..24]}

Cab = {abbaabσ(ε), abbaabσ(a)} = {abbaab, abbaabbabaabbaab} =
{y[19..24],y[9..24]}

Cb = {bbaabσ(ε), bbaabσ(ba)} = {bbaab, bbaabbabaabbaab} =
{y[20..24],y[10..24]}

Dab = {abbabaabσ(a), abbabaabσ(aba)} =
{abbabaabbaab, abbabaabbaabbabaabbaab} = {y[13..24],y[3..24]}

Db = {bbabaabσ(a), bbabaabσ(aba)} =
{bbabaabbaab, bbabaabbaabbabaabbaab} = {y[14..24],y[4..24]}

E = {baab, aab, ab, b} = {y[21..24],y[22..24],y[23..24],y[24..24]}
First note that we really got all nontrivial suffixes of y. Also note that the suffixes

in the buckets are in proper order. Let us see the mutual relationship of buckets:
Aba,1 ≫ Aa,1 (by (C1)), Aba,1 ≫ Bba (by (C5)), Aba,1 ≫ Ba (by (C2)),
Aba,1 ≫ Cab (by (C2)), Aba,1 ≪ Cb (by (C4a)), Aba,1 ≫Dab (by (C2)),
Aba,1 ≪ Db (by (C4a)), Aa,1 ≪ Bba (by (C1)), Aa,1 ≫ Ba (by (C5)),
Aa,1 ≪ Cab (by (C3b)), Aa,1 ≪ Cb (by (C1)), Aa,1 ≪Dab (by (C3b)),
Aa,1 ≪Db (by (C1)), Bba ≫ Ba (by (C2)), Bba ≫ Cab (by (C2)),
Bba ≪ Cb (by (C4b)), Bba ≫ Dab (by (C2)), Bba ≪ Db (by (C4a)),
Ba ≪ Cab (by (C3b)), Ba ≪ Cb (by (C1)), Ba ≪ Dab (by (C3b)),
Ba ≪Db (by (C1)), Cab ≪ Cb (by (C1)), Cab ≪Dab (by (C5)),
Cab ≪Db (by (C1)), Cb ≫ Dab (by (C2)), Cb ≪Db (by (C5)),
Dab ≪ Db (by (C1)).

Now follow the 11 steps.

1. create names (A, ba), (A, a)

2. sort them: (A, a), (A, ba) (according to (C1))

3. “refine” the names to BUCKETS=(A, a, 1), (A, ba, 1)

4. create names to (B, ba), (B, a)

5. merge them into BUCKETS=(B, a), (A, a, 1), (B, ba), (A, ba, 1)

6. create names to (C, ab), (C, b)

7. merge them into BUCKETS= (B, a), (A, a, 1), (C, ab), (B, ba),
(A, ba, 1), (C, b)

8. create names to (D, ba), (D, a)

9. merge them into BUCKETS=(B, a), (A, a, 1), (C, ab), (D, ab), (B, ba),
(A, ba, 1), (C, b), (D, b)

10. replace the names by buckets: SUFFIXES=
(y[18..24],y[8..24],y[12..24],y[2..24]), (y[16..24],y[6..24]),
(y[19..24],y[9..24]), (y[13..24],y[3..24]),

76

Sorting suffixes of two-pattern strings

(y[17..24],y[7..24],y[11..24],y[1..24]), (y[15..24],y[5..24]),
(y[20..24],y[10..24]), (y[14..24],y[4..24])

11. merge in E bucket: SUFFIXES= y[22..24], y[18..24], y[8..24],
y[12..24], y[2..24], y[23..24], y[16..24], y[6..24], y[19..24], y[9..24],
y[13..24], y[3..24], y[24..24], y[21..24], y[17..24], y[7..24], y[11..24],
y[1..24], y[15..24], y[5..24], y[20..24], y[10..24], y[14..24], y[4..24]

5 The Supporting Lemmas

For the proofs, see the supplement as mention before.
The first lemma establishes that the ordering of suffixes is invariant under an

expansion with q < p.

Lemma 5.1 Let σ = [p, q, i, j]λ be an expansion and q < p. Let x and y be two-
pattern strings of scope λ and let y = σ(x). Let ρ1, ρ2 be suffixes of x so that
ρ1 < ρ2.
Then σ(ρ1) < σ(ρ2).

The next lemma tells us that interchanging a and b in a binary string reverses the
order of the suffixes.

Lemma 5.2 Let ρ1 < · · · < ρn be the sequence of all suffixes of a binary string u in
an ascending lexicographic order. Then ρ1 > · · · > ρn is the sequence of all suffixes
of u in a descending lexicographic order.

The next three lemmas are technical lemmas required for some of the proofs (see
website referenced above) that the pairs (1) can be processed correctly in O(3λ) time.
Essentially these lemmas tell us that the ordering of restrained suffixes of y can be
accomplished in at most 2λ constant-time algorithmic steps.

Lemma 5.3 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an expansion,
and y = σ(x). Let u be a non-empty binary string and let uqp be a suffix of a
restrained configuration pqp of y and let qp be a restrained configuration of y. Then
uqp ≻≺ qp and whether uqp≺qp or uqp≻qp can be determined in ≤ 2λ steps.

Lemma 5.4 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an expansion,
and y = σ(x). Let u be a non-empty binary string and let up be a suffix of a restrained
configuration qp of y. Let 1 ≤ k, and let pkq be a restrained configuration of y. Then
up ≻≺ pkq and whether up≺pkq or up≻pkq can be determined in ≤ 2λ steps.

Lemma 5.5 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an expansion,
and y = σ(x). Let u be a non-empty binary string and let upkq, 1 ≤ k, be a suffix of
a restrained configuration pk+1q or qpkq of y. Let qp be a restrained configuration
of y. Then upkq ≻≺ qp and whether upkq≺qp or upkq≻qp can be determined in
≤ 2λ steps.

77

Proceedings of the Prague Stringology Conference ’04

6 Conclusion

Even though it is known that suffixes for all strings can be sorted in linear time using
recursive algorithms, our research verified that for the class of complete two-pattern
strings the sorting can be done iteratively, also in linear time. The analysis shows
that the approach presented here is rather straightforward, thus providing additional
evidence of how two-pattern strings are well-suited for computational processing, the
main goal of this effort.

References

[F97] M. Farach, Optimal suffix tree construction with large alphabets,
in Proc. 38th Annual Symposium on Foundations of Computer Science,
IEEE (1997) pp. 137–143.

[FLS03] F. Franek, W. Lu, and W. F. Smyth, Two-pattern strings I — a
recognition algorithm, J. Discrete Algorithms 1–5/6 (2003) pp. 445–
460.

[FLS04] F. Franek, W. Lu, and W. F. Smyth, Two-pattern strings II —
computing all repetitions and near-repetitions, submitted to J.
Discrete Algorithms.

[KA03] P. Ko and S. Aluru, Space efficient linear time construction of
suffix arrays, Proceedings of the 14th Annual Symposium CPM, LNCS
2676, Springer (2003) pp. 200–210.

[KSPP03] D. K. Kim, J. S. Sim, H. Park, and K. Park, Linear-time construc-
tion of suffix arrays, Proceedings of the 14th Annual Symposium CPM,
LNCS 2676, Springer (2003) pp. 186–199.

[KS03] J. Kärkkäinen and P. Sanders, Simple linear work suffix array con-
struction, Proceedings of the 30th International Colloquium on Au-
tomata, Languages and Programming, LNCS 2719, Springer (2003) pp.
943–955.

[MM93] U. Manber and G. Myers, Suffix arrays: a new method for on-line
string searches, SIAM Journal on Computing 22–5 (1993) pp. 935–948.

Acknowledgements

The first author would like to acknowledge the support and hospitality of the School
of Computing, Curtin University, Perth, Australia during the research for this paper.
The research of both authors was supported in part by their respective research grants
from the Natural Sciences and Engineering Research Council of Canada.

78

A Note on Bit-Parallel Alignment Computation

Heikki Hyyrö

PRESTO, Japan Science and Technology Agency

e-mail: Heikki.Hyyro@cs.uta.fi

Abstract. The edit distance between strings A and B is defined as the min-
imum number of edit operations needed in converting A into B or vice versa.
Typically the allowed edit operations are one or more of the following: an inser-
tion, a deletion or a substitution of a character, or a transposition between two
adjacent characters. Simple edit distance allows the first two operation types,
Levenshtein edit distance the first three, and Damerau distance all four. There
exist very efficient O(⌈m/w⌉n) bit-parallel algorithms for computing each of
these three distances, where m is the length of A, n is the length of B, and
w is the computed word size. In this paper we discuss augmenting the bit-
parallel algorithms to recover an optimal alignment between A and B. Such
an alignment depicts how to transform A into B by using ed(A,B) operations,
where ed(A,B) is the used edit distance (one of the three mentioned above).
Previously Iliopoulos and Pinzon have given such an algorithm for the longest
common subsequence, which in effect corresponds to the simple edit distance.
We propose a simpler method, which is faster and also more general in that our
method can be used with any of the above three distances.

Keywords: Longest common subsequence, Levenshtein edit distance, Dam-
erau edit distance, bit-parallelism, edit script, alignment

1 Introduction

Edit distance is a classic measure of similarity between two strings. It is generally de-
fined as the minimum number of edit operations that are needed in order to transform
one of the strings into the other. There are different types of distances depending on
what kind of operations are allowed. Two common and widely studied distances are
simple edit distance and Levenshtein edit distance [Lev66]. The simple edit distance
permits a single edit operation to insert or delete a character. In addition to these
two, Levenshtein distance allows also the operation of substituting a character with
another. Damerau distance [Dam64], which is mainly used in spelling correction,
extends the Levenshtein distance by allowing a fourth operation of transposing two
adjacent characters. The simple edit distance is often used indirectly in its dual form
of computing the length of the longest common subsequence between the two strings.
Fig. 1 shows an example of these edit distances.

Throughout this paper we will use the following notation. Ai is the ith character
of a string A, and Ai..j is the substring of A that begins from its ith character and

79

Proceedings of the Prague Stringology Conference ’04

a) D: gold → god b) D: gold → god c) T: gold → glod
I: god → glod I: god → glod S: glod → glow
D: glod → glo S: glod → glow
I: glo → glow

Figure 1: An example of editing the string A = “gold” into the string B = “glow”.
Figure a) uses only insertions (I) and deletions (D), as permitted by the simple edit
distance. Figure b) corresponds to Levenshtein edit distance and uses also a substitu-
tion (S). Figure c) corresponds to Damerau distance that permits also the operation
of transposing two adjacent characters (T).

ends at its jth character. If i > j, we define Ai..j to denote the empty string ǫ. String
C is a subsequence of A if A can be transformed into C by deleting zero or more
characters from A.

The two compared strings will be denoted by A and B. We will denote the
length of A by m and the length of B by n. The edit distance between A and B is
denoted by ed(A,B). We distinguish between different types of edit distance by using
a subscript: We refer to the simple edit distance, Levenshtein distance and Damerau
distance between A and B as edS(A,B), edL(A,B) and edD(A,B), respectively. The
length of the longest common subsequence between A and B is LLCS(A,B).

The classic and very flexible solution for computing various edit distances is based
on dynamic programming. The three distances we discuss can be computed in O(mn)
time by filling an (m+1)× (n+1) dynamic programming matrix. Depending on the
particular distance, several enhancements over the basic scheme have been proposed.
We refer the reader to for example [Nav01, Gus97, BHR00] for an overview on the
various algorithms for the different distances. For our purposes it is sufficient to
mention that the O(⌈m/w⌉n) bit-parallel algorithms [AD86, Mye99, CIPR01, Hyy03,
Hyy04], where w is the computer word size, are typically very practical choices at
least when the alphabet size is moderate (e.g. ASCII character set). These algorithms
encode the differences between adjacent cells in the dynamic programming matrix into
computer words of length w by using a constant number of bits per cell, and are then
able to compute all values within a single word in parallel.

In this paper we consider the case of editing A into B. There are one or more
minimal edit scripts that correspond to the value ed(A,B). A minimal edit script
describes a set of ed(A,B) operations which transform A into B. There are applica-
tions, such as file comparison, where this information is essential. An edit script can
be recovered from the dynamic programming matrix once it has been filled.

One common way to describe an edit script is to show the corresponding align-
ment for A and B. In this paper we discuss a simple scheme to efficiently recover an
optimal alignment after the difference-encoded counterpart of the dynamic program-
ming matrix has been computed by a bit-parallel algorithm. Previously Iliopoulos
and Pinzon [IP02] have proposed this type of a method for recovering a longest com-
mon subsequence for A and B. There is a close relationship between LLCS(A,B)
and edS(A,B): edS(A,B) = m+ n− 2× LLCS(A,B). The longest common subse-
quence gives effectively the same information as an optimal alignment for edS(A,B).
But the method of Iliopoulos and Pinzon is unnecessarily complicated and specifically

80

A Note on Bit-Parallel Alignment Computation

designed for LLCS(A,B) (or edS(A,B)). Our scheme is simpler, can be used with
any of the three discussed edit distances, and we also verify experimentally that it is
considerably faster than the method of Iliopoulos and Pinzon.

2 Dynamic programming

The dynamic programming methods fill an (m+ 1)× (n+ 1) dynamic programming
matrix D, in which each cell D[i, j] will eventually hold the value ed(A1..i, B1..j).
As a specific example we will review the basic dynamic programming solution for
Levenshtein edit distance. The other two distances are computed in a very similar
manner.

The first step is to fill trivially known boundary values. Since all three dis-
tances permit insertions and deletions, they share the same boundary values D[0, j] =
ed(A1..0, B1..j) = ed(ǫ, B1..j) = j and D[i, 0] = ed(A1..i, B1..0) = ed(A1..i, ǫ) = i. The
remaining cells of D are then computed by using an appropriate recurrence. The
complete recurrence for Levenshtein distance is as follows.

D[i, 0] = i, for i ∈ 0 . . .m.
D[0, j] = j, for j ∈ 0 . . . n.
When 1 ≤ i ≤ m and 1 ≤ j ≤ n,

D[i, j] =

{

D[i− 1, j − 1], if Ai = Bj.
1 + min(D[i− 1, j], D[i, j − 1], D[i− 1, j − 1]), otherwise.

Here the three options in the minimum clause correspond to deleting Ai, inserting Bj

after Ai, or substituting Ai with Bj , respectively.
A common way of computing the cells is to proceed in a columnwise manner. First

the cells D[1, 1], D[2, 1], . . .D[m, 1], then the cells D[1, 2], D[2, 2], . . .D[m, 2], and so
on until column n. Finally the desired edit distance is ed(A,B) = D[m,n].

When matrix D has been filled, a sequence of ed(A,B) edit operations that trans-
forms A into B can be recovered by backtracking from the cell D[m,n] towards the
cell D[0, 0]. At each step we move from D[i, j] into D[i − 1, j], D[i − 1, j − 1] or
D[i, j − 1], the only restriction being that the consecutively visited cell values have
to correspond to a minimal choice made in the recurrence. The corresponding edit
operations can then be recorded along the way until the cell D[0, 0] is reached.

Computing LLCS(A,B) can be done in similar manner. Let L be the corre-
sponding (m + 1) × (n + 1) dynamic programming matrix. The condition L[i, j] =
LLCS(A1..i, B1..j) will hold after L has been filled according to the following recur-
rence.

L[i, 0] = 0, for i ∈ 0 . . .m.
L[0, j] = 0, for j ∈ 0 . . . n.
When 1 ≤ i ≤ m and 1 ≤ j ≤ n,

L[i, j] =

{

L[i− 1, j − 1] + 1, if Ai = Bj .
1 + max(L[i− 1, j], L[i, j − 1]), otherwise.

Instead of explicitly enumerating the operations of an edit script, similar information
can be given in the form of an alignment between A and B. An alignment shows the

81

Proceedings of the Prague Stringology Conference ’04

strings A and B on two rows in such manner, that each others counterpart characters
in A and B are placed into the same horizontal position (the same column). In case of
inserting or deleting, one of the counterparts is an empty space. In case of a substitu-
tion, the counterpart is the substituted character. In case of a transposition between
two adjacent characters, the two pairs are shown above each other. And obviously,
characters that are matched in the edit sequence are each others counterparts. Fig.
2 shows an example.

s u r g e r y

0 1 2 3 4 5 6 7
s 1 0 1 2 3 4 5 6
u 2 1 0 1 2 3 4 5
r 3 2 1 0 1 2 3 4
v 4 3 2 1 1 2 3 4
e 5 4 3 2 2 1 2 3
y 6 5 4 3 3 2 2 2

s u r v e y

| |
s u r g e r y

Figure 2: On the left: The dynamic programming matrix D for computing Leven-
shtein edit distance between the strings A = “survey” and B = “surgery”. The cells
that are traversed during a backtrack from D[6, 7] into D[0, 0] are shown in bold.
It goes as follows: D[6, 7] → D[5, 6]: match A6 = B7. D[5, 6] → D[5, 5]: insert
B6. D[5, 5] → D[4, 4]: match A5 = B5. D[4, 4] → D[3, 3]: substitute A4 with B4.
D[3, 3]→ D[2, 2]→ D[1, 1]→ D[0, 0]: match A1..3 = B1..3. On the right: an optimal
alignment that corresponds to the shown edit script trace in D. The inserted ‘r’ has
a space as its counterpart.

3 Bit-parallel algorithms

In general, bit-parallel algorithms are based on exploiting the fact that computers
process information in chunks of w bits, where w is the computer word size. If
one can encode several data items into a single length-w bit-vector, then it may be
possible to manipulate several items in parallel during a single computer operation.
Of course the feasibility of this scheme depends highly on the type of the information
and the operations one wishes to perform on them. The three types of edit distance
that we discuss have turned out to be very suitable for bit-parallel computation.
The bit-parallel algorithms for them reach the highest possible level of parallelism,
manipulating w items at once.

In this paper we use the following notation in describing bit-operations: ‘&’ de-
notes bitwise “AND”, ‘|’ denotes bitwise “OR”, ‘∧’ denotes bitwise “XOR”, ‘∼’ de-
notes bit complementation, and ‘<<’ and ‘>>’ denote shifting the bit-vector left and
right, respectively, using zero filling in both directions. The ith bit of the bit vector V
is referred to as V [i] and bit-positions are assumed to grow from right to left. In ad-
dition we use a superscript to denote bit-repetition. As an example let V = 1001110
be a bit vector. Then V [1] = V [5] = V [6] = 0, V [2] = V [3] = V [4] = V [7] = 1, and
we could also write V = 102130.

82

A Note on Bit-Parallel Alignment Computation

The bit-parallel algorithms we build upon rely on the adjacency properties of
D or L. It is known that two adjacent cells in a column or a row differ by at
most 1. That is, the conditions D[i − 1, j] − 1 ≤ D[i, j] ≤ D[i − 1, j] + 1 and
D[i, j−1]−1 ≤ D[i, j] ≤ D[i, j−1]+1 hold. In L the condition is stricter: the values
never decrease along a column or a row, and so L[i − 1, j] ≤ L[i, j] ≤ L[i − 1, j] + 1
and L[i, j − 1] ≤ L[i, j] ≤ L[i, j − 1] + 1. These rules allow us to encode the values in
each column of D by the following length-m bit-vectors:

The vertical positive delta vector V Pj:
V Pj [i] = 1 if and only if D[i, j]−D[i− 1, j] = 1.

The vertical negative delta vector V Nj:
V Nj [i] = 1 if and only if D[i, j]−D[i− 1, j] = −1.

Now D[i, j] = D[0, j] +
∑i

k=1(V Pj[k]−V Nj [k]) if we interpret a set bit as +1 and an
unset bit as 0.

In case of the simple edit distance edS(A,B), only the vector V Pj is needed if one
computes LLCS(A,B) instead and defines V Pj to encode differences in L instead of
D.

In general we need O(⌈m/w⌉) bit-vectors of length w in order to represent a
length-m bit-vector. When each length-w segment of the bit-vectors can be com-
puted in constant time, the overall running time for computing the vertical delta
vectors for j = 1 . . . n is O(⌈m/w⌉n). Among the discussed edit distances, the first
O(⌈m/w⌉n) bit-parallel algorithm was given by Allison and Dix [AD86] for computing
LLCS(A,B). Later Myers [Mye99] presented an O(⌈m/w⌉n) algorithm for approxi-
mate string matching under Levenshtein edit distance. That algorithm can be easily
modified for computing edit distance [HN02], and a way to modify it for Damerau
distance was presented in [Hyy03]. Crochemore et al. [CIPR01] and Hyyrö [Hyy04]
have given alternative O(⌈m/w⌉n) algorithms for computing LLCS(A,B).

We will not go into details of the bit-parallel algorithms themselves. For this paper
the relevant thing is that we may assume that all vectors V Pj and V Nj for D (or V Pj

for L) may be computed in O(⌈m/w⌉n) time. We concentrate on the post-processing
step of recovering an alignment once these vectors are known for j = 1 . . . n.

4 Tracing a script

In case of the whole matrixD, recovering an alignment is simple since the backtracking
procedure can directly check the values in the neighboring cells. But this is slightly
more complicated if we assume only the existence of the vertical delta vectors V Pj

and V Nj. The method of Iliopoulos and Pinzon [IP02] resorted to computing also
horizontal differences to overcome this difficulty, although the algorithm in itself did
not directly correspond to a backtracking procedure. We now note some rules that
enable backtracking in D when only the vertical deltas are known.

Let us begin by considering the longest common subsequence computation. As-
sume that the backtracking procedure in matrix L is in the cell L[i, j]. From the
recurrence of L we know that we can move vertically to the cell L[i− 1, j] if and only
if L[i, j] = L[i− 1, j] (or V Pj [i] = 0). This poses no problems. Therefore let the first

83

Proceedings of the Prague Stringology Conference ’04

phase of the backtracking involve going vertically towards row 0 as long as possible,
that is, as long as the corresponding bits in the vector V Pj are not set. Once we
cannot move vertically, we are either at row 0 or the condition L[i− 1, j] = L[i, j]− 1
holds. In the first case we are done, as the remaining steps must go directly along row
0 to L[0, 0]. In the latter case we know that L[i− 1, j − 1] ≤ L[i− 1, j] = L[i, j]− 1.
Consider now having the equality L[i − 1, j − 1] = L[i, j − 1] at row i in column
j − 1. Since the adjacency property states that L[i, j − 1] ≥ L[i, j]− 1, we then have
L[i − 1, j − 1] = L[i, j − 1] = L[i, j] − 1, and the only possible source for the value
L[i, j] is a match Ai = Bj . On the other hand, if L[i− 1, j− 1] = L[i, j − 1]− 1, then
either L[i, j− 1] = L[i− 1, j] + 1 = L[i, j] or L[i, j− 1] = L[i− 1, j] = L[i, j]− 1. The
latter case would also have the value L[i − 1, j − 1] = L[i, j] − 2, which contradicts
with the recurrence for L as there is no possible source for the value L[i, j]. Thus the
former case L[i, j − 1] = L[i − 1, j] + 1 = L[i, j] holds and we can move horizontally
to the cell L[i, j − 1].

Now we have the following rule for cell L[i, j]:

V Pj[i] = 0: Move to the cell L[i − 1, j], and record that the counterpart of Ai is a
space.

V Pj[i] = 1: Move to column j − 1 and check the value V Pj−1[i]. If it is 1, then go to
the cell L[i, j − 1] and record that the counterpart of Bj is a space. Otherwise
go to the cell L[i − 1, j − 1] and record that the counterpart of Ai is Bj (and
they match).

Let us now consider Levenshtein or Damerau distances in similar manner. If
the backtracking is in cell D[i, j], we can go to the cell D[i − 1, j] if and only if
V Pj[i] = 1. If V Pj[i] = 0, let us consider when the only choice for the backtracking
is to move into D[i, j− 1]. That happens only if we have D[i, j − 1] = D[i, j]− 1 and
D[i, j] = D[i−1, j−1]. But in this case we must have D[i, j−1] = D[i−1, j−1]−1,
a condition we can check from V Nj−1[i]. This gives the following backtracking rule
for cell D[i, j] for Levenshtein and Damerau distances.

V Pj[i] = 1: Move to the cell D[i − 1, j], and record that the counterpart of Ai is a
space.

V Pj[i] = 0: Move to column j− 1 and check the value V Nj−1[i]. If it is 1, then go to
the cell D[i, j − 1] and record that the counterpart of Bj is a space. Otherwise
go to the cell D[i− 1, j− 1] and record that the counterpart of Ai is Bj (it may
be a match, a substitution, or a part of a transposed character-pair).

These rules for the two distances are inherently similar and enable composing a
single procedure for backtracking that works with all three distances. One just needs
to feed the checked vectors as parameters, possibly in negated form. Fig. 3 shows
the pseudocode for this kind of a general scheme. The shown pseudocode operates
on bit-vectors of length m.

Our basic backtracking procedure takes O(m+n) time. If implemented exactly as
originally described in [IP02], the method of Iliopoulos and Pinzon takes O(⌈m/w⌉n)
time in the post-processing stage. But a simple modification of concentrating only
on the currently processed length-w part of the matrix column enables us to imple-
ment it in O(⌈m/w⌉+ n) time. Also our backtracking method can be modified in a
corresponding way to have the running time O(⌈m/w⌉+ n).

84

A Note on Bit-Parallel Alignment Computation

RecoverAlignment(delta1, delta2)
1. i← m, j ← n
2. While i > 0 and j > 0 Do
3. If the bit delta1j [i] is set Then
4. Output the pair (Ai, ‘ ’)
5. i← i− 1
6. Else
7. If the bit delta2j−1[i] is set Then
8. Output the pair (‘ ’, Bj)
9. Else
10. Output the pair (Ai, Bj)
11. i← i− 1
12. j ← j − 1
13. While i > 0 Do
14. Output the pair (Ai, ‘ ’)
15. i← i− 1
16. While j > 0 Do
17. Output the pair (‘ ’, Bj)
18. j ← j − 1

Figure 3: The general scheme for recovering an alignment from the vertical delta
vectors. In the case of matrix L for LLCS(A,B), the corresponding alignment is
recovered by executing RecoverAlignment(∼ V P , V P). In the case of matrix D,
one should execute RecoverAlignment(V P , V N).

85

Proceedings of the Prague Stringology Conference ’04

5 Test results

We implemented the backtracking procedure and tested it in the case of L matrix of
longest common subsequence computation. This choice was made so that we could
compare its performance against the method of Iliopoulos and Pinzon. Both tested
methods were implemented by us. Instead of the original O(⌈m/w⌉n) post-processing
phase, we used a more efficient O(⌈m/w⌉ + n) scheme in the method of Iliopoulos
and Pinzon. Our method used the basic O(m+ n) backtracking scheme. Despite the
fact that backtracking is a rather low-cost procedure in comparison to the cost of first
computing the vertical delta vectors, we chose to measure overall execution time that
includes both computing the vectors and backtracking in them. The tested strings
were randomly generated, and we used alphabet sizes 4 and 25. The computer was a
1.3 Ghz Intel Pentium M with 256 MB RAM and Windows XP operating system, and
the code was compiled with MS Visual C++ 6.0 with full optimization options. The
number of repetitions varied depending on the case in order to get feasible timings.
The results are shown in Fig. 4. The numbers show the percentage of the run time of
the method of Iliopoulos and Pinzon (IP) when compared to our scheme. Even though
the backtracking should have a very low cost in comparison to the computation of
the vectors, using our method instead has a noticeable impact even for a relatively
high m,n.

n = m 30 50 100 300 500 1000 3000 5000
IP(σ = 4) 195 155 145 114 111 106 103 103
IP(σ = 25) 211 160 156 117 114 106 102 101

Figure 4: The results for the method of Iliopoulos and Pinzon as a percentage of the
run time of our method. We tested with alphabet sizes σ = 4 and σ = 25.

6 Conclusion

Bit-parallel algorithms are in many cases the most efficient choice in practice for com-
puting the simple, Levenshtein or Damerau distance, or for computing the length of
the longest common subsequence. In this paper we proposed and evaluated a simple
and uniform way to recover an optimal alignment for the compared strings after a
bit-parallel algorithm has computed all vertical delta vectors of the corresponding
dynamic programming matrix. We found that our method is more efficient than the
previous method proposed by Iliopoulos and Pinzon [IP02]. Our method has also
the benefit that the same scheme works with all three distances we discussed. The
discussed methods for retrieving an alignment need O(⌈m/w⌉n) space for storing
the vertical delta vectors for j = 1 . . . n. Thus if A and/or B are long, the space
requirements may become too large. In such cases one should use for example the
divide-and-conquer scheme proposed by Hirschberg [Hir78] that requires only lin-
ear space. In [CIP01] Crochemore, Iliopoulos and Pinzon discussed combining that
scheme with bit-parallel LLCS(A,B) computation.

86

A Note on Bit-Parallel Alignment Computation

References

[AD86] L. Allison and T. L. Dix. A bit-string longest common subsequence algo-
rithm. Information Processing Letters, 23:305–310, 1986.

[BHR00] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common
subsequence algorithms. In Proc. 7th International Symposium on String
Processing and Information Retrieval (SPIRE’00), pages 39–48, 2000.

[CIP01] M. Crochemore, C. S. Iliopoulos, and Y. J. Pinzon. Speeding-up Hirschberg
and Hunt-Szymanski LCS algorithms. In Proc. 8th International Sympo-
sium on String Processing and Information Retrieval (SPIRE’01), pages
59–67. IEEE CS Press, 2001.

[CIPR01] M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, and J. F. Reid. A fast
and practical bit-vector algorithm for the longest common subsequence
problem. Information Processing Letters, 80:279–285, 2001.

[Dam64] F. Damerau. A technique for computer detection and correction of spelling
errors. Comm. of the ACM, 7(3):171–176, 1964.

[Gus97] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge
University Press, 1997.

[Hir78] D. S. Hirschberg. A linear space algorithm for computing maximal common
subsequences. Information Processing Letters, 7(1):40–41, 1978.

[HN02] H. Hyyrö and G. Navarro. Faster bit-parallel approximate string matching.
In Proc. 13th Combinatorial Pattern Matching (CPM 2002), LNCS 2373,
pages 203–224, 2002.

[Hyy03] H. Hyyrö. Bit-parallel approximate string matching algorithms with trans-
position. In Proc. 10th International Symposium on String Processing and
Information Retrieval (SPIRE’03), LNCS 2857, pages 66–79, 2003.

[Hyy04] H. Hyyrö. Bit-parallel LCS-length computation revisited. In Proc. 15th
Australasian Workshop on Combinatorial Algorithms (AWOCA 2004),
2004.

[IP02] C. S. Iliopoulos and Y. J. Pinzon. Recovering an lcs in O(n2/w) time and
space. Columbian Journal of Computation, 3(1):41–51, 2002.

[Lev66] V. Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[Mye99] G. Myers. A fast bit-vector algorithm for approximate string matching
based on dynamic programming. Journal of the ACM, 46(3):395–415, 1999.

[Nav01] G. Navarro. A guided tour to approximate string matching. ACM Com-
puting Surveys, 33(1):31–88, 2001.

87

A First Approach to Finding Common Motifs

With Gaps

Costas S. Iliopoulos1∗, James McHugh2, Pierre Peterlongo3, Nadia

Pisanti4†, Wojciech Rytter5 and Marie-France Sagot6,1‡

1 Dept. Computer Science, King’s College London, London WC2R 2LS, England,
and School of Computing, Curtin University of Technology, GPO Box 1987 U, WA.

e-mail: csi@dcs.kcl.ac.uk http://www.dcs.kcl.ac.uk/staff/csi

2 New Jersey Institute of Technology College of Computing Sciences 323 M.L.King
Blvd. University Heights Newark, NJ 07102-1982, USA

e-mail: mchugh@oak.njit.edu http://www.cs.njit.edu/~mchugh

3 Institut Gaspard-Monge, Universite de Marne-la-Valle, Cite Descartes, Champs
sur Marne, 77454 Marne-la-Valle CEDEX 2, France

e-mail: pierre.peterlongo@univ-mlv.fr

4 Department of Computer Science, University of Pisa, Italy
e-mail: pisanti@di.unipi.it http://www.di.unipi.it/~pisanti

5 New Jersey Institute of Technology College of Computing Sciences 323 M.L.King
Blvd. University Heights Newark, NJ 07102-1982, USA

e-mail: rytter@oak.njit.edu http://www.cs.njit.edu/~rytter

6 Inria Rhône-Alpes, UMR 5558 Biométrie et Biologie Évolutive Université Claude
Bernard Lyon 1. 43, Bd du 11 novembre 1918 69622 Villeurbanne cedex France

e-mail: Marie-France.Sagot@inria.fr
http://www.inrialpes.fr/helix/people/sagot

Abstract. We present three linear algorithms for as many formulations of the
problem of finding motifs with gaps. The three versions of the problem are
distinct in that they assume different constraints on the size of the gaps. The
outline of the algorithm is always the same, although this is adapted each time
to the specific problem, while maintaining a linear time complexity with respect
to the input size. The approach we suggest is based on a re-writing of the text
that uses a new alphabet made of labels representing words of the original input
text. The computational complexity of the algorithm allows to use it also to find
long motifs. The algorithm is in fact general enough that it could be applied to
several variants of the problem other those suggested in this paper.

∗The work was partially supported by a NATO grant PST.CLG.977017, a Marie Curie Fellowship,
a Royal Society and a Wellcome Foundation grant.

†Partially supported by Programme Bioinformatique inter EPST and the French Ministry of
Research through the ACI NIM.

‡Partially supported by Programme Bioinformatique inter EPST and the French Ministry of
Research through the ACI NIM, and by Royal Society, Nato and Wellcome Foundation Grants.

88

A First Approach to Finding Common Motifs With Gaps

1 Introduction

The inference of common motifs is an interesting problem in a variety of text algorithm
applications [1, 2, 4]. Given several input strings, the goal is to find words that are
shared by all (or by some) of them. In many applications, such as for instance
biology, the requirement should be a certain degree of similarity, rather than identity,
between a motif and its occurrences in the different input strings. This is what
makes the problem computationally difficult and algorithmically challenging. Such
similarity can be expressed in various ways. Among the most classical, in one case
similarity is modelled by means of a limited edit (or Hamming) distance between
a motif and its occurrences while in another don’t care symbols are allowed in a
motif. Our approach falls under this latter category. We are therefore interested in
motifs with don’t cares. A don’t care is a special symbol that matches any letter of
the alphabet. We further focus our attention on statements of the problem where
don’t cares appear concentrated in distinct sets of contiguous positions, that is, we
are interested in finding common motifs with gaps. In computational biology, this
particular problem may have applications to the inference of co-regulated genes, that
is, to the detection of common binding sites whose structure often consists of motifs
separated by gaps of approximatively known size. The hypothesis is that genes whose
promoter regions share a binding site are co-regulated. Common motifs located in the
regions upstream of genes are good candidates to be such common binding sites that
could then be experimentally tested. Figure 1 shows an example of gapped motif.

rS

Bm

Bm

Bm−1

Bm−1

Bm−1 S1

2

B1 B2 Bm

B1 B2

B1 B2

S2,1

r,1

2,m−1

r,m−1

1,1d 1,m−1d

d d

d d

Figure 1: An example of a motif with gaps that occurs in every string, where by di,j

we mean a gap of size di,j.

Section 2 formally introduces the general problem and describes the data struc-
ture used in the algorithms presented in this paper. Section 3 defines the simplest
formulation of the problem, that is, when all gaps have the same fixed size, and shows
a linear solution for this problem. This will serve as a starting point for the solution
to two variants of the problems where the sizes of the gaps are more flexible. Sec-
tion 4 presents the first variant where each gap inside a motif has variable size but
for each occurrence the total sum of such sizes is upper bounded by a fixed value. A
solution for this problem is then provided that does not increase the complexity of
the first algorithm. Finally, Section 5 addresses, and solves by keeping the same time
complexity, another variant of the problem where each gap is of variable size but each
such size is upper bounded by a fixed value.

89

Proceedings of the Prague Stringology Conference ’04

2 Preliminaries

A string is a sequence of zero or more symbols from an alphabet Σ. A string s of
length n is represented by s1s2 · · · sn, where si ∈ Σ for 1 ≤ i ≤ n. A string w is a
substring , or word of s if s = uwv for u, v ∈ Σ∗; in this case we also say that the string
w occurs at position |u|+ 1 of the string s. We denote by s[i..j] with 1 ≤ i ≤ j ≤ n
the word sisi+1 · · · sj of s. A string w is a prefix of s if s = wu for u ∈ Σ∗. Similarly,
w is a suffix of s if s = uw for u ∈ Σ∗. The don’t care symbol that matches any other
symbol of Σ is denoted by ∗.

The general problem addressed in this paper can be formalized in the following
way.

We are given a set of r input strings {S1, S2, . . . , Sr} and we want to find gapped
motifs B = B1 ∗d1B2 ∗d2 · · ·∗dm−1Bm occurring in each of them. An example in shown
in Fig. 1.

We consider three variants of the problem that basically differ in the way the size
of the gaps are constrained. Assuming that the number m of motifs as well as the
gap sizes (bounded by input parameters) are constants, we present linear algorithms
for all three variants.

The proposed algorithms make use of a generalised and truncated suffix tree. A
generalised suffix tree [5] is a suffix tree for a set of more than one input string where
the information of which string each indexed suffix belongs to is stored in the nodes
of the tree. A truncated suffix tree [6] is a suffix tree that stores only suffixes up to
a certain length l. In practice, it is a suffix tree pruned at level l.

3 Finding motifs with fixed gaps

We start by considering the most constrained version of the problem, that is when
the size of the gaps is always the same. More flexible formulations of the problem
will be addressed in the next sections.

Formally, given a set of strings {S1, S2, . . . , Sr} and integers k,m, d, the problem
consists in finding words B1, B2, . . . , Bm such that:

1. |B1| = |B2| = . . . = |Bm| = k;

2. B1 ∗d B2 ∗d · · · ∗d Bm occurs in Si for i = 1..r.

Observe that technically we can allow d to be zero. This possibility becomes more
interesting when dealing with gaps of variable size. The strings B1 ∗d B2 ∗d · · · ∗d Bm

are said to form a gapped motif; in the literature the sequence of words B1, B2, . . . , Bm

is also called a chain and each word Bi a block of a gapped motif. The size of the
blocks Bj ’s is also assumed to be fixed and the same for all blocks.

We now give an algorithm that solves the problem stated above.
Step 1 Build the generalised suffix tree, truncated at depth k, for the input strings
S1, S2, . . . , Sr. This data structure indexes all words of length k (which we call the
“k-words”) of the set of input strings. We label each “k-word” by the number of the
corresponding leaf in the suffix tree (the number of distinct such k-words is at most
linear in the input size). The k-words are thus labelled in lexicographic order.

90

A First Approach to Finding Common Motifs With Gaps

Step 2 Build a new set of strings {S̃1, . . . S̃r} as follows. The new string S̃i is obtained
from Si by replacing each symbol with the label of the k-word that starts there. In
other words, S̃i[j] becomes the label assigned to the k-word Si[j..j + k − 1].
Step 3 Search for all possible chains of m blocks by doing m−1 skips of length d+k
in S̃i (the motifs have now length |B1 ∗d B2 ∗d . . . ∗dBm| = m(d+ k)− d). The chains
sought are the following:

Ci[j] = S̃i[j]S̃i[j + d+ k]S̃i[j + 2(d+ k)] . . . S̃i[j + (m− 1)(d+ k)],

∀j ∈ {1..n−m(d+ k) + d}

Step 4 Let Ŝi be the set of chains Ci[j], ∀j ∈ {1..n−m(d+ k)+ d}. Obtain the sets
Ŝi for all i.
Step 5 Build the generalised suffix tree for the set of sets of chains {Ŝ1, . . . Ŝr}.
This tree has depth m. The leaves are labelled by the set of strings Si each chain in
{Ŝ1, . . . Ŝr} is derived from.
Step 6 The motifs sought correspond to the leaves of this second generalised suffix
tree with labels covering all strings.

Observe that in general the Ŝi’s are multisets and not sets (some of the chains
may appear repeated). The redundancy may be detected at Step 4 (by not including
in a set Ŝi a chain that is already there), or left to be detected at Step 5.

 =
 =
 =

S1
S2
S3

1 2 3 4 5 6 7 8 9 10 11

A C A A A A C A C A A A

12

A C A C C A A C C CA A

C A C A A A C C A C C A

Figure 2: An example of input

As an example, consider the set of strings of Fig. 2 and the input parameters k =
2, d = 1 and m = 3. We want to find gapped motifs of the form b1,1b1,2∗b2,1b2,2∗b3,1b3,2

that are common to all three strings. We first construct the truncated suffix tree as
shown in Fig. 3.

A C

C CA A

1 2 3 4

Figure 3: Truncated suffix tree for the strings of Fig. 2 and with k = 2

We then compute S̃1, S̃2, S̃3 by re-writing the Si’s using the labels of the leaves.
From S̃1, S̃2, S̃3, we obtain the set of chains Ŝ1, Ŝ2, Ŝ3. The result is shown in Fig. 4

Finally, we construct the generalised suffix tree at depth m = 3 of the three sets
of chains Ŝ1, Ŝ2, Ŝ3. The result is shown in Fig. 5. The leaf circled spells a chain that

91

Proceedings of the Prague Stringology Conference ’04

1 = S 2 1 3, 3 1 1 2 1 3 1 2 1

S1 =

S2 =

S3 =

2 3 1 1 1 2 3 2 3 1 1

2 3 2 4 3 1 2 4 3 2 3

3 2 3 1 1 2 4 3 2 4 3

21 3 4 5 6 7 8 9 10 11 12

−

−

−

~

~

~

2, 3, 1,

 =S2 2 4 3 3 2 1 4 2 3 4 3

S3 = 3 1 2 1 3 2 1 4 1 3 3

2, 4, 3, 2,

4, 3, 2, 4,

Figure 4: Strings of Fig. 2 after steps 3 (S̃i) and 4 (Ŝi) of the algorithm

belongs to each one of the sets Ŝi. Hence, it corresponds to a gapped motif with the
required structure that occurs in every input string. This is the (only) output of our
example, corresponding to the gapped motif AC ∗AA∗CA occurring in S1 at position
1, in S2 at position 3, and in S3 at position 2 as shown in Fig. 6.

1 2 3 4

S1
^ S1

^ S1
^ S1

^S1
^

S2
^ S2

^S2
^ S2

^S2
^

S3
^S3

^S3
^S3

^ S3
^

1 2 3 4

21 42 3 4

1 3 1 3 34 2 2 4 2 4 3 2

Figure 5: The generalised truncated suffix tree for Ŝ1, Ŝ2, Ŝ3. The circled leaf presents
a common motif occurring in the three strings

 =
 =
 =

S1
S2
S3

1 2 3 4 5 6 7 8 9 10 11

A C A A A A C A C A A A

12

A C A C C A A C C CA A

C A C A A A C C A C C A

Figure 6: A motif with fixed gaps with k = 2, m = 3 and D = 1

The correctness of the algorithm is straightforward. The string Ci[j] given as
output in Step 6 is an encoding of a gapped motif that satisfies the input parameters.
Furthermore, the construction of the generalised suffix tree of Step 5 provides the
evidence that Ci[j] is common to all the strings of the input set {S1, S2, . . . , Sr}.

Let us now discuss the complexity of the algorithm. The construction of the
generalised suffix tree at Step 1 requires O(nr log |Σ|) time, that is O(nr) assuming
|Σ| is a constant and n = |Si| for all Si’s. The transformation of the strings S into S̃
requires linear O(nr) time. In Step 3, we construct n−m(d+ k) + d chains of length
m(d+k)−d, thus Step 3 is bounded by O(rn) assuming that m, k and d are constants.
Since at Step 5 the alphabet has size O(rn), we resort to the suffix tree construction

92

A First Approach to Finding Common Motifs With Gaps

of [3] whose time complexity is independent of the alphabet’s size. Therefore, the
construction of the generalised suffix tree of Step 5 requires O(rn) time, and Step 6
is also linear. Thus the overall complexity of the algorithm is O(rn).

4 Finding motifs with bounded sum of variable

gaps

We now consider the problem of finding motifs with gaps of variable sizes, but
whose sum is upper bounded by a user defined parameter. Again, the gapped motif
must occur at least once in each one of the input strings. Given a set of strings
{S1, S2, . . . , Sr}, and given integers k,m, d,D, the problem is then to find strings
B1, B2, . . . , Bm such that:

1. |B1| = |B2| = . . . = |Bm| = k;

2. B1 ∗di,1 B2 ∗di,2 . . . ∗di,m−1 Bm occurs in Si for i = 1..r;

3.
∑m

j=1 di,j ≤ D for i = 1..r;

4. 0 ≤ di,j.

S3 =

1 = S

 =S2

2 1 3, 3 1 1 2 1 3 1 22, 3, 1,
2 3

32
1
1

1
1

1,
1,

1,2,
2,

3,
3,

1 2 3 2
1 1 2 3

2 4 3 3 2 1 4 2 3 42, 4, 3, 2,

3 1 2 1 3 2 1 4 1 34, 3, 2, 4,

2
2

3
3

2
2

4
4

4,
4,

3,
3,

2,
2,

1,

3,

3,

3,3 1 2 4
4 3 1 2

3
3

2
2

3
3

1
1

3, 2, 4, 3,
3, 2, 4,

1 2 4 3
1 1 2 4 =2)

(d =1, d

=1)

=1, d

=1)

=2)

(d

=1, d

=2, d =1)

=1)

(d1,1 1,2=2)

(d1,1 1,2

(d1,1=1, d1,2

=2, d =1)

=1, d

=1)

(d2,1 2,2

2,1 2,2

(d2,1=1, d2,2

3,1 3,2

(d3,1=2, d3,2

(d3,1 3,23, ...

3, ...

1, ...

Figure 7: The strings {Ŝ1, . . . Ŝr} after step 4. The end of each line shows the gap
lengths applied to obtain the values (omitted if equal to zero).

What follows is a solution to the problem just stated.
Step 1 As was done in the first step of the previous algorithm, build the truncated
generalised suffix tree for the input set of strings, and label each “k-word” with the
number of the corresponding leaf in the suffix tree.
Step 2 Build the strings {S̃1, . . . ,̃Sr}.
Step 3 In order to compute the different chains, we now use a window of width
D + km. Let Wi,j be the window appearing in string i at position j, and let Ci[j] be
the set of all non-overlapping words of length m that occur in Wi,j:

Ci[j] =
{

S̃i[p1], S̃i[p2], . . . , S̃i[pm] |
p1 = j,

∀ l > 1, k ≤ pl − pl−1 < k +D and pm − p1 ≤ D + (m− 1)k and

pm < n− k
}

93

Proceedings of the Prague Stringology Conference ’04

Without the condition (pm − p1 ≤ D + (m − 1)k), Ci[j] would contain Dm−1

elements. Thus there are at most Dm−1 elements in Ci,j.

Step 4 Obtain the sets of chains Ŝi.
Step 5 Construct the generalised suffix tree for the set of sets of chains {Ŝ1, . . . , Ŝr}.
Step 6 The motifs sought correspond as before to the leaves of this second generalised
suffix tree with labels covering all strings.

Consider the same input strings as in the previous example (see Fig. 2), the same
values for k and m, and D = 3. The S̃i strings are thus the same as before, while the
Ŝi strings for motifs with bounded sum of variable gaps are shown in Fig. 7.

S1
^ S1

^ S1
^ S1

^ S1
^ S1

^ S1
^ S1

^

S2
^ S2

^S2
^ S2

^S2
^ S2

^S2
^S2

^ S2
^ S2

^ S2
^

S3
^S3

^ S3
^S3

^S3
^ S3

^S3
^ S3

^S3
^S3

^ S3
^S3

^
S2
^ S2

^ S2
^

1

2 2 2 2

2 3 4

3 4 1 3 4 1 3 4 4

31 3 1 3 3 4 2 3 2 4 2 4 2 4 2 4 3 4 3 4 2 33 3

Figure 8: Part of the generalised truncated suffix tree for Ŝ1, Ŝ2, Ŝ3. Each circled
leaf represents a common motif occurring in the three strings. Dashed paths indicate
simply that all the tree is not drawn.

 =
 =
 =

S1
S2
S3

2 3 4 5 6 7 8 9 10 11

C A A A A C A C A A A

12

A C A C C A A C C CA A

C A C A A A C C A C C A

A

1

Figure 9: A gapped motif found for the bounded sum of variable gaps problem with
k = 2, m = 3 and D = 3

Part of the generalised suffix tree for the set of chains Ŝ1, Ŝ2, Ŝ3, is shown in Fig. 8.
In this tree, three leaves present motifs common to all the strings. For instance,

the one given by the path 313 corresponds to the gapped motif CA ∗di,1 AA ∗di,2 CA
with 0 ≤ di,j and

∑m
j=1 di,j ≤ D, ∀i = 1..r which occurs in all the strings as shown

in Figure 9.
The correctness of the algorithm is straightforward. The output string Ci[j] in

Step 6 is an encoding of a motif with bounded sum of gaps according to the input
parameters that is common to all the strings {S1, S2, . . . , Sr}.

If one assumes that m and D are constants, the construction of the generalised
suffix tree at Step 1 requires O(nr log |Σ|) time, where n = |Si|. The transformation
of the strings S into the set of chains S̃ requires linear O(nr) time.

For each position i in a string, the number of motifs that may have an occurrence
starting at i is at most Dm−1. Thus, if one considers all positions in the strings, there
are at most r ·n ·Dm−1 motifs. Hence, the overall cost of Step 3 is bounded by O(rn)
assuming that m and D are constants.

Step 5 requires O(rn) time, and Step 6 is linear. The overall complexity of the
algorithm is therefore again O(rn), and hence linear in the input size.

94

A First Approach to Finding Common Motifs With Gaps

5 Finding motifs with variable gaps of bounded

size

In this section, we address a third variant of the problem. We have again that the
size of the gaps is variable, but this time we set an upper bound on the size of each
individual gap.

Given a set of strings {S1, S2, . . . , Sr} and given integers k,m,D, the problem
consists now in finding strings B1, B2, . . . , Bm such that:

1. |B1| = |B2| = . . . = |Bm| = k

2. B1 ∗di,1 B2 ∗di,2 . . . ∗di,m−1 Bm occurs in Si for i = 1..r;

3. 1 ≤ di,j ≤ D for i = 1..r, j = 1..m.

Notice that putting an upper bound on the size of each gap implies also putting a
bound on the size of their sum, as is the case of the previous variant of the problem.

2 2
2

3
23 1 2

1 3, 3 2 2, 4 3,
3, 3 2, 3,

2 ...
(d =2, d

(d2,1 2,2

2,1 2,2

(d2,1 2,2

=3, d =1)

=2)

=2, d =3)3 2, 1 3,

S3 =
3 3
3
3 2

31 2 4
1

2 2, 2 4 4, 3 3,
2, 2 4, 3,
4, 2 3,

...

...

(d =1)3,1 3,2

(d3,1=2, d3,2

(d3,1 3,2

=3, d

=2)

=2, d =3)

1 = S
2 3,
2 3

3
1 1,1 2 3

1

...
2 3 3 1, 21 1,

3, 1,
2 1, 2 1, ... (d1,1 1,2

(d1,1 1,2

(d1,1 1,2

=2, d

=1)=3, d

=2)

=2, d =3)

 =S2 ...

Figure 10: Part of the strings Ŝi after step 4. The end of each line shows the gap
lengths applied to obtain the values.

What follows is an algorithm that solves this last variant of the problem.
Step 1 Compute the truncated generalised suffix tree for the k-words of the set of

input strings, and as before label each “k-word” with the number of the corresponding
leaf in the suffix tree.
Step 2 Construct the strings {S̃1, . . . , S̃r} as in the previous algorithms.
Step 3 Let Ci[j] be the set of all the possible chains S̃i[p1], S̃i[p2], . . . , S̃i[pm] in the
string S̃i such that p1 = j and ∀ j > 1, k ≥ pj − pj−1 < k +D.

Formally,

Ci[j] =
{

S̃i[p1], S̃i[p2], . . . , S̃i[pm] | p1 = j

and ∀ l > 1, k ≤ pl − pl−1 < k +D and pm < n− k
}

.

Notice that Ci[j] contains at most Dm−1 elements.
Step 4 Obtain the set of chains Ŝi.
Step 5 As for the first algorithm, build the generalised suffix tree for {Ŝ1, . . . Ŝr}.
step 6 The motifs sought correspond as before to the leaves of this second generalised
suffix tree with labels covering all strings.

For example, with the strings shown in Fig. 2, the same values for k and m (i.e.,
k = 2, m = 3), and D = 3, part of the Ŝi strings obtained for this last variant of the
problem is shown in Fig. 10.

Part of the generalised suffix tree for the set of chains Ŝ1, Ŝ2, Ŝ3, is shown in Fig. 11.

95

Proceedings of the Prague Stringology Conference ’04

S1
^ S1

^ S1
^ S1

^ S1
^

S2
^ S2

^S2
^S2

^ S2
^S2

^ S2
^ S2

^

S3
^S3

^ S3
^S3

^S3
^ S3

^S3
^S3

^

S1
^ S1

^

1 2 3

441 12 2 23 3 3

3 3 3 3 3 3 34 4 42 2 21 1 1 1 1

Figure 11: A part of the generalised truncated suffix tree for Ŝ1, Ŝ2, Ŝ3. The circled leaf
presents a common motif occurring in the three strings. The dashed paths indicate
simply that all the tree is not drawn.

 =
 =
 =

S1
S2
S3

3 4 5 6 7 8 9 10 11

C A A A A C A C A A A

12

A C A C C A A C C CA A

C A C A A A C C A C C A

A

1 2

Figure 12: A gapped motif found for the bounded variable gaps problem with k =
2, m = 3 and D = 3

In this tree, one of the leaves corresponds to a motif common to all the strings.
It denotes the path 223 corresponding to the gapped motif AC ∗di,1 AC ∗di,2 CA with
0 ≤ di,j ≤ D ∀i = 1..r which is present in all the strings as shown in Figure 12.

The string Ci[j] output in Step 6 is an encoding of a structured motif with each
gap bounded by a fixed value that is common to all the input strings {S1, S2, . . . , Sr}.

The construction of the generalised suffix tree at Step 1 requires O(nr log |Σ|)
time, where n = |Si|. The transformation of the strings S into S̃ requires linear
O(nr) time. For each position i in each string, the number of motifs that may have
an occurrence at i is at most Dm−1. Hence, there are overall r ∗ n ∗ Dm−1 motifs.
Step 3 takes O(rn) assuming that m and D are constants. Again, the construction of
the generalised suffix tree of Step 5, as well as Step 6, can be done in linear time. The
overall complexity of the algorithm for the third variant of the problem is therefore
O(rn).

6 Conclusion

We have presented algorithms for three different variants of the problem of finding
motifs with gaps. The approach we suggest allows to find motifs with gaps maintain-
ing a linear time complexity with respect to the input size. The technique we applied
is general enough that it can be used for several other variants of the problem besides
those addressed in this paper.

Another interesting further direction to explore would be to allow errors (i.e.,
substitutions and insertions deletions) inside the blocks.

References

[1] M. Crochemore, W. Rytter, Text algorithms, Oxford Press, 1994.

96

A First Approach to Finding Common Motifs With Gaps

[2] T. Crawford, C.S. Iliopoulos, R. Raman, String matching techniques for musical
similarity and melodic recognition, Computing in Musicology, Vol. 11, pp. 73–
100, 1998.

[3] M. Farach, Optimal suffix tree construction with large alphabets, in Foundations
of Computer Science (FOCS ’97), 137–143, 1997.

[4] C. Charras, T. Lecroq, Handbook of Exact String Matching Algorithms, King’s
College London publications 2004.

[5] P. Bieganski, J. Riedl, J. V. Carlis, Generalized Suffix Trees for Biological Se-
quence Data: Applications and Implementation, in Proc. Hawaii International
Conference on System Sciences, 1994.

[6] J. Allali, M.-F. Sagot, The at-most k-deep factor tree, Internal Report IGM
2004-03 (Institut Gaspard Monge), 2004.

97

A Fully Compressed Pattern Matching Algorithm

for Simple Collage Systems

Shunsuke Inenaga1, Ayumi Shinohara2,3 and Masayuki Takeda2,3

1 Department of Computer Science, P.O. Box 26 (Teollisuuskatu 23) FIN-00014
University of Helsinki, Finland

e-mail: inenaga@cs.helsinki.fi

2 Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan

3 SORST, Japan Science and Technology Agency (JST)
e-mail: {ayumi, takeda}@i.kyushu-u.ac.jp

Abstract. We study the fully compressed pattern matching problem (FCPM
problem): Given T and P which are descriptions of text T and pattern P
respectively, find the occurrences of P in T without decompressing T or P.
This problem is rather challenging since patterns are also given in a compressed
form. In this paper we present an FCPM algorithm for simple collage systems.
Collage systems are a general framework that can represent various kinds of
dictionary-based compressions, and simple collage systems are a subclass that
includes LZW and LZ78 compressions. Collage systems are of the form 〈D,S〉,
where D is a dictionary and S is a sequence of variables from D. Our FCPM
algorithm performs in O(‖D‖2 + mn log |S|) time, where n = |T | = ‖D‖ + |S|
and m = |P|. This is faster than the previous best result of O(m2n2) time.

Keywords: string processing, text compression, fully compressed pattern
matching, collage systems, algorithm

1 Introduction

The pattern matching problem, which is the most fundamental problem in Stringology,
is the following: Given text T and pattern P , find the occurrences of P in T . The
compressed pattern matching problem (CPM problem) [1] is a more challenging version
of the above problem, where text T is given in a compressed form T , and the aim
is to find the pattern occurrences without decompressing T . This problem has been
intensively studied for a variety of text compression schemes, e.g. [2, 4, 3, 17].

Classically, effectiveness of compression schemes was measured by only compres-
sion ratio and (de)compression speeds. As regards recent increasing demands for fast
CPM, CPM speed has become another measurement. Shibata et al. [21] proposed a
CPM algorithm for byte-pair encoding (BPE) [5] which is even faster than pattern
matching in uncompressed texts. Though BPE is less effective in compression speed
and ratio, BPE has gathered much attention due to its potential for fast CPM. An-
other good example is Manber’s text compression designed to achieve fast CPM [15].

98

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

An ultimate extension of the CPM problem is the fully compressed pattern match-
ing problem (FCPM problem) [9] where both text T and pattern P are given in a
compressed form. We formalize this problem as follows: Given T and P that are
descriptions of text T and pattern P respectively, find the occurrences of P in T
without decompressing T or P. Miyazaki et al. [18] presented an algorithm to solve
the FCPM problem for straight line programs, in O(m2n2) time using O(mn) space,
where m = |P| and n = |T |. We refer to [20] for more details of the FCPM problem.

Collage systems [10] are a general framework that enables us to capture the essence
of CPM for various dictionary-based compressions. Dictionary-based compression
generates a dictionary of repeating segments of a given string and in this way a
compressed representation of the string is obtained. A collage system is a pair 〈D,S〉
where D is a dictionary and S is a sequence of variables from D. Collage systems
cover dictionary-based compressions such as LZ family [24, 22, 25, 23] and run-length
encoding, as well as grammar-based compressions such as BPE [5], RE-PAIR [14],
SEQUITUR [19], grammar transform [11, 13, 12], and straight line programs [9].

In this paper, we treat simple collage systems which are a subclass of collage
systems. Simple collage systems include LZ78 [25] and LZW [23] compressions. Al-
though simple collage systems in general give weaker compression, CPM on simple
collage systems can be accelerated and thus they are still quite attractive [16].

We reveal another yet potential benefit of simple collage systems by proposing an
efficient FCPM algorithm. The proposed algorithm runs in O(‖D‖2+mn log |S|) time
using O(‖D‖2 + mn) space. Although our algorithm requires more space than the
algorithm of [18], ours is faster than that. It should also be mentioned that Ga̧sieniec
and Rytter [7] addressed an FCPM algorithm running in O((m+n) log(m+n)) time
for LZW compression, but actually their algorithm explicitly decompresses part of T
or P when the decompressed size does not exceed n. Hence their algorithm does
not suit the FCPM problem setting where pattern matching without decompressing
is required. On the other hand, the algorithm proposed in this paper permits us to
solve the FCPM problem without any explicit decompression.

2 Preliminary

Let N be the set of natural numbers, and N+ be the set of positive integers. Let Σ
be a finite alphabet. An element of Σ∗ is called a string. The length of a string T is
denoted by |T |. The i-th character of a string T is denoted by T [i] for 1 ≤ i ≤ |T |,
and the substring of a string T that begins at position i and ends at position j is
denoted by T [i : j] for 1 ≤ i ≤ j ≤ |T |. A period of a string T is an integer p
(1 ≤ p ≤ |T |) such that T [i] = T [i+ p] for any i = 1, 2, . . . , |T | − p.

Collage systems [10] are a general framework that enables us to capture the struc-
ture of different types of dictionary-based compressions. A collage system is a pair
〈D,S〉 such that D is a sequence of assignments

X1 = expr1, X2 = expr2, . . . , Xh = exprh,

99

Proceedings of the Prague Stringology Conference ’04

where Xk are variables and exprk are expressions of any of the form

a where a ∈ (Σ ∪ ε), (primitive assignment)
XiXj where i, j < k, (concatenation)
[j]Xi where i < k and j ∈ N+, (prefix truncation)

X
[j]
i where i < k and j ∈ N+, (suffix truncation)

(Xi)
j where i < k and j ∈ N+, (repetition)

and S is a sequence of variables Xi1 , Xi2, . . . , Xis obtained from D. The size of D is
h and is denoted by ‖D‖, and the size of S is s and is denoted by |S|. The total size
of the collage system 〈D,S〉 is n = ‖D‖+ |S| = h+ s.

LZW [23] and LZ78 [25] compressions can be represented by the following collage
systems:

LZW. S = Xi1, Xi2 , . . . , Xis and D is the following:

X1 = a1; X2 = a2; . . . ; Xq = aq;
Xq+1 = Xi1Xσ(i2); Xq+2 = Xi2Xσ(i3); . . . ; Xq+s−1 = Xis−1Xσ(is),

where the alphabet is Σ = {a1, a2, . . . , aq}, 1 ≤ i1 ≤ q, and σ(j) denotes the integer
k (1 ≤ k ≤ q) such that ak is the first symbol of Xj .

LZ78. S = X1, X2, . . . , Xs and D is the following:

X0 = ε; X1 = Xi1b1; X2 = Xi2b2; . . . ; Xs = Xisbs;

where bj is a symbol in Σ.
We remark that LZW is a simplification of LZ78.

Definition 1 A collage system is said to be regular if it contains primitive assign-
ments and concatenations only. A regular collage system is said to be simple if, for
any variable X = XℓXr, |Xℓ| = 1 or |Xr| = 1.

Simple collage systems were first introduced by Matsumoto et al. [16]. LZW and
LZ78 compressions are a simple collage system.

In this paper, we study the fully compressed pattern matching problem for simple
collage systems: Given two simple collage systems that are the descriptions of text T
and pattern P , find all occurrences of P in T . Namely, we compute the following set:

Occ(T, P) = {i | T [i : i+ |P | − 1] = P}.

We emphasize that our goal is to solve this problem without decompressing either of
the two simple collage systems. Our result is the following:

Theorem 1 Given two simple collage systems 〈D,S〉 and 〈D′,S ′〉 that are the de-
scription of T and P respectively, Occ(T, P) can be computed in O(‖D‖2+mn log |S|)
time using O(‖D‖2 +mn) space, where n = ‖D‖+ |S| and m = ‖D′‖+ |S ′|.

100

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

3 Overview of algorithm

3.1 Translation to straight line programs

Consider a regular collage system 〈D,S〉. Note that S = Xi1 , Xi2, . . . , Xis can be
translated in linear time to a sequence of assignments of size s. For instance, S =
X1, X2, X3, X4 can be rewritten to X5 = X1X2; X6 = X5X3; X7 = X6X4, and
S = X7. Therefore, a regular collage system, which represents string T ∈ Σ∗, can be
seen as a context free grammar of the Chomsky normal form that generates only T .
This means that regular collage systems correspond to straight line programs (SLPs)
introduced in [9]. In the sequel, for string T ∈ Σ∗, let T denote the SLP representing
T . The size of T is denoted by ‖T ‖, and ‖T ‖ = ‖D‖+ |S| = h + s = n.

Now we introduce simple straight line programs (SSLP) that correspond to simple
collage systems.

Definition 2 An SSLP T is a sequence of assignments such that

X1 = expr1; X2 = expr2; . . . ; Xn = exprn,

where Xi are variables and expri are expressions of any of the form

a where a ∈ Σ (primitive),
XℓX

′ where ℓ < i and X ′ = a (right simple),
X ′Xr where r < i and X ′ = a (left simple),
XℓXr where ℓ, r < i (complex),

and T = Xn. Moreover, each type of variable satisfies the following properties:

- For any right simple variable Xi = XℓX
′, Xℓ is either simple or primitive.

- For any left simple variable Xi = X ′Xr, Xr is either simple or primitive.

- For any complex variable Xi = XℓXr, Xr is either simple or primitive.

An example of an SSLP T for string T = abaabababb is as follows:

X1 = a, X2 = b, X3 = X1X2, X4 = X1X3, X5 = X3X1, X6 = X2X2,
X7 = X3X4, X8 = X7X5, X9 = X8X6,

and T = X9. See also Figure 1 that illustrates the derivation tree of T . X1 and X2

are primitive variables, X3, X4, X5 and X6 are simple variables, and X7, X8 and X9

are complex variables.
For any simple collage system 〈D,S〉, let T be its corresponding SSLP. Let ‖D‖ =

h and |S| = s. Then the total number of primitive and simple variables in T is h,
and the number of complex variables in T is s.

In the sequel, we consider computing Occ(T, P) for given SSLPs T and P. We use
X and Xi for variables of T , and Y and Yj for variables of P. When not confusing,
Xi (Yj, respectively) also denotes the string derived from Xi (Yj, respectively). Let
‖T ‖ = n and ‖P‖ = m.

Proposition 1 For any simple variable X, |X| = ‖X‖, where ‖X‖ denotes the
number of variables in X.

101

Proceedings of the Prague Stringology Conference ’04

X1

a

X1

a

X2

b

X3

X2

b

X2

b

X6X8

X1

a

X2

b

X3 X4

X1

a

X1

a

X2

b

X3

X5X7

X9

Figure 1: Derivation tree of SSLP for string abaabababb.

3.2 Basic idea of algorithm

In this section, we show a basis of our algorithm that outputs a compact representation
of Occ(T, P) for given SSLPs T ,P.

For strings X, Y ∈ Σ∗ and integer k ∈ N , we define the set of all occurrences of
Y that cover or touch the position k in X by

Occ↑(X, Y, k) = {i ∈ Occ(X, Y) | k − |Y | ≤ i ≤ k}.

In the following, [i, j] denotes the set {i, i+ 1, . . . , j} of consecutive integers. For
a set U of integers and an integer k, we denote U ⊕ k = {i + k | i ∈ U} and
U ⊖ k = {i− k | i ∈ U}.

Observation 1 ([8]) For any strings X, Y ∈ Σ∗ and integer k ∈ N ,

Occ↑(X, Y, k) = Occ(X, Y) ∩ [k − |Y |, k].

Lemma 1 ([8]) For any strings X, Y ∈ Σ∗ and integer k ∈ N , Occ↑(X, Y, k) forms
a single arithmetic progression.

For positive integers p, d ∈ N+ and non-negative integer t ∈ N , we define
〈p, d, t〉 = {p + (i − 1)d | i ∈ [1, t]}. Note that t denotes the cardinality of the
set 〈p, d, t〉. By Lemma 1, Occ↑(X, Y, k) can be represented as the triple 〈p, d, t〉 with
the minimum element p, the common difference d, and the length t of the progres-
sion. By ‘computing Occ↑(X, Y, k)’, we mean to calculate the triple 〈p, d, t〉 such that
〈p, d, t〉 = Occ↑(X, Y, k).

Observation 2 Assume each of sets A1 and A2 of integers forms a single arithmetic
progression, and is represented by a triple 〈p, d, t〉. Then, the union A1 ∪ A2 can be
computed in constant time.

Lemma 2 ([8]) For strings X, Y ∈Σ∗ and integer k∈N , let 〈p, d, t〉 = Occ↑(X, Y, k).
If t ≥ 1, then d is the shortest period of X[p : q + |Y | − 1] where q = p+ (t− 1)d.

102

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

X

Xl Xr

Y

k2

Y

k1

Y

k3

Figure 2: k1, k2, k3 ∈ Occ(X, Y), where k1 ∈ Occ(Xℓ, Y), k2 ∈ Occ△(X, Y) and
k3 ∈ Occ(Xr, Y).

Lemma 3 ([8]) For any strings X, Y1, Y2 ∈ Σ∗ and integers k1, k2 ∈ N , the intersec-
tion Occ↑(X, Y1, k1)∩ (Occ↑(X, Y2, k2)⊖|Y1|) can be computed in O(1) time, provided
that Occ↑(X, Y1, k1) and Occ↑(X, Y2, k2) are already computed.

For variables X = XℓXr and Y , we denote Occ△(X, Y) = Occ↑(X, Y, |Xℓ|+ 1).
The following observation is explained in Figure 2.

Observation 3 ([18]) For any variables X = XℓXr and Y ,

Occ(X, Y) = Occ(Xℓ, Y) ∪ Occ△(X, Y) ∪ (Occ(Xr, Y)⊕ |Xℓ|).

Observation 3 implies that Occ(Xn, Y) can be represented by a combination of

{Occ△(Xi, Y)}ni=1 = Occ△(X1, Y),Occ△(X2, Y), . . . ,Occ△(Xn, Y).

Thus, the desired output Occ(T, P) = Occ(Xn, Ym) can be expressed as a combination
of {Occ△(Xi, Ym)}ni=1 that requires O(n) space. Hereby, computing Occ(T, P) is
reduced to computing Occ△(Xi, Ym) for every i = 1, 2, . . . , n. In computing each
Occ△(Xi, Yj) recursively, the same set Occ△(Xi′, Yj′) might repeatedly be referred
to, for i′ < i and j′ < j. Therefore we take the dynamic programming strategy.
We use an m × n table App where each entry App[i, j] at row i and column j stores
the triple for Occ△(Xi, Yi). We compute each App[i, j] in a bottom-up manner, for
i = 1, . . . , n and j = 1, . . . , m. In the following sections, we will show that the whole
table App can be computed in O(h2 +mn log s) time using O(h2 +mn) space, where
h is the number of simple variables in T and s is the number of complex variables in
T . This leads to the result of Theorem 1.

4 Details of algorithm

In this section, we show how to compute each Occ△(Xi, Yj) efficiently. Our result is
as follows:

Lemma 4 For any variables Xi of T and Yj of P, Occ△(Xi, Yj) can be computed in
O(log s) time, with extra O(h2 +mn) work time and space.

103

Proceedings of the Prague Stringology Conference ’04

The key to prove this lemma is, given integer k, to pre-compute Occ↑(Xi′, Yj′, k) for
any 1 ≤ i′ < i and 1 ≤ j′ < j. In case that X is simple, we have the following lemma:

Lemma 5 Let X be any simple variable of T and Y be any variable of P. Given
integer k ∈ N , Occ↑(X, Y, k) can be computed in O(1) time, with extra O(h2 + mh)
work time and space.

Proof. Let b = k − |Y | and e = k + |Y | − 1. Let Xb denote any descendant of X for
which the beginning position of Xb in X is b. Similarly, let Xe denote any descendant
of X for which the ending position of Xe in X is e. That is, X[b : b+ |Xb| − 1] = Xb

and X[e− |Xe|+ 1 : e] = Xe.

(1) when |Xb| ≥ |Xe|. In this case we have

Occ↑(X, Y, k) = Occ↑(X, Y, b+ |Y |)
= Occ↑(Xb, Y, |Y |+ 1)⊕ (b− 1).

(2) when |Xb| < |Xe|. In this case we have

Occ↑(X, Y, k) = Occ↑(X, Y, e− |Y |+ 1)

= Occ↑(Xe, Y, |Y |+ |Xe|+ 1)⊕ (e− |Xe|).

Let us now consider how to compute Occ↑(Xb, Y, |Y |+1) in case (1). Occ↑(Xe, Y, |Y |+
|Xe| + 1) in case (2) can be computed similarly. Let Xb = XℓXr. Depending on the
type of Xb, we have the two following cases:

(i) when Xb is right simple (see Figure 3, left).
Let 〈p, d, t〉 = Occ↑(Xℓ, Y, |Y |+ 1).

Occ↑(Xb, Y, |Y |+ 1)

=

{

〈p, d′, t+ 1〉 if |Xb| − |Y |+ 1 ∈ Occ△(Xb, Y) and |Xb| ≤ 2|Y |,
〈p, d, t〉 otherwise,

where d′ =











0 if t = 0,

p− 1 if t = 1,

d if t > 1.

(ii) when Xb is left simple (see Figure 3, right).
Let 〈p, d, t〉 = Occ↑(Xr, Y, |Y |+ 1).

- when t = 0.

Occ↑(Xb, Y, |Y |+ 1) =

{

〈1, 0, 1〉 if 1 ∈ Occ△(Xb, Y),

∅ otherwise.

104

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

Xb

Xr

Xl

Y

|Y|+1

Xb

Xl

Xr

Y

|Y|+1

|Y|+1

Figure 3: Two cases for Occ↑(Xb, Y, |Y | + 1), where Xb = XℓXr. To the left is the
case where |Xr| = 1, and to the right is the case where |Xℓ| = 1.

- when t ≥ 1. Let q = p+ (t− 1)d.

Occ↑(Xb, Y, |Y |+ 1)

=



















〈p+ 1, d, t〉 if q < |Y |+ 1 and 1 /∈ Occ△(Xb, Y),

〈1, d′, t+ 1〉 if q < |Y |+ 1 and 1 ∈ Occ△(Xb, Y),

〈p+ 1, d, t− 1〉 if q = |Y |+ 1 and 1 /∈ Occ△(Xb, Y),

〈1, d′, t〉 if q = |Y |+ 1 and 1 ∈ Occ△(Xb, Y),

where d′ =

{

p if t = 1,

d if t > 1.

Checking whether |Y |+ 1 ∈ Occ△(Xb, Y) and whether 1 ∈ Occ△(Xb, Y) can be done
inO(1) time since Occ△(Xb, Y) forms a single arithmetic progression by Lemma 1. We
here take the dynamic programming strategy. We use an h×m matrix R where each
entry R[i, j] at row i and column j stores the triple representing Occ↑(Xi, Yj, |Yj|+1).
We compute each R[i, j] in a bottom-up manner, for i = 1, . . . , h and j = 1, . . . , m.
Each R[i, j] can be computed in O(1) time as shown above. Also, each R[i, j] requires
O(1) space by Lemma 1. Hence we can construct the whole table R in O(mh) time
and space.

Now we show that it is possible to find Xb in constant time after an O(h2) time
preprocessing. We use an h×h matrix Beg in which each row i corresponds to simple
variable Xi, and each column j corresponds to each position j in Xi. Each entry of
the matrix stores the following information:

Beg[i : j] =

{

Xj if Xi[j : j + |Xj | − 1] = Xj for some Xj,

nil otherwise.

For our purpose, Xj can be any simple variable satisfying the condition. To be specific,
however, we use the smallest possible variable as Xj. By Proposition 1, for any simple
variable Xi we have |Xi| = ‖Xi‖. Thus finding the smallest variable corresponding to
each position in Xi is feasible in O(‖Xi‖) time in total. Therefore, matrix Beg can

105

Proceedings of the Prague Stringology Conference ’04

Xl

Y

X

|Y||Y|

Xr

Xl

Y

X

|Y|

Xr

Figure 4: Two cases for Occ↑(X, Y, |X| − |Y | + 1). To the left is the case where
|Xr| ≤ |Y |, and to the right is the case where |Xr| > |Y |.

be computed in O(h2) time and space. Once having these Beg computed, for any
position b with respect to X, we can retrieve Xb in constant time.

In total, the extra time and space requirement is O(h2 +mh). This completes the
proof. �

As a counterpart to Lemma 5 with respect to simple variables, in case that X is
complex we have the following lemma:

Lemma 6 Let X be any complex variable of T and Y be any variable of P. Given
integer k ∈ N , Occ↑(X, Y, k) can be computed in O(log s) time with extra O(ms)
work time and space.

To prove Lemma 6 above, we need to establish Lemma 7 and Lemma 8 below.

Lemma 7 Let X = XℓXr be any complex variable of T and let Y be any variable of
P. Assume Occ↑(Xℓ, Y, |Xℓ| − |Y |+ 1) and Occ△(X, Y) are already computed. Then
Occ↑(X, Y, |X|−|Y |+1) can be computed in O(1) time, with extra O(ms) work space.

Proof. Let A = Occ↑(X, Y, |X|−|Y |+1). Depending on the length of Xr with respect
to the length of Y , we have the following cases:

(1) when |Xr| ≤ |Y | (Figure 4, left).
In this case, it stands that:

A = (Occ↑(Xℓ, Y, |Xℓ|− |Y |+1)∩ [|X|−2|Y |+1, |X|− |Y |+1])∪Occ△(X, Y).

(2) when |Xr| > |Y | (Figure 4, right).
In this case, it stands that:

A = (Occ△(X, Y) ∩ [|X| − 2|Y |+ 1, |Xℓ|+ 1]) ∪Occ↑(Xr, Y, |Xr| − |Y |+ 1).

106

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

Due to Lemma 5, Occ↑(Xr, Y, |Xr|− |Y |+1) of case (2) can be computed in constant
time since Xr is simple. By Lemma 1 and Observation 2 the union operations can be
done in O(1) time.

What remains is how to compute Occ↑(Xℓ, Y, |Xℓ| − |Y | + 1) in case (1). We
construct an s×m matrix where each entry at row i and column j stores the triple
representing Occ↑(Xi, Yj, |Xi| − |Yj| + 1) where Xi is a complex variable. Using this
matrix, Occ↑(Xℓ, Y, |Xℓ| − |Y | + 1) of case (1) can be referred to in constant time.
Each entry takes O(1) space by Lemma 1, and thus the whole matrix requires O(ms)
space. This matrix can be constructed in O(ms) time. �

For any complex variable X = XℓXr, let range(X) denote the range [r1, r2] such
that T [r1, r2] = Xr. It is clear that for each complex variable its range is uniquely
determined, since each complex variable appears in T exactly once.

Lemma 8 Given integer k ∈ N , we can retrieve in O(log s) time the complex variable
X such that range(X) = [r1, r2] and r1 ≤ k ≤ r2, after a preprocessing taking O(s)
time and space.

Proof. We construct a balanced binary search tree where each node consists of a pair of
a complex variable and its range. The sequence of complex variables Xi1 , Xi2, . . . , Xis

corresponds to range(Xi1), range(Xi2), . . . , range(Xis) = [1, |Xi1|], [|Xi1| + 1, |Xi2|],
. . . [|Xis−1 | + 1, |Xis|]. This means that the ranges are already sorted in decreasing
order. Therefore, we can construct a balanced binary search tree in O(s) time and
space.

Given integer k, at each node of the balanced tree corresponding to some variable
X, we examine whether k ∈ range(X) = [r1, r2]. If r1 ≤ k ≤ r2, X is the desired
variable. If k < r1, we take the left edge of the node. If k > r2, we take the right
edge of the node. This way we can retrieve the desired complex variable in O(log s)
time. �

We are now ready to prove Lemma 6 as follows.

Proof. Let A = Occ↑(X, Y, k). Let Xℓ1 be the complex variable such that k ∈
range(Xℓ1), and let Xℓ1 = Xℓ(ℓ1)Xr(ℓ1). Let Xℓ2 be the complex variable satisfying
k−|Y |∈range(Xℓ2), and let Xℓ2 = Xℓ(ℓ2)Xr(ℓ2). There are the three following cases:

(1) when k − |Y | ≥ |Xℓ(ℓ1)|+ 1 and k + |Y | − 1 ≤ |Xℓ1| (Figure 5, left).
In this case, we have A = Occ↑(Xr(ℓ1), Y, k)⊕ |Xℓ(ℓ1)|.

(2) when k − |Y | < |Xℓ(ℓ1)|+ 1 and k + |Y | − 1 ≤ |Xℓ1| (Figure 5, right).
In this case, we have

A = (Occ△(Xℓ1 , Y) ∩ [k − |Y |, Xℓ(ℓ1) + 1]) ∪ (Occ↑(Xr(ℓ1), Y, k)⊕ |Xℓ(ℓ1)|).

(3) when k + |Y | − 1 > |Xℓ1| (Figure 6).
In this case, we have

A = (Occ↑(Xℓ(ℓ2), Y, |Xℓ(ℓ2)| − |Y |+ 1) ∩ [k − |Y |, |Xℓ(ℓ2)| − |Y |+ 1])

∪ (Occ△(Xℓ2, Y) ∩ [|Xℓ(ℓ2)| − |Y |+ 1, k]).

107

Proceedings of the Prague Stringology Conference ’04

Xl1

Y

k

X

Xl(l1)

Xr(l1)

Xl1

Y

k

X

Xr(l1)
Xl(l1)

Figure 5: In the left case, all the occurrences are covered by Occ↑(Xr(ℓ1), Y, k)⊕|Xℓ(ℓ1)|.
In the right case, the first and second occurrences are covered by Occ△(Xℓ1 , Y) and
the third and fourth occurrences by Occ↑(Xr(ℓ1), Y, k)⊕ |Xℓ(ℓ1)|.

Xl(l2)

Y

k

X

Xl2

Xr(l2)

Figure 6: In this case, the first and second occurrences are covered by
Occ↑(Xℓ(ℓ2), Y, |Xℓ(ℓ2)| − |Y |+ 1) and the third and fourth occurrences are covered by
Occ△(Xℓ2 , Y).

Due to Lemma 8, Xℓ1 and Xℓ2 can be found in O(log s) time. Since Xr(ℓ1) is simple,
Occ↑(Xr(ℓ1), Y, k) of cases (1) and (2) can be computed in O(1) time by Lemma 5.
According to Lemma 7, Occ↑(Xℓ(ℓ2), Y, |Xℓ(ℓ2)| − |Y |+1) of case (3) can be computed
in O(1) time. By Observation 2, the union operations can be done in O(1) time.
Thus, in any case A = Occ↑(X, Y, k) can be computed in O(log s) time. By Lemma 7
and Lemma 8, the extra work time and space are O(ms). This completes the proof.
�

Now we have got Lemma 5 and Lemma 6 proved. Using these lemmas, we can
prove Lemma 4 as follows:

Proof. Let Xi = XℓXr and Yj = YℓYr. Then, as seen in Figure 7, we have

Occ△(Xi, Yj) = (Occ△(Xi, Yℓ) ∩ (Occ(Xr, Yr)⊕ |Xℓ| ⊖ |Yℓ|))
∪ (Occ(Xℓ, Yℓ) ∩ (Occ△(Xi, Yr)⊖ |Yℓ|)).

Let A = Occ△(Xi, Yℓ) ∩ (Occ(Xr, Yr) ⊕ |Xℓ| ⊖ |Yℓ|) and B = Occ(Xℓ, Yℓ) ∩

108

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

Xi

Xl

Xr

k

Yj

Yl
Yr

Xi

Xl

Xr

k

Yj

Yl
Yr

Figure 7: k ∈ Occ△(X, Y) if and only if either k ∈ Occ△(X, Yℓ) and k + |Yℓ| ∈
Occ(X, Yr) (left case), or k ∈ Occ(X, Yℓ) and k + |Yℓ| ∈ Occ△(X, Yr) (right case).

(Occ△(Xi, Yr) ⊖ |Yℓ|). Since Occ△(Xi, Yj) forms a single arithmetic progression by
Lemma 1, the union operation of A∪B can be done in constant time. Therefore, the
key is how to compute A and B efficiently.

Now we show how to compute set A. Let z = |Xℓ| − |Yℓ|. Let 〈p1, d1, t1〉 =
Occ△(Xi, Yℓ) and q1 = p1 + (t1 − 1)d1. Depending on the value of t1, we have the
following cases:

(1) when t1 = 0.
In this case we have A = ∅.

(2) when t1 = 1.
In this case, Occ△(Xi, Yℓ) = {p1}. It stands that

A = {p1} ∩ (Occ(Xr, Yr)⊕ z)

= ({p1 − z} ∩Occ(Xr, Yr))⊕ z)

= ({p1 − z} ∩ [p1 − z − |Yr|, p1 − z] ∩ Occ(Xr, Yr))⊕ z)

= ({p1 − z} ∩Occ↑(Xr, Yr, p1 − z))⊕ z) (By Observation 1)

=

{

{p1} if p1 − z ∈ Occ↑(Xr, Yr, p1 − z),

∅ otherwise.

Since Xr is simple, Occ↑(Xr, Yr, p1 − z) can be computed in constant time by
Lemma 5. Checking whether p1 − z ∈ Occ↑(Xr, Yr, p1 − z) or not can be done
in constant time since Occ↑(Xr, Yr, p1−z) forms a single arithmetic progression
by Lemma 1.

(3) when t1 > 1.

There are two sub-cases depending on the length of Yr with respect to q1−p1 =
(t1 − 1)d1 ≥ d1, as follows.

- when |Yr| ≥ q1−p1 (see the left of Figure 8). By this assumption, we have

109

Proceedings of the Prague Stringology Conference ’04

a1 b1 a1+|Yl| b1+|Yl||Xl|+1

Yl Yr

X
a1 b1 a1+|Yl| b1+|Yl||Xl|+1

Yl
Yr

X

Figure 8: Long case (left) and short case (right).

q1 − |Yr| ≤ p1, which implies [p1, q1] ⊆ [q1 − |Yr|, q1]. Thus

A = 〈p1, d1, t1〉 ∩ (Occ(Xr, Yr)⊕ z)

= (〈p1, d1, t1〉 ∩ [p1, q1]) ∩ (Occ(Xr, Yr)⊕ z)

= (〈p1, d1, t1〉 ∩ [q1 − |Yr|, q1]) ∩ (Occ(Xr, Yr)⊕ z)

= 〈p1, d1, t1〉 ∩ ([q1 − |Yr|, q1] ∩ (Occ(Xr, Yr)⊕ z))

= 〈p1, d1, t1〉 ∩ (([q1 − |Yr| − z , q1 − z] ∩ Occ(Xr, Yr))⊕ z)

= 〈p1, d1, t1〉 ∩ (Occ↑(Xr, Yr, q1 − z)⊕ z),

where the last equality is due to Observation 1. Since Xr is simple, due to
Lemma 5, Occ↑(Xr, Yr, q1−z) can be computed in O(1) time. By Lemma 3,
〈p1, d1, t1〉∩ (Occ↑(Xr, Yr, q1−z)⊖|Yℓ|) can be computed in constant time.

- when |Yr| < q1 − p1 (see the right of Figure 8). The basic idea is the same
as the previous case, but computing Occ↑(Xr, Yr, q1 − z) is not enough,
since |Yr| is ‘too short’. However, we can fill up the gap as follows.

A = 〈p1, d1, t1〉 ∩ (Occ(Xr, Yr)⊕ z)

= (〈p1, d1, t1〉 ∩ [p1, q1]) ∩ (Occ(Xr, Yr)⊕ z)

= (〈p1, d1, t1〉 ∩ ([p1, q1 − |Yr| −1] ∪ [q1 − |Yr|, q1])) ∩ (Occ(Xr, Yr)⊕ z)

= 〈p1, d1, t1〉 ∩ (S ∪ Occ↑(Xr, Yr, q1 − z))⊕ z),

where S = [p1 − z , q1 − z − |Yr| − 1] ∩ Occ(Xr, Yr).

By Lemma 2, d1 is the shortest period of Xi[p1 : q1 + |Yℓ| − 1]. For this
string, we have

Xi[p1 : q1 + |Yℓ| − 1]

= Xℓ[p1 : |Xℓ|]Xr[1 : q1 + |Yℓ| − 1− |Xℓ|]
= Xℓ[p1 : |Xℓ|]Xr[1 : q1 − z − 1]

= Xℓ[p1 : |Xℓ|]Xr[1 : p1 − z − 1]Xr[p1 − z : q1 − z − 1]

= Xi[p1 : p1 + |Yℓ| − 1]Xr[p1 − z : q1 − z − 1].

Therefore, Xr[p1− z : q1− z − 1] = ut1 where u is the suffix of Yℓ of length
d1. Thus,

S =

{

〈p1 − z , d1, t
′〉 if p1 − z ∈ Occ(Xr, Yr),

∅ otherwise,

110

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

where t′ is the maximum integer satisfying p1−z +(t′−1)d1 ≤ q1−z−|Yr|−
1. According to Observation 2, the union operation of S∪Occ↑(Xr, Yr, q1−
z) can be done in constant time in both cases. By Observation 1, checking
whether p1− z ∈ Occ(Xr, Yr) or not can be reduced to checking if p1− z ∈
Occ↑(Xr, Yr, p1 − z). Since Xr is simple, it can be done in O(1) time by
Lemma 1 and Lemma 5. Finally, the intersection operation can be done
in constant time by Lemma 3.

Therefore, in any case we can compute A in constant time.
Now we consider computing B=Occ(Xℓ, Yℓ)∩(Occ△(Xi, Yr)⊖|Yℓ|). Let 〈p2, d2, t2〉

= Occ△(Xi, Yr). We now have to consider how to compute Occ↑(Xℓ, Yℓ, p2 − |Yℓ|)
efficiently. When Xℓ is simple, we can use the same strategy as computing A. In
case where Xℓ is complex, Occ↑(Xℓ, Yℓ, p2 − |Yℓ|) can be computed in O(log s) time
by Lemma 6.

Due to Lemma 5 and Lemma 6, the total extra work time and space are O(h2 +
mh) +O(ms) = O(h2 +m(h + s)) = O(h2 +mn). This completes the proof. �

We have proven that each Occ△(X, Y) can be computed in O(log s) time with
extra O(h2 +mn) work time and space. Thus, the whole time complexity is O(h2 +
mn)+O(mn log s) = O(h2+mn log s), and the whole space complexity is O(h2+mn).
This leads to the result of Theorem 1.

5 Conclusions

Miyazaki et al. [18] presented an algorithm to solve the FCPM problem for straight
line programs in O(m2n2) time and with O(mn) space. Since simple collage systems
can be translated to straight line programs, their algorithm gives us an O(m2n2) time
solution to the FCPM problem for simple collage systems. In this paper we developed
an FCPM algorithm for simple collage systems which runs in O(‖D‖2 + mn log |S|)
time using O(‖D‖2 + mn) space. Since n = ‖D‖ + |S|, the proposed algorithm is
faster than that of [18] which runs in O(m2n2) time.

An interesting extension of this research is to consider the FCPM problem for
composition systems [24]. Composition systems can be seen as collage systems with-
out repetitions. Since it is known that LZ77 compression can be translated into a
composition system of size O(n logn), an efficient FCPM algorithm for composition
systems would lead to a better solution for the FCPM problem with LZ77 compres-
sion. We remark that the only known FCPM algorithm for LZ77 compression takes
O((n+m)5) time [6], which is still very far from desired optimal time complexity.

References

[1] A. Amir and G. Benson. Efficient two-dimensional compressed matching. In
Proc. DCC’92, page 279. IEEE Computer Society, 1992.

[2] A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in
Z-compressed files. J. Computer and System Sciences, 52(6):299–307, 1996.

111

Proceedings of the Prague Stringology Conference ’04

[3] T. Eilam-Tzoreff and U. Vishkin. Matching patterns in strings subject to multi-
linear transformations. Theoretical Computer Science, 60:231–254, 1988.

[4] M. Farach and M. Thorup. String matching in Lempel-Ziv compressed strings.
Algorithmica, 20(4):388–404, 1998.

[5] P. Gage. A new algorithm for data compression. The C Users Journal, 12(2),
1994.

[6] L. Ga̧sieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms
for Lempel-Ziv encoding (extended abstract). In Proc. SWAT’96, volume 1097
of LNCS, pages 392–403. Springer-Verlag, 1996.

[7] L. Ga̧sieniec and W. Rytter. Almost optimal fully LZW-compressed pattern
matching. In Proc. DCC’99, pages 316–325. IEEE Computer Society, 1999.

[8] S. Inenaga, A. Shinohara, and M. Takeda. An efficient pattern matching algo-
rithm for OBDD text compression. Technical Report DOI-TR-CS-222, Depart-
ment of Informatics, Kyushu University, 2003.

[9] M. Karpinski, W. Rytter, and A. Shinohara. An efficient pattern-matching al-
gorithm for strings with short descriptions. Nord. J. Comput., 4(2):172–186,
1997.

[10] T. Kida, T. Matsumoto, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa.
Collage system: a unifying framework for compressed pattern matching. Theo-
retical Computer Science, 298:253–272, 2003.

[11] J. Kieffer and E. Yang. Grammar-based codes: a new class of universal lossless
source codes. IEEE Trans. Inform. Theory, 46(3):737–754, 2000.

[12] J. Kieffer and E. Yang. Grammar-based codes for universal lossless data com-
pression. Communications in Information and Systems, 2(2):29–52, 2002.

[13] J. Kieffer, E. Yang, G. Nelson, and P. Cosman. Universal lossless compression
via multilevel pattern matching. IEEE Trans. Inform. Theory, 46(4):1227–1245,
2000.

[14] J. Larsson and A. Moffat. Offline dictionary-based compression. In Proc.
DCC’99, pages 296–305. IEEE Computer Society, 1999.

[15] U. Manber. A text compression scheme that allows fast searching directly in the
compressed file. ACM Trans. Inf. Syst., 15(2):124–136, 1997.

[16] T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Bit-
parallel approach to approximate string matching in compressed texts. In Proc.
SPIRE’00, pages 221–228, 2000.

[17] S. Mitarai, M. Hirao, T. Matsumoto, A. Shinohara, M. Takeda, and S. Arikawa.
Compressed pattern matching for SEQUITUR. In Proc. DCC’01, pages 469–480.
IEEE Computer Society, 2001.

112

A Fully Compressed Pattern Matching Algorithm for Simple Collage Systems

[18] M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching
algorithm for strings in terms of straight line programs. J. Discrete Algorithms,
1(1):187–204, 2000.

[19] C. Nevill-Manning and I. Witten. Identifying hierarchical structure in sequences:
a linear-time algorithm. J. Artificial Intelligence Research, 7:67–82, 1997.

[20] W. Rytter. Algorithms on compressed strings and arrays. In Proc. SOFSEM’99,
volume 1725 of LNCS, pages 48–65. Springer-Verlag, 1999.

[21] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara,
and S. Arikawa. Speeding up pattern matching by text compression. In Proc.
CIAC’00, volume 1767 of LNCS, pages 306–315. Springer-Verlag, 2000.

[22] J. A. Storer and T. G. Szymanski. Data compression via textural substitution.
J. ACM, 29(4):928–951, 1982.

[23] T. Welch. A technique for high performance data compression. IEEE Comput.
Magazine, 17(6):8–19, 1984.

[24] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inform. Theory, 23:337–343, 1977.

[25] J. Ziv and A. Lempel. Compression of individual sequences via variable length
coding. IEEE Trans. Inform. Theory, 24:530–536, 1978.

113

Semi-Lossless Text Compression

Yair Kaufman and Shmuel T. Klein

Department of Computer Science
Bar Ilan University, Ramat-Gan 52900, Israel

Tel: (972–3) 531 8865 Fax: (972–3) 736 0498

e-mail: {kaufmay,tomi}@cs.biu.ac.il

Abstract. A new notion, that of semi-lossless text compression, is introduced,

and its applicability in various settings is investigated. First results suggest that

it might be hard to exploit the additional redundancy of English texts, but the

new methods could be useful in applications where the correct spelling is not

important, such as in short emails, and the new notion raises some interesting

research problems in several different areas of Computer Science.

Keywords: text compression, lossy, lossless compression

1 Introduction

One widespread partition when coming to classify data compression methods is into
lossless and lossy methods. Lossless methods include usually those applied on text
files or other data for which no loss of information can be tolerated, lossy techniques
are generally applied to image files as well as to video and audio data, for which the
overall knowledge a user might extract does not seem significantly reduced even if a
part of the data is omitted.

Even though most lossy compression methods include some lossless techniques
as one of their components, the research methods and goals of the corresponding
communities are in fact quite different. While researchers in text compression are
primarily concerned with good compression performance (in terms of speed and of
space, both of the file to be compressed and of the RAM required by the method
at hand), a major topic in image compression is finding a good tradeoff between the
size of the compressed file and the ability of a human observer to find the differences
between the original picture and its partially reconstructed copy. Many articles about
image compression include side by side two pictures looking almost identical, the one
labeled “original” and the other labeled “compressed”. Obviously, the latter is rather
the decompressed, reconstructed, image, the real compressed one consisting of a close
to random sequence of zeros and ones, which would not yield any visual information
when displayed as a raster file.

The basic idea behind lossy compression is thus the fact that even if not all of the
available data is presented, the human brain can often make up for the missing parts
and guess, at least partially, whatever has been omitted, so that overall one has the
feeling that nothing has been lost. We try, in this paper, to transfer this paradigm

114

Semi-Lossless Text Compression

also into the framework of text compression, to which usually only lossless techniques
have been applied.

A hint to the fact that strict losslessness might be relaxed can be found by anybody
who tries to read a newspaper, and mostly succeeds in understanding all the required
information in spite of occasional typing errors and other mistakes. It turns out
that we are able to understand English text even if there are many more errors, as
suggested by the following paragraph, which circulated recently on the Internet1

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht
oredr the ltteers in a wrod are in; the olny iprmoetnt tihng is taht frist and
lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can
sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

If indeed it is true that under certain constraints the exact letter order can be
altered without impairing our understanding of the information contained in English
text, it follows that the order of the characters induced by English grammar and
syntax may contain more redundancy than one thought so far, and eliminating this
redundancy might yield improved compression. Being a hybrid of the two classes of
compression methods mentioned above, we call the type of compression suggested by
these ideas semi-lossless : the original text will not be fully reconstructed, just as a
decompressed JPEG image is not identical to the original, and thereby the method
will be lossy; on the other hand, again similarly to the decompressed image for which
our eyes and brain fill in the omitted parts, here it is the knowledge of English that
will enable the extraction of the full information of the original text, so that at least
from the information point of view, if not from the physically stored file, the method
can be considered as lossless.

A priori, the expexted gain from playing with the order of the characters within a
word is not very large, as the average word in English is rather short (about 5 char-
acters). The applicability of semi-lossless text compression might thus be restricted,
most users preferring to get a clean text, even at the price of marginally lower com-
pression. The new methods could therefore be useful in applications where the correct
spelling is not important, such as in short emails or SMS notes sent between cellular
phones, which already use some widely known shortcuts (that R acceptd by any 1).
Moreover, the new notion raises many interesting research problems, some of which
mentioned in the sequel, which may find applications in several different areas of
Computer Science.

In the next section we suggest some approaches to semi-lossless text compression
and discuss their usefulness as general data compressors. Section 3 then brings some
preliminary experimental results, and we conclude in Section 4 with some possible
extensions of this work.

1See, e.g., http://csunx4.bsc.edu/bmyers/language.htm, but there are dozens of pointers to this

or similar phrases

115

Proceedings of the Prague Stringology Conference ’04

2 Semi-lossless text compression techniques

Lossy text compression has already been suggested by Witten at al. in [9], which
includes several quite amusing examples. We shall, however, concentrate on methods
in which there is, at least a priori, no loss of information, and take the rule cited
in the quotation in the introduction as a premise, namely, that if the first and last
letters of the printed words are left in place, the remaining letters within each word
can appear in any order.

This “law” is clearly not universal and relies on the assumption that the reader
has a good knowledge of English. We are not concerned with checking the validity
of this assumption, nor with suggesting alternative rules. This would rather fall into
a domain investigated by psychologists, and the interested reader is referred to the
vast literature dealing with several aspects of this subject, see, e.g., [2, 6] and the
pointers appearing in their references. For our discussion it does not even really
matter whether the given rule is true, or whether it should be reinforced (leaving the
first, last and one or more additional letters in place) or could be relaxed (fixing only
the first letter, or even none, allowing any permutation of any word). All we assume
is that some rule exists according to which not all the characters of a text have to
be restored to their original position for the text to be understandable. Such a rule
will obviously depend on and vary according to language, potential readers and genre
and type of the given text.

Taking therefore the quoted law (first and last letters fixed, the rest in any other
position) as working assumption, it suggests the following generic compression and
decompression algorithm:

Compression: 1. Process the words sequentially and if the current word is not

special (number, proper name, etc.), do

2. keep first and last letters in place, but rearrange the others into

“special” order;

3. apply some encoder on the rearranged text.

Decompression: 1. Decode the compressed words sequentially, and if the current

word is not special, do

2. keep first and last letters in place; choose a random permutation

of the other letters and send them to output.

Since the order of the characters (except the first and last of each word) is not
restricted, it might be useful to choose a special order referred to in Step 2 of the
compression, that will subsequently improve the encoding mentioned in Step 3. The
reason for Step 2 of the decompression process is avoiding a constant bias introduced
by the suggested partial order. It might be that seeing always the same permutations
according to the special order chosen may interfere with our ability to recover the
original word. Introducing the randomization restores for the reader the feeling of
arbitrariness which, possibly, is necessary for correct decoding.

In the following sub-section, we explore some of the possibilities for choosing such
a special order.

116

Semi-Lossless Text Compression

2.1 Choosing a special order of the characters

One possibility that comes to mind is arranging these letters in alphabetic order. The
reason such a strategy is expected to improve compression is similar to the argument
showing why the Burrows-Wheeler Transform (BWT) [1] actually works so well.

The BWT works on a string of length n and applies all the n cyclic rotations
on it, yielding an n × n matrix which is then lexicographically sorted by rows. The
first column of the sorted matrix is thus sorted, but BWT stores the last column of
the matrix, which together with a pointer to the index of the original string in the
matrix lets the file to be recovered. The last column is usually not sorted, but it
corresponds to sorted contexts, and is therefore often very close to be sorted, which is
why it is more compressible than the original string. The compression scheme based
on BWT uses a move-to-front strategy to exploit this nearly sorted nature of the
string to be compressed. Returning to our problem, if the characters in each word
can be arranged alphabetically, this may similarly yield improved compression using
move-to-front and/or run-length coding if the strings are long enough.

Another possibility would be to arrange the characters by frequency. The dis-
tribution of characters in English text is well-known, (see, e.g., [3]), and sorting the
letters following the order E, T, A, O, N, I, S, etc., increases the probability of short
displacements in move-to-front schemes. However, frequency of occurrence alone does
not take the tight connections between certain characters into consideration.

A more precise rule would therefore be trying to group the characters based on

the probabilities of a given letter to appear after another one. A strict approach gets
quickly into loops, for example, E is most likely followed by R, which in turn has E as
its most probable successor. A simple greedy algorithm would thus be:

1. Start with an arbitrary character, x;

2. While not all characters are processed

� Choose, among remaining characters, the successor s of x with highest probability;

� x←− s

Following the probabilities in [3], one possible sequence this may yield is:

A N D E R O U T H I S P L Y M B J - X C K - F - G - Q - V - W - Z.

While the beginning of this sequence seems reasonable, there are some evident short-
comings: P as successor of S is only the 9th choice, because the eight preceding
ones (in order: T, E, I, S, O, A, U and H) all appeared earlier. Towards the end, all
the remaining potential successors have probability practically zero, indicated by the
dashes, so the choice is arbitrary. Note also that choosing the successor with highest
probability might push the second best choice too far away. The second most frequent
successor of A is T, which appears only in seventh position after A.

These speculations lead to the following formulation of the problem: we seek an
ordering of the letters maximizing the overall probability of the letter successions.
More formally, let Σ = {x1, . . . , xn} be the alphabet, and let P [x, y] denote the
probability of character y appearing as successor of x; we look for a permutation

117

Proceedings of the Prague Stringology Conference ’04

σ : Σ −→ Σ of the n characters, such that

n−1
∏

i=1

P [σ(i), σ(i+ 1)] (1)

is maximized. The following transformation shows that this is in fact an instance of
the Minimum Traveling Salesperson Problem. Consider a full graph G = (V, V × V),
with V = Σ, and define the weight w(x, y) of an edge (x, y) as

w(x, y) = − logP [x, y].

Finding a permutation maximizing (1) is then equivalent to finding a Hamiltonian
path of minimum weight in G. Unfortunately, this is an NP-complete problem, and
since in our case, there is no reason to assume that the triangle inequality holds for
the weights, it might even be hard to find a good approximation.

We now turn to the more technical details of choosing a specific compression
scheme.

2.2 Choosing the compression technique

A simple statistical encoder, such as Huffman or arithmetic coding, applied indepen-
dently to the individual characters will, of course, not yield any additional compression
at all. The set of encoded characters remains the same, only their order is altered.
To be able to take advantage of the partial reordering, a method is needed that takes
previous characters into account.

A simple example would be run-length encoding, which is not likely to be useful.
Run-length coding is widely used for images or fax-transmission, but in natural lan-
guage text there are hardly any repeated strings of length longer than 2 (in German,
there are some rare examples of runs of length 3, such as in Schifffracht). In our
case, where the internal characters appear in sorted order, the lengths of runs are
still limited by the number of times a given letter appears within a word. But the
average word length, in English, is only about 5, so that no significant runs may be
expected (German provides here again an extreme case: there is a street in Vienna
named Abrahamasantaclaragasse, which would give a run of 9 a’s).

We may expect better performance when using Huffman or arithmetic coding in
connection with a Markov model of order k ≥ 1, meaning that each character is
encoded as a function of the k characters preceding it. Though even natural text is
well compressed by such a model as it captures many of its characteristic features (q
followed by u, high probability for e following th, etc.), having identical characters
grouped together may even cause better compression. However, the additional space
requirements of higher order Markov models may be prohibitive.

Adaptive methods like Lempel-Ziv variants seem at first sight not applicable. In
an adaptive encoding, the current item to be encoded relies on previously seen text,
and if the item is not reliably restored, a subsequent pointer to it may give wrong
results. Consider, for example, the string

· · · a b c x y z c b a d e f w t w c e d f a v · · ·
to be encoded by LZSS [4], and suppose that the whole string consists of internal
characters (not the first or last in a word). The string cba can then be replaced by

118

Semi-Lossless Text Compression

a pointer to the preceding abc, and edfa could point to adef, so that the modified
LZSS encoding would be

· · · a b c x y z (6, 3) d e f w t w c (8, 4) v · · · .

But while the first pointer (6,3) would be decoded to abc, as expected, the second
pointer (8,4) would now refer to the substring cdef, which is not a permutation of
the original edfa. Note that the problem here is caused by the overlap between a
substring, cba, that is replaced by an (offset, length) pointer, and a substring, adef,
which is the target of such a pointer. In the absence of such overlaps, the encoding
scheme works correctly.

One strategy to avoid the problem would thus be to forbid such overlaps, but this
would affect compression efficiency. Another possibility is to adapt LZSS to work in
this case, by keeping a copy of the currently decoded text, and search in it, rather
than in the original text processed so far, for earlier occurrences of the current string
to be encoded or its permutations. Returning to the example above, after having
encoded cba, the processed string would look as

· · · a b c x y z a b c d e f w t w c e d f a v · · ·

where the vertical bar indicates the current position, and to its left appears the
reconstructed, rather than the original, text. While the bar now moves further to the
right, the string edfa cannot be encoded as before. However, in this example, even
a better substitution is possible, replacing wcedf by a pointer to cdefw, so that the
encoded string finally looks as

· · · a b c x y z (6, 3) d e f w t (6, 5) a v · · · .

In fact, a correct algorithm based on LZSS is even more involved. Fast imple-
mentations of LZSS, like LZRW1 [8] or Microsoft’s DoubleSpace [7] find the recurring
strings by locating, using hashing, a previous occurrence of the character pair follow-
ing the current position, and then extending the strings as far as possible by checking
if the subsequent characters coincide. In our case, such a greedy approach may fail,
e.g., for the string

· · · x y z t a b c d e f g · · · x z y t a b e d c h k · · · .

The second occurrence of ab would point to the first one, but trying to extend the
strings would fail in the first two attempts, abe and abed not matching abc and abcd,
respectively, and only the third attempt would succeed, with abedc matching abcde

modulo the reordering. Moreover, word boundaries have to be taken into account
because of the constraint that first and last letters have to remain in place. The
processing must therefore be by a combination of trying to extend partial matches by
entire words and, once this fails, trying to match prefixes of the last word dealt with,
proceeding backwards from the longest to the shorter ones. In the above example
the word xzyt is first matched to xyzt, trying then to match abedchk to abcdefg

fails, so we try to backtrack. abedch does not match abcdef, but abedc does match
abcde, which gives the string xzyt abedc as required match.

119

Proceedings of the Prague Stringology Conference ’04

Similar problems to those of LZSS would arise in LZ78 variants like LZW [5].
Instead of pointing to earlier strings in the already processed text, the compressed
file consists of a series of pointers to an external dictionary, which is built on the fly.
Here again, relaxing the rules and letting a pointer refer not necessarily to the string
to be replaced, but possibly to any of its permutations, may yield some savings: the
overall number of strings is reduced, implying that more good strings can be stored, or
that the necessary pointers can be shorter. But as above, decoding may be erroneous,
because the strings stored by LZW are overlapping, specifically, the last character of
the nth stored string is also the first of the n + 1st.

The problem may be more severe in this case, because eliminating one of the
strings stored in an LZW dictionary will affect all the subsequent entries and there-
fore change all subsequent pointers, whereas for LZSS, all the changes are locally
restricted.

2.3 Combining character ordering and compression technique

A different approach than trying to adapt Lempel-Ziv type methods would be to
restrict ourselves to dealing with bigrams, trigrams, or generally, any k-grams with
k > 1. Each word is considered on its own, and decomposed into a sequence of such
consecutive k-grams, leaving, as before, the first and last letters in place. Special
care is needed to deal with the last k-gram in this sequence within a word, which
might require a smaller k. Then each k-gram is mapped to a representative, in a
predetermined order (alphabetic, ETAONI, ANDERO, etc.). Finally, the items obtained
by this decomposition are Huffman coded. Since the number of different k-grams is
reduced from |Σ|k to

(

|Σ|
k

)

, a savings of about 50% for k = 2, and more for higher
k, the average Huffman codeword lengths are expected to be lower. Moreover, the
overhead of storing the different k-grams is also reduced.

An alternative would be to process the k-grams sequentially, without taking
word boundaries into account. Each k-gram would again be mapped to a reordered
one, but flag-bits would be used to indicate if there has been a reordering and which
one. For bigrams, a single bit suffices to indicate whether to switch a pair, and the
bit is needed only for those pairs following or preceding a space.

Block sorting using the BWT could also be adapted to our case. As mentioned
earlier, the last column, which is the one stored by the algorithm, is almost sorted.
Suppose we have a sequence of the form A, A, A, B, A · · · in this column. If we can
change the order of the characters, we might want to remove the B from within the
sequence of As. Work on a general algorithm based on this idea is ongoing.

3 Experimental results

The first text chosen as testbed for the above semi-lossless algorithms consists of about
3MB of the AP newswire files from the TREC collection. In addition, the methods
were applied to Mark Twain’s Tom Sawyer taken from the Gutenberg Project. To
avoid a bias introduced by punctuation and other signs, all non-alphabetic characters,
except the space, have been removed, and all the others have been changed to upper
case, giving an alphabet of size 27.

120

Semi-Lossless Text Compression

Table 1 summarizes some of the results. The first column gives the size of the raw
files, the second after having applied simple Huffman coding on the individual letters.
All compression figures are given in bits per character (bpc). The next columns deal
with bigrams and trigrams, first in a standard fragmentation of the text into bi-
or trigrams, then using the reordering for those k-grams that can be changed. For
the bigrams the variant with the flag-bit has been applied, for the trigrams, triples
including the first or last letter of a word have not been reordered. The figures include
the overhead of storing the bi- or trigrams.

size Huffman bigrams trigrams

standard ordered standard ordered

AP 2.57 Mb 4.148 3.791 3.707 3.529 3.437

Tom Sawyer 361 Kb 4.111 3.707 3.687 3.549 3.485

As can be seen, there is a slight improvement, though not a significant one. In
fact, even with better parsing strategies than the simple one we used, one should not
expect large savings for English text: the average word length being less than 5, and
the two corner letters being fixed, the reordering will affect on the average less than
3 letters. However, with schemes going beyond word boundaries, like LZSS, or for
other languages and other reordering rules, better results might be expected.

Note that there are far better compression schemes: applying Huffman coding
on the basis of words, rather than characters, yields, for AP, 2.136 bpc, and if the
internal letters of the words are reordered, 2.135 bpc, saving less than 0.05 percent.
But such a scheme requires a large overhead for the storage of the Huffman tree,
and can only be justified if the set of different words is stored anyway, e.g., as the
dictionary in an Information Retrieval system.

4 Conclusions and future work

The main contribution of this paper is thus not the presentation of some novel com-
pression technique, but rather the introduction of the notion of semi-lossless text com-
pression and the ensuing research problems it raises in compression, pattern matching,
computational linguistics and possibly other related areas. We have briefly explored
how some of the known compression methods could be adapted to take advantage of
the relaxed constraints and work currently on implementing some of the advanced
methods.

Much work is still to be done. Here is a partial list of topics one might want to
deal with:

� One could try to devise new methods that do not rely on adapting existing ones,
but may possibly be totally different and specially adapted to our case.

� Different languages may suggest other rules. In French, grammatical suffixes
are more abundant and often one or more of the last letters of a word are not
even pronounced. Perhaps the rule of keeping specifically the last letter in place
is then not adequate? German has the ability of concatenating several words

121

Proceedings of the Prague Stringology Conference ’04

into a single one; should the rule then be extended to fix also letters at sub-word
boundaries, and how could these boundaries be detected? The average length
of a word in Finnish is much longer than in English and double letters are more
frequent.

� One could adapt ideas from other languages to English. For instance, Hebrew
is generally written without vowels. This gives a large number of possible in-
terpretations for each word, most of which are grammatically incorrect, but
on the average, every word has four possible correct readings. Nevertheless, a
native speaker has generally no trouble to pick the right choice quickly enough
to read fluently, partly because certain consonants may act as vowels. It would
not be reasonable to strip all the vowels from English texts (thgh ths wld gv gd
cmprssn!), but perhaps one can devise rules to get rid of most of them, as we
do anyway in speed-writing or when sending short electronic notes by computer
or on cellular phones.

� Semi-lossless compression is not necessarily restricted to keeping a permutation
of the original characters. When typing on cellular or regular phones, each key
is assigned to several characters and the requested one is reached by repeatedly
pressing the same key. It may be that the sets assigned to each key can be chosen
in such a way that pressing only once, and thereby sending a representative of
a small set, can still result in a text that is understandable. The size of Σ
would be reduced, so one may save space, but also the time necessary to type
a message will be greatly shortened.

Another short note many web-user got lately in their mail claimed that English
spelling will shortly be simplified2. While this was meant as a joke, the idea is
another nice example of how semi-lossless techniques could be implemented. The text
suggested a five year plan during which many old spelling rules would be gradually
abolished or modified, until

after zis fifz yer, ve vil hav a reli sensibl riten styl. zer vil be no mor trubls or
difikultis and evrivun vil find it ezi tu understand ech ozer.

While most of us will easily decipher the quote, note that its length (148 characters)
is 14% shorter than its correctly spelled equivalent (172 characters), and the same
14% gain is also obtained if each of the messages is Huffman encoded (600 instead of
694 bits).

References

[1] Burrows M., Wheeler D.J., A block-sorting lossless data compression algo-

rithm, Technical Report SRC 124, Digital Systems Research Center, Palo Alto,

CA (1994).

[2] Friedmann N., Gvion A., Letter position dyslexia, Cognitive Neuropsychology

18(8) (2001) 673–696.

2http://www.bluegum.com/Humour/Assorted/easier-english.htm

122

Semi-Lossless Text Compression

[3] Konheim A.G., Cryptography, A Primer, John Wiley & Sons, New York (1981).

[4] Storer J.A., Szymanski, T.G., Data compression via textual substitution, J.

ACM 29 (1982) 928–951.

[5] Welch T.A., A technique for high performance data compression, IEEE Com-

puter, 17 (1984) 8–19.

[6] Whitney C., How the brain encodes the order of letters in a printed word: The

SERIOL model and selective literature review, Psychonomic Bulletin & Review

8(2) (2001) 221–245.

[7] Whiting D.L., George G.A., Ivey G.E., Data Compression Apparatus and

Method, U.S. Patent 5,126,739 (1992).

[8] Williams R.N., An extremely fast Ziv-Lempel data compression algorithm,

Proc. Data Compression Conference DCC–91, Snowbird, Utah (1991) 362–371.

[9] Witten I.H., Bell T.C., Moffat A., Nevill-Manning C.G., Smith T.C.,

Thimbleby H., Semantic and generative models for lossy text compression, The

Computer Journal 37(2) (1994) 83–87.

123

Conditional Inequalities and the Shortest Common

Superstring Problem

Uli Laube and Maik Weinard

Institut für Informatik
Johann Wolfgang Goethe-Universität Frankfurt am Main

Robert-Mayer-Straße 11-15
60054 Frankfurt am Main, Germany

e-mail: {laube,weinard}@thi.cs.uni-frankfurt.de

Abstract. We investigate the shortest common superstring problem (SCSSP).
As SCSSP is APX-complete it cannot be approximated within an arbitrarily
small performance ratio. One heuristic that is widely used is the notorious
greedy heuristic. It is known, that the performance ratio of this heuristic is
at least 2 and not worse than 4. It is conjectured that the greedy heuristic’s
performance ratio is in fact 2 (the greedy conjecture). Even the best algorithms
introduced for SCSSP can only guarantee an upper bound of 2.5.

In [11] an even stronger version of the greedy conjecture is proven for a re-
stricted class of orders in which strings are merged. We extend these results
by broadening the class for which this stronger version can be established. We
also show that the Triple inequality, introduced in [11] and crucial for their
results, is inherently insufficient to carry the proof for the greedy conjecture in
the general case. Finally we describe how linear programming can be used to
support research along this line.

Keywords: Shortest Superstring, Greedy Heuristic, Performance Ratio

1 Introduction

Given a set of n strings S = {s1, . . . , sn}, the shortest common superstring problem
(SCSSP) is to find a string s such that each si is a substring of s, and such that s is
as short as possible. We may assume without loss of generality, that no string si is a
substring of another string sj for i 6= j.

Apart from being an interesting problem in itself, SCSSP models parts of the
reconstruction process in DNA-sequencing [4], since DNA-fragments can be described
as strings. Data compression is another area where SCSSP is used [8].

SCSSP is proven to be NP-complete by Maier and Storer [6]. It is known from the
work of Blum et al. [2] that SCSSP is APX-complete. According to Arora et al. [1]
such problems do not have a polynomial-time approximation scheme, unless P=NP.

The crucial part of the problem is to find the best order in which the strings si

should appear in the superstring. Once an order is fixed the superstring can be easily
constructed by greedily pulling a string as far as possible over its predecessor in the
given order, hence exploiting the greatest possible overlap.

124

Conditional Inequalities and the Shortest Common Superstring Problem

Definition 1 Consider two strings a and b. The overlap of a and b is the longest
proper suffix of a that is also a proper prefix of b. Its length is denoted by |a, b|.

For a given permutation π the superstring described by π (denoted sπ) has the
length

|sπ| =
n

∑

i=1

|si| −
n−1
∑

i=1

|sπ(i), sπ(i+1)|.

The greedy heuristic can be used to approximate the superstring s by repeatedly
merging strings with maximal overlap until only one string is left:

1. Input: A set S of n strings.

2. while |S| > 1

(a) Choose a, b ∈ S with maximal overlap |a, b| and a 6= b.

(b) Let c be the partial superstring that is created by concatenating a
and the suffix of b, that does not belong to (a, b).

(c) Let S :=
(

S \ {a, b}
)

∪ {c}.

3. Output: The one string left in S.

As we obtain a partial superstring in every step, the output will be a superstring
for the strings in S.

It has been conjectured by Turner [10] that this greedy heuristic has an approx-
imation factor of 2 (the greedy conjecture). A simple example given by Turner [10]
establishes that the approximation factor of the greedy heuristic is no better than 2.
Blum et al. [2] prove that the greedy heuristic achieves an approximation factor of
4 and these are still the best known upper and lower bounds for the performance of
the greedy heuristic.

A 3-approximation algorithm derived from the greedy heuristic is presented by
Blum et al. in the same paper. Since then a series of results has been published,
improving the approximation factor to 21

2
[9]. This was achieved by developing more

and more sophisticated algorithms.
However it is known, that the greedy heuristic has approximation factor 2, if one

is interested in maximizing the total amount of overlap exploited (as opposed to min-
imizing the length of the resulting superstring). Moreover a straightforward variation
of the greedy heuristic is able to find optimal cycle covers. Hence we seeked insight
as to why the greedy superstring conjecture appears so hard to verify. Therefore we
searched systematically for interesting instances of the problem by introducing greedy
orders. In section 2 we will describe our approach and introduce the mice game, which
resembles the task of proving the greedy superstring conjecture in a tricky way and
allows to exploit conditional linear inequalities like the prominent Monge inequality.

First results of this approach are shown in Weinard and Schnitger [11]: It is possi-
ble to verify an even stronger version of the greedy conjecture for a restricted class of
orders in which strings are merged. A second result shows that the established condi-
tional inequalities are insufficient to prove the greedy conjecture even in the classical
form. A new conditional inequality – called the Triple inequality – is introduced,
that carries the proof for the stronger version. We will briefly describe these results
in section 2.

125

Proceedings of the Prague Stringology Conference ’04

In this paper we extend the results from [11]: We increase the number of greedy
orders for which the stronger conjecture holds from Θ(2n) to Θ(4n). We further show
that the Triple inequality [11] is inherently too weak to prove the greedy conjecture
for the general case. These results will be presented in sections 3 and 4.

To support a systematical search for interesting instances of the problem we devel-
oped the software tool SINDBAD that turned out to be extremely helpful in achieving
the results of [11] and the results of this paper. We will describe the major features
of SINDBAD in section 5.

2 From SCSSP to the Mice Game

The difficult part of SCSSP is to find an optimal order in which to arrange the n
strings. We can assume without loss of generality, that the greedy heuristic merges the
strings into the order s1, s2, . . . , sn. The greedy heuristic achieves this by repeatedly
merging two partial superstrings. We call the order in which the partial superstrings
are merged the greedy order. We define the greedy order as a sequence of pairs
(si, si+1) that indicate, in which order the ends of the partial superstrings are merged
by the greedy heuristic.

The length of a superstring is the sum of the lengths of the strings in S =
{s1, s2, . . . , sn} minus the overlaps of the consecutive strings

|sπ| =
n

∑

i=1

|si| −
n−1
∑

i=1

∣

∣sπ(i), sπ(i+1)

∣

∣ (1)

given a permutation π, which defines the superstring. A cycle cover Cσ of the strings
in S is a set of disjoint cycles C1, C2, . . . , Cr. The length of a cycle cover is

|Cσ| =
n

∑

i=1

|si| −
n

∑

i=1

∣

∣si, sσ(i)

∣

∣ (2)

for a bijection σ, which indicates the successor of string si in the cycle cover.
The classical greedy conjecture is

|s| ≤ 2 · |s∗|, (3)

where |s| is the length of the superstring defined by the greedy heuristic and |s∗| is
the length of the optimal superstring. In [11] a stronger version is proposed:

|s| ≤ |s∗|+ |C∗|, (4)

where |C∗| is the length of an optimal cycle cover. This conjecture is stronger because
the length of the optimal cycle cover is not longer than |s∗|. For technical reasons –
following [11] – our goal is to prove a variation of the stronger version:

∀ π∀σ : |s◦| ≤ |s◦π|+ |Cσ| (5)

where |s◦| is the length of the superstring s when it is closed as a cycle. Therefore
|s◦| = |s|− |sn, s1| where |s| is the length of the superstring that is determined by the

126

Conditional Inequalities and the Shortest Common Superstring Problem

greedy order. We compare |s◦| with the length of an alternative closed superstring s◦π
plus the length of an alternative cycle cover Cσ. Thus |s◦π| = |sπ| −

∣

∣sπ(n), sπ(1)

∣

∣.
In [11] it is shown that equation (5) implies equation (4). Replacing the terms in

equation (5) with the expressions above and rearranging sums yields:

∀ π∀σ :
n−1
∑

i=1

∣

∣sπ(i), sπ(i+1)

∣

∣ +
∣

∣sπ(n), sπ(1)

∣

∣ +
n

∑

i=1

∣

∣si, sσ(i)

∣

∣ ≤

n
∑

i=1

|si|+
n−1
∑

i=1

∣

∣si, si+1

∣

∣ + |sn, s1| (6)

Hence we have to bound the 2n terms on the left-hand side by the 2n terms on the
right-hand side. To achieve this we need to exploit properties of strings. Two trivial
inequalities that can be used follow from the definition of the overlap. Let si, sj be
two strings with i 6= j then |si, sj| < |si| and |si, sj| < |sj| hold.

Definition 2 Let s and u be strings and |u| = p. The string s is p-periodic if and
only if s is a prefix of uk for some k. If s is ps-periodic and ps is minimal, then ps is
a minimum period of s.

A consequence of Definition 2 is the equality |si, si| = |si|−|psi
| and hence |si, si| < |si|

follows. These simple inequalities are of course insufficient to prove equation (6).
Our approach is to use conditional inequalities, i.e. linear inequalities that hold

whenever a condition, that is also a set of linear inequalities, holds. An example of a
conditional inequality is the one observed by Gaspard Monge [7] in 1781.

Lemma 1 Let a, b, c, d be strings. Given that |a, d| ≤ |a, b| and |c, b| ≤ |a, b| the
inequality |a, d| + |c, b| ≤ |a, b| + |c, d| holds. Moreover the variant |a, d| + |c, a| ≤
|a|+ |c, d| holds without prerequisites.

In [11] another conditional linear inequality, the Triple inequality, is introduced.

Lemma 2 Let a, b, c, d, x be strings. Given that max
{

|a, x|, |x, b|
}

≥ |a, b|, |x, d|, |c, x|
then |a, b|+ |x, d|+ |c, x| ≤ |a, x|+ |x, b|+ |c, d|+ |px| holds.

In order to apply these conditional inequalities we need to fix the greedy orders
because the greedy order provides a partial order on the overlaps. This order will
establish the premises of some conditional inequalities thereby allowing us to exploit
the conditioned inequality. As a consequence we have to prove (6) for all g ∈ G, where
G is the set of all greedy orders. Note that for a given n, there are (n − 1)! greedy
orders. The following example illustrates these concepts.

Example 1 Let us use conditional inequalities and prove our inequality (6) for
n = 5, a fixed greedy order

(

(s1, s2), (s4, s5), (s3, s4), (s2, s3)
)

, an alternative su-
perstring s5, s4, s1, s3, s2 and

{

(s1, s5, s3, s2, s1), (s4, s4)
}

as a cycle cover. Hence
π = (5, 4, 1, 3, 2) and σ(1) = 5, σ(2) = 1, σ(3) = 2, σ(4) = 4, σ(5) = 3.

The partial order on the right of Fig.1 is the one induced by the given greedy
order. At first the heuristic picks the overlap (s1, s2) and hence this overlap is larger
than every other possible overlap. When, in the second step, greedy chooses to use
(s4, s5) some of the other overlaps are no longer an option due to the choice in the

127

Proceedings of the Prague Stringology Conference ’04

s3, s2	≤	s2				
s1, s5	+	s3, s2	≤	s1, s2	+	s3, s5
s1, s3	+	s2, s1	≤	s1	+	s2, s3
s2, s5	+	s5, s4	≤	s2, s4	+	s5

s2, s4	≤	s3, s4				
s3, s5	+	s4, s1	≤	s3, s1	+	s4, s5
s3, s1	+	s5, s3	≤	s3	+	s5, s1

|s4, s4| ≤ |s4|

1,2

4,53,2 4,2 5,2 1,3 1,4 1,5 2,1

3,44,1 4,3 3,5 2,5 5,4

2,33,1 2,4 5,3

5,1

Figure 1: Proof and partial order

first round. Hence we can only exploit that (s4, s5) is larger than the overlaps still
usable at the time. On the left we give a set of inequalities that sum up to equation
(6) for this special case. The second and the sixth inequality are instances of the
Monge inequality and their applicability can be verified with the partial order. (For
example inequality 6 requires |s4, s5| ≥ |s3, s5| and |s4, s5| ≥ |s4, s1|.)

This setup leads to the question: Which (conditional) inequalities should be used
and which terms, that do not appear on either side of (6), should be introduced? For
instance the introduction of the valid inequality |s1, s5|+ |s4, s1| ≤ |s1|+ |s4, s5| in our
example above would’ve made it impossible to complete the proof. We are implicitly
asked to pick the appropriate linear inequalities. This task can be visualized as a
game, that was first introduced in [11] and that is called the mice game.

The mice game is played on a n× n-board (see Figure 2(a)). The cells represent
the length of the n2 possible overlaps of the n strings. The cells on the diagonal
have two interpretations: They represent the length of the self-overlap |si, si| and the
length of string |si| itself.

We assign a rank to the cells of the board, based on the partial order of the
overlaps as given by the greedy order. We assign a rank of n − r to the cell whose
pair was chosen as rth pair and to all the cells whose pair was thereby eliminated as
a possible choice for the greedy heuristic. Hence we know that an offdiagonal cell
(si, si+1) represents a value at least as big as the value of every cell with equal or
lower rank. (Note that the ranks correspond to the levels in Figure 1.)

Example 1 continued. Let us revisit our previous example. Figure 2(a) shows the
board. The cells on the diagonal are divided into an inner and an outer part. The
inner part represents the length of the string |si| itself (the diagonal holes) and the
outer part the length of the self-overlap of the string |si, si|. The cells with an ellipse
will be refered to as the greedy holes.

The permutation π and the bijection σ determine the cells that contain the mice
at the begining of the game. The cells are

∣

∣sπ(i), sπ(i+1)

∣

∣,
∣

∣sπ(n), sπ(1)

∣

∣ and
∣

∣si, sσ(i)

∣

∣, the
start-configuration of the game (Figure 2(b)). The mice shown as circles are placed
according to the bijection that defines the cycle cover

{

(s1, s5, s3, s2, s1), (s4, s4)
}

.
The mice shown in black are placed according to the permutation that defines the
alternative superstring s5, s4, s1, s3, s2. For the course of the game the mice are indis-
tinguishable, they are shown differently here to illustrate their origin.

A move is described by a set of start-cells and a set of end-cells. The move is
justified by an inequality that guarantees that the sum of the lengths represented

128

Conditional Inequalities and the Shortest Common Superstring Problem

s1 s2 s3 s4 s5

s5

s4

s3

s2

s1

4 4 4 4

4 1 2 3

2 4 2 3

3 4 3 3

1 423

(a) Board with ranks.

s1 s2 s3 s4 s5

4 4 4 4

4 1 2 3

2 4 2 3

3 4 3 3

1 423

b

b

b

b

b

(b) A start-configuration.

s1 s2 s3 s4 s5

s5

s4

s3

s2

s1

4 4 4 4

4 1 2 3

2 4 2 3

3 4 3 3

1 423

b

b

b

b

b

(c) First three moves.

Figure 2: The board of the mice game

by the start-cells is not greater than the sum of the lengths represented by the end-
cells. The moves inherit the name of the inequality that justifies them. Figure 2(c)
shows the moves that correspond to the first three inequalities from the first part
of Example 1. Firstly a diagonal insertion, secondly a greedy monge and thirdly a
diagonal monge. (If we move a mouse from the outer to the inner part of a diagonal,
using |si, si| < |si| we call this discarding a period.) Applying the moves of all the
inequalities listed in the example, brings all the mice into their holes, which is the
objective of the game. A hole can only accomodate one mouse. Sucessfully moving
the mice into their holes will be refered to as winning the game. Not used in this
example is the Triple inequality, its intertrepation as a move in the game is shown
below. The premises of the inequality are indicated by a sequence of arrows.

a

b x d

x

c

b

b

b

b

a

x

c

bxd

b

b

b

b

Figure 3: The horizontal and vertical Triple.

Winning the mice game hence corresponds to finding a derivation of the right-
hand side (the end-configuration of the game) of equation (6), starting from the
left-hand side (the start-configuration of the game). That is a proof of equation (6)
for permutation π and bijection σ.

Note that we only use the properties of the strings described by the conditional lin-
ear inequalities. We do not have to care about the structure of the strings themselves,
only their lengths and the lengths of their overlaps are sufficient in this case.

If we do this for every permutation π and bijection σ, we have proven the con-
jecture for a single greedy order (a single board). As we want to prove equation (6)
for arbitrary n, we cannot handle all π and σ individually. We have to search for a
winning strategy for the mice game, that is a set of rules according to which the mice
should be moved. The Rank Descending Algorithm [11] is a winning strategy for the
mice game for the restricted case of linear greedy orders. A linear greedy order is an
order in which the greedy heuristic starts with an arbitrary overlap (si, si+1) and in
later steps, when sj , . . . , sk is already created, either picks (sj−1, sj) or (sk, sk+1).

129

Proceedings of the Prague Stringology Conference ’04

3 Extension of the Rank Descending Algorithm

We now introduce our extension of the simple Rank-Descending-Algorithm (RDA),
the Duplex Rank-Descending-Algorithm (DPX-RDA), that will prove the greedy con-
jecture for Θ(4n) greedy orders, thus squaring the number of orders covered in com-
parison to the simple RDA, that could only cover Θ(2n) orders [11].

Definition 3 A greedy order corresponds to one distinct distribution of ranks on the
offdiagonal of the mice board.

1. A greedy order is linear, if there exists i such that rank(1, 2) < rank(2, 3) <
. . . < rank(i, i+ 1) > rank(i+ 1, i+ 2) > . . . > rank(n− 1, n).

2. A greedy order is bilinear, if there exist i, k and w such that rank(1, 2) <
rank(2, 3) < . . . < rank(i, i+ 1) > rank(i+ 1, i+ 2) > . . . > rank(w,w + 1) =
1 < rank(w + 1, w + 2) < . . . < rank(k, k + 1) > rank(k + 1, k + 2) > . . . >
rank(n− 1, n)

The concept of subboards is essential for understanding both the RDA and the
DPX-RDA. We extend the definition in [11] by introducing definitions 4.1b and 4.1c.

Definition 4 1a. The subboard Boardi,j (with i ≤ j) is the set of all cells in the
intersection of rows and columns {i . . . j}.

1b. The subboard Boardi,j (with i > j) is the set of all cells in the intersection of
rows and columns {1 . . . j} ∪ {i . . . n}.

1c. For i ≤ j we say that Boardi,j and Boardj+1,i−1 are complementary boards.

2. Let B = Boardi,j. The horizontal [vertical] frame of B is the set of all cells
that belong to a row [column] of Boardi,j, but not to one of its columns [rows].
The frame of B is the union of its horizontal and vertical frame.

3. Let B = Boardi,j. We define G1(B) to be the greedy cell in position (j, j + 1),
if existing, and G2(B) to be the greedy cell in position (i− 1, i), if existing. We
further define the neighbouring diagonal cells, N(G1(B)) := (j + 1, j + 1) and
N(G2(B)) := (i− 1, i− 1), if existing.

1 i j n

n

j

i
horiz.
Frame

horiz.
Frame

vert.
Frame

vert.
Frame

Boardi,j i ≤ j

1 j i n

n

i

j
vert.
Frame

vert.
Frame

horiz.
Frame

horiz.
Frame

Boardi,j j < i

1 i j n

n

j

i
B

G1(B)

N(G1(B))

G2(B)N(G2(B))

Figure 4: Complementary Boards and Frames

130

Conditional Inequalities and the Shortest Common Superstring Problem

The Duplex-Rank Descending Algorithm

(1) The input consists of a superstring s◦, a cycle cover C and a bilinear greedy
sequence.

(2) Preprocessing

(2a) Place a mouse on position (u, v), if string sv immediatly follows su in s◦ or
in C. If sv is the immediate successor of su in both s◦ and C, then (u, v)
receives two mice. If a mouse is placed on a diagonal (u, u) it is placed in
the outer part.

(2b) Let i, k and w be chosen according to the definition of bilinearity in Defi-
nition 3. Set B1 = Boardi,i and B2 = Boardk,k

(2c) If (i, i) contains a mouse, then discard its period. Otherwise execute a
diagonal monge in (i, i). If (k, k) contains a mouse, then discard its period.
Otherwise execute a diagonal monge in (k, k).

(3) Main Loop

while B1 6= Board1,w or B2 6= Boardw+1,n

Let G be the highest ranked greedy cell among G1(B1), G2(B1), G1(B2), G2(B2)

Does G contain a mouse?

yes no

Does N(G) hold a mouse? Does N(G) contain a mouse?

yes no no yes

Discard period Greedy Monge Is the Triple in G, N(G) legal?

in N(G) in G no yes

Greedy Monge in G Triple

Diagonal Monge in N(G) Discard period in N(G)

Extend the Bi, that G is incident to, to include G

By the preprocessing step (2) two subboards B1, B2 are provided that fulfill the
following 5 invariants. In [11] the corresponding invariants for a single subboard
were used.

I1 Every row and every column of the board contains 2 mice.

I2 Every hole in B1 and B2 is filled.

I3 No diagonal outside of B1 and B2 holds a mouse in the inner part.

I4 No diagonal contains more than one mouse.

I5.1 For all subboards B′ with B1 ⊆ B′ 6= Board1,n the frame of B′ is not empty.

I5.2 For all subboards B′ with B2 ⊆ B′ 6= Board1,n the frame of B′ is not empty.

It is easy to verify that these invariants hold after the preprocessing step. (I5 holds
since s◦ is a single cycle.) We call a move legal if it does not violate any of the invari-
ants. The main loop of the DPX-RDA grows the two subboards by systematically
filling the greedy cell of highest rank that is not yet in B1 or B2. The body of the
loop is essentially the same as in the simple RDA. Only the stop condition needs
adjustment and the set of greedy cells to pick from is different. Note, that w is picked
according to Definition 3.

131

Proceedings of the Prague Stringology Conference ’04

Invariant I1 will be preserved as the moves used, leave the number of mice per
row and column unchanged. Furthermore Bi only grows if new holes are filled. Hence
I2 is established once the existence of the required moves is shown. If a mouse steps
on a diagonal cell that is not about to be included into a Bi it only enters the outer
part.

The proof of the existence of the moves required by the DPX-RDA, as well as
maintaining invariants I4 and I5 is rather involved even for the simple RDA [11].
Luckily most of the observations establishing the existence of the moves and invariants
I4 and I5 follow from [11]. In [11] the invariants are shown for one growing subboard
B. These arguments remain valid and we only need to provide additional arguments
to make sure that the two boards do not interfere with each other.

Hence the remaining arguments are organized as follows: For the existence of the
moves we need Lemma 3. Once we have established that the moves exist, I4 holds,
since it holds for both Bi individually. As to I5 we inherit from [11], that no move
enlarging Bi will clear the frame of a subboard B′ that includes Bi. Lemma 4 will
guarantee that a move enlarging one of the Bi will not clear the frame of a board B′

that includes the other Bi. Finally in Lemma 5 we argue that the preserved invariants
together with the stop condition of the main loop yield a won game.

We call a mouse free, if it is not in a hole and not on a diagonal.

Lemma 3 The rank of the greedy cell G, that is about to be filled at a given time, is
high enough to dominate every free mouse on the board.

Proof: When DPX-RDA tries to fill G, all the greedy cells of higher rank and their
neighbouring diagonals are already filled by I2. By I1, there are only two mice in
every row and column, no free mouse can be in the row or the column of a greedy
cell already taken care of. In fact only the cell located in the bottom left corner of
the Bi, that is about to be extendend, has a rank higher than G and could hold a
mouse without violating I1. But in this case I5 would be violated, since the frame of
Bi itself would be free of mice. ⋄
Lemma 4 If a move in G that extends Bi does not violate I5.i it will not violate I5.k
either (with i, k ∈ {1, 2}, i 6= k).

Proof: Assume the opposite, namely that the frame of a board B′ with Bk ⊆ B′

gets cleared while no subboard B′′ ⊇ Bi, whose frame gets cleared, exists. Observe
that the frames of B′ and B′ are identical. But since Bi and Bk do not intersect,
Bi ⊆ B′ holds and we have a contradiction with B′′ = B′. ⋄
Lemma 5 At the end of the main loop of the DPX-RDA the game is won.

Proof: All the invariants are preserved and we have B1 = Board1,w and B2 =
Boardw+1,n. As all the holes in B1 and B2 are filled, the positions of the two mice in
rows 1 to w − 1 and w + 1 to n − 1 as well as columns 2 to w and w + 2 to n are
fixed. One of the mice in rows w and n as well as the columns 1 and w + 1 is also
accounted for. Only two possible arrangements for the last two mice do not violate
I1: They are either on (w, 1) and (n, w+1) or on the winning position (w,w+1) and
(n, 1). The first arrangement contradicts I5 for B1 and B2. ⋄

It should be noted, that only Lemma 5 can not be extended to tri-linear or more
complex greedy orders.

132

Conditional Inequalities and the Shortest Common Superstring Problem

4 Limitations of the Triple Inequality

The Monge and the Triple inequalities (plus the trivial ones that correspond to in-
sertions) are used in [11] to prove the strong version of the greedy conjecture (4)
for linear greedy orders. In section 3 these inequalities are used to prove the strong
version (5) for bilinear greedy orders. In [11] it is shown, that the Triple inequality is
crucial, i.e. it is impossible to prove even the weaker classical greedy conjecture with
just the Monge inequality.

We will now show that it is not possible to prove the classical greedy conjecture for
arbitrary greedy orders with just the elementary inequalities, the Monge inequality
and the Triple inequality. We do this by providing a 10 × 10 board that fulfills all
these inequalities and still violates |s| ≤ 2 · |sπ| for a given π.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

5 7 8 5 5 5 9 5 6
s1 i+5 i+4 i+3 i+1 0 0 0 i+1 i+2 i+1

7 7 8 7 7 7 9 7 7
s2 i+1 3i+10 3i+9 3i+3 i i 2i+2 3i+3 3i+5 3i+4

8 8 8 8 8 8 9 8 8
s3 0 0 4i+10 4i+4 i i 3i 4i+2 i i

5 7 8 3 3 3 9 4 6
s4 0 0 0 4i+5 i i 0 i i i

3 5 7 8 1 2 9 4 6
s5 0 0 0 0 i+1 0 0 0 0 0

2 5 7 8 3 2 9 4 6
s6 0 0 0 i i i+1 0 i i i

9 9 9 9 9 9 9 9 9
s7 0 0 0 4i+2 i i 4i+6 4i+4 i i

4 5 7 8 4 4 9 4 6
s8 0 0 i+2 4i i i 4i+2 5i+6 i+1 m

6 6 7 8 6 6 6 9 6
s9 i+1 i+1 3i+8 3i+3 i i 2i+2 3i+3 4i+10 3i+6

1 5 7 8 3 2 4 9 6
s10 0 i+2 2i+4 2i+2 0 0 i+1 2i+2 3i+6 3i+8

s.o. 0 i+1 0 i 0 i 3i 4i 3i+4 2i+2

This board describes the overlaps and lengths of 10 strings. A greedy order is given
by the ranks in the little boxes. The diagonal shows the lengths of the strings and the
extra row in the bottom indicates the overlaps of the strings with themselves. It can
be checked exhaustively, that this board fulfills all the inequalities mentioned. The
length of the strings on the diagonal sum up to 30i+62. The greedy locations on the
offdiagonal accomodate a total value of 17i+28. We use π = (1, 2, 10, 9, 3, 8, 7, 4, 6, 5)
for the superstring sπ. The locations of the overlaps exploited by this superstring
sum up to 24i+ 28. Subtracting the greedy overlaps from the lengths of the strings
gives the length of the superstring of the greedy heuristic as 13i+ 34. The length of
the alternative superstring sπ is 6i + 34. As we may choose i arbitrarily, the ratio
approaches 21

6
.

This shows, that a proof of the greedy conjecture needs to exploit string properties
beyond the Triple and the Monge inequality.

133

Proceedings of the Prague Stringology Conference ’04

5 SINDBAD

SINDBAD is the name of a software tool that we developed to support the research
on SCSSP. The introduction of greedy orders gives the greedy conjecture a shape
with four quantifiers

∀n ∀g ∈ Gn ∀π ∀σ : |s◦| < |s◦π|+ |Cσ|.

For most instances (that is values of n, g, π and σ) the proof can be done with the
established conditional inequalities. In order to proceed one must find instances, that
cannot be covered with the means available. The use of calculation power is the
logical consequence.

One important feature is SINDBAD’s enumeration mode. It can automatically
determine all valid moves on the board for a given greedy order and check whether
the game on such a board can be won against a given alternative superstring π and
a given cycle cover σ. To do this a linear program (LP), depending on the current
configuration of the game is generated and evaluated. SINDBAD found the first
instance of a game with linear greedy order for which the classical greedy conjecture
can not be proven just with insertions and monges [11]. It was nessecary to check
boards up to a size of 9×9 to encounter such an instance. The matrix from section 4
was also found using SINDBAD. (For more on the linear program and on how to define
an intermediate performance ratio for arbitrary game configurations see subsection
5.1.)

SINDBAD also provides a manual mode that allows to play the mice game on
arbitrary boards against arbitrary π and σ via a graphical interface. Playing the
mice game manually allows interesting insights: In a game that can be won, there
will still be legal moves that destroy the property, that the game can be won. Being
able to locate these bad moves is extremely helpful when working on strategies. The
invariants both of the RDA and of the DPX-RDA embody experience, as to what
moves destroy the winning property of a game. In a game bound to be lost, one will
probably still find valid moves. A deadend (that is a configuration with no legal move
left) yields an interesting question about strings: The linear program assigns lengths
to the strings and overlaps that agree with all the inequalities implemented. If a
performance ratio above 2 is still possible, the question is, whether it is possible to
construct a set of strings that behave like the solution of the linear program indicates.
If so, a counter example would be found. If on the other hand one can pinpoint
the reason why the construction of such strings is impossible, one has found a new
property of strings that is guaranteed to solve yet unsolved instances of the problem.
The Triple inequality was found in exactly that way. It seems fair to say that it
would have been very hard to recognize the usefulness of the Triple inequality for our
purposes without SINDBAD.

We also made it possible to implement game strategies into SINDBAD. Hence we
could quickly find instances for which a certain strategy fails. If such a game can be
won, but the strategy fails, one has a chance to improve the strategy. If it cannot be
won according to the LP, one gets a hint on the limits of the moves established so far.

Further usefull features include the possibility to work with assumptions. For a
given greedy order the partial order activates a set of conditional linear inequalities.
By adding assumptions like |a, b| ≥ |c, d| the set of legal moves grows. If a game can be

134

Conditional Inequalities and the Shortest Common Superstring Problem

won under this assumption and also under the assumption |a, b| ≤ |c, d|, the instance
is solved as well. SINDBAD supports the systematical search for these assumptions.
SINDBAD can also assign different capacities to the holes and work with different
numbers of mice. This makes it possible to work on weaker bounds for tough instances
and on stronger bounds for easy instances.

5.1 SINDBAD’s Linear Program

Writing a linear program to check the classical greedy conjecture on a given board
and given π is simple: Let xi,j represent the lengths of the overlaps and li the lengths
of the strings themselves. Let Q be the set of all inequalities that hold on the given
board.

max :
n

∑

i=1

li −
n−1
∑

i=1

xi,i+1

subject to : Q ∪
{

n
∑

i=1

li −
n−1
∑

i=1

xπ(i),π(i+1) ≤ 1

}

∀i, j : xi,j, li ≥ 0

The linear program assigns values to all lengths and overlaps that comply with the
constraints in Q and that produce a superstring sπ of length at most one. The
objective function is the length of the greedy superstring. Hence the value of the
optimal solution will be the best performance ratio that can be derived with the
given set of inequalities Q.

From a linear programming perspective it is worthwhile noticing, that the dual
problem [3, 5] of this implementation is a description of the mice game: There is a
nonnegative variable yq associated with every inequality q ∈ Q (hence yq is associated
with a move in the mice game). A further nonnegative variable t associated with the
inequality

∑n
i=1 xi −

∑n−1
i=1 xπ(i),π(i+1) ≤ 1 appears. As we don’t have any inequalities

in Q that include constants (i.e. all of them compare a linear combination of lengths
and overlaps to 0), the objective function of the dual problem just depends on the
variable t, that is to be minimized.

For every variable of the primal program (i.e. strings and overlaps, that is the
cells of the miceboard) a constraint arises. For a cell c define its balance as follows:

bal(c) :=
∑

q∈Q
q moves a mouse into c

yq −
∑

q∈Q
q moves a mouse out of c

yq. (7)

If we interpret the variables yq as the number of times move q is executed in a game,
bal(c) describes the balanced total of mice moving into and out of c during a game.
The constraints of our dual problem are:

bal(c)− t ≤ −1 iff c is a diagonal

bal(c) ≤ 1 iff c is a greedy cell

bal(c) + t ≤ 0 iff c is an initial mice position (sπ(i), sπ(i+1))

bal(c) ≤ 0 otherwise.

135

Proceedings of the Prague Stringology Conference ’04

(If a cell c should be a greedy cell and an initial mice position, its constraint is
bal(c) + t ≤ 1.) Remember, that the optimal solutions of primal and dual problem
have the same value. Hence, we can verify that the performance ratio is upper
bounded by 2, by giving a legal solution of the above inequalities with t = 2. That
is, we need to provide a set of legal moves, that move 2 mice out of every initial
position and respects the capacity constraints (1 for diagonal and offdiagonal, 0 for
every other cell) — the mice game.

This dual representation also shows how the mice game can be adapted in order
to prove bounds other than 2. If one is interested in proving a factor of 3 for instance,
the game needs to be won with 3 mice on every initial position, a capacity of 2 for
the diagonal holes and a capacity of 1 for the greedy holes. If we are interested in
non integer performance ratios we can still use the game by scaling the number of
mice and the capacities. To prove an upper bound of 2.5, we would play with 5 mice
on the initial positions, and capacities 3 resp. 2 for diagonals and greedy cells.

The adaptions necessary to work with cyclicly closed superstrings are obvious.
The cell (n, 1) is treated as a greedy cell and (π(n), π(1)) is included as an initial
position.

Crucial for our research was the ability to evaluate arbitrary game configurations,
that is configurations that might arise during a game and that do not have a straight
forward interpretation in terms of superstrings or cycle covers. Observe that the above
representation indicates a total of n · t mice, if we work with cyclic closure. In the
course of the game these mice (initially placed in groups of t on the initial positions)
will spread over more cells and different numbers of mice will be on different cells of
the board. In our dual representation the generalisation necessary is rather natural.

bal(c)− t ≤ −n · t ·m(c)− 1 iff c is a diagonal

bal(c) ≤ −n · t ·m(c) + 1 iff c is a greedy cell

bal(c) ≤ −n · t ·m(c) otherwise,

where m(c) indicates the percentage of mice on cell c. (Hence
∑

cm(c) = 1 and
n·t·m(c) is the number of mice on cell c at a given time.) Observe that we still describe
the winning property of the game. To check how these adaptions are resembled in
the primal version we need to put the above back into the shape of a linear program.

min : t

bal(c) + (n ·m(c)− 1) · t ≤ −1 iff c is a diagonal

bal(c) + (n ·m(c)) · t ≤ 1 iff c is a greedy cell

bal(c) + (n ·m(c)) ≤ 0 otherwise,

Retransfering we find that we still have the variables li and xi,j, we still have the
constraints from set Q and the objective function is still to maximize the length of
the greedy superstring

∑n
i=1 li −

∑n−1
i=1 xi,i+1 − xn,1.

The adaption to arbitrary game configurations is only resembled in the one in-
equality, that initially bounded the superstring sπ. It is replaced by

n
∑

i=1

li − n ·





∑

c=(i,j)

m(c) · xi,j +
∑

c is diagonal i

m(c) · li



 ≤ 1. (8)

136

Conditional Inequalities and the Shortest Common Superstring Problem

Observe that regular starting positions are embedded: In start configurations there
are no mice on diagonals and every starting position holds 2 mice, hence a fraction
of 1

n
of all mice on the board.

Figure 5: This is how SINDBAD looks like. SINDBAD is a KDE-Application writ-
ten in C++. We experimented with an interior-point and a simplex based solver.
The interior-point solver is a FORTRAN version of Csaba Mészáros’ BPMPD solver.
(http://www.sztaki.hu/∼meszaros/bpmpd). The simplex based solver is SoPlex

created by Roland Wunderling.

6 Conclusion

We have extended the class of greedy orders for which the greedy conjecture can be
verified and proved that a proof for the general case is not possible without exploiting
string properties beyond those used in [11]. Of course the conjecture for the general
case remains the open problem. We believe that the stronger version of the greedy
conjecture might turn out to be easier to prove. We are not aware of a counterexample
for the stronger version for any greedy order. We do believe, that the approach via
the dual problem (the mice game) can help focusing further research along this line as
we can pinpoint unsolved instances with the help of computers. Hence we are quickly
led to good questions about strings whose answers will cause progress in the work on
the greedy conjecture.

137

Proceedings of the Prague Stringology Conference ’04

7 Acknowledgements

We would like to thank Roland Wunderling for making SoPlex available [12].

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy: Proof verification
and hardness of approximation problems. Journal of the ACM, 45(3), 501–555,
May 1998.

[2] A. Blum, T. Jiang, M. Li, J. Tromp and M. Yannakakis: Linear approximation
of shortest superstrings. Journal of the ACM, 41(4), 630–647, July 1994.

[3] Vašek Chvǎtal: Linear Programming. W. H. Freemann and Company, 1983.

[4] T. Jiang, M. Li: DNA Sequencing and String Learning. Mathematical Systems
Theory (now Theory of Computing Systems), 29(4), 387–405, July/August
1996.

[5] H. Karloff: Linear Programming. Birkhäuser, 1991.

[6] D. Maier and J. A. Storer: A Note on the Complexity of the Superstring
Problem. In Proceedings of the 12th Annual Conference on Information
Sciences and Systems, 52–56, 1978.

[7] G. Monge: Mémoire sur la théorie des déblais et des remblais. Historie de
l’Academie Royale des Sciences, Année MDCCLXXXI, avec les Mémoires de
Mathématique et de Physique, pour la même Année, Tirés des Registres de
cette Académie, 666–704, 1781.

[8] J. A. Storer: Data Compression: Methods and Theory. Computer Science
Press, 1988.

[9] Z. Sweedyk: A 21
2
-Approximation Algorithm for Shortest Superstring. SIAM

Journal on Computing, 29(3), 954–986, December 1999.

[10] J. Turner: Approximation Algorithms for the Shortest Commom Superstring
Problem. Information and Computation, 83(1), 1–20, October 1989

[11] M. Weinard and G. Schnitger: On the Greedy Superstring Conjecture. In
Proceedings of the 23rd Conference on Foundations of Software Technology and
Theoretical Computer Science, Mumbai, India, LNCS 2914, 387–398, December
2003. Extended version:
http://www.thi.informatik.uni-frankfurt.de/∼weinard/
/indexE.html

[12] R. Wunderling: Paralleler und Objektorientierter Simplex-Algorithmus. Ph.D.
thesis, ZIB technical report TR 96-09, Berlin, 1996.
http://www.zib.de/PaperWeb/abstracts/TR-96-09

138

Combinatorial Characterization of the Language

Recognized by Factor and Suffix Oracles

Alban Mancheron and Christophe Moan

L.I.N.A., Université de Nantes, 2, Rue de la Houssinière, B.P. 92208,
44322 Nantes Cedex 3, France

e-mail: {Mancheron, Moan}@lina.univ-nantes.fr

Abstract. Sequence Analysis requires to elaborate data structures which allow
both an efficient storage and use. Among these, we can cite Tries [1], Suffix
Automata [1, 2], Suffix Trees [1, 3]. Cyril Allauzen, Maxime Crochemore

and Mathieu Raffinot introduced [4, 5, 6] a new data structure, linear on the
size of the represented word both in time and space, having the smallest number
of states, and allowing to accept at least all the substrings of the represented
word. They called such a structure a Factor Oracle. On the basis of this
structure, they developed another one having the same properties excepting
the accordance of all the suffix of the represented word. They called it Suffix

Oracle.
The characterization of the language recognized by the Factor/Suffix Oracle of
a word is an open problem for which we provide a solution.

Keywords: Factor Oracle, Suffix Oracle, automata, language, characteriza-
tion.

1 Introduction

Within text indexation, several structures were developed. The objective of these
methods is to represent a text or a word s, ie. a succession of symbols taken in an
arbitrary alphabet denoted by Σ, in order to “quickly” determine whether this word
contains some specific sub-word. In which case, we call this sub-word a factor of s.

Cyril Allauzen, Maxime Crochemore and Mathieu Raffinot described a
method allowing to build an acyclic automaton, accepting at least the factors of s,
having as few states as possible (|s|+1), and being linear in the number of transitions
(2 |s| − 1). They named such an automaton a Factor Oracle.

In this automaton, each state is final. Using the same automaton, but only keeping
“particular” states as final, one obtains a Suffix Oracle.

This structure has several advantages. First of all, the construction algorithm is
easy to understand and implement; this is not the case of the most efficient algorithm
for building Suffix Tree’s. Next, Oracles are homogeneous automata (ie. all the transi-
tions going to the same state are labeled with the same symbol). That means that we
do not need to label edges. This makes this structure very sparing in memory (much
more than Suffix Trees or Tries). Indeed, methods based upon this structure obtain

139

Proceedings of the Prague Stringology Conference ’04

good results. Thus, Lefebvre & al. [7, 8, 9] use it for repeated motifs discovery over
large genomic data, and obtain results similar to the one obtained using thousands
of blastn requests, but in a few seconds. They also use the Factor Oracle in text
compression [10], and in some cases they have compression ratio comparable to bzip2
(which is one of the most efficient compression algorithm).

Nevertheless, at least two problems linked to these Oracles are still opened: the
first one is the characterization of the language recognized by Oracles; the second
one is: does there exist an algorithm, linear in time and space, to build an automa-
ton accepting at least the factors/suffixes of a word s being minimal in number of
transitions?

The first open problem is really important. Currently, the main difficulty when
using Oracles is to distinguish true positives from false positives. That is why we are
interested in the first problem. In the following section, we provide several definitions
relating to the construction of Oracles. Then we give the characterization of the
language recognized by this structure. To conclude, we show some results about the
Oracles.

2 Definitions

Subsequently, we use the notations hereafter (some of them are issued from [4, p. 2]):
we denote by Fact(s) (resp. Suff(s) and Pref(s)) the set of the factors (resp. suffixes
and prefixes) of s ∈ Σ+, by Prefs(i) the prefix of s having length i ≥ 0. Given
x ∈ Fact(s), we denote by Nbs(x) the number of occurrences of x in s, and we say
that x is repeated if Nbs(x) ≥ 2.

Definition 2.1 Given a word s ∈ Σ+ and x a factor of s, we define the function Pos
as the position of the first occurrence of x in s = uxv (u, v ∈ Σ∗) such that x is not
repeated in ux): Poss(x) = |u| + 1. We also define the function poccur such that
poccurs(x) = |u|+ |x| = Poss(x) + |x| − 1 (denoted by poccur(x, s) in [4, p. 2]).

In the following, we define the Oracles, then we give some notations and definitions
peculiar to factors, as well as properties about the newly defined objects. Finally, in
order to characterize the language recognized by Oracles, we define particular factors
and then operations linked to them.

2.1 Oracles

We give below the algorithm of Allauzen & al. [4] which describes the Oracle
construction (cf. algorithm 1). In the same paper, authors give another algorithm
which allows to build the same automaton in linear time on the size of s. Nevertheless,
because we are only interested in the properties of the Oracle, we do not give it in
this paper.

Definition 2.2 [4, pp. 2, 10] Given a word s ∈ Σ∗, we define the Factor Oracle of s
as the automaton obtained by the algorithm 1 (p. 141), where all the states are final.
It is denoted by FO(s). We define the Suffix Oracle of s as the automaton obtained
by the same algorithm, where are final only the states such that there exists a path
from the initial state recognizing a suffix of s. It is denoted by SO(s).

140

Combinatorial Characterization of the Language Recognized by Factor and Suffix Oracles

Notation 2.1 Given a word s ∈ Σ∗, we use the term Oracle to indifferently indicat-
ing SO(s) or FO(s), and we denote it by O(s).

Algorithm 1: Construction of the Factor Oracle of a word1

✞
1 Input : Σ % Alphabet (supposed minimal) %
2 s ∈ Σ∗ % The word to proces s %
3 Output : Oracle % Factor Oracle o f s %
4

5 Begin
6 Create the i n i t i a l s t a t e l a b e l e d by e0

7

8 For i from 1 to |s| Do
9 Create a s t a t e l a b e l e d by ei

10 Build a t r a n s i t i o n from the s t a t e ei−1 to the s t a t e ei l a b e l e d by s[i]
11 End For
12

13 For i from 0 to |s| − 1 Do
14 Let u be a word o f minimal l ength r e cogn i z ed in the s t a t e ei

15 For All α ∈ Σ \ {s[i + 1]} Do
16 I f uα ∈ Fact(s[i− |u|+ 1..|s|]) Then
17 j ← poccurs[i−|u|+1..|s|](uα)− |u|
18 Build a t r a n s i t i o n from the s t a t e ei to ei+j l a b e l e d by α
19 End If
20 End For All
21 End For
22 End

✠✆

We have an order relation between states in these Oracles. Indeed, if we have two
states ei and ej such that i ≤ j, we can say that ei ≤ ej .

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10g a c c a t t c t c

a

c

t
t
a c

t

Figure 1: Factor Oracle of the word gaccattctc.

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10g a c c a t t c t c

a

c

t
t
a c

t

Figure 2: Suffix Oracle of the word gaccattctc.

1As mentioned in [11], the term −|u| (line 17) is unfortunately missing in the original algorithm.

141

Proceedings of the Prague Stringology Conference ’04

Definition 2.3 Given a word s ∈ Σ∗ and a word x accepted in the state ei (0 ≤ i ≤
|s|) by the Oracle of s, we define the function State as State(x) = ei.

Lemma 2.1 [4, pp. 2, 3] Given a word s ∈ Σ∗ and its Oracle, there is a unique
word having minimal length accepted at each state ei (0 ≤ i ≤ |s|) of O(s). It is
denote it by min(ei).

Lemma 2.2 [4, pp. 2, 3] Given a word s ∈ Σ∗, its Oracle and an integer i (0 ≤ i ≤
|s|), then min(ei) ∈ Fact(s) and i = poccurs(min(ei)).

Notation 2.2 Given a word s ∈ Σ∗, we denote by #in(ei) (resp. #out(ei)) the number
of ingoing (resp. outgoing) transitions in the state ei (0 ≤ i ≤ |s|) of the Oracle of s.

2.2 Canonical Factors & Contraction Operation

We first introduce some definitions about particular factors from a given word. We
use such factors for defining the contraction operation, as well as properties peculiar
to this operation. We next define the sets of words we obtain applying this operation.
At the end of this section, all that we need to characterize the language of Oracles
will be defined.

Definition 2.4 Given a word s ∈ Σ∗ and its Oracle, we define the set of Canonical
Factors of s as following:

Fs = {min(ei) | 1 ≤ i ≤ |s| ∧ (#out(ei) > 1 ∨ #in(ei) > 1)}

Given a suffix t of s and a Canonical Factor f of s, we say that f is a conserved
Canonical Factor of s in t if the first occurrence of f in s is contained in t. We denote
by Fs,t the set of conserved Canonical Factors of s in t (thus Fs,t ⊆ Fs).

These particular factors enable us to define a set of couple of specific positions in
the word s. Those will be used in order to derive new words from s.

Definition 2.5 Given a word s ∈ Σ∗ and a Canonical Factor f of s such that:






s = ufv (u, v ∈ Σ∗)
fv = wfx (w ∈ Σ+, x ∈ Σ∗)
Poss(f) = |u|+ 1

then we call the pair (|u|+ 1, |uw|+ 1) a contraction of s by f , and s′ = ufx is the
result of this contraction.

Notation 2.3 Given a word s ∈ Σ∗ and a Canonical Factor f ∈ Fs, we denote by
Cf

s the set of the contractions of s by f . We denote the set of all the contractions we

can operate on s by C∗s (≡
⋃

f∈Fs

Cf
s). Let t be a suffix of s = t′t (t′ ∈ Σ∗), we denote

by C∗s,t the subset of C∗s such that C∗s,t = {(p′, q′) | (p, q) ∈ C∗s ∧ p > |t′| ∧ (p′, q′) =
(p− |t′|, q − |t′|)}.

Since contractions will be used to produce new words, we only need to consider a
subset of the set of contractions.

142

Combinatorial Characterization of the Language Recognized by Factor and Suffix Oracles

Definition 2.6 A set C of contractions is coherent if and only if it does not contain
two contractions (i1, j1), (i2, j2) such that: i1 < i2 < j1 < j2. Furthermore, we say
that C is minimal if and only if it does not contain two contractions (i1, j1) and (i2, j2)
such that i1 ≤ i2 < j2 ≤ j1 or such that i1 < j1 = i2 < j2.

Now we can define the operation that, given a word, allows us to build some new
specific words.

Definition 2.7 Given a word s ∈ Σ∗ and a coherent and minimal set of contractions
C = {(p1, q1), . . . , (pk, qk)} (associated to the set of canonical factors {f1, . . . , fk}),
then we define the function Word as following:

Word(s, C) = s[1..p1 − 1] s[q1..p2 − 1] . . . s[qk−1..pk − 1] s[qk..|s|]
= s[1..p1 − 1] f1 s[q1 + |f1|..p2 − 1] . . . fk s[qk + |fk|..|s|]

We call this sequence the result of the contractions from C applied to s.

From now, we only consider coherent and minimal sets of contractions (since we
are interested in the results of contractions, it is easy to see why other sets don’t need
to be considered anymore). Let us notice that whatever the order of contraction, the
obtained word remains the same.

Definition 2.8 We define E(s) =
⋃

C⊆C∗
s

Word(s, C), and we call this set the closure of

s.

To illustrate the various definitions given above, we take the example gaccattctc
(cf. figures 1 and 2). Then the set of Canonical Factors is Fgaccattctc = {a, c, ca, t, tc, ct},
and C∗gaccattctc = {(2, 5), (3, 4), (3, 8), (3, 10), (6, 7), (6, 9), (7, 9)}. Let C = {(2, 5), (7, 9)}
(C ⊆ C∗gaccattctc). Hence Word(gaccattctc, C) = gacc///attc//tc = gattc. The closure of

gaccattctc is:

E(gaccattctc) =

{

gac, gacatc, gacatctc, gacattc, gacattctc, gaccatc, gaccatctc,
gaccattc, gaccattctc, gactc, gatc, gatctc, gattc, gattctc

}

3 Characterization of the language recognized by

Oracles

Given a word s ∈ Σ∗, we saw how to build the corresponding Factor (resp. Suffix)
Oracle. This Oracle allows to recognize at least all the factors (resp. suffixes) of s.
Nevertheless, it accepts a certain number of additional words too. For example the
word atc is accepted by the Factor (resp. Suffix) Oracle of gaccattctc (cf. figures 1
and 2), whereas it is either a factor nor a suffix of gaccattctc. We defined above
the set E(s). In this part, we show that the Suffix Oracle exactly recognizes all the
suffixes of the words from E(s). Then, we use this result to show that the Factor
Oracle recognizes exactly all the factors of the words from E(s).

We first recall some useful lemmas of [4].

143

Proceedings of the Prague Stringology Conference ’04

Lemma 3.1 [4, p. 3] Given a word s ∈ Σ∗ and an integer i (0 ≤ i ≤ |s|), then
min(ei) is suffix of all word recognized in the state ei of the Oracle of s.

Lemma 3.2 [4, p. 4] Given a word s ∈ Σ∗ and a factor w of s, then w is recognized
in the state ei (1 ≤ i ≤ poccurs(w)) of the Oracle of s.

Lemma 3.3 [4, p. 4] Given a word s ∈ Σ∗ and an integer i (0 ≤ i ≤ |s|), then every
path ending by min(ei) in the Oracle of s leads to a state ej such that j ≥ i.

Lemma 3.4 [4, p. 5] Given a word s ∈ Σ∗ and w ∈ Σ∗ a word accepted by the Oracle
of s in state ei, then every suffix of w is also recognized by the Oracle in state ej such
that j ≤ i.

The proof of this last Lemma is given in [4] only for the Factor Oracle. We need
to extend this result for the Suffix Oracle.

Proof (Lemma 3.4)
If we denote by x a suffix of w, the original Lemma gives us that State(x) ≤ State(w).
We need to prove that if State(w) is final, then State(x) is final. In order to do this,
we have to consider two cases:

Case 1: |x| ≥ |min(ei)|
That means that min(ei) ∈ Suff(x), thus according to Lemma 3.3, we can conclude
that State(x) ≥ State(min(ei)), and since State(min(ei)) = ei = State(w), then
State(x) = State(w).

Case 2: |x| < |min(ei)|
The state ei being final means that there exists a suffix t of s such that State(t) = ei.
According to Lemma 3.1, we deduce that min(ei) ∈ Suff(t) ⊆ Suff(s). Since x and
min(ei) are suffixes of w, then |x| < |min(ei)| ⇒ x ∈ Suff(min(ei)). So x is also
suffix of s and, by Definition of the Suffix Oracle, State(x) is final. ✷

Before tackle demonstrations, we present two lemmas dealing with properties
linked to Canonical Factors.

Lemma 3.5 Given a word s ∈ Σ∗, a Canonical Factor f ∈ Fs such that s =
ufv (u, v ∈ Σ∗) and f is not repeated in uf , and C ∈ C∗ a set of contractions.
If there exists w ∈ Σ∗ such that Word(uf, C) = wf then wf and f are recognized in
the same state in the Oracle of s.

Proof (Lemma 3.5)
We denote by Ci ⊆ C∗s a set of contractions having cardinality i. In the same way,
we denote by wif the word obtained applying contractions Ci to uf (warning: wif =
Word(uf, Ci) ; wi = Word(u, Ci)). Let us show by induction on the size of Ci that
State(Word(uf, Ci)) = State(f) (∀ Ci ∈ C∗s).
Let ex = State(f) (f = min(ex) by Definition of f) and ex′

i
= State(Word(uf, Ci)).

If we consider C0, then Word(uf, C0) = uf . According to Lemma 3.3, x′0 ≥ x.
Furthermore, according to Lemma 3.2 applied to uf , we have x′0 ≤ poccurs(uf).
However by Definition of f , poccurs(f) = |uf | = poccurs(uf). This implies x′0 ≤ x,
and finally x′0 = x.

144

Combinatorial Characterization of the Language Recognized by Factor and Suffix Oracles

Let us show now that if this lemma is true for a set of contractions Ci ⊂ C∗s ,
then it is true for a set Ci+1 = Ci ∪ {(p, q)}. We assume without loss of gener-
ality that (p, q) is the last contraction (by ascending order over the positions) in
Ci+1. Let b the Canonical Factor used by this contraction. We can write uf =
s[1..p − 1] s[p..q − 1] s[q..|uf |]. Since we choose (p, q) being the last contraction, all
the contractions in Ci are applicable to s[1..p− 1]. So there exists a, c ∈ Σ∗ such that
wif = a s[p..|uf |] = abc, and d ∈ Σ∗ such that wi+1f = a s[q..|uf |] = abd. We also
could write ab = Word(s[1..p− 1] b, Ci) (the opposite would mean that the contrac-
tion (p, q) can’t be operate from b), and according to the induction hypothesis, we
have State(ab) = State(b). From this, we deduce that State(abc) = State(bc) and
State(abd) = State(bd). Since bd(= s[q..|uf |]) is a suffix of bc(= s[p..|uf |]), according
to the Lemma 3.4:

State(bd) ≤ State(bc)
⇔ State(abd) ≤ State(abc)
⇔ State(wi+1f) ≤ State(wif)
⇔ State(wi+1f) ≤ State(f)

But, according to Lemma 3.3, we have State(wi+1f) ≥ State(f), consequently we
obtain State(wi+1f) = State(f). So, this lemma is true for all Ci ⊆ C∗s . ✷

Lemma 3.6 Let s be word in Σ∗, O(s) be its Oracle, and ei be a state of O(s) such
that u = min(ei) and u ∈ Fs. Let p be a transition issued from ei labeled by α to a
state ei+j (j > 1). Then there exists at the position (i+ j− |u|) of s an occurrence of
uα. Moreover, we have the contraction (i− |u|+ 1, i+ j − |u|) of s by u.

Proof (Lemma 3.6)
By construction (cf. algorithm 1), the transition p from ei to ei+j is added because
there exists a position j in s[i − |u| + 1..|s|] such that: j = poccurs[i−|u|+1..|s|](uα)−
|u|. We also have uα ∈ Fact(s) since uα ∈ Fact(s[i − |u| + 1|s|]). Cleophas

& al. [11] have proved that since u = min(ei) and uα ∈ Fact(s), then i − |u| +
poccurs[i−|u|+1..|s|](uα) = poccurs(uα). Hence, we have i + j = poccurs(uα), and
finally s[i+ j − |u|, i+ j] = uα. ✷

Algorithm 2: Obtaining the contractions generating w starting from t in the Oracle
of s

✞
1 I n i t i a l i z a t i o n : S0 = t , S0

w = w , C0 = ∅ , sdec = |s| − |t| % t i s a s u f f i x o f s %
2

3 Input : Si ∈ Σ∗ % A s u f f i x o f s t ha t can s t i l l be ‘ ‘ contracted ’ ’ %
4 Si

w ∈ Σ∗ % The word to proces s %
5 Ci % Set o f c on t r a c t i on s %
6 Output : a s e t o f c on t r a c t i o n s
7

8 Begin
9 pi ← l o ng e s t common p r e f i x between Si and Si

w (Property 3.1 , item 1)
10 eri

← State(pi) (Property 3.1, item 2)
11 fi ← min(eri

)
12 I f (|pi| < |Si

w|) Then
13 er′

i
←Trans i t i on(eri

, Si
w[|pi|+ 1]) (Property 3.1 , item 4)

14 Ci+1 ← Ci ∪ {ci} , ci = (ri − |fi|+ 1− sdec, r′i − |fi| − sdec) (Property 3.2 , item 2)

145

Proceedings of the Prague Stringology Conference ’04

15 Si+1
w ← Si

w[|pi| − |fi|+ 1..|Si
w|] (Property 3.1 , item 3)

16 Si+1 ← t[r′i − |fi| − sdec..|t|] (Property 3.1 , item 3)
17 Return Contractor (Si+1, Si+1

w , Ci+1)
18 Else
19 I f (|Si| > |Si

w|) Then
20 Ci+1 ← Ci ∪ {ci} , ci = (ri − |fi|+ 1− sdec, |s| − |fi|+ 1− sdec) (Property 3.3)
21 Else
22 Ci+1 ← Ci (Property 3.3)
23 End If
24 Return Ci+1

25 End If
26 End

✠✆

Our goal in this part is to give a characterization of the language accepted by the
Oracle of a word s. To do that, we use the algorithm Contractor (cf. algorithm 2).
Given a word s ∈ Σ∗ and its Suffix Oracle SO(s), Contractor needs a word w ac-

cepted by SO(s) and a suffix t of s chosen such that

{

w[1] = t[1]
|t| maximal

. The result

of Contractor is a set C of contractions such that w = Word(t, C). After a first brief
presentation of Contractor, we will introduce the notations of the algorithm.

We saw (in the Definition) that Word(t, C), for a set of contractions C, is a
concatenation of substrings of t. We can see these sub-words as prefixes of suffixes
of t. A jump from one substring to the next one is a contraction. The question is
now how to find the correct suffixes and their prefixes. The answer is Contractor.
This is a recursive algorithm that finds all the contractions used to contract t in w,
by searching the suffixes of t which we talk about. The main idea of Contractor is to
read the words t and w from left to right, and when the one-to-one characters differ,
to use a contraction in t to reach a further position in order to allows the reading of
the same characters than w.

t′i

w′
ipi

e0
pi fi α

α

eri
er′

i
e|s|

Si

Si+1

Figure 3: Illustration of a step in the algorithm Contractor (α = Si
w[|pi|+ 1]).

The inputs are words Si and Si
w (i ≥ 0), and Ci a set of contractions. Initially, we

have S0 = t, S0
w = w and C0 = ∅. We denote by pi (line 9) the longest prefix of Si

and Si
w. So, we can write:

{

Si = piS
′i

Si
w = piS

′i
w

(3.1)

Let eri
= State(pi) (line 10) and fi = min(eri

) (line 11). Due to Lemma 3.1, we have:

pi = p′ifi (p′i ∈ Σ∗) (3.2)

146

Combinatorial Characterization of the Language Recognized by Factor and Suffix Oracles

About the other variables, er′i
(line 13) is the state reached by the transition from

eri
and labeled by α = Si

w[|pi| + 1] = S ′i
w[1], Ci+1 is a set of contractions (which has

cardinality i+1). We need to use the variable sdec = |s|− |t| to translate the indexes
of each contraction. Indeed, the positions for a contraction are computed using the
indexes of the states (each state ei is linked to the ith character of s, not to the
character (i− |s|+ |t|) of t). Thus, a contraction would be correct for s, but not for
t Hence, we proceed as for the Definition of C∗s,t, ie. we remove |s| − |t|.

The figures 3 and 4 illustrates Contractor, and are useful to understand the prop-
erties below. The following Property 3.1 claims some interesting characteristics of
the variables used by Contractor.

Property 3.1
For all i ≥ 0, the following assertions are true:

1. fiα ∈ Pref(pi+1).

2. Si = t[ri − |pi|+ 1− sdec..|t|].
3. Si+1 and Si+1

w are respectively suffixes of Si and Si
w; Si and Si

w (i ≥ 0) are
respectively suffixes of t and w.

4. The transition from eri
to er′i

and labeled by α always exists.

Proof (Property 3.1)

1. Since fi = min(eri
), and according to Lemma 3.6, we can write s[r′i− |fi|..r′i] =

t[r′i−|fi|−sdec..r′i−sdec] = fiα. So Si+1 begins with fiα, and Si+1
w too (line 15).

2. For i = 0 (initialization case), S0 = t and t is the longest suffix of s be-
ginning by w[1]. Then we can easily see that if eq = State(S0[1])(q > 0),
then t[q − sdec..|t|] = S0 and State(p0) = q + |p0| − 1 = eri

. Thus S0 =
s[r0 − |p0|+ 1− sdec..|s|].
Now, let us see the recursive case. We have Si+1 = t[r′i − |fi| − sdec..|t|] (Con-
tractor, line 16). Since Si+1

w begins by fiα (cf. item 1), ri+1 = r′i+|pi+1|−|fi|−1.
Finally

Si+1 = t[r′i − |fi| − sdec..|t|] = t[ri+1 − |pi+1|+ 1− sdec..|t|].

3. This is obvious for Si
w because Si+1

w is suffix of Si
w by construction (line 15)

and S0
w = w. Concerning Si, we have S0 = t thus the property is true for

i = 0. Let us suppose that Si is suffix of t, and show it for i + 1. We prove
now that Si+1 is suffix of Si. From the preceding point (item 2), we have
Si = t[ri−|pi|+1−sdec..|t|]. In Contractor, we have Si+1 = t[r′i−|fi|−sdec..|t|]
(line 16). According to equality 3.2, ri− |pi| = ri− |p′i| − |fi|. Because |p′i| ≥ 0,
we obtain ri − |fi| ≥ ri − |pi|. Furthermore r′i > ri. Finally r′i − |fi| > ri − |pi|
and Si+1 is a suffix of Si.

4. According to item 3 in this Property, Si
w is suffix of w. Then Si

w is recognized
by O(s) (Lemma 3.4). According to equality 3.1 with S ′i

w[1] = α, the transition
must exists. That implies that #out(eri

) ≥ 2, and then, by Definition of the
Canonical Factors, we deduce that fi = min(eri

) ∈ Fs.

147

Proceedings of the Prague Stringology Conference ’04

✷

From equality 3.1 and the above Property 3.1 (item 4), we can write:

{

t = t′iS
i (t′i ∈ Σ∗)

w = w′
iS

i
w = w′

ip
′
iS

i+1
w (w′

i ∈ Σ∗)
(3.3)

Before giving more explanations about Contractor, we need to prove the items of
the following property.

Property 3.2
For all i ≥ 0:

1. State(w′
ipi) = State(t′ipi) = State(pi) = eri

.

2. ci is a contraction of t′iS
i (resp. w′

iS
i) by fi. The result of this contraction is

t′ip
′
iS

i+1 (resp. w′
ip

′
iS

i+1 = w′
i+1S

i+1).

Proof (Property 3.2)

1. This is obvious for i = 0 because t′i = w′
i = ǫ. Let us suppose the property is

true for i, and prove this is true for i+1. From Property 3.1 (item 2), we deduce
that the word read in O(s) starting from eri−|pi| to e|s| by using only “main”
transitions (ie. transitions of type ej → ej+1) is Si. According to Property 3.1
(item 3) we deduce:

Si = uSi+1 (u ∈ Σ∗) (3.4)

So, there exists the state eq (q > ri − |pi|) such that the word read from eq

to e|s| using only “main” transitions is Si+1. In particular, q = r′i − |fi| − 1.
We have t′i+1 = t′iu (cf. equality 3.3 and 3.4) and State(t′iu) = eq. Then,
since fi = min(eri

) and since there exists a transition from eri
to er′i

labeled
by α (cf. Property 3.1, item 4), we have State(t′i+1fiα) = State(t′iufiα) =
State(fiα) = er′i

. Furthermore pi+1 = fiαv (v ∈ Σ∗). So we can deduce that
State(t′i+1fiαv) = State(t′i+1pi+1) = State(pi+1).

2. From the equalities 3.1, 3.2 and 3.3, we deduce that:

t = t′iS
i = t′ip

′
ifiS

′i (3.5)

Since Si+1 ∈ Suff(Si), we have Si = uSi+1 (u ∈ Σ+). Hence, we deduce from
equality 3.5 that t′ip

′
ifiS

′i = t′iuS
i+1. According to the Property 3.1 (item 1), we

have t′ip
′
ifiS

′i = t′iufiαu
′ (u′ ∈ Σ∗). Because we have State(t′ip

′
ifi) = State(fi)

and |u| > |p′i| (S ′i[1] 6= α), we can contract t′iS
i by fi; the result is:

t′ip
′
ifiαu

′ = t′ip
′
iS

i+1 (3.6)

Since State(w′
ipi) = State(t′ipi), we can deduce that w′

iS
i = w′

ipiS
′i is contracted

by fi in w′
ip

′
iS

i+1. According to equality 3.3, we deduce that w′
i+1 = w′

ip
′
i. Then

w′
ip

′
iS

i+1 = w′
i+1S

i+1.

✷

148

Combinatorial Characterization of the Language Recognized by Factor and Suffix Oracles

The Property 3.2 shows us that ci (a contraction of t′iS
i by fi) is a contraction

for t and, more interesting, for w′
iS

i. Before concluding about these contractions, we
need to examine the termination of Contractor and its final case. For all i ≥ 0, we
have either |Si

w| > |Si+1
w |, nor |Si

w| = |Si+1
w | and |pi+1| > |pi| (if fi = pi). Since pi > 0,

we deduce that we finally obtain pj = Sj
w (j > i). The following property concerns

the final cases of Contractor.

Property 3.3
Let j ≥ 0 be such that pj = Sj

w. If |Sj
w| 6= |Sj|, then t needs a last contraction. Else

Cj is the final set.

Proof (Property 3.3)
The word obtained up to now with the contraction of Cj is w′

jpjS
′j (cf. Property 3.2,

item 2). If Sj
w = Sj , then S ′j = ǫ and Cj is complete (line 20). According to Prop-

erty 3.2 (item 1), we have State(w′
jpj) = erj

. Thus min(erj
) ∈ Suff(w) (Lemma 3.1)

and min(erj
) ∈ Suff(t) (by Definition of the final state in a Suffix Oracle). Then a

last contraction completes the set of contractions (line 22). ✷

s t

t′i Si

t′i pi S′i

t′i p′i fi S′i

t′i p′i fi fiα

t′i+1
pi+1 S′i+1

t′i+1 Si+1

contraction

w w′
i Si

w

w′
i

pi S′i
w

w′
i p′i fi S′i

w

w′
i p′i fi α

w′
i+1

pi+1 S′i+1
w

w w′
i+1 Si+1

w

Figure 4: Visualization of Contractor on Si and Si
w.

Now, let us see how a step of Contractor works. We consider the ith call of
Contractor, whose inputs are Si = piS

′i, Si
w = piS

′i
w and Ci. The contractions already

used to contract the beginning of t (ie. t′i) into the beginning of w (ie. w′
i) are in

Ci. At this point we consider the longest common prefix (denoted by pi) of Si and
Si

w (pi is both a factor of t and w, Property 3.1). The algorithm has two cases. If
|pi| = |Si

w|, we are in a final case we described above. Else, the prefix pi is not Si
w,

and then we need at least one other contraction until |pi| = |Si
w|. Thus we search for

another suffix Si+1 of t with which we can continue to contract. From Property 3.2,
we have the contraction is the right one, and we continue with the suffix Si+1. When
we reach the end of the process (ie. the end of w), we return the last up-to-date set
Ci+1 and w = Word(t, Ci+1).

149

Proceedings of the Prague Stringology Conference ’04

We can notice that:

1. C is not always minimal. The algorithm could be modified but would become
more difficult to understand. However, the minimality is not an objective here.

2. C is coherent. Let (a, b) and (c, d) be two contractions added successively to C.
We have a < b and c < d because r′i > ri and |s| > ri (cf. lines 14 and 20).
Next, either eri+1

= State(pi+1) = er′i
and so b = c, or eri+1

> er′i
(because we

can have pi+1 = fiαv (α = Si
w[|pi|+ 1]) where v 6= ǫ, and thus b < c.

Lemma 3.7 Given a word s ∈ Σ∗, its Suffix Oracle, a word w ∈ Σ∗ accepted by
SO(s), and t being the longest suffix of s such that w[1] = t[1], then Contractor(t, w, ∅)
returns a set C such that w = Word(t, C).

Proof (Lemma 3.7)
Let j ≥ 0 such that Sj+1

w = pj+1. Then, according to Property 3.2, we deduce that
Cj+1 is a coherent set of contractions of t. Then, we have:

Word(t, Cj+1) = w′
j+1S

j+1 = w′
j+1S

j+1
w u = w′

j+1pj+1u (u ∈ Σ∗)

because pj+1 is prefix of Sj+1. If u = ǫ, we have Word(t, Cj+1) = w (equality 3.3).
Else (cf. Property 3.3) a ultimate contraction cj+1 contracts w′

j+1S
j+1
w u by fj+1 in

w′
j+1S

j+1
w = w = Word(t, Cj+1 ∪ {cj+1}).

Finally Contractor provide a set C such that w = Word(t, C). ✷

The following two theorems are the main purpose of this paper.

Theorem 3.1 Exactly all the suffixes of the words from E(s) are recognized by the
Suffix Oracle of s .

Proof (Theorem 3.1)
‘⇒’: Each suffix of a word from E(s) is recognized by the Suffix Oracle of s.
According to Lemma 3.4, if w is accepted by SO(s), then each suffix of w is also
accepted by SO(s), so we only need to prove that each word from E(s) is accepted
by SO(s).
Let C ∈ C∗s be a set of contractions applicable to s. Let us build w = Word(s, C), and
show that w is accepted by SO(s). Let Ci be the set of the first i contractions of C
(chosen without loss of generality by ascending order over the positions), (xj , yj) be
the jth contraction, and fj ∈ Fs the Canonical Factor used by (xj, yj) (1 ≤ j ≤ i).
We note wj = Word(s, Cj). The property (P) to check is that wi is accepted by
SO(s). Because w0 = s, the property (P) is true for i = 0. Let us suppose that it is
true for i, and show that (P) is true for i+ 1. We have:

{

wi = s[1..x1 − 1] s[y1..x2 − 1] . . . s[yi..|s|]
s[yi..yi + |fi| − 1] = fi

By Definition of the Canonical Factors, fi+1 does not occur in s before the position
xi+1 (xi+1 > yi). Thus we can write, in particular, wi and wi+1 as:
{

wi = v′fi+1u
wi+1 = v′fi+1u

′ with

{

v′ = s[1..x1 − 1]s[y1..x2 − 1] . . . s[yi..xi+1 − 1]
fi+1u = u′′fi+1u

′ (u′′ ∈ Σ+)

150

Combinatorial Characterization of the Language Recognized by Factor and Suffix Oracles

Because the contraction concerns (xi+1, yi+1), then we also have |s|− |fi+1u|+1 =
xi+1 and |s|−|fi+1u

′|+1 = yi+1. This is true because the contractions are in ascending
order, so the word s is not yet modified after the positions xi+1 and yi+1 (hence fi+1u
and fi+1u

′ are suffixes of s). Let q be the state of SO(s) such that q = State(fi+1).
According to the Lemma 3.5:

State(v′fi+1) = q (3.7)

Furthermore, fi+1u
′ is a suffix of s, so it is necessary recognized by SO(s). This

requires to pass through the state q when the word fi+1u
′ is read in SO(s). Thus,

starting from q, we can read u′, and reach a final state. So, according to equality 3.7,
wi+1 = v′fi+1u

′ is accepted by SO(s). To conclude, we just showed that wi is rec-
ognized by SO(s), for all i ≤ |C|. Finally, Lemma 3.4 allows to conclude that each
suffix of a word of E(s) is recognized by SO(s).

‘⇐’: Each word recognized by the Suffix Oracle of s is suffix of a word from E(s).
Let w be a word accepted by the Suffix Oracle of s, and t be the longest suffix of
s (s = s′t) such that w[1] = t[1]. Then there exists a set C of contractions such that
w = Word(t, C) (Lemma 3.7). Since C ⊆ C∗s,t, there exists a set C′ ⊆ C∗s , obtained
by translating the indexes of C with sdec, such that s′w = Word(s′t, C′). Because
s′w ∈ E(s), we can conclude that each word accepted by SO(s) is a suffix of a word
from E(s). ✷

On the basis of this previous result, we can give a similar theorem, which is
available for the Factor Oracle instead of being available for the Suffix Oracle.

Theorem 3.2 Exactly all the factors of the words from E(s) are recognized by the
Factor Oracle of s .

Proof (Theorem 3.2)
‘⇒’: Each factor m of a word from E(s) is recognized by the Factor Oracle of s.
Let SO(s) be the Suffix Oracle of s, and u ∈ E(s) be such that m is prefix of a suffix
of u, denoted by mv (v ∈ Σ∗). Then mv is accepted by SO(s) (cf. Theorem 3.1),
thus there exists a single path (e0 → ex1 → . . . → ex|m|+|v|

) in SO(s) that recognizes
mv. Therefore, there exists a path (e0 → ex1 → . . . → ex|m|

) (with ex|m|
final) that

recognizes m.

‘⇐’: Each word m recognized by the Factor Oracle of s is factor of a word from E(s).
Let SO(s) be the Suffix Oracle of s. If m is recognized by SO(s) then m is a suffix of
a word of E(s) (cf. Theorem 3.1). Let us suppose that m is not recognized by SO(s),
then m is recognized by FO(s) in the state ex|m|

(not final in SO(s)). By construction,
ex|m|

∈ {ek|0 ≤ k ≤ |s|}, the set of the states of FO(s), with (e0 → e1 → . . . → e|s|)
the path that accepts the word s itself (with e|s|, among others, final in SO(s)). Thus,
there exits a path from ex|m|

to e|s| in SO(s). So, m is prefix of a word recognized by
SO(s). That implies that m is prefix of a suffix of some u ∈ E(s). Therefore, m is a
factor of a word of E(s). ✷

4 Properties upon Oracles & Future Works

In the conclusion of their article, Cleophas & al. [11] show that the Oracle is not
minimal in number of transitions among the set of homogeneous automata.

151

Proceedings of the Prague Stringology Conference ’04

Furthermore, if we consider the set of homogeneous automata recognizing at least
all the factors (resp. suffixes) of s, having the same number of states and at most the
same number of transitions than the Factor (resp. Suffix) Oracle, we show that the
Oracle is not minimal on the number of accepted words. We can see that the Oracle
of axttyabcdeatzattwu (cf. figure 5) has 35 transitions. The Factor Oracle accepts
247 words and the Suffix Oracle accepts 39 words, though there exists another ho-
mogeneous automaton (cf. figure 6) recognizing at least all the factors (resp. suffixes)
of axttyabcdeatzattwu, and having only 34 transitions. The “Factor” version of this
automaton recognizes only 236 words and its “Suffix” version accepts only 30 words.
This example shows that the Oracle is not minimal in number of accepted words
among the set of homogeneous automata having the same number of states and less

transitions.

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18a

x
t

y

b
c

d
e

z

w
u

x

b

t

t t
y

z

w

y

w

a b c d e a t z

t

a t t w u

Figure 5: Factor Oracle of the word axttyabcdeatzattwu.

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18a

x
t

y

b
c

d
e

z

w
u

x

b

t

t t
y

z

w

y

w

a b c d e a t z a t t w u

Figure 6: This automaton (considering only the continuous lines) accepts at least
all the factors of the word axttyabcdeatzattwu. The bold transition is the only one
which is not present in the Factor Oracle of this word (cf. figure 5) though the two
dotted ones are present in the Factor Oracle, but not in this automaton.

We observe that, in some cases, the number of words accepted by Oracles does not
allow to give confidence to this structure when it is used for detect factors or suffixes
of a word. Because, even if the number of false positive can sometimes be null
(eg. aaaaaa . . .), it can also be exponential. Indeed, we can build a word s such that
each subset of C∗s is coherent and minimal. For example: s = aabbccddee The set
C∗s of contractions which are available on such a word is {(1, 2), (3, 4), (5, 6), . . . , (|s|−
1, |s|)}. If we consider any (non-empty) subset C ⊆ (C∗s \ {(1, 2)}) of contractions, it
is easy to notice that Word(s, C) /∈ Fact(s). Besides, all the words obtained from
such subsets are pairwise different.

152

Combinatorial Characterization of the Language Recognized by Factor and Suffix Oracles

The number of these subsets is:

|C∗
s |−1
∑

i=1

(|C∗s | − 1

i

)

=

|s|
2
−1

∑

i=1

(|s|
2
− 1

i

)

= 2
|s|
2
−1 − 1

So the number of words that will be accepted by the Oracles but are not factor/suffix
of s is O

(

2|s|
)

.

In order to better benefit from this structure, it has to be improved, or to be
slightly modified. However, it could be useful for future works to improve the knowl-
edges about the Oracle structure. Effectively, it could be interesting to have either an
empirical nor a statistical estimation of the accuracy (time and quality of the results)
of the Oracle when substituted to Tries or Suffix Trees in algorithms.

References

[1] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: computer science
and computational biology. Cambridge University Press, 1997.

[2] Anselm Blumer, Janet Blumer, David Haussler, Andrzej Ehrenfeucht, M. T.
Chen, and Joel Seiferas. The smallest automaton recognizing the subwords of a
text. Theorical Computer Science, 40(1):31–55, 1985.

[3] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995.

[4] Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. Oracle des facteurs,
Oracle des Suffixes. Technical Report 99-08, Institut Gaspard-Monge, Université
de Marne-la-Vallée, 1999.

[5] Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. Factor Oracle: A
New Structure for Pattern Matching. In Conference on Current Trends in Theory
and Practice of Informatics, pages 295–310, 1999.

[6] Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. Efficient Experi-
mental String Matching by Weak Factor Recognition. In Proceedings of the 12th

conference on Combinatorial Pattern Matching, volume 2089 of Lecture Notes in
Computer Science, pages 51–72. Springer-Verlag, 2001.

[7] Arnaud Lefebvre and Thierry Lecroq. Computing repeated factors with a fac-
tor oracle. In L. Brankovic and J. Ryan, editors, Proceedings of the 11th Aus-
tralasian Workshop On Combinatorial Algorithms, pages 145–158, Hunter Valley,
Australia, 2000.

[8] Arnaud Lefebvre and Thierry Lecroq. A heuristic for computing repeats with
a factor oracle: application to biological sequences. International Journal of
Computer Mathematics, 79(12):1303–1315, 2002.

[9] Arnaud Lefebvre, Thierry Lecroq, Hélène Dauchel, and Joël Alexandre. FOR-
Repeats: detects repeats on entire chromosomes and between genomes. Bioin-
formatics, 19(3):319–326, 2003.

153

Proceedings of the Prague Stringology Conference ’04

[10] Arnaud Lefebvre and Thierry Lecroq. Compror: on-line lossless data compression
with a factor oracle. Information Processing Letters, 83(1):1–6, 2002.

[11] Loek Cleophas, Gerard Zwaan, and Bruce Watson. Constructing Factor Oracles.
In Proceedings of the 3rd Prague Stringology Conference, 2003.

154

A Framework for the Dynamic Implementation

of Finite Automata for Performance Enhancement

Ernest Ketcha Ngassam1, Bruce W. Watson2, and Derrick G. Kourie2

1 School of Computing, University of South Africa,
Pretoria 0003, South Africa

2 Department of Computer Science, University of Pretoria,
Pretoria 0002, South Africa

e-mail: ngassek@unisa.ac.za, {bwatson, dkourie}@cs.up.ac.za

Abstract. The aim of this work is to provide a model for the dynamic im-
plementation of finite automata for enhanced performance. Investigations have
shown that hardcoded finite automata outperforms the traditional table-driven
implementation up to some threshold. Moreover, the kind of string being recog-
nized plays a major role in the overall processing speed of the string recognizer.
Various experiments are depicted to show when the advantages of using hard-
coding as basis for implementing finite automata (instead of using the classical
table-driven approach) become manifest. The model, a dynamic algorithm that
combines both hardcoding and table-driven is introduced.

Keywords: Finite Automata, Hardcoding, Performance

1 Introduction

To the best of our knowledge, hardcoding of finite automata (FAs) in the context of
right linear languages was first suggested by Knuth et al in [Kmp77]. An intensive in-
vestigation of the behavior of hardcoded FAs in comparison with the traditional table-
driven approach was suggested by Ketcha in [Ket03]. A conclusion of Ketcha’s work
was that hardcoding outperforms table-driven up to some threshold. This threshold is
clearly dependent on such factors as processor configuration, alphabet size and num-
ber of states of the FA under consideration. In fact, for the hardware configuration
used in Ketcha’s experiments, it has been found that a threshold at about 360 states
is relatively robust for alphabet sizes in the range of 40 to 80. For smaller alphabet
sizes it is less than 1000 states. In principle, therefore, experimentation can be used
to derive a set of rules to determine an estimate of the breakeven point between these
two implementation strategies.

In this paper, we propose the notion of dynamic implementation of FAs to enhance
performance. Table-driven (TD) implementation of large FAs often implies some la-
tency due to insufficient memory. The problem is then to design and implement an
algorithm that takes into consideration the size of the automaton upon which the rec-
ognizer is based and also the kind of string being tested for acceptance. The end result

155

Proceedings of the Prague Stringology Conference ’04

of such an algorithm is to provide a flexible and powerful tool that takes advantage
of the strengths of both table-driven and hardcoded techniques for the construction
of optimal recognizers. This paper introduces the idea of dynamic Implementation of
FAs for Performance (DIFAP). Unlike the traditional statically based approach that
always yields to some latencies, DIFAP aims to provide a highly flexible framework
enabling implementers to gain considerable time. Of course, factors such as hardware
and operating system capabilities may constitute a bottleneck for efficient implemen-
tation of FAs. However, in this preliminary work, we only consider the kind of string
as well as the automaton size in the design of DIFAP.

Using the gnu C++ compiler and Netwide Assembler (NASM) to encode table-
driven and hardcoded algorithms respectively, we perform various experiments in
order to capture the advantage of using either approach under specific considerations.
All the experiments were conducted under the Linux operating system on an Intel
Pentium 4 with 512 MB of RAM.

The structure of the remaining part of this paper is as follows: in Section 2, we re-
port on the performance of randomly generated FAs over randomly generated strings.
This illustrates that the threshold of efficiency of hardcoding over table-driven imple-
mentation is relatively independent of the alphabet size. Section 3 investigates some
string patterns where hardcoding implementation always outperforms the table-driven
algorithm. In Section 4, we introduce the design of DIFAP as the basic algorithm for
efficient implementation of FAs under any circumstances. Section 5 provides a con-
clusion of the work and points to future directions to be taken in further investigating
and implementing DIFAP.

2 Experiments based on random strings

Experiments have been conducted, based on the random generation of 100 different
automata of size varying between 10 and 1000 states. For each such group of automata
generated, the alphabet size under consideration was respectively, 10, 15, 20, 25, 30,
35, 40, 45, and 50 symbols. For each automaton of size n that was generated, a
random accepting string of size n−1 was also generated. (We only relied on accepting
strings instead of rejecting strings since the latter are most likely to require less time
to be processed by the recognizer.) This randomly generated string was processed
50 times. The minimum, maximum and average time in clock cycles (ccs) to process
the string over the 50 processing cycles were collected. In order to prevent side
effects due to operating system and CPU overheads, the data relating to minimum
processing times was considered to be the most accurate metric upon which further
experimentation should be based. This minimum time metric was then divided by its
number of symbols processed in order to estimate the time required to accept a single
symbol. Such an approach was first suggested in [Kwk03a]. The collected data was
then plotted to visualize the effect of the recognizer on randomly generated strings.

Figure 1 depicts the graphs for 10 and 50 symbols alphabet related to the table-
driven experiments. The figure clearly shows that as the alphabet size grows, the
processing time per symbol grows as well.

The hardcoded experimental results are depicted in figure 2. The generated hard-
code (HC) relied on the approach suggested in [Kwk03a] using a jump table to hard-
code each entry of the transition matrix. The hardcode is structured in blocks of

156

A Framework for the Dynamic Implementation of Finite Automata for. . .

0

10

20

30

40

50

60

10 60 110 160 210 260 310 360 410 460 510 560 610 660 710 760 810 860 910 960

Number of states

M
in

im
u

m
 t

im
e

in
 c

cs 50 alphabet symbols

10 alphabet symbols

Figure 1: Performance based on table-driven experiments using random strings

assembly code, each block relating to a given state. These blocks are arranged con-
tiguously in memory and in previous hardcode experiments, the order of the blocks
corresponded to the order of rows in the transition table as shown in Source code 1.
In those experiments, the strings tested were such that the flow of control through
the assembly code caused jumps between contiguous blocks. Here, the same strings
were used. However, to simulate the effect of a “random” string of a given length, the
blocks were arranged in memory in a random order, so that jumps now take place to
random places in memory1. The plotted graphs clearly show that for an automaton
based on a 10 symbols alphabet of size 1000 states, the average time required to
accept a symbol is about 70 ccs. This time is somewhat worse for an automaton of
the same size based on 50 symbols alphabet (approximately 350 ccs). A plausible
explanation for this is that the time is related to cache misses, due to the growth in
the code size as the alphabet size grows, since the number of instructions required to
encode the jump table becomes considerably larger. However, in the graphs, we can
observe that in the region of 10 to 360 states, the average processing speed is always
less than 50 ccs, irrespective of the number of alphabet symbols under consideration.
It appears that in this range, the size of the code can still fit into the hardware’s
cache memory, and therefore results in efficient processing.

Source-code 1 Extract hardcoded implementation of a recognizer using NASM

asm_main:

...

mov edx, string

STATE_0:

;test if more symbol to process

1The notion of a random or average string is somewhat ill-defined. Nevertheless, the time taken
to recognize such strings characterizes the hardcode behaviour for input that lies somewhere between
best and worst case.

157

Proceedings of the Prague Stringology Conference ’04

0

50

100

150

200

250

300

350

10 60 110 160 210 260 310 360 410 460 510 560 610 660 710 760 810 860 910 960

Number of states

M
in

im
u

m
 t

im
e

in
 c

cs

50 alphabet symbols

10 alphabet symbols

Figure 2: Performance based on hardcoded experiments using random strings

jne ACCEPT ; no more symbol to process

;get the current symbol from the string

mov ebx, edx

inc edx ; points to the next symbol for further processing

; get the state where the symbol transits to

shl ebx, 2

mov esi, edx

add esi, ebx

mov ebx, [esi]

shl ebx,2

mov esi,ST_0 ; Label to access appropriate transition entry

add esi,ebx ; related to the symbol being tested

jmp [esi] ; jump to the appropriate entry of the transition table

ST_0_TR0: ; transition for the first symbol of the alphabet

jmp STATE_1

ST_0_TR1: ; transition for the second symbol of the alphabet

jmp STATE_1

ST_0_TR_2:

jmp reject ; no transition (rejecting symbol)

...

STATE_1:

...

REJECT:

;do action reject

ACCEPT:

;do action accept

In order to more concisely observe the threshold of efficiency of one approach over
another, we subtracted each table-driven data item from the corresponding data item
of its hardcoded counterpart. This allowed us to capture the extent to which hardcode
outperforms table-driven, or otherwise. Figure 3 shows the resulting plotted graphs.
It clearly shows that for each automaton of a given alphabet size, the threshold of
efficiency of the hardcoded version over the table-driven version is in the region of
about 360 states. Such a result suggests that for any automaton based on any number
of alphabet symbols in the range tested, the hardcode implementation is, on average,
faster than the table-driven implementation if the number of states that make up the

158

A Framework for the Dynamic Implementation of Finite Automata for. . .

-20

-10

0

10

20

30

40

50

10 360

Number of states

M
in

im
um

 ti
m

e
in

 c
cs

HC-TD 50 symbols alphabet

HC-TD 10 symbols alphabet

Figure 3: Performance comparison between hardcode and table-driven

automaton is less than 360. This is apparently due to the fact that, in this range of
states, the hardcode is (mostly) in cache at run-time whereas table-driven processing
is subject to random memory accesses. Above about 360 states, hardcode instructions
from the main memory have to be accessed more frequently, and consequently there
is a degradation in the average per state processing speed of the hardcode recognizer.
The rate at which cache misses occur appears to be quite heavily dependent on the
alphabet size. There is also a gradual degradation in the average per state processing
speed of the table-driven recognizer. The behaviour in the table-driven is slightly
more stable and seemingly less critically dependent on alphabet size. The table-
driven code fits comfortably into cache, and so the issue of cache misses at the code
level does not arise. The degradation in performance is therefore primarily due to the
effect of data cache misses, the rate of which increases as the table size grows.

These observations allow us to project the worst-case scenarios for the two imple-
mentation strategies. These will occur when each and every state transition results
in a cache miss. In the case of the table-driven recognizer, this will be a data cache
miss, and in the case of the hardcode recognizer – a code cache miss. It is not obvious
how experiments could be constructed to simulate this precise behaviour. However,
it is not necessary to do so, for the above experiments already indicate the relative
merits of the two approaches when a high rate of cache misses occur: the table-driven
recognizer is then faster.

An interesting consequence of such an observation is the fact that, using the
present threshold of efficiency, we can explore within that region various string pat-
terns that may be subject to high hardcoded efficiency without having to restrict
ourselves to the alphabet size and the size of the automaton being processed. The
next section discusses such strings.

3 Experiments based on string patterns

In this section, we present two type of strings that may be subject to some efficient
processing when hardcoded implementation is chosen as the basis for implementing

159

Proceedings of the Prague Stringology Conference ’04

FAs. In [Kwk03a], we showed that for a single state of some randomly generated
automaton, hardcoding using jump table outperformed the traditional table-driven
implementation. In the subsection below, we extend the experiment to an accepting
string that simply remains on a single state during the entire recognition process.
The second case considers the conditions under which hardcode will continue to out-
perform the table driven version, even if the strings become relatively long. This
is inferred from the results obtained from the next subsection and from the results
relating to the threshold region (up to which hardcoded outperforms table-driven
processing).

3.1 Strings that keep the FA in a single state

Let consider the automaton modelled in Figure 4 having 5 states with two accepting
states 3 and 4. The strings abab and cdef of size 4 are both part of the language
modelled by the automaton. In theory, the total time required to accept or reject each
string should be roughly the same. However, we notice that for the string abab, once
the device reads the first symbol a, it jumps to the final state 3 and remains there until
the entire string is processed. On the other hand, the recognizer will transverse several
different states in order to accept the string cdef. This observation indicates that in
practice, the time required to accept strings of same size with different patterns may
differ considerably from one another. The experiment randomly generated various

0 1 2 3 4
c

a

d e f

a,b

Figure 4: A state diagram that accepts the strings abab and cdef

automata of sizes between 10 and 1000 states using respectively 10, 15, 20, 25, 30,
35, 40, 45, and 50 symbols alphabet. Figure 5 depicts the difference in time between
the table-driven and hardcoded implementation. It clearly shows that hardcode is
consistently about 8 ccs faster than the table-driven implementation.

These results illustrate the fact that for strings following the pattern such as the
one for abab above, the processor has sufficient space in its cache to hold the code
relating to a single state. Since it always visits the same state over and over, no cache
misses occur (neither for the hardcoded, nor the table-driven version) and there is a
consequent high processing speed. It should be specifically noted that there are also
no data cache misses in the the table-driven implementation. The scenario therefore
represents the very best case behaviour for both the table driven and the hardcode
implementations. It demonstrates that hardcode outperforms table-driven in this
best case context.

The next experiment confirms that when long term behaviour tends towards best
case behaviour, then the benefits of the hardcoded approach become increasingly
apparent. This case is depicted in the next subsection.

160

A Framework for the Dynamic Implementation of Finite Automata for. . .

Figure 5: Comparative performance based on recurrent access on a single state

3.2 Strings that drive the FA randomly through a limited
number of states

Consider the automaton modelled in figure 6. State t depicts some “sink state” in
which the FA will remain after some other arbitrary set of states within the automaton
have been visited. The state t is also assumed to be an accepting state. Based on the
previous experiment, we would expect that the longer the FA remained in state t, the
more the hardcoded implementation would enjoy an advantage over the table-driven
version.

To verify this observation, and as a sort of sanity check on our results up to
this point, hardcoded and table-driven implementations were set up to test strings of
length n−1 in FAs with n states. The experiment was designed so that the behaviour
in processing the first 300 states was random – in the same sense as previously de-
scribed. However, thereafter the FA remains in the same state – i.e. the best case
scenario prevails.

0 1 2 t n-1

Figure 6: A state diagram that accepts a string that visits arbitrary states and remains
on state t for some time

Figure 7 depicts the graphs obtained from the experiment. Unsurprisingly, it
shows that hardcoding generally outperforms the table-driven implementation. How-
ever, there is also a suggestion in the data that in the longer term, the asymptotic
improvement tends towards the 8ccs improvement observed in figure 5.

Of course, many more experiments similar to those described above could be
run. An overall and general observation in regard to all these experiments is that
they enable us to identify various ways in which the hardcoded implementation of

161

Proceedings of the Prague Stringology Conference ’04

Figure 7: Comparison based on limited access on states

FAs may outperform the traditional table-driven implementation. The next section
considers how such information could be used to capitalize on the advantages offered
by both approaches.

4 A Preliminary Dynamic Algorithm

The experiments depicted in the previous sections clearly show that the efficiency of
a string recognizer is highly dependent on the nature of the string being recognized.
This suggests that if likely patterns of strings to be input are known in advance –
at least in some probabilistic sense – then it may be possible to put in place a time
optimizing mechanism to carry out the string recognition. Consequently, the idea
of dynamically adapting the implementation strategy of the FA according to the ex-
pected input (or partially inspected) string may be considered. We use the acronym
DIFAP to refer to this notion, designating Dynamic Implementation of FAs for Per-
formance enhancement. Figure 8 depicts the overall design of a DIFAP system. When
it is first invoked, the implementer provides the specification of the automaton to be
used, regardless the type of string to be recognized. DIFAP then analyzes the spec-
ification and choose the appropriate way of implementing the automaton depending
of the size of the derived automaton. In terms of the currently available data, if the
size is less than 360 states, this means that hardcoding is likely to be the optimal
approach in representing the automaton irrespective of the kind of string to be tested.
On the other hand, if the size of the automaton is above 360 states, as suggested in
Section 2, a hardcode implementation might be indicated if long term behaviour is
likely to tend towards best case behaviour, a table-driven implementation will be the
appropriate choice in the absence of such information. However, in the latter case,
DIFAP relies on the kind of string received as input to adapt itself progressively to
an implementation approach that is optimal in some sense (e.g. optimal in relation
to the history of strings processed to date), resulting in improved average processing
speed.

162

A Framework for the Dynamic Implementation of Finite Automata for. . .

The figure indicates that for bigger automata size, a knowledge table (KT) is first
checked. At this stage, we do not prescribe what information should be kept in the
KT. We merely observe that the current input string could, in principle, undergo
some preliminary scan to identify whether its overall structure conforms to some set
of general patterns that favour hardcode over table-driven. If that is not the case,
the table-driven version of the automaton specification is generated and is used by
the recognizer to check whether the string is part of the language described by the
FA or not. Otherwise, the hardcoded version of the FA’s specification is generated
and used for recognition.

Not indicated in the figure is the possibility of post-processing: after a string has
been tested, the string and the test outcome could be used to update information
in the KT. As a very simple example, we might decide to concretely implement the
KT as a table of the FA’s states, in which a count is kept of the number of times a
state has been visited. This information could be used to rearrange the order of rows
(which represent states) in the transition matrix used by the table-driven approach, in
the hope of minimizing data cache misses when this implementation strategy is used.
Alternatively, the same information could be used to dictate the blocks of hardcode
that should preferentially be loaded into cache, in circumstances in which hardcoding
is indicated. However, the foregoing should not be construed as the only way in which
the KT can be implemented. We conjecture that there are many creative possibilities
within this broad model that merit deeper investigation in the future.

One of the advantage of using such a dynamic algorithm is that the structure of
the automaton does not always remains in the system after processing. Each au-
tomaton is always regenerated into its executable when the system is invoked. The
only structure that permanently remains in the system is the algebraic specification
of the automaton. This results therefore in some degree of minimization of memory
load for automata of considerable size. However, there is no need to always regen-
erate automata of size less than 360 states since they will always be implemented in
hardcode. That is the reason why in the figure no deletion of the generated hardcode
is indicated when the “size less than 360” path is followed.

In an implementation of DIFAP, attention should be given to the following parts
of the algorithm to minimize latencies:

� Time to generate the recognizer: Unless directly implemented by hand, any
FA-related problem always requires a formal specification of the grammar that
describes the automaton before its corresponding automaton is encoded. This
is a general problem, and one specific to DIFAP. The DIFAP implementation
could therefore use generator techniques similar to those used in efficient code
generator tools such as YACC2 which as been proven to be amongst the best
tool available to create directly executable parsers. Unlike parsers, DIFAP’s
code generator will generate directly executable string recognizers.

� Time taken to check the knowledge table: One should take care to ensure that the
matter of checking the KT does not degenerate into a time-inefficient exercise
that negates any benefit from using the optimal string recognition strategy.
Efficient algorithms should be devised that take minimal time to access the
table and to chose the appropriate path to follow. This part of DIFAP may

2Yet Another Compilers Compiler

163

Proceedings of the Prague Stringology Conference ’04

FA specification

Size > 360?

Input string

Check KT

Found?

Gen hardcode

Output result

Delete hardcode

Gen table-driven

Update KT

Output result

Delete table-driven

Gen Hardcode

Input String

Output Result

Yes

No

Yes
No

Figure 8: A Preliminary design of DIFAP

constitute a bottleneck. Intensive investigations will be made to provide an
efficient approach to access the table and retrieve appropriate information.

� Time required to update the knowledge table: Although the precise nature and
scope of the KT have not been identified here, it is envisaged that it will, itself,
be a dynamic structure, changing over time in relation to the history of strings
analyzed to date. However, there does not appear to be any reason for adapting
the KT prior to processing the input string. Its update is something that can
happen at a post-processing stage, and does not appear to be time-critical.

4.1 Applications of DIFAP

Finite automata are used to model several computational problems. Many of those
problems are currently solved using the traditional table-driven approach. However,

164

A Framework for the Dynamic Implementation of Finite Automata for. . .

it might be of great advantage to use the DIFAP model in order to overcome some
speed latencies. The following is a high level survey of various kinds of problem that
could benefit from the DIFAP approach:

� Compiler construction: Lexical analysis is the part of the compiler that deals
with FAs. A lexical analyzer generator such as LEX usually generates table-
driven code and uses it to scan the current identifier being converted into token.
However, the automaton generated is often of relatively small size. This means
that, instead of always using table-driven implementation, the compiler imple-
mentor could opt for the hardcoding implementation that might yield faster
processing.

� String Pattern Matching: Even though a lot of work as been done to solve prob-
lems of exact and approximate string keyword pattern matching using efficient
algorithms (e.g. [Wat95]) their practical implementation is sometimes very in-
efficient according to [Nr02]. In some circumstances, it might be beneficial to
solve the problem of online string matching using hardcoding. Since many prob-
lems deal with a large amount of text, constructing a single automaton based on
the text might be highly inefficient. Nonetheless, the text can be decomposed
into small block on which we can derive its corresponding hardcode in order to
achieve better processing.

� Cellular automata Implementing cellular automata to solve computational ge-
netic problems requires, in general, small blocks of automata. Therefore, hard-
coding might be of value in improving the processing speed of some of these
problem where speed is a major factor.

� Network Intrusion Detection: In general, the size of the automaton generated
depends on the variety of traffic to which the network is subject. Since Network
Intrusion Detection algorithms can also construct FAs on the fly, DIFAP appears
to be a suitable approach to adopt in such problems: the generated automaton
will then be the one deemed to be most efficient in the given context.

� Other FA application: There are many other computational problems that rely
on FA processing, where DIFAP could be of potential value. Aspects of nat-
ural language processing come time mind. However, it is not our intention to
exhaustively enumerate all potential domains of application.

The foregoing indicates that there are indeed a significant number of problem
domains that make the further elaboration of the DIFAP model a worthwhile en-
deavour. It is known that in many of these domains, efficient solutions have already
been established. However, since DIFAP is a dynamic framework, we aim at improv-
ing the existing results using the technique. A investigation into each of the domain
is therefore of concern but is out of the scope of this introductory work.

5 Conclusion and Future Work

In this paper, we have shown that the processing speed of a string recognizer not
only depends on the length of the string being recognized but also on the kind of the

165

Proceedings of the Prague Stringology Conference ’04

string under consideration. Alternative ways of implementing finite automata without
relying on the traditional table-driven approach has been revisited after some intensive
work done by Ketcha et al in [Kwk03a, Kwk03b, Ket03]. Ketcha’s work showed that
hardcoding of FAs might be a better ways of implementing FAs up to some threshold
– approximately 360 states, in the context of the hardware and alphabet size used in
those experiments. The various investigations performed has suggested the notion of
Dynamic Implementation of Finite Automata for Performance. The DIFAP concept,
provides automata implementers with an algorithm that is flexible enough to take
advantage of both hardware and software considerations of the environment in which
the string recognizer is being processed. The actual design of DIFAP relies on the
constraints related to the automaton’s structure as well as the kinds of string being
processed. In the near future an implementation of DIFAP is envisaged, and various
experiments will be conducted in order to characterize its efficiency. Other DIFAP
issues not fully elaborated above will be to dynamically decide on matters such as
the use of optimal data structures for particular kinds of FAs (e.g. linked list would
appear to be a better way of representative very sparse transition functions, rather
than a conventional two-dimensional matrix). Other DIFAP considerations include
dynamic decisions about when to use stretched or jammed automata [Nwk03], and
whether hybrid implementations that combine aspects of hardcode into a table driven
implementation (or vice-versa) would be beneficial. However, these are all currently
regarded as matters for future research. The final goal of DIFAP will be to design
domain specific algorithms so that each problem can be solved on a highly efficient
way.

References

[Kim02] Paul Kimmel. The Visual Basic .Net Developper’s Book. Addison-Wesley,
2003.

[Ket03] E. Ketcha Ngassam. Hardcoding Finite Automata. MSC Dissertation. Uni-
versity of Pretoria, 2003.

[Kmp77] D. E Knuth and J.H Morris, Jr and V. R. Pratt. Fast Pattern Matching in
Strings. SIAM J. Comput. Volume 6, 323-350, 1977.

[Kwk03a] E. Ketcha Ngassam, Bruce. W. Watson, and Derrick. G. Kourie, Prelim-
inary Experiments in Hardcoding Finite Automata, Poster paper, CIAA, Santa
Barbara, 299-300, September 2003.

[Kwk03b] E. Ketcha Ngassam, Bruce. W. Watson, and Derrick. G. Kourie, Hardcod-
ing Finite State Automata Processing, SAICSIT, Johannesburg, 111-121, Septem-
ber 2003.

[Nwk03] Noud De Beijer, Bruce W. Watson and Derrick G. Kourie, Stretching and
Jamming of Automata, SAICIST, Johannesburg, 198-207, September 2003.

[Nr02] Gonzalo Navarro, and Mathieu Raffinot. Flexible Pattern Matching In String:
Practical on-line search for texts and biological sequences. Cambridge University
Press 2002.

166

A Framework for the Dynamic Implementation of Finite Automata for. . .

[Wat95] Bruce W. Watson. Taxonomies and Toolkits of Regular Languages Algo-
rithms. PhD Thesis. Technical University of Eindhoven, 1995.

167

Arithmetic Coding in Parallel

Jan Šupol and Bořivoj Melichar

Department of Computer Science & Engineering
Faculty of Electrical Engineering

Czech Technical University
Karlovo nám. 13, 121 35 Prague 2

e-mail: {supolj,melichar}@fel.cvut.cz

Abstract. We present a cost optimal parallel algorithm for the computation
of arithmetic coding. We solve the problem in O(log n) time using n/log n
processors on EREW PRAM. This leads to O(n) total cost.

Keywords: arithmetic coding, NC algorithm, EREW PRAM, PPS, parallel
text compression.

1 Introduction

There is still a need for data coding. The growing demand for network communication
and for storage of data signals from space are not the only examples of coding needs.
Many algorithms have been developed for text compression.

One of these is arithmetic coding [Mo98, Wi87], which is more efficient than
the widely known Huffman algorithm [Hu52]. The latter rarely produces the best
variable-size code, the arithmetic coding overcomes this problem. Arithmetic coding
can be generated inO(n) time sequentially, and we present a well scalable NC parallel
algorithm that generates the code in O(log n) time on EREW PRAM with n/log n
processors. This leads to O(n) total cost and a cost optimal algorithm.

Despite the large number of papers on the parallel Huffman algorithm (the last
known [Lb99] is work optimal) there are only a few papers on parallel arithmetic
coding. Most of these are based on a quasi-arithmetic coding [Ho92]. We know only
two exceptions. The first [Yo98] is based on an N-processor hypercube and is not
cost optimal. The second [Ji94] is mainly focused on the hardware implementation.
Authors expected the processing speed of their tree-based parallel structure eight
times as high as the speed of a sequential coder. This is still O(n) parallel time.

This paper is organized as follows. Section 2 provides a description of the sequen-
tial arithmetic coding algorithm. Section 3 presents some basic definitions. Section 4
describes the parallel prefix computation needed by our algorithm. Section 5 presents
our parallel arithmetic coding algorithm. Section 6 describes the time complexity of
our algorithm. Section 7 contains our conclusion. Note that this paper does not
mention the decoding process.

168

Arithmetic Coding in Parallel

2 Sequential Arithmetic Coding

First we review the sequential algorithm. Let A = [a0, a1, . . . , am−1] be the source al-
phabet containingm symbols and an associated set of frequencies F =[f0, f1, . . . , fm−1]
shows the occurrences of each symbol. Next we compute the array of probabili-
ties R = [r0, r1, . . . , rm−1] such that ri = fi/T where T =

∑m−1
i=0 fi, the array of

high ranges H = [h0, h1, . . . , hm−1] such that hi =
∑i

x=0 rx, the array of low ranges
L = [l0, l1, . . . , lm−1] such that l0 = 0 and li = hi−1, i > 0. Table 1 shows an example.

A F R L H
S 5 5/10=0.5 0.5 1.0
W 1 1/10=0.1 0.4 0.5
I 2 2/10=0.2 0.2 0.4
M 1 1/10=0.1 0.1 0.2
⊔ 1 1/10=0.1 0.0 0.1

Table 1: Frequencies, probabilities and ranges of five symbols.

The string of symbols S = [s0, s1, . . . , sn−1] is encoded as follows. The first charac-
ter s0 can be encoded by a number within an interval [ly, hy) associated to a character
y = s0, y ∈ A. This notation [a, b) means the range of real numbers from a to b, not
including b. Let us define these two bounds as LowRange and HighRange.

As more symbols are input and processed, LowRange and HighRange are updated
according to

LowRangej = LowRangej−1 + (HighRangej−1 − LowRangej−1)× lx,

HighRangej = LowRangej−1 + (HighRangej−1 − LowRangej−1)× hx,

where hx and lx are low and high ranges of new character x ∈ A, LowRange−1 = 0,
HighRange−1 = 1. Table 2 indicates an example for the word “SWISS”.

A L&H The calculation of low and high ranges
S L 0.0 + (1.0− 0.0)×0.5 = 0.5

H 0.0 + (1.0− 0.0)×1.0 = 1.0
W L 0.5 + (1.0− 0.5)×0.4 = 0.70

H 0.5 + (1.0− 0.5)×0.5 = 0.75
I L 0.7 + (0.75− 0.7)×0.2 = 0.71

H 0.7 + (0.75− 0.7)×0.4 = 0.72
S L 0.71 + (0.72− 0.71)×0.5 = 0.715

H 0.71 + (0.72− 0.71)×1.0 = 0.720
S L 0.715 + (0.72− 0.715)×0.5 = 0.7175

H 0.715 + (0.72− 0.715)×1.0 = 0.7200

Table 2: The process of arithmetic encoding.

169

Proceedings of the Prague Stringology Conference ’04

3 Definitions

Our parallel algorithm is designed to run on the Parallel Random Access Machine
(PRAM), which is a very simple synchronous model of the SIMD computer([Le92,
Qu94, Tv94]). PRAM includes many submodels of parallel machines that differ from
each other by conditions of access to the shared memory. Our algorithm works on the
Exclusive Read Exclusive Write (EREW) PRAM model, which means that no two
processors can access the same cell of the shared memory.

We define sequential time SU(n) as the worst time of the best known sequential
algorithm where n is the size of the input data. Parallel time T (n, p) is the time
elapsed from the beginning of a p-processor parallel algorithm solving a problem
instance of size n until the last (slowest) processor finishes the execution.

Consider a synchronous p-processor algorithm A with τ = T (n, p) parallel steps.
Let pi be the number of processors active (working) at step i ∈ {1, 2, . . . , τ} of A.
Then the synchronous parallel work of A is

W (n, p) = T1 + T2 + · · ·+ Tτ .

Parallel cost (also called processor-time product) is defined as

C(n, p) = p× T (n, p).

It is obvious that
SU(n) ≤W (n, p) ≤ C(n, p).

If SU(n) = W (n, p) then the algorithm is work optimal. If SU(n) = C(n, p) then
the algorithm is cost optimal.

The efficiency of the parallel algorithm is defined as

E(n, p) =
SU(n)

C(n, p)
.

Let E0 be the constant such that 0 < E0 < 1. Then isoefficiency function ψ1(p)
is the asymptotically minimum function such that

∀np = Ω(ψ1(p)) : E(np, p) ≥ E0.

Hence, ψ1(p) gives asymptotically the lower bound on the instance size of a prob-
lem that can be solved by p processors with efficiency at least E0.

Scalability is the ability to adapt itself to a changing number of processors or or
to changing size of the input data. Good scalability means that if we want to use
new processors we have to increase the size of our problem only a little. Fast growth
of function ψ1 provides poor scalability.

We say that class NC (Nick’s class) is a set of algorithms that can be computed
with at most polylogarithmic time and with at most a polynomial number of proces-
sors. These algorithms provide a high level of parallelization.

170

Arithmetic Coding in Parallel

4 Parallel Prefix Computation

As far as our parallel algorithm is based on the parallel prefix algorithm we show how
it works. The problem is defined as follows [La80]. Let S = [s0, s1, . . . , sn−1] be the
array of numbers. The prefix problem is to compute all the prefixes of the products

s0 ⊗ s1 ⊗ · · · ⊗ sn−1,

where ⊗ is an associative operation.
Fig. 1 shows the algorithm that assumes n processors p0, p1, . . . , pn−1 and array

M = [m0, m1, . . . , mn−1] of numbers stored in the shared memory. Every processor pi

also has a register yi. From now on we will use EREW PRAM with similar conditions.

for i := 0, 1, . . . , n− 1 do in parallel
yi := M [i];

for j := 0, 1, . . . , ⌈log n⌉ − 1 do sequentially
begin

for i := 2j , 2j + 1, . . . , n− 1 do in parallel
yi := yi ⊗M [i − 2j];

for i := 2j , 2j + 1, . . . , n− 1 do in parallel
M [i] = yi;

end

Figure 1: Parallel prefix algorithm.

Fig. 2 indicates a parallel prefix algorithm computing an array of 7 numbers with
the associative operation of sum. This is then called the parallel prefix sum.

Here we show the parallel time T (n, p) of the parallel prefix computation on EREW
PRAM. First we suppose that p < n. Each processor simulates n/p processors. This
sequentially sums n/p numbers. This takes at most 4n/p steps (read first number,
read second number, sum and write the result). After that the processors run the
parallel prefix algorithm in time O(log p). So the parallel time, cost, efficiency and
function ψ1 take

T (n, p) = O(n/p+ log p),

C(n, p) = O(n+ p log p),

E(n, p) = O(
n

n + p log p
),

ψ1(p) = O(p log p).

We can say that the parallel prefix algorithm is a well scalable NC algorithm due to
the definitions in Section 3. If p = n then

T (n, n) = O(n/n+ log n) = O(log n),

C(n, n) = O(n+ n log n) = O(n log n).

However, when p = n/log n then

T (n, n/log n) = O(n log n/n+ log n− log log n) = O(log n),

C(n, n/log n) = O(n+ n/log n(log n− log log n)) = O(n).

Hence, we have obtained a parallel cost optimal algorithm.

171

Proceedings of the Prague Stringology Conference ’04

3 2 4 7 1 5 2

❄ ❄ ❄ ❄ ❄ ❄

❅
❅

❅
❅❅❘

❅
❅

❅
❅❅❘

❅
❅

❅
❅❅❘

❅
❅

❅
❅❅❘

❅
❅

❅
❅❅❘

❅
❅

❅
❅❅❘

3 5 6 11 8 6 7

❄ ❄ ❄ ❄ ❄

❍❍❍❍❍❍❍❍❍❥

❍❍❍❍❍❍❍❍❍❥

❍❍❍❍❍❍❍❍❍❥

❍❍❍❍❍❍❍❍❍❥

❍❍❍❍❍❍❍❍❍❥

3 5 9 16 14 17 15

❄ ❄ ❄

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳③

3 5 12 16 17 22 24

Figure 2: Parallel prefix sum example.

5 Parallel Arithmetic Coding

Recall that we use the array A = [a0, a1, . . . , am−1] of the source alphabet containing
m symbols, the associated set of frequencies F = [f0, f1, . . . , fm−1], the associated set
of probabilities R = [r0, r1, . . . , rm−1] so that ri = fi/T where T =

∑m−1
i=0 fi, the array

of low ranges L = [l0, l1, . . . , lm−1], the array of high ranges H = [h0, h1, . . . , hm−1] so
that l0 = 0, li = hi−1, i > 0 and hi = li + ri.

Our idea of parallelism is that we have a string S = [s0, s1, . . . , sn−1] of n characters
to encode. Each processor pj is associated with a character sj and computes variables
LowRange and HighRange for that character.

5.1 Preliminaries

We suppose that we have an array Range = [range0, range1, . . . , rangen−1] for our
algorithm. Each rangej is initialized with probability ry such that ay = sj where j is
the index of the j-th character in the input string and sj ∈ A. We also suppose that
we have an array Low = [low0, low1, . . . , lown−1]. Each lowj is initialized with value ly
such that ay = sj. We need at least one variable high initialized with value hy such
that ay = sn−1.

172

Arithmetic Coding in Parallel

5.2 Changes in Sequential Algorithm

Let us return to sequential arithmetic coding and try to change the algorithm a bit
so that it can be parallelized. Recall the bounds computation

LowRangej = LowRangej−1 + (HighRangej−1 − LowRangej−1)× lx,

HighRangej = LowRangej−1 + (HighRangej−1 − LowRangej−1)× hx,

where hx and lx are low and high ranges of new character x ∈ A, LowRange−1 = 0,
HighRange−1 = 1 and mark the cumulative lower and higher bounds

LRj = (HighRangej−1 − LowRangej−1)×lx,

HRj = (HighRangej−1 − LowRangej−1)×hx.

So the values LowRange and HighRange are updated as

LowRangej = LowRangej−1 + LRj ,

HighRangej = LowRangej−1 + HRj

and we now focus only on the variables LR and HR now.

LRj = (HighRangej−1 − LowRangej−1)× lx =

= (LowRangej−2 + HRj−1 − LowRangej−2 − LRj−1)× lx =

= (HRj−1 − LRj−1)× lx,

HRj = (HighRangej−1 − LowRangej−1)× hx =

= (LowRangej−2 + HRj−1 − LowRangej−2 − LRj−1)× hx =

= (HRj−1 − LRj−1)× hx.

Moreover, LowRangej can be computed as

LowRangej = LRj + LowRangej−1 = LRj + LRj−1 + LowRangej−2 =

= · · · = LRj + LRj−1 + · · ·+ LR0 + LowRange−1 =

=

j
∑

x=0

LRx + LowRange−1 =

j
∑

x=0

LRx

because LowRange−1 = 0.
The change in our algorithm is that we first compute the cumulative lower and

higher bounds and next we simply compute the sum of these cumulative bounds so
that we obtain the final bounds LowRange and HighRange.

Let us see how the variables LR and HR can be computed for the word “SWISS”.
We declare that LR0 is the LR variable for the first character s0 = “S ′′ and lx, hx,
rx are lower range, higher range and probability of character x ∈ A. LR−1 and HR−1

are initial cumulative bounds for a number that represents the encoded text S. For
arithmetic coding this number is defined by default as an interval [0,1). That is why
LR−1 = LowRange−1 = 0 and HR−1 = HighRange−1 = 1.

173

Proceedings of the Prague Stringology Conference ’04

LR−1 = 0
HR−1 = 1
LR0 = (HR−1 − LR−1)× ls = 1.0× 0.5 = 0.5
HR0 = (HR−1 − LR−1)× hs = 1.0× 1.0 = 1.0
LR1 = (HR0 − LR0)×lw = (hs − ls)×lw = rs×lw = 0.5×0.4 = 0.2
HR1 = (HR0 − LR0)×hw = (hs − ls)×hw = rs×hw = 0.5×0.5 = 0.25
LR2 = (HR1 − LR1)×li = (rs×hw − rs×lw)×li = rs×rw×li = 0.5×0.1×0.2 = 0.01
HR2 = (HR1 − LR1)×hi = (rs×hw − rs×lw)×hi = rs×rw×hi = 0.5×0.1×0.4 = 0.02
LR3 = (HR2 − LR2)×ls = (rs×rw×hi − rs×rw×li)×ls = rs×rw×ri×ls = 0.005
HR3 = (HR2 − LR2)×hs = (rs×rw×hi − rs×rw×li)×hs = rs×rw×ri×hs = 0.01
. . .

So it is obvious that the lower bound of the j-th character LRj and the higher
bound of the j-th character HRj can be computed as

LRj = (

j−1
∏

x=0

rx)× lj , j > 0,

HRj = (

j−1
∏

x=0

rx)× hj, j > 0.

5.3 Parallel Prefix Production

for i := 0, 1, . . . , n− 1 do in parallel
yi := Range[i];

for j := 0, 1, . . . , ⌈log n⌉ − 1 do sequentially
begin

for i := 2j, 2j + 1, . . . , n− 1 do in parallel
yi := yi × Range[i− 2j];

for i := 2j, 2j + 1, . . . , n− 1 do in parallel
Range[i] = yi;

end

Figure 3: Parallel prefix production algorithm.

These new LR and HR variables are exactly what we need, because
∏j−1

x=0 r
x

can be computed in parallel as we immediately show. Computation of
∏j

x=0 r
x =

∏j
x=0 range

x can be done by the parallel prefix production algorithm explained in
Section 4, as shown in Fig. 3. Table 3 indicates the parallel prefix algorithm in our
example for the word “SWISS”.

174

Arithmetic Coding in Parallel

S W I S S
0.5 0.1 0.2 0.5 0.5
0.5 0.05 0.02 0.1 0.25
0.5 0.05 0.01 0.005 0.005
0.5 0.05 0.01 0.005 0.0025

Table 3: Parallel prefix production example for the word “SWISS”.

5.4 Cumulative Bounds Computation

If we have computed
∏j−1

x=0 r
x we can obtain the variables LRj and HRj simply as the

product of
∏j−1

x=0 r
x×lj and

∏j−1
x=0 r

x×hj . Parallel algorithm computing the variables
LR and the variable HRn−1 is shown in Fig. 4. The variables HR are not exactly
needed, except for the last one HRn−1. If these variables are required, they can be
computed in a similar way. The value HRn−1, which is the cumulative high range, is
computed after the parallel prefix production computation as

HRn−1 = (
n−2
∏

x=0

rx)× hn−1.

Table 4 shows this computation in our example for the word “SWISS”. Note that
the results correspond to the cumulative bounds in our sequential example.

do sequentially
begin
yn−1 := High;
yn−1 := yn−1 × Range[n− 2];
High := yn−1;
y0 := 1;

end
for i := 1, 2, . . . ,n− 1 do in parallel
yi := Range[i− 1];

for i := 0, 1, . . . ,n− 1 do in parallel
begin
yi := yi×Low[i];
Low[i] := yi;

end

Figure 4: Parallel computation of the variables LR and HRn−1.

Now we have computed the cumulative high and low ranges. The array Low
contains the LR values and the field High contains the value HRn−1. Next we have to
compute the sum of these cumulative ranges LR so that we shall obtain the required
bounds HighRange and LowRange for arithmetic compression of string S.

175

Proceedings of the Prague Stringology Conference ’04

L/H S W I S S
LR 0.5 0.2 0.01 0.005 0.0025
HR 1 0.25 0.02 0.01 0.005

Table 4: Low and high ranges.

5.5 Computation of Low and High Ranges

In Section 5.4 we computed the cumulative bounds LR and HR. Here we show how to
obtain the bounds earlier declared as LowRange and HighRange for the compressed
text. These values can be computed as shown in Section 5.2 as

LowRangej = (

j−1
∑

x=0

LRx) + LRj ,

HighRangej = (

j−1
∑

x=0

LRx) + HRj .

To compute the sum we can use the parallel prefix algorithm once more, exactly the
parallel prefix sum shown in the former text. Finally, after computing the sum, the
variable HighRangen−1 is obtained as

HighRangen−1 = LowRangen−2 + HRn−1.

This algorithm is shown in Fig. 5. The array Low contains the values LowRange and
the field High contains the value HighRangen−1. Our example for the word “SWISS”
is shown in Table 5.

for i := 0, 1, . . . , n− 1 do in parallel
yi := Low[i];

for j := 0, 1, . . . , ⌈log n⌉ − 1 do sequentially
begin

for i := 2j, 2j + 1, . . . , n− 1 do in parallel
yi := yi + Low[i− 2j];

for i := 2j, 2j + 1, . . . , n− 1 do in parallel
Low[i] = yi;

end
do sequentially
begin
yn−1 := High;
yn−1 := yn−1 + Low[n− 2];
High := yn−1;

end

Figure 5: LowRange and HighRangen−1 computation algorithm.

176

Arithmetic Coding in Parallel

S W I S S
0.5 0.2 0.01 0.005 0.0025
0.5 0.7 0.21 0.015 0.0075
0.5 0.7 0.71 0.715 0.2175
0.5 0.7 0.71 0.715 0.7175

Table 5: Parallel prefix sum example.

6 Time and Cost Complexities

Our algorithm does not say how to set the arrays Range, Low and the variable High
in a preliminary phase. However, having set the arrays A, R, L and H , this can be
done in time O(1) on CREW PRAM with a good hash function that returns an index
in the array A of an input character from the input string S.

Our EREW PRAM algorithm consists of three phases. In the first phase, the
parallel prefix production is computed. As shown in Section 4, this can be done in
time O(n/p + log p) where p is the number of used processors and n is the size of
the input. In the second phase, shown in Fig. 4, we have computed the cumulative
bounds LR and HR in time O(n/p). The third phase, the parallel prefix sum shown
in Fig. 5, also takes O(n/p + log p) time. The computation of HighRangen−1 takes
only O(1) time in any phase. So the time and cost of our algorithm are

T (n, p) = O(n/p+ log p),

C(n, p) = O(n+ p log p).

If p = n/log n then the total time is O(log n) and the cost is O(n).
Because our algorithm consists mainly of parallel prefix computation, it inherits

its best properties. Our algorithm is therefore a well scalable NC algorithm, and it
can be implemented as the cost optimal algorithm.

7 Conclusions

We have presented a parallel NC algorithm for computation of arithmetic coding. We
have solved the problem in O(log n) time using n/log n processors on EREW PRAM.
Our algorithm leads to O(n) total cost and is cost optimal.

The preliminary phase is a weakness of our algorithm. However, if we were able
to construct a good adaptive parallel arithmetic coding based on our algorithm, it
could solve this problem.

Another question is how to make a good parallel arithmetic decoding algorithm.

References

[Ho92] Howard, Paul G., Jeffrey Scott Witter (1992): Parallel Losseless Image Com-
pression Using Huffman and Arithmetic Coding. Proceedings of the IEEE
Data Compression Conference, 299-308.

177

Proceedings of the Prague Stringology Conference ’04

[Hu52] Huffman, David (1952): A method for the construction of minimum-
redundancy codes. Proceedings of the Inst. Radio Engineers, 40: 1098-1101.

[Ji94] Jiang J., S. Jones (1994): Parallel design of arithmetic coding. IEE
Proceedings-Computers and Digital Techniques, 141(6):327-333, November.

[La80] Ladner, Richard and Michael J. Fisher (1980): Parallel Prefix Computation.
Journal of the ACM, 27(4):831-838, October.

[Lb99] Laber, Eduardo Sany, Ruy Luiz Milidi and Artur Alves Pessoa (1999): A
Work Efficient Parallel Algorithm for Constructing Huffman Codes. Pro-
ceedings of the IEEE Data Compression Conference DCC’99.

[Le92] Lewis, T.G. and H. El-Rewini (1992): Introduction to Parallel Computing.
Prentice Hall.

[Qu94] Quinn, M.J.(1994): Parallel Computing Theory and Practise. McGraw-Hill.

[Mo98] Moffat, Alistar, Redford Neal, and Ian H.Witten (1998): Arithmetic Coding
Revisited. ACM Transactions on Information Systems, 16(3):256-294, July.

[Tv94] Casavant, T.L., P. Tvrd́ık and F. Plášil, editors (1994): Parallel Computers:
Architectures, Languages, and Algorithms. IEEE CS Press.

[Wi87] Witten, Ian H., Redford Neal and John G. Cleary (1987): Arithmetic coding
for Data Compression. Communications of the ACM 30(6):520-540.

[Yo98] Youssef A. (1998): Parallel Algorithms for Entropy Coding Techniques. Pro-
ceedings of European Parallel and Distributed Systems. ACTA Press.

178

