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Abstra
t. We present here a linear algorithm for the dete
tion of evolutive

tandem repeats. An evolutive tandem repeat 
onsists in a series of almost 
on-

tiguous 
opies, every 
opy being similar (using Hamming distan
e in this arti
le)

to its prede
essor and su

essor. From a global view point, evolutive tandem

repeats extend the traditional approximate tandem repeat where ea
h 
opy has

to be in a neighborhood of a given model. Due to the la
k of algorithms, these

repeats have been dis
overed in genomi
 sequen
es only re
ently. In this arti
le,

we present a two-stage algorithm, where we �rst 
ompute an array 
ontaining all

the Hamming distan
es between 
andidates, then we visit this array to build a


omplete evolutive tandem repeat from insulated pairs of 
opies. Moreover, we

explain how it is still 
onsistent with the usual te
hnique devoted to dynami


programming whi
h 
onsists in �lling a 
omparison matrix and ba
ktra
king

through it to �nd an optimal alignment.

Keywords: linear algorithm, evolutive tandem repeats, Hamming distan
e

1 Introdu
tion

The notion of approximate tandem repeat is generally well-de�ned, from the formal

view point [2, 12℄, it uses a 
onsensus model, every 
opy parti
ipating to this repeat

being very similar to the 
onsensus. An evolutive tandem repeat has no need for

a 
onsensus model, the �rst and the last 
opies might be 
ompletely di�erent but

every time we are 
onsidering two su

essive 
opies parti
ipating to the repeat, they

are very similar to ea
h other: �nding evolutive tandem repeats is obviously mu
h

more 
ompli
ated than dete
ting generi
 tandem repeats for whi
h usual well-known

stru
tures, su
h as su�x trees, 
an be used during a prepro
essing stage [9℄.

Evolutive tandem repeats have been phrased by mole
ular biologists, for example

in [4℄, and have been observed in real DNA sequen
es (see Appendix A for a 
omplete

example, dete
ted in A. thaliana). In [5℄, we gave a formal de�nition of evolutive

tandem repeats with jumps then we des
ribed a quadrati
 spa
e and time algorithm

�
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whi
h dete
ts all the maximal. Even if numerous models and algorithms sear
hing

for various kinds of repeats have been developed [1, 3, 10, 11, 8, 12℄, none of these

algorithms are able to lo
ate evolutive tandem repeats, as far as we know, we therefore

designed a quadrati
 algorithm for their dete
tion, it was based on the 
onstru
tion

of two graphs and their visits.

Sin
e we are looking for lo
al repetitions having approximatively the average length

of mini (or even mi
ro) satellites and be
ause we are also looking for a 
ertain number

of 
opies (having three or less 
opies in an evolutive tandem repeats is meaningless),

we are here interested in sear
hing for 
opies whose length may vary from 4 to 64 [6℄,

that is usually thousands times less than the size of the sequen
es we are studying.

We present in this arti
le a O((`

max

� `

min

+ 1)� (j

max

� j

min

+ 1)� jwj)-time and

O(j

max

� j

min

+ 1)-spa
e algorithm where and `

min

and `

max

(resp. j

min

and j

max

)

are the minimal and maximal values of the length of the 
opies (resp. the jump

between two 
opies) and w is the studied sequen
e. More pre
isely, sin
e length and

jump values are very small (with respe
t to the length of the sequen
e whi
h 
an be


ounted in millions of base pairs), we still have an overall linear time-
omplexity. So

in pra
ti
e, the time 
omplexity is in O(C � jwj), where C � (61� (j

max

� j

min

).

In se
tion 2, we re
all some basi
 de�nitions and introdu
e the evolutive tandem

repeats. In se
tion 3, we present the ideas of our algorithm. In se
tion 4, we explain

the 
onne
tion with 
omparison matri
es. In se
tion 5, we present experimental

results and �nally, in se
tion 6, we 
on
lude.

2 Preliminaries

Let � be an alphabet and �

�

its asso
iated free monoid. A word (resp. non empty

word) over � is an element of �

�

(resp. �

+

). The letter of a word w o

urring at

position i is denoted by w

i

. The length jwj of a word w is the number of letters of w,

i.e. w = w

1

� � �w

jwj

. We will denote by �

`

the set of all possible words of length `

over �. We denote by u:v (or simply uv) the 
on
atenation of two words u and v.

Consider w = p:f:s for some p; f; s 2 �

�

. Su
h p; f; s are respe
tively pre�x, fa
tor

and su�x of w. We denote f = w[i; j℄ = w

i

w

i+1

� � �w

j�1

w

j

for 1 � i � j � jwj. The


on
atenation of n 
opies of u is denoted by u

n

.

There exist several distan
es one 
an use for the analysis of genomi
 sequen
es. In

this arti
le, we will 
onsider the Hamming distan
e: the Hamming distan
e between

two words of equal length is the number of positions at whi
h their 
orresponding

letters di�er: for u; v 2 �

`

, d

H

(u; v) = Cardfi 2 f1; : : : ; `g j u

i

6= v

i

g:

De�nition 2.1 (Evolutive tandem repeat)

An evolutive tandem repeat with jumps (e.t.r. for short) is a tuple (v; "; (j

min

; j

max

);

`; n; (p

i

)

1�i�n

) where v is a word, " is the maximal number of errors between two


onse
utive 
opies, [j

min

; j

max

℄ is the range of the length of a jump (overlap or gap

between two 
onse
utive 
opies) with (j

max

� j

min

+ 1) � `=2, ` is the length of

the 
opies, n is the number of 
opies, p

i

are the starting positions of the 
opies




i

= v[p

i

; p

i

+ `� 1℄ and

8

>

<

>

:

p

1

= 1; p

n

+ `� 1 = jvj;

j

min

� p

i+1

� (p

i

+ `) � j

max

; 8i 2 f1; : : : ; n� 1g;

d

H

(


i

; 


i+1

) � "; 8i 2 f1; : : : ; n� 1g:

78



A Linear Algorithm for the Dete
tion of Evolutive Tandem Repeats

Example 2.1 Let 
onsider the word v = aaataa
ag
g
.

(v; 1; (�1; 1); 3; 4; (1; 5; 8; 10)) is an e.t.r. with jumps: p

1

= 1, p

2

= 5 (gap), p

3

= 8

and p

4

= 10 (overlap) 
orresponding to 


1

= aaa, 


2

= aa
, 


3

= ag
 and 


4

= 
g


(see Fig. 1).

gap overlap

a a a
 
 
g g

` `

`

� j

min

� " � "

p

1

p

2

p

3

p

4

` = 3

� j

max

= 1

� " = 1

v =

a

g

g







a




1

=




4

=




3

=




2

= 


aaa

a




a a a t

Fig. 1: Example of an evolutive tandem repeat with jumps

We will 
onsider only in what follows maximal e.t.r., that is e.t.r. whi
h is not

embedded in a longer one: 
onsider for example a word w = gaaaga
gagg
gg and

` = 3. The e.t.r. etr

1

= (aaga
gagg; 1; (�1; 1); 3; 3; (1; 4; 7)) is not maximal in w sin
e

the repeat etr

2

= (aaga
gagg
gg; 1; (�1; 1); 3; 4; (1; 4; 7; 10)) 
ontains more 
opies. In

this 
ase, we say that etr

2

�
ontains� etr

1

and remark that etr

2

is a maximal e.t.r. in

w.

In a previous arti
le [5℄, we �rst 
onsidered all fa
tors of w having the same length.

For ea
h fa
tor, we 
omputed the set of its starting positions using an equivalen
e

relation on positions in w. Then, we built a graph for whi
h nodes are these sets

and there exists an edge between two nodes if the 
orresponding fa
tors are slightly

di�erent in the meaning of the Hamming distan
e. Next, we 
omputed a se
ond graph

namely the `-position graph de�ned as follows:

De�nition 2.2 (`-position graph) Let w be a word and " and jump integers. The

`-position graph 
orresponding to w, " and jump is the oriented graph PG

`

(w; ";

jump) = (N;E) where

8

>

>

>

<

>

>

>

:

N = f1; :::; jwj � `+ 1g and

E = f(i; i

0

; i

0

� (i + `)) for (i; i

0

) 2 N �N; i < i

0

su
h that ji

0

� (i + `)j � jump;

d

H

(w[i; i+ `� 1℄; w[i

0

; i

0

+ `� 1℄) � "g:

Nodes are labeled with all the positions f1; : : : ; jwj� `+1g of fa
tors of length ` and

there exists an edge labeled with d between two nodes if the 
orresponding positions

are 
lose in w and if the Hamming distan
e between their asso
iated fa
tors, denoted

d is not greater than a given ". We used a quadrati
 time but linear spa
e algorithm

to 
ompute it. In what follows we denote by (i; i

0

; d) an edge labeled d from the node i

to the node i

0

.

Finally, we looked for all the longest paths in the `-position graph to �nd maximal

e.t.r.
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3 A Linear � Time and Spa
e � Algorithm

In a previous arti
le [5℄, we des
ribed a quadrati
 spa
e and time algorithm whi
h

dete
ts all maximal e.t.r. in a word w. In what follows, we present a linear time

and spa
e algorithm that starts with the �lling of a �position� array and follows on

with the visit of this array in an attempt to �nd regularities. We will �rst draw the

�big-pi
ture� and will 
onsolidate the des
ription by explaining the stru
tures we used

and the strategies we developed.

The �rst important idea 
onsists in 
onsidering every `-mer (fa
tor of length `) as

a sliding window. Sin
e we have to 
ompute the distan
es between pairs of fa
tors,

we have to use two sliding windows f and f

0

(see Fig. 2): one window, f

0

, ending

at position i will 
orrespond to the right-most fa
tor (moving sequentially from left

to right, one position at a time) while the other window, f , will 
orrespond to the


andidates for a pair (ending at a position in the interval [i� `� j

max

; i� `� j

min

℄).

Therefore, we only have to 
onsider j

max

� j

min

+ 1 possible positions for the left

sliding window, for ea
h given position of the right sliding window and fo
us on the


omputation of (j

max

�j

min

+1)�(jwj�`+1) distan
es, that is a linear-time and spa
e


onstru
tion of a �position� array (emulating the position graph we de�ned in [5℄).

������������
������������
������������
������������

�������������
�������������
�������������
�������������

``

i� 2`� k + 1 i� `+ 1

k

i� `� k i

f f

0

Fig. 2: The two sliding windows f and f

0

The se
ond important idea is the 
omputation of the Hamming distan
e by itself: if

the Hamming distan
e between the fa
tors of length ` ending at position i and i

0

is

known then the Hamming distan
e between the fa
tors ending at position i + 1 and

i

0

+ 1 
an be 
omputed in O(1)-time be
ause (`� 1) 
omparisons have already been

done. It will speed up the �lling of the position array (see Fig. 3).

`

`

`� 1 
omparisons in 
ommon

w

i+`

: : : w

i�1

w

i

d

H

(w[i+ `; i+ 1℄; w[i

0

+ `; i

0

+ 1)

d

H

(w[i+ `� 1; i℄; w[i

0

+ `� 1; i

0

)

w

i

0

+`

: : : w

i

0

�1

w

i

0

w

i+`�1

w

i

0

+`�1

w

i+1

w

i

0

+1

Fig. 3: Computing Hamming distan
e on in
remental positions

Finally we only have to visit the position array and sear
h for a series of a

eptable

values (smaller than ") lo
ated at appropriate positions (the distan
e between two


onse
utive positions has to belong to [`+ j

min

; `+ j

max

℄).
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A Two-stage Algorithm

We �rst have to 
ompute the Hamming distan
es between every possible pairs of


andidates and �ll the position array D that 
ontains all these 
omputations.

De�nition 3.1 Let w = w

1

: : : w

n

be a word over �, ` an integer and k 2 fj

min

; : : : ;

j

max

g. We de�ne D

w;`

k

(i) by

D

w;`

k

(i) =

8

>

<

>

:

0; 8i 2 f1; : : : ; `+ kg

d

H

(w[1; i� `� k℄; w[`+ k + 1; i℄); 8i 2 f`+ k + 1; : : : ; 2`+ k � 1g

d

H

(w[i� 2`� k + 1; i� `� k℄; w[i� `+ 1; i℄); 8i 2 f2`+ k; : : : ; jwjg

We assume now that D

w;`

k

(i� 1) has been previously 
omputed and we would like to


ompute D

w;`

k

(i), i.e we know d

H

(w[i � 2` � k; i � ` � k � 1℄; w[i � `; i � 1℄) and we

would like to 
ompute d

H

(w[i� 2`� k + 1; i� `� k℄; w[i� `+ 1; i℄).

We therefore de�ne two additional fun
tions:

� 8a; b 2 �; 11

a

(b) = 0 if b = a, 1 otherwise;

� 8k 2 fj

min

; : : : ; j

max

g; E

w;`

k

(i) = 11

w

i�`�k

(w

i

) if i 2 f` + k + 1; : : : ; jwjg, 0

otherwise.

Lemma 3.1 Let w be a word over �, ` an integer and k 2 fj

min

; : : : ; j

max

g. We have:

D

w;`

k

(i) =

8

>

<

>

:

0; 8i 2 f1; : : : ; `+ kg;

D

w;`

k

(i� 1) + E

w;`

k

(i); 8i 2 f`+ k + 1; : : : ; 2`+ k � 1g;

D

w;`

k

(i� 1) + E

w;`

k

(i)� E

w;`

k

(i� `); 8i 2 f2`+ k; : : : ; jwjg:

Proof 1 Let k 2 fj

min

; : : : ; j

max

g and i 2 f2` + k; : : : ; jwjg. If i > 2` + k then

D

w;`

k

(i� 1) = d

H

(w[i� 2`� k; i� `� k � 1℄; w[i� `; i� 1℄) and therefore

D

w;`

k

(i)

= d

H

(w[i� 2`� k + 1; i� `� k℄; w[i� `+ 1; i℄)

= d

H

(w[i� 2`� k + 1; i� `� k � 1℄; w[i� `+ 1; i� 1℄) + 11

w

i�`�k

(i)

= d

H

(w[i� 2`� k; i� `� k � 1℄; w[i� `; i� 1℄)� 11

w

i�2`�k

(i� `)+

11

w

i�`�k

(i)

= D

w;`

k

(i� 1)� E

w;`

k

(i� `) + E

w;`

k

(i):

If i = 2` + k then D

w;`

k

(i) = d

H

(w[1; i � ` � k℄; w[` + k + 1; i℄) = d

H

(w[1; i � `�

k � 1℄; w[`+ k + 1; i� 1℄) + 11

w

i�`�k

(w

i

) = D

w;`

k

(i� 1) + E

w;`

k

(i).

But we have E

w;`

k

(i � `) = E

w;`

k

((2` + k) � `) = E

w;`

k

(` + k) = 0, so D

w;`

k

(i) =

D

w;`

k

(i� 1)� E

w;`

k

(i� `) + E

w;`

k

(i).

We prove the other 
ase in the same manner. 2

The size of the arrays D (where D[k℄[i℄ = D

w;`

k

(i)) and E (where E[k℄[i℄ = E

w;`

k

(i))

is (j

max

� j

min

+ 1)� jwj. In order to �ll these two arrays, we now use a O((j

max

�

j

min

+ 1)� jwj)-time and spa
e algorithm.

Example 3.1

This example (see Fig. 4) has been obtained with w = aaataagttat
aat

aaat
gtgt
a,

` = 4, j

min

= �1, j

max

= 1 and " = 2:

For example D

w;4

�1

(7) = d

H

(w[1; 4℄; w[4; 7℄) = d

H

(aaat; taag) = 2, D

w;4

0

(17) = d

H

(

w[10; 13℄; w[14; 17℄) = d

H

(at
a; at

) = 1 and D

w;4

1

(28) = d

H

(w[20; 23℄; w[25; 28℄) =

d

H

(at
g; gt
a) = 2.
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��������
��������
��������

��������
��������
��������

���������
���������
���������

���������
���������
���������

��������
��������
��������

��������
��������
��������0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

0 0 0 1 1 1 2 2 3 4 3 3 2 2 3 3 4 4 4 4 4 4 4 3 3 3 43

0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1110 11
2 2 3 2 1 1 444444433213211000000 3

1 10 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 10 0 0 0 0 0 1 0 0
gap

overlap

conca−

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

���������
���������
���������
���������

2520151051 28

0 0 0 0 0 1 2 2 2 2 2 3 4 44 3 2 1 1 2 2 3 3 3 3 2 20

a a a a a g t t a t c a a t c c a a a t c g t g t c a

1001 = 2
t c g

g t c a

a t
0 0 0 1 = 1

c a

a t c c
01 0 = 21

a a a

t a a g

at

t

tenation

w

i

E

w;4

�1

(i)

D

w;4

�1

(i)

D

w;4

0

(i)

E

w;4

1

(i)

D

w;4

1

(i)

E

w;4

0

(i)

Fig. 4: D and E arrays

The spa
e 
omplexity 
an be improved as follows.

Sin
e the values E[k℄[i℄ are independent, we 
an de
rease the spa
e 
omplexity by

ignoring the �lling of the array E and by 
omputing E[k℄[i℄ only when needed without

in
reasing the time 
omplexity.

Moreover, for a given `, we only need the last value D

w;`

k

(i � 1) in order to 
om-

pute D

w;`

k

(i) (see Lemma 3.1), thus we will only store the last 
olumn of the ar-

ray D. Finally (see Fig. 5), we obtain a O((j

max

� j

min

+ 1) � jwj)-time and

O(j

max

� j

min

+ 1)-spa
e algorithm (D is an array of size O(j

max

� j

min

+ 1)). If

we are looking for all e.t.r. for 
opies of length ` 2 [`

min

; `

max

℄,the 
omplexity is

O((`

max

� `

min

+ 1) � (j

max

� j

min

+ 1) � jwj). From a pra
ti
al point of view,

(`

max

� `

min

+ 1) � 61 is mu
h lower than jwj and the time 
omplexity is still linear:

O(C � jwj), where C � 61� (j

max

� j

min

).

Constru
tion of the Longest Paths

The two arrays are 
ompa
t representations of the graphs we depi
ted in [5℄, and if

we refer to the traditional graph vo
abulary, we 
an asso
iate a 
ell in the position

array and a node in the position graph.

Constru
tion of the array 
ontaining the longest paths(w; `; j

min

; j

max

; ")

1 for ` `

min

to `

max

do

2 for i 1 to jwj do

3 C[i℄ �1

4 L[i℄ 0

5 for k  j

min

to j

max

do

6 if (i � `+ k) then

7 D[k℄ 0

8 elseif (i � 2`+ k) then

9 D[k℄ D[k℄ + 11

w

i�`�k

(w

i

)

10 else D[k℄ D[k℄ + 11

w

i�`�k

(w

i

)� 11

w

i�2`�k

(w

i�`

)

11 if (i � 2`+ k) and (D[k℄ � ") and (L[i� 2`� k + 1℄ + 1 > L[i� `+ 1℄) then

12 L[i� `+ 1℄ L[i� 2`� k + 1℄ + 1

13 C[i� `+ 1℄ i� 2`� k + 1

14 return (C;D)

Fig. 5: Constru
tion of the array 
ontaining the longest paths

When D

w;`

k

(i) � " and i � 2`+k, the ar
 between nodes (i�2`�k+1) and (i�`+1)

is added only if it 
reates a longest path to node (i� `+ 1), moreover the previously
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existing, previously unique ar
 ending in i� ` + 1 is removed: let a path of length 


ending in (i�`+1), if the length of the path ending in (i�2`�k+1) plus 1 is greater

than 
, then thear
 ending in (i� `+1) is removed and the ar
 from (i� 2`� k+ 1)

to (i� `+ 1) is 
reated.

Finally ea
h node i has at most one ar
 ending in i and therefore the `-position graph

is stored in an array C of integers, where C[i℄ is the index of the head of the ar
 (C[i℄,

i), and �1 otherwise. We use an array L of integers, where L[i℄ is the length of the

longest path ending in i.

Let C and L be arrays of integers of size jwj (see algorithm Fig. 5).

The determination of the longest paths, 
orresponding to the maximal e.t.r., uses the

traditional algorithm.

Computation of the Distan
e between Two Fa
tors of Length

`+ 1

Lemma 3.2 (Computation of D

w;`+1

k

(i)) Let `; j

min

; j

max

and k be integers. We

have 8k 2 fj

min

; : : : ; j

max

g; i 2 f2`+ k; : : : ; jwjg, D

w;`+1

k

(i) = D

w;`

k+1

(i) +E

w;`

k+1

(i� `);

(see Fig. 6).

Proof 2 Let `; j

min

; j

max

; i and k integers su
h that k 2 fj

min

; : : : ; j

max

g and i 2

f2`+ k; : : : ; jwjg. We have

D

w;`+1

k

(i) = d

H

(w[i� 2(`+ 1)� j + 1; i� (`+ 1)� k℄; w[i� (`+ 1) + 1; i℄)

= d

H

(w[i� 2`� k � 1; i� `� k � 1℄; w[i� `; i℄)

= d

H

(w[i� 2`� k; i� `� k � 1℄; w[i� `+ 1; i℄) + 11

w

i�2`�k�1

(w

i�`

)

= d

H

(w[i� 2`� (k + 1) + 1; i� `� (k + 1)℄; w[i� `+ 1; i℄)+

11

w

i�2`�k�1

(w

i�`

)

= D

w;`

k+1

(i) + E

w;`

k+1

(i� `):

2

�������������������������� ������������������������

������������

����������

``

`+ 1 `+ 1

i

k + 1

k

i� `� k � 1

i� 2`� k � 1

i� 2`� k

i� `� k � 1 ii� `

i� `+ 1

Fig. 6: Computation of D

w;`+1

k

(i)

������������
������������
������������
������������

������������
������������
������������
������������

����������

��������

``

` + 1 `+ 1

i

k + 1

i� `� k � 1

k

i + 1

i� 2`� k

i� `� k

i� `+ 1

i� 2`� k i� `+ 1

Fig. 7: Computation of D

w;`+1

k

(i+ 1)

Lemma 3.3 (Computation of D

w;`+1

k

(i+ 1)) Let `; j

min

and j

max

be integers. We

have 8k 2 fj

min

; : : : ; j

max

g; i 2 f2`+k; : : : ; jwjgD

w;`+1

k

(i+1) = D

w;`

k+1

(i)+E

w;`

k+1

(i+1);

(see Fig. 7).

Proof 3 A

ording to Lemma 3.2, D

w;`+1

k

(i+1) = D

w;`

k+1

(i+1)+E

w;`

k+1

(i� `+1) and

by De�nition 3.1, D

w;`

k+1

(i + 1) = D

w;`

k+1

(i) � E

w;`

k+1

(i � ` + 1) + E

w;`

k+1

(i + 1), therefore,

D

w;`+1

k

(i+ 1) = D

w;`

k+1

(i) + E

w;`

k+1

(i + 1).

2
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Lemma 3.4 (Computation of D

w;`+1

k

(i)) Let `; j

min

and j

max

be integers. We

have 8k 2 fj

min

; : : : ; j

max

g; i 2 f2`+ k; : : : ; jwjg

D

w;`+1

k

(i) = D

w;`

k+1

(i) + E

w;`

k+1

(i� `)

= D

w;`

k+1

(i� 1) + E

w;`

k+1

(i):

4 Evolutive Tandem Repeats and Comparison Ma-

tri
es

Comparison Matri
es

We will now explain the 
onne
tion between the arrays we are 
omputing and using,

and well-known te
hniques used by several algorithms devoted to sequen
e 
ompari-

son.

A traditional te
hnique in sequen
e 
omparison 
onsists in the 
onstru
tion and the

visit of the two-dimension matrix, where a 
ell (i; i

0

) 
ontains the 
omparison s
ore,

i.e. the distan
e, between a fa
tor ending at position i in one sequen
e and a fa
tor

ending at position i

0

in the other sequen
e.

Computing the positions of all the approximate repeats in one sequen
e 
an be 
arried

out by 
omparing the sequen
e with itself, that is by 
onstru
ting a spe
i�
 symmetri


square matrix, like the one we are presenting in Fig. 8. Note that Fig. 9 represents

the arrays D and E 
orresponding to the three white diagonals of Fig. 8.
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H

H

Fig. 8: Matrix and its diagonals for ` = 3,

j

min

= �1; j

max

= 1 and " = 1

������
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��
��
��

1051

0 0 0 0 0 1 2 3 3 3 30

a t

0 0 1
0 2 3 3

0 0 0 1 0 1 1 0 1 00
2 2 1222210000

1 11 1 10 0 0 0 0 0 1

a c t a c a c g a

0
1 1 1
1 2 3

1 0
3 2

10
1 1

1 1

1

g

E

w;3

�1

(i)

E

w;3

0

(i)

E

w;3

1

(i)

D

w;3

�1

(i)

D

w;3

0

(i)

D

w;3

1

(i)

w

i

Fig. 9: The arrays D and E 
orrespond-

ing to the three white diagonals

In this matrix, the 
ontent of a 
ell (i; i

0

) 
ontains informations 
orresponding to

d

H

(w[i � 2; i℄; w[i

0

� 2; i

0

℄). One 
an observe four di�erent kinds of 
ells: dark gray


ells 
orrespond to unde�ned distan
es (i < ` or i

0

< `, the fa
tors are not long enough
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to 
ompute d

H

(w[i� 2; i℄; w[i

0

� 2; i

0

℄), therefore only d

H

(w[i℄; w[i

0

℄) is reported in the

upper left 
orner), light gray 
ells 
orrespond to useless 
ells su
h that i

0

� i < `+j

min

or i

0

� i > `+ j

max

, white 
ells 
ontain three values as expressed in Fig. 8 and are the

only 
ells that are really needed and �nally dashed 
ells ti
k 
opies parti
ipating to a

potential e.t.r. (for example, the dashed 
ell (3; 7) states that d

H

(w[1; 3℄; w[5; 7℄) � ",

that is d

H

(a
t; a
a) � 1, whi
h is 
orre
t).

Remark 4.1 Dashed 
ells 
ontributing to a diagonal indi
ate a potential larger re-

peat: (3; 9) and (4; 10) (
orresponding respe
tively to d

H

(a
t; a
g) � 1 and d

H

(
ta;


ga) � 1) 
an establish the existen
e of a longer repeat (in this example d

H

(a
ta;

a
ga) � 1) but more generally, dashed 
ells (i; i

0

) and (i+ 1; i

0

+ 1), that is d

H

(w[i�

2; i℄; w[i

0

� 2; i

0

℄) � 1 and d

H

(w[i � 1; i + 1℄; w[i

0

� 1; i

0

+ 1℄) � 1, does not imply

ne
essarily that d

H

(w[i� 2; i + 1℄; w[i

0

� 2; i

0

+ 1℄) � 1 (
onsider (6; 8) and (7; 9) for

example).

Assume now that we are sear
hing for approximate tandem repeats of length ` = 3,

with an error rate " = 1 and j

min

= �1; j

max

= 1, on
e we have built our matrix, the

hunt for the repeats 
an be 
arried out by visiting one row at a time and reporting

regions 
ontaining 
ells with a lower right value smaller than " every at least `+j

min

=

3� 1 = 2 and at most `+ j

max

= 3 + 1 = 4 positions. In this matrix (see Fig. 10), if

we 
onsider the third row, one 
an �nd su
h 
ells in 
olumns 3, 7 and 9 and therefore

dedu
e that there exists an approximate repetition starting at position 1 and ending

at position 9: as a matter of fa
t, a
taa
a
g is an approximate tandem repeat with

jumps, the letter a lo
ated at position 4 
orresponds to a gap between 
opies 


1

= a
t

and 


2

= a
a, the letter a lo
ates at position 7 
orresponds to an overlap between


opies 


2

= a
a and 


3

= a
g. This is more or less the 
on
ept Sagot and Myers used

in [12℄ for �nding mi
rosatellites.

Evolutive Tandem Repeats

Finding evolutive tandem repeats with jumps is slightly di�erent, the lo
ation of a


opy parti
ipating to the e.t.r. depends only on the lo
ation of its prede
essor, `,

the length of the 
opies and j

min

; j

max

the a

eptable jump between two 
onse
utive


opies.

Consider a 
opy belonging to the e.t.r. that ends at position i, its su

essor must ends

at a spe
i�
 position (between i+`+j

min

and i+`+j

max

) in the matrix, we therefore

have to sear
h for a dashed 
ell at positions (i; i

0

) for i+`+ j

min

� i

0

� i+`+ j

max

. If

there exists su
h a 
ell, it gives us a signi�
ant information about the way the 
opies

are 
onne
ted: if i + ` + j

min

� i

0

� i + `� 1 there is an overlap of length i + `� i

0

between the 
opies, if i

0

= i+` the 
opies are 
ontiguous, if i+`+1 � i

0

� i+`+j

max

there exists a gap of length i

0

� i� ` between the 
opies. Therefore, for every row i,

we only have to 
onsider (j

max

� j

min

) + 1 
ells. In order to �nd e.t.r. we therefore

have to 
ompute and visit the diagonals starting in 
olumns i+`+j

min

to i+`+j

max

.

That leads to 
omputing and visiting only O((j

max

� j

min

+ 1)� jwj) 
ells.

The left-most diagonal, starting in 
ell (1; `+ j

min

+ 1), 
orresponds to the maximal

authorized overlap, while the right-most diagonal, starting in 
ell (1; ` + j

max

+ 1),


orresponds to the maximal authorized gap. We 
an therefore build a matrix that

sums up all these informations as depi
ted in Fig. 8. The three white diagonals are
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a1
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231
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232120

0 3 1 2 3

32230

0 3 3 1

330

0 3

0g12

11 t

a10

g9

8 c
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a5

6 c

Fig. 10: Two dimension matrix 
orresponding to the 
omparison of a
taa
a
gatg

with itself, for ` = 3 and " = 1

the only ones that need to be 
omputed (even if in this matrix, we show all the 
ells).

Moreover, the 
omputation of the three diagonals is equivalent to the 
omputation of

the D and E arrays.

5 Experimental Results

We have implemented and tested this algorithm on various sequen
es, we built ran-

dom sequen
es over the alphabet fa; 
; g; tg and no e.t.r. has been dete
ted (for the

same rapameters as below), it appears that this kind of repetition is not an artifa
t.

Moreover we fo
used on real sequen
es from A. thaliana and for testing purpose we

used sequen
es with length varying from 10kb to 200kb (see Fig. 11).

The average behaviour of the timing 
urves 
orresponds to that we were expe
ting.

Time and spa
e 
onsumptions enabled us to sear
h for e.t.r. in whole 
hromosomes,

we studied more spe
i�
ally A. thaliana whi
h possesses �ve 
hromosomes (their

length varying from 17 to 29Mb) and an example is presented in Appendix A.

6 Con
lusion and Perspe
tives

In this arti
le, we presented a both spa
e and time linear algorithm for the dete
tion

of evolutive tandem repeats. Furthermore, we implemented this approa
h, developed

a web interfa
e (see Fig. 12, http://abiss.
rihan.fr/~rgroult/index.php) that
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Fig. 11: Exe
ution times on sequen
es, where l is the length of the 
opies, e is the

maximal Hamming distan
e and j is the jump

presents the 
opies, the alterations and sums up informations relative to the repeats.

We are now looking for this kind of repeats in 
omplete genomes, we found several

interesting e.t.r. that are not inherited from approximate tandem repeats. We are

still in the pro
ess of studying the way it works, from the biologist viewpoint and we

are trying to �gure out their role, preferred lo
ation and number in di�erent genomes.

Sin
e 
onsidering Hamming distan
e is somehow restri
tive, we are moving forward

by designing an algorithm that makes use of Levenshtein distan
e (whi
h allows indels

as well as substitution) instead of Hamming distan
e.
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A An Example of e.t.r. O

urring in A. thaliana,


hr 4 (17Mb)

We found numerous e.t.r. in 
hr 4 (17Mb) of A. thaliana, here is an example appearing

in an exon of the AT4G38590.1 gene.

./evorep -m11 -e3 -j1 -r4 -f ~/at4.fasta

->

- number of e.t.r.: 662

- time: 0m38.758s

Example of found e.t.r.

#================================================

# Parameters: length=11, error=3, jmin=-1, jmax=1, rMin=4

# Sequen
e: > at4.seq (17Mb)

# Exe
ution time: 38 se
.

17245698 17245709 17245719 17245731 17245743 17245755 17245767

a
aagatgagaagaagaagaaagaagataaaga
gaagaggaagagga
gatgaagatgatgatgaagaagaag

[ aagaag

17245698 a
aagatgaga

17245709 agaagaagaaa

17245719 agaagataaag

17245731 
gaagaggaag

17245743 gga
gatgaag

17245755 tgatgatgaag

17245767 agaagaagaag

#================================================

We investigated this sequen
e using �tandem repeat �nder� [2℄ and �mreps� [7℄ and

obtained:

->

Tandem Repeat Finder:

Indi
es Period Copy Consensus Per
ent Per
ent S
ore A C G T Entropy(0-2)

Size Number Size Mat
hes Indels

No Repeats Found!

->

./mreps -err 3 -minp 2 -from 1 -exp 3.0

* Pro
essing window [1 : 80℄ *

from -> to : size <per.> [exp.℄ repetition

----------------------------------------------------

1 -> 18 : 18 <5> [3.60℄ a
aag atgag aagaa gaa
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5 -> 25 : 21 <6> [3.50℄ gatgag aagaag aagaaa gaa

8 -> 40 : 33 <4> [8.25℄ gaga agaa gaag aaag aaga taaa ga
g aaga g

10 -> 32 : 23 <7> [3.29℄ gaagaag aagaaag aagataa ag

11 -> 33 : 23 <5> [4.60℄ aagaa gaaga aagaa gataa aga

20 -> 80 : 61 <6> [10.17℄ aaagaa gataaa ga
gaa gaggaa gagga
 gatgaa

[ gatgat gatgaa gaagaa gaagaa g

30 -> 80 : 51 <9> [5.67℄ aaga
gaag aggaagagg a
gatgaag atgatgatg

[ aagaagaag aagaag

30 -> 80 : 51 <12> [4.25℄ aaga
gaagagg aagagga
gatg aagatgatgatg

[ aagaagaagaag aag

36 -> 47 : 12 <4> [3.00℄ aaga ggaa gagg

60 -> 80 : 21 <4> [5.25℄ atga tgaa gaag aaga agaa g

----------------------------------------------------

RESULTS: There are 10 maximal repetitions in the segment pro
essed
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