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Abstrat. A fator orale is a data struture for weak fator reognition. It is

an automaton built on a string p of length m that is ayli, reognizes at least

all fators of p, has m+1 states whih are all �nal, and has m to 2m� 1 transi-

tions. In this paper, we give two alternative algorithms for its onstrution and

prove the onstruted automata to be equivalent to the automata onstruted

by the algorithms in [1℄. Although these new O(m

2

) algorithms are pratially

ine�ient ompared to the O(m) algorithm given in [1℄, they give more insight

into fator orales. Our �rst algorithm onstruts a fator orale based on the

su�xes of p in a way that is more intuitive. Some of the ruial properties of

fator orales, whih in [1℄ need several lemmas to be proven, are immediately

obvious. Another important property however beomes less obvious. A seond

algorithm gives a lear insight in the relationship between the trie or dawg re-

ognizing the fators of p and the fator orale reognizing a superset thereof.

We onjeture that an O(m) version of this trie-based algorithm exists.

Keywords: fator orale, �nite automaton, weak fator reognition, algorithm

derivation, pattern mathing.

1 Introdution

A fator orale is a data struture for weak fator reognition. It an be desribed

as an automaton built on a string p of length m that (a) is ayli, (b) reognizes

at least all fators of p, () has m + 1 states (whih are all �nal), and (d) has m to

2m�1 transitions (f. [1℄). Some example fator orales are given in Figures 1 and 2.
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Figure 1: Fator orale for abb (reognizing ab 62 fat(p))
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Figure 2: Fator orale for abba (reognizing ab; ab; aba; aba; abba; bba; ba 62

fat(p))

Fator orales are introdued in [1℄ as an alternative to the use of exat fator

reognition in many on-line keyword pattern mathing algorithms. In suh algorithms,

a window on a text is read bakward while attempting to math a keyword fator.

When this fails, the window is shifted using the information on the longest fator

mathed and the mismathing harater.

Instead of an automaton reognizing exatly the set of fators of the keyword,

it is possible to use a fator orale: although it reognizes more strings than just

the fators and thus might read bakwards longer than neessary, it annot miss any

mathes. The advantage of using fator orales is that they are easier to onstrut

and take less spae to represent ompared to the automata that were previously used

in these fator-based algorithms, suh as su�x, fator and subsequene automata.

This is the result of the latter automata laking one or more of the four essential

properties of the fator orale.

The fator orale is introdued in [1℄ by means of an O(m

2

) onstrution algorithm

that is used as its de�nition. Furthermore, an O(m) sequential onstrution algorithm

is desribed. It is not obvious by just onsidering the algorithms that it reognizes

at least all fators of p and has m to 2m� 1 transitions (i.e. that (b) and (d) hold).

For both algorithms, a number of lemmas are needed to prove this. In this paper, we

give two alternative algorithms for the onstrution of a fator orale.

Our �rst algorithm, in Setion 2, onstruts a fator orale based on the su�xes

of p. This algorithm is O(m

2

) and thus not of pratial interest, but it is more in-

tuitive to understand and properties (b) and (d)�two important properties of fator

orales�are immediately obvious from the algorithm. The ayliity of the fator or-

ale however�orresponding to property (a)�is not immediately obvious. Our proof

of this property (part of Property 6) is rather involved, whereas the property is imme-

diately obvious from the algorithms in [1℄. We prove that the alternative onstrution

algorithm and those given in [1℄ onstrut equivalent automata in Setion 3.

In Setion 4 we present our seond algorithm, whih onstruts a fator orale

from the trie reognizing the fators of p. Although this algorithm is O(m

2

) as well,

it gives a lear insight in the relationship between the trie and dawg reognizing the

fators of p and the fator orale reognizing a superset thereof. In addition, we

onjeture that an O(m) trie-based algorithm exists.

Finally, Setion 5 gives a summary and overview of future work.

1.1 Related Work

An earlier version of this paper appears as [3, Chapter 4℄. In that thesis, some

properties of the language of a fator orale are disussed as well. The thesis also
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disusses pattern mathing algorithms�among them those using fator orales�and

the implementation of the fator orale as part of the SPARE Time pattern mathing

toolkit, a revised and extended version of SPARE Parts ([9℄).

As mentioned before, fator orales were introdued in [1℄ as an alternative to the

use of exat fator reognition in many on-line keyword pattern mathing algorithms.

A pattern mathing algorithm using the fator orale is desribed in that paper as

well.

Apart from their use in pattern mathing algorithms, fator orales have been

used in a heuristi to ompute repeated fators of a string [6℄ as well as to ompress

text [7℄. An improvement for those uses of fator orales is introdued in [8℄ in the

form of the repeat orale.

Related to the fator orale, the su�x orale�in whih only those states orre-

sponding to a su�x of p are marked �nal�is introdued in [1℄. In [2℄ the fator orale

is extended to apply to a set of strings.

1.2 Preliminaries

A string p = p

1

:::p

m

of length m is a sequene of haraters from an alphabet V . A

string u is a fator (resp. pre�x, su�x ) of a string v if v = sut (resp. v = ut, v = su),

for s; t 2 V

�

. We will use pref(p), su�(p) and fat(p) for the set of pre�xes, su�xes

and fators of p respetively. A pre�x (resp. su�x or fator) is a proper pre�x (resp.

su�x or fator) of a string p if it does not equal p. We write u �

s

v to denote that u

is a su�x of v, and u <

s

v to denote that u is a proper su�x of v.

2 Constrution Based on Su�xes

Our �rst alternative algorithm for the onstrution of a fator orale onstruts a

`skeleton' automaton for p�reognizing pref(p)�and then onstruts a path for

eah of the su�xes of p in order of dereasing length, suh that eventually at least

pref(su�(p)) = fat(p) is reognized. If suh a su�x of p is already reognized, no

transition needs to be onstruted. If on the other hand the omplete su�x is not yet

reognized there is a longest pre�x of suh a su�x that is reognized. A transition on

the next, non-reognized symbol is then reated, from the state in whih this longest

pre�x of the su�x is reognized, to a state from whih there is a path leading to state

m that spells out the rest of the su�x.

Build_Orale_2(p = p

1

p

2

:::p

m

)

1: for i from 0 to m do

2: Create a new �nal state i

3: end for

4: for i from 0 to m� 1 do

5: Create a new transition from i to i + 1 by p

i+1

6: end for

7: for i from 2 to m do

8: Let the longest path from state 0 that spells a pre�x of p

i

:::p

m

end in state j

and spell out p

i

:::p

k

(i� 1 � k � m)

9: if k 6= m then
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10: Build a new transition from j to k + 1 by p

k+1

11: end if

12: end for

Note that this algorithm is O(m

2

) (sine the operation on line 6 an be implemented

using a while loop). The fator orale on p built using this algorithm is referred to

as Orale(p) and the language reognized by it as fatorale(p).

The �rst two properties we give are obvious given our algorithm. They orrespond

to (b) and ()-(d) respetively as mentioned in Setion 1.

Property 1 fat(p) � fatorale(p).

Proof: The algorithm onstruts a path for all su�xes of p and all states are �nal.

Property 2 For p of length m, Orale(p) has exatly m + 1 states and between m

and 2m� 1 transitions.

Proof: States an be onstruted in steps 1-2 only, and exatly m + 1 states are

onstruted there. In step 4 of the algorithm, m transitions are reated. In steps 5-8,

at most m� 1 transitions are reated.

Property 3 (Glushkov's property) All transitions reahing a state i of Orale(p)

are labeled by p

i

.

Proof: The only steps of the algorithm that reate transitions are steps 4 and 8. In

both, transitions to a state i are reated labeled by p

i

.

Property 4 (Weak determinism) For eah state of Orale(p), no two outgoing

transitions of the state are labeled by the same symbol.

Proof: The algorithm never reates an outgoing transition by some symbol if suh a

transition already exists.

We now de�ne funtion pour(u; p) to give the end position of the leftmost ourrene

of u in p (equivalent to the same funtion in [1℄):

De�nition 1 Funtion pour 2 V

�

� V

�

! N is de�ned as

pour(u; p) = minfjtuj; p = tuvg (p; t; u; v 2 V

�

)

Note that if u 62 fat(p), pour(u; p) =1.

Property 5 For su�xes and pre�xes of fators we have:

uv 2 fat(p)) pour(v; p) � pour(uv; p) (p; u; v 2 V

�

)

uv 2 fat(p)) pour(u; p) � pour(uv; p)� jvj (p; u; v 2 V

�

)

We introdue min(i) for the minimum length string reognized in state i�either in

a partially onstruted or in the omplete automaton.

In the following property, we use j

i

and k

i

to identify the values j and k attain

when onsidering su�x p

i

:::p

m

of p in steps 5-8 of the algorithm.
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Property 6 For the partial automaton onstruted aording to algorithmBuild_-

Orale_2 with all su�xes of p of length greater than m� i + 1 already onsidered

in steps 5-8 (2 � i � m+ 1), we have that

i. it is ayli

ii. for eah h with 1 � h < i, all pre�xes of p

h

:::p

m

are reognized

iii. for eah state n and outgoing transition to a state q 6= n+ 1,

q � k

max

+ 1 holds where k

max

= maxfk

h

; 1 < h < i ^ k

h

< mg

iv. for eah state n, min(n) is an element of fat(p), min(n) is a su�x of eah

string reognized in n, and n = pour(min(n); p)

v. if u 2 fat(p) is reognized, it is reognized in a state n � pour(u; p)

vi. for eah state n and eah symbol a suh that there is a transition from n to a

state q by a, min(n) � a 2 fat(p) and q = pour(min(n) � a; p)

vii. for eah pair of states n and q, if min(n) �

s

min(q), then n � q, and as a

result, if min(n) <

s

min(q), then n < q

viii. if w is reognized in state n, then for any su�x u of w, if u is reognized, it is

reognized in state q � n

Proof: See Appendix A.

Note that Property 6, i. orresponds to property (a) in Setion 1.

3 Equivalene to Original Algorithms

A fator orale as introdued in [1℄ is built by the following algorithm:

Build_Orale(p = p

1

p

2

:::p

m

)

1: for i from 0 to m do

2: Create a new �nal state i

3: end for

4: for i from 0 to m� 1 do

5: Create a new transition from i to i + 1 by p

i+1

6: end for

7: for i from 0 to m� 1 do

8: Let u be a minimal length word in state i

9: for all � 2 �; � 6= p

i+1

do

10: if u� 2 Fat(p

i�juj+1

:::p

m

) then

11: Build a new transition from i to

�

i� juj+ pour(u�; p

i�juj+1

:::p

m

) by �

12: end if

13: end for

�

Note that in [1℄ the term �juj is missing in the algorithm, although from the rest of the paper

it is lear that it is used in the onstrution of the automata
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14: end for

To prove the equivalene of the automata onstruted by the two algorithms, we need

the following properties.

Property 7 For any state i of both Orale(p) (i.e. the fator orale onstruted a-

ording to algorithm Build_Orale_2 and the fator orale onstruted aording

to algorithm Build_Orale), if u = min(i) then

u� 2 fat(p

i�juj+1

:::p

m

) � u� 2 fat(p)

Proof: ): Trivial. (: By Property 6, iv. (for Build_Orale_2) and [1, Lemma

1℄ (for Build_Orale), i = pour(u; p). By Property 5, pour(u�; p) � i, hene

u� 2 fat(p

i�juj+1

:::p

m

).

Property 8 For any state i of an automaton onstruted by either algorithm, if

u = min(i) and u� 2 fat(p) then

i� juj+ pour(u�; p

i�juj+1

:::p

m

) = pour(u�; p)

Proof:

i� juj+ pour(u�; p

i�juj+1

:::p

m

)

= { de�nition pour }

i� juj+minfjtu�j; p

i�juj+1

:::p

m

= tu�vg

= { u = min(i), hene reognized in i = pour(u; p) }

i� juj+minfjtu�j � (i� juj); p = tu�vg

= { u� 2 fat(p), property of min }

i� juj+minfjtu�j; p = tu�vg � (i� juj)

= { alulus, de�nition pour }

pour(u�; p)

Property 9 The algorithms Build_Orale_2 and Build_Orale

onstrut equivalent automata.

Proof: We prove this by indution on the states. Our indution hypothesis is that

for eah state j (0 � j < i), min(j) is the same in both automata, and the outgoing

transitions from state j are equivalent for both automata.

If i = 0, u = min(i) = " in both automata. Consider a transition reated

by Build_Orale_2, say to state k by � 6= p

i+1

. Sine this transition exists,

u� 2 fat(p) and k = pour(u�; p) (due to Property 6, vi.). Using Properties 7

and 8, suh a transition was reated by Build_Orale as well. Similarly, onsider

a transition reated by Build_Orale, say to state k by �. This transition, say

on symbol �, leads to state k = i � juj + pour(u�; p

i�juj+1

:::p

m

) and was reated

sine u� 2 fat(p

i�juj+1

:::p

m

) (see the algorithm). Using Properties 7 and 8, suh a

transition was reated by Build_Orale_2 as well.
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If i > 0, using the indution hypothesis and ayliity of the automata, i has

the same inoming transitions and as a result min(i) is the same for both automata.

Using the same arguments as in ase i = 0, the outgoing transitions from state i are

equivalent for both automata.

As a result, the two automata are equivalent.

4 Constrution Based on Trie

0 1
a

5

b

9

c

2
b

3
b

4
c

6
b

8

c
7

c

Figure 3: Trie reognizing fat(abb)
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Figure 4: DAWG reognizing fat(abb)
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Figure 5: Fator orale reognizing fat(abb) [ fabg

There is a lose relationship between the data strutures Trie(fat(p)) �the trie

([5℄) on fat(p)�reognizing exatly fat(p), DAWG(fat(p)) �the direted ayli

word graph ([4℄) on fat(p)�reognizing exatly fat(p), and Orale(p)�the fator

orale on p�whih reognizes at least fat(p).

It is well known that DAWG(fat(p)) an be onstruted from Trie(fat(p)) by

merging states whose right languages are idential (see for example [4℄). The fator

orale as de�ned by Orale(p) an also be onstruted from Trie(fat(p)), by merging

states whose right languages have idential longest strings (whih are su�xes of p).

An example of a trie, DAWG and fator orale for the fators of abb an be seen in

Figures 3-5.
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De�nition 2 We de�ne Trie(S) as a 5-tuple <Q, V , Æ, ", F> where S is a �nite

set of strings, Q = pref(S) is the set of states, V is the alphabet, Æ is the transition

funtion, de�ned by

Æ(u; a) =

(

ua if ua 2 pref(S)

? if ua 62 pref(S)

(u 2 pref(S); a 2 V );

" is the single start state and F = S is the set of �nal states.

Property 10 For u; v 2 fat(p) we have :

uv 2 fat(p) ^ (8w : uw 2 fat(p) : jwj � jvj) ) uv 2 su�(p)

uv

1

2 fat(p) ^ (8w : uw 2 fat(p) : jwj � jv

1

j)

^ uv

2

2 fat(p) ^ (8w : uw 2 fat(p) : jwj � jv

2

j) ) v

1

= v

2

Property 11 For u 2 fat(p) and C 2 N,

(8w : uw 2 fat(p) : jwj � C) � (8w : uw 2 su�(p) : jwj � C)

Proof: ): trivial. (: Let ux 2 fat(p), then (9y : : uxy 2 su�(p)), hene (9y : :

jxyj � C), and sine jyj � 0, jxj � C.

Using Properties 10 and 11, max

p

(u) an be de�ned as the unique longest string v

suh that uv 2 su�(p):

De�nition 3 De�ne max

p

(u) = v where v is suh that

uv 2 su�(p) ^ (8w : uw 2 su�(p) : jwj � jvj)

We now present our simple trie-based onstrution algorithm for fator orales:

Trie_To_Orale(p = p

1

p

2

:::p

m

)

1: Construt Trie(fat(p))

2: for i from 2 to m do

3: Merge all states u for whih max

p

(u) = p

i+1

:::p

m

into the single state p

1

:::p

i

4: end for

The order in whih the values of i are onsidered is not important. In addition, note

that it is not neessary to onsider the states u for whih max

p

(u) = p

2

:::p

m

sine

there is preisely one suh state u in Trie(fat(p)), u = p

1

. Due to Property 10, it is

su�ient to only onsider su�xes of p as longest strings.

Also note that the intermediate automata may be nondeterministi, but the �nal

automaton will be weakly deterministi (as per Property 4).

The above algorithm has omplexity O(m

2

) (assuming that max

p

(u) was om-

puted during onstrution of the trie). The onstrution of a Trie an be done in

O(m) time however, and the merging of the states is similar to minimization of an
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ayli automaton, whih an also be done in O(m). We therefore onjeture that an

O(m) trie-based fator orale onstrution algorithm exists.

To prove that algorithm Trie_To_Orale onstruts Orale(p), we de�ne a

partition on the states of the trie, indued by an equivalene relation on the states.

De�nition 4 Relation �

p

on states of Trie(fat(p)) is de�ned by

t �

p

u � max

p

(t) = max

p

(u) (t; u 2 fat(p))

Note that relation �

p

is an equivalene relation.

We now show that the partitioning into sets of states of Trie(fat(p)) indued by �

p

,

is the same as the partitioning of Trie(fat(pa)) indued by �

pa

, restrited to the

states of Trie(fat(p)), i.e.

Property 12

t �

p

u � t �

pa

u (t; u 2 fat(p); a 2 V )

Proof:

t �

p

u

� { de�nition �

p

}

max

p

(t) = max

p

(u)

� { }

max

p

(t)a = max

p

(u)a

� { ( ? ) }

max

pa

(t) = max

pa

(u)

� { de�nition �

pa

}

t �

pa

u

where we prove ( ? ) by

v = max

pa

(u)

� { de�nition max

pa

}

uv 2 su�(pa) ^ (8w : uw 2 su�(pa) : jwj � jvj)

� { u 2 fat(p), hene (9x : : uxa 2 su�(pa)),

hene jxaj > 0 and jvj > 0; su�(pa) = su�(p)a [ f"g }

uv 2 su�(p)a ^ (8w : uw 2 su�(pa) : jwj � jvj)

� { jvj > 0 }

uv 2 su�(p)a ^ (8w : w 6= " ^ uw 2 su�(pa) : jwj � jvj) ^ v = v

0

a

� { su�(pa) = su�(p)a [ f"g }

uv 2 su�(p)a ^ (8w : w 6= " ^ uw 2 su�(p)a : jwj � jvj) ^ v = v

0

a
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� { w = w

0

a }

uv 2 su�(p)a ^ (8w

0

: uw

0

a 2 su�(p)a : jw

0

aj � jv

0

aj) ^ v = v

0

a

� { }

uv 2 su�(p)a ^ (8w

0

: uw

0

2 su�(p) : jw

0

j � jv

0

j) ^ v = v

0

a

� { v = v

0

a }

uv

0

2 su�(p) ^ (8w

0

: uw

0

2 su�(p) : jw

0

j � jv

0

j) ^ v = v

0

a

� { de�nition max

p

}

v

0

= max

p

(u) ^ v = v

0

a

� { }

v = max

p

(u)a

Property 13 Algorithm Trie_To_Orale onstruts Orale(p).

Proof: By indution on jpj = m. If m = 0, p = ", and Trie(fat(")) = Orale(").

If m = 1, p = a (a 2 V ), and Trie(fat(a))=Orale(a). If m > 1, p = xa

(x 2 V

�

; a 2 V ), and we may assume the algorithm to onstrut part Orale(x)

of Orale(xa) orretly (using fat(ua) = fat(u) [ su�(u)a, Trie(fat(xa)) being

an extension of Trie(fat(x)), and Orale(xa) being an extension of Orale(x) (whih

is straightforward to see from algorithm Build_Orale_2 as well as [1, page 57,

after Corollary 4℄), and Property 12). Now onsider the states of this partially on-

verted automaton in whih su�xes of x are reognized. By onstrution of the trie,

there are transitions from these states by a. The fator orale onstrution aord-

ing to algorithm Orale_Sequential in [1℄ reates Orale(xa) from Orale(x)+a

(i.e. the fator orale for x extended with a single new state m reahable from state

m� 1 by symbol p

m

= a) by reating new transitions to state m from those states in

whih su�xes of x are reognized and that do not yet have a transition on a. Sine

Trie_To_Orale merges all states t for whih max

xa

(t) = a into the single state

m, Orale(xa) is onstruted orretly from Trie(fat(xa)).

5 Conlusions and Future Work

We have presented two alternative onstrution algorithms for fator orales and

shown the automata onstruted by them to be equivalent to those onstruted by

the algorithms in [1℄. Although both our algorithms are O(m

2

) and thus pratially

ine�ient ompared to the O(m) sequential algorithm given in [1℄, they give more

insight into fator orales.

Our �rst algorithm is more intuitive to understand and makes it immediately

obvious, without the need for several lemmas, that the fator orale reognizes at

least fat(p) and has m to 2m� 1 transitions.

Our seond algorithm gives a lear insight into the relationship between the trie

or dawg reognizing fat(p) and the fator orale reognizing a superset thereof. We
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onjeture that an O(m) trie-based algorithm for the onstrution of fator orales

exists.
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Figure 6: Fator orale reognizing a superset of fat(p) (inluding for example ae 62

fat(p)), for p = abadae.
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Figure 7: Alternative automaton with m + 1 states satisy�ng Glushkov's property

yet reognizing a di�erent superset of fat(p) than the fator orale for p (inluding

for example aadae 62 fatorale(p), but not ae) and having less transitions, for

p = abadae.

As stated in [1℄, the fator orale is not minimal in terms of number of transitions

among the automata with m+ 1 states reognizing at least fat(p). We note that it

is not even minimal among the subset of suh automata having Glushkov's property

(see Figures 6 and 7).

We are working on an automaton-independent de�nition of the language reog-

nized by the fator orale. Suh a haraterization would enable us to alulate how

many strings are reognized that are not fators of the original string. This ould

be useful in determining whether to use a fator orale-based algorithm in pattern

mathing or not.
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A Proof of Property 6

We �rst onsider the automaton onstruted in steps 1-4 of the algorithm. It is

straightforward to verify that the properties hold for i = 2.

Now assume that the properties hold for the automaton with all su�xes of p of

length greater than m � i + 1 already onsidered. We prove that they also hold for

the automaton after the su�x of length m� i+ 1, p

i

:::p

m

, has been onsidered.

If k = m in step 6, su�x p

i

:::p

m

is already reognized, no new transition will be

reated, the automaton does not hange and the properties still hold.

If k < m, then we need to prove that eah of the properties holds for the new

automaton.

Ad i: By v., string p

i

:::p

k

is reognized in state j � pour(p

i

:::p

k

; p). Sine

p

i

:::p

k

�

s

p

1

:::p

k

and pour(p

1

:::p

k

; p) = k, pour(p

i

:::p

k

; p) � k due to Property 5.

Sine j � k, the transition reated from j to k + 1 is a forward one.
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Ad ii: Trivial.

Ad iii: We prove that the property holds for the new automaton by showing that

k = k

i

� k

max

, i.e. k will beome the new k

max

.

If k

max

= �1, k � k

max

learly holds.

If k

max

> �1, assume that k

max

> k, then there is an h suh that 1 < h < i ^

k

h

< m ^ k

h

= k

max

. Fator p

h

:::p

k

is reognized in g � k due to ii. and v.

If g = k, then p

h

:::p

k

is reognized in k and p

h

:::p

m

is reognized in m; so k

h

= m

whih ontradits k

h

< m.

If g < k, then p

h

:::p

k

is reognized in g < k. Sine p

i

:::p

k

is reognized in j = j

i

and p

i

:::p

k

�

s

p

h

:::p

k

, due to viii., j � g.

If j = g, then p

h

:::p

k

is the longest pre�x of p

h

:::p

m

reognized by the old automa-

ton, whih ontradits ii.

If j < g, then j < g < k. We know that min(g) �

s

p

h

:::p

k

(using iv.), min(j) �

s

p

h

:::p

k

(using iv. and p

i

:::p

k

�

s

p

h

:::p

k

) and therefore that min(j) <

s

min(g) (due

to vii.). Let l be the state to whih the transition by p

k+1

from g leads, i.e. l is the state

in whih p

h

:::p

k+1

is reognized. Using vi., we have that l = pour(min(g) � p

k+1

; p).

Using Property 5 we have that l � pour(p

h

:::p

k+1

; p) and the latter is � k + 1 due

to the de�nition of pour (sine k + 1 marks the end of an ourrene of p

h

:::p

k+1

).

We have pour(min(j) � p

k+1

; p) � pour(min(g) � p

k+1

; p) = l sine min(j) �

s

min(g). We want to prove that k + 1 � pour(min(j) � p

k+1

; p). Assume that

pour(min(j) � p

k+1

; p) < k + 1. If the �rst ourrene of min(j) � p

k+1

starts before

position i of p, then it is a pre�x of a su�x of p longer than p

i

:::p

m

and thus by ii.

min(j) � p

k+1

is reognized. Sine min(j) is reognized in j, a transition from j by

p

k+1

must exist and we have a ontradition. If the �rst ourrene of min(j) � p

k+1

starts at or after position i of p, then there exists a shortest string x suh that

x �min(j) � p

k+1

2 pref(p

i

:::p

k

) and x �min(j) � p

k+1

is reognized in a state � j. But

then x �min(j) is reognized in a state n < j. By viii., sine min(j) �

s

x �min(j),

this means that min(j) is reognized in state s � n < j and we have a ontradition.

Thus k+1 � pour(min(j)�p

k+1

; p) � l and therefore, sine l � k+1 holds, l = k+1.

In that ase, p

h

:::p

k+1

is reognized in l = k + 1 and p

h

:::p

m

is reognized in m. But

then k

h

= m, and we have a ontradition.

Thus, k

max

= k

h

� k = k

i

and iii. holds for the new automaton.

Ad iv: Let s = min(j), t = min(k + 1) and u = min(h) (k + 1 � h � m)

respetively in the old automaton. Due to the proof of iii., k = k

i

� k

max

and

therefore a unique path between k + 1 and h exists, labeled r, and�due to iv�

u �

s

tr.

If jsp

k+1

rj � juj, u remains the minimal length string reognized in state h. Sine

s �

s

p

i

:::p

k

, sp

k+1

r �

s

p

i

:::p

k+1

r. Sine u �

s

tr, tr �

s

p

1

:::p

k+1

r and jsp

k+1

rj � juj,

u �

s

sp

k+1

r and�due to iv.�u �

s

s

0

p

k+1

r as well for any s

0

reognized in state j.

If jsp

k+1

rj < juj, sp

k+1

r is the new minimal length string reognized in state

h. Sine s �

s

p

i

:::p

k

, sp

k+1

r �

s

p

i

:::p

k+1

r. Sine u �

s

tr, tr �

s

p

1

:::p

k+1

r and

jsp

k+1

rj < juj, sp

k+1

r �

s

u and�due to iv.�sp

k+1

r �

s

s

0

p

k+1

r as well for any s

0

reognized in state j.

Sine p

i

:::p

k+1

r was not reognized before, it is not a pre�x of p, p

2

:::p

m

, ...,

p

i�1

:::p

m

(using ii.), hene pour(p

i

:::p

k+1

r; p) = k + 1 + jrj. Sine s �

s

p

i

:::p

k

,

pour(sp

k+1

r; p) � k + 1 + jrj. Assume that pour(sp

k+1

r; p) < k + 1 + jrj, then

p

i

:::p

k+1

r = usp

k+1

rv (u; v 2 V

�

, v 6= ", juj minimal), sine sp

k+1

r annot start before
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p

i

beause in that ase it would have already been reognized by the old automaton.

Fator us is reognized in state g < j (using i.) and�sine viii. holds�s �

s

us is

reognized in a state o � g < j. This ontradits s being reognized in j. As a result

pour(sp

k+1

r; p) = k + 1 + jrj.

Ad v: Any new fator of p reognized after reation of the transition from j to

k+1 has the form vp

k+1

r and is reognized in k+1+ jrj with v 2 fat(p) reognized

in state j. Sine k + 1 + jrj = pour(min(k + 1)r; p) (using iii., iv. holding for the

new automaton plus the fat that k is the new k

max

) and min(k+1) �r �

s

vp

k+1

r due

to iv. holding for the new automaton, k+1+ jrj � pour(vp

k+1

r; p) using Property 5.

Ad vi: The states n we have to onsider are n = j and n = h for k + 1 � h � m.

For n = j, a new transition to k+1 is reated and by iv., min(j) �

s

p

i

:::p

k

., hene

we have min(j) � p

k+1

�

s

p

i

:::p

k+1

, p

k+1�jmin(j)j

:::p

k+1

= min(j) � p

k+1

, min(j) � p

k+1

2

fat(p) and pour(min(j) �p

k+1

; p) � k+1. Sine min(j) �p

k+1

is reognized in state

k + 1, due to v. for the new automaton, k + 1 � pour(min(j) � p

k+1

; p). Therefore

k + 1 = pour(min(j) � p

k+1

; p).

For n = h with k + 1 � h � m, min(h) hanges to sp

k+1

r if and only if

jsp

k+1

rj < juj (with r; s; u as in the proof of iv.). We know that ua 2 fat(p) and

q = pour(ua; p). Sine sp

k+1

r �

s

u, sp

k+1

ra �

s

ua, hene sp

k+1

ra 2 fat(p) as well

and pour(sp

k+1

ra; p) � pour(ua; p) = q, but due to v., q � pour(sp

k+1

ra; p)

hene q = pour(sp

k+1

ra; p).

Ad vii: Assume min(n) �

s

min(q). We have pour(min(n); p) � pour(min(q);

p) due to Property 5, whih aording to iv. is equivalent to n � q.

Ad viii: By indution on jwj. It is true if jwj = 0 or jwj = 1. Assume that it

is true for all strings x suh that jxj < jwj. We will show that it is also true for w,

reognized in n.

Let w = xa (x 6= "), x is reognized in h (0 < h < n). Consider a proper su�x of

w, reognized in state q. It either equals " and is reognized in state 0 � n or it an

be written as va where v <

s

x.

Su�x va of w is reognized, therefore su�x v of x is reognized and aording

to the indution hypothesis, v is reognized in state l � h. Let �x = min(h) and

�v = min(l). Due to iv. for the new automaton, �x �

s

x and �v �

s

v. We now prove

that �v �

s

�x. If l = h, then �v = �x. Now onsider the ase l < h. Sine v �

s

x and

�v �

s

v, �v �

s

x. Due to vii., �x 6�

s

�v. Thus, sine �v and �x both are su�xes of x, �v �

s

�x.

Sine �x is reognized in h and there is a transition by a from h to n, by vi. for the new

automaton we have that �xa 2 fat(p) and n = pour(�xa; p). Sine �v is reognized

in l and there is a transition by a from l to q, �va 2 fat(p) and q = pour(�va; p) due

to vi. for the new automaton. Sine �va �

s

�xa, pour(�va; p) � pour(�xa; p) due to

Property 5 and hene q � n.

We have shown that the properties hold for every partial automaton during the

onstrution. Consequently, they hold for the omplete automaton Orale(p).

50


