
Forward-Fast-Searh: Another Fast Variant of the

Boyer-Moore String Mathing Algorithm

Domenio Cantone and Simone Faro

Dipartimento di Matematia e Informatia, Università di Catania, Italy

e-mail: {antone, faro}�dmi.unit.it

Abstrat. We present a variation of the Fast-Searh string mathing algorithm,

a reent member of the large family of Boyer-Moore-like algorithms, and we om-

pare it with some of the most e�etive string mathing algorithms, suh as Hor-

spool, Quik Searh, Tuned Boyer-Moore, Reverse Fator, Berry-Ravindran, and

Fast-Searh itself. All algorithms are ompared in terms of run-time e�ieny,

number of text harater inspetions, and number of harater omparisons.

It turns out that our new proposed variant, though not linear, ahieves very

good results espeially in the ase of very short patterns or small alphabets.

Keywords: string mathing, experimental algorithms, text proessing.

1 Introdution

Given a text T and a pattern P over some alphabet �, the string mathing prob-

lem onsists in �nding all ourrenes of the pattern P in the text T . It is a very

extensively studied problem in omputer siene, mainly due to its diret applia-

tions to suh diverse areas as text, image and signal proessing, speeh analysis and

reognition, information retrieval, omputational biology and hemistry, et.

Several string mathing algorithms have been proposed over the years. The Boyer-

Moore algorithm [BM77℄ deserves a speial mention, sine it has been partiularly

suessful and has inspired muh work. It is based upon three simple ideas: right-to-

left sanning, bad harater heuristis, and good su�x heuristis. We will review it

at length in Setion 2.1.

Many subsequent algorithms have been based on variations on how to apply the

two mentioned heuristis. For instane, the Fast-Searh algorithm, reently introdued

by the authors [CF03℄, requires that the bad harater heuristis is used only if the

mismathing harater is the last harater of the pattern, otherwise the good su�x

heuristis is to be used.

In this paper, we present a variation of the Fast-Searh algorithm in whih the good

su�x heuristis uses also a look-ahead harater to determine larger advanements.

We also propose a pratial algorithm to preompute the table enoding suh an

extended good su�x rule.

Before entering into details, we need a bit of notations and terminology. A string

P is represented as a �nite array P [0 :: m � 1℄, with m � 0. In suh a ase we say

10

Forward-Fast-Searh: Another Fast Variant of the Boyer-Moore String Mathing Algorithm

that P has length m and write length(P) = m. In partiular, for m = 0 we obtain

the empty string, also denoted by ". By P [i℄ we denote the (i+ 1)-st harater of P ,

for 0 � i < length(P). Likewise, by P [i :: j℄ we denote the substring of P ontained

between the (i + 1)-st and the (j + 1)-st haraters of P , for 0 � i � j < length(P).

Moreover, for any i; j 2 Z, we put

P [i :: j℄ =

(

" if i > j

P [max(i; 0);min(j; length(P)� 1)℄ otherwise:

For any two strings P and P

0

, we write P

0

= P to indiate that P

0

is a su�x of P , i.e.,

P

0

= P [i :: length(P)� 1℄, for some 0 � i < length(P). Similarly, we write P

0

< P to

indiate that P

0

is a pre�x of P , i.e., P

0

= P [0 :: i� 1℄, for some 0 � i � length(P).

In addition, we write P:P

0

to denote the onatenation of P and P

0

.

Let T be a text of length n and let P be a pattern of lengthm. When the harater

P [0℄ is aligned with the harater T [s℄ of the text, so that the harater P [i℄ is aligned

with the harater T [s+ i℄, for i = 0; : : : ; m� 1, we say that the pattern P has shift

s in T . In this ase the substring T [s :: s+m� 1℄ is alled the urrent window of the

text. If T [s :: s+m�1℄ = P , we say that the shift s is valid. Thus the string mathing

problem an be rephrased as the problem of �nding all valid shifts of a pattern P

relative to a text T .

Most string mathing algorithms have the following general struture. First, dur-

ing a preproessing phase, they alulate useful mappings, in the form of tables,

whih later are aessed to determine nontrivial shift advanements. Next, start-

ing with shift s = 0, they look for all valid shifts, by exeuting a mathing phase,

whih determines whether the shift s is valid and omputes a positive shift inrement

�s. Suh inrement �s is used to produe the new shift s + �s to be fed to the

subsequent mathing phase. Observe that for the orretness of the algorithm it is

plainly neessary that eah shift inrement �s omputed is safe, namely the interval

fs+ 1; : : : ; s+�s� 1g ontains no valid shifts.

For instane, in the ase of the naive string mathing algorithm, there is no pre-

proessing phase and the mathing phase always returns a unitary shift inrement,

i.e., all possible shifts are atually proessed.

The paper is organized as follows. In Setion 2 we survey some of the most e�etive

string mathing algorithms. Next, in Setion 3, we introdue a new variant of the Fast-

Searh algorithm. Experimental data obtained by running under various onditions

all the algorithms reviewed are presented and ompared in Setion 4. Finally, we

draw our onlusions in Setion 5.

2 Some Very Fast String Mathing Algorithms

In this setion we brie�y review the Boyer-Moore algorithm and some of its most e�-

ient variants that have been proposed over the years. In partiular, we present the

Horspool [Hor80℄, Tuned Boyer-Moore[HS91℄, Quik-Searh[Sun90℄, Berry-Ravindran

[BR99℄, and the Fast-Searh [CF03℄ algorithms.

We also review the Reverse Fator algorithm [CCG

+

94℄, whih is based on the

smallest su�x automaton of the reverse pattern.

11

Proeedings of the Prague Stringology Conferene '03

2.1 The Boyer-Moore Algorithm

The Boyer-Moore algorithm [BM77℄ is the progenitor of several algorithmi variants

whih aim at omputing lose to optimal shift inrements very e�iently. Spei�ally,

the Boyer-Moore algorithm heks whether s is a valid shift by sanning the pattern P

from right to left and, at the end of the mathing phase, omputes the shift inrement

as the maximum value suggested by the good su�x rule and the bad harater rule

below, using the funtions gs

P

and b

P

respetively, provided that both of them are

appliable.

If the �rst mismath ours at position i of the pattern P , the good su�x rule

suggests to align the substring T [s + i + 1 : : : s + m � 1℄ = P [i + 1 : : :m � 1℄ with

its rightmost ourrene in P preeded by a harater di�erent from P [i℄. If suh an

ourrene does not exist, the good su�x rule suggests a shift inrement whih allows

to math the longest su�x of T [s+ i+ 1 : : : s+m� 1℄ with a pre�x of P .

More formally, if the �rst mismath ours at position i of the pattern P , the good

su�x rule states that the shift an be safely inremented by gs

P

(i+1) positions, where

gs

P

(j) =

Def

minf0 < k � m j P [j � k ::m� k � 1℄ = P

and (k � j � 1! P [j � 1℄ 6= P [j � 1� k℄)g ;

for j = 0; 1; : : : ; m. (The situation in whih an ourrene of the pattern P is found

an be regarded as a mismath at position �1.)

The bad harater rule states that if = T [s + i℄ 6= P [i℄ is the �rst mismathing

harater, while sanning P and T from right to left with shift s, then P an be safely

shifted in suh a way that its rightmost ourrene of , if present, is aligned with

position (s+ i) in T . In the ase in whih does not our in P , then P an be safely

shifted just past position (s + i) in T . More formally, the shift inrement suggested

by the bad harater rule is given by the expression (i� b

P

(T [s+ i℄)), where

b

P

() =

Def

max(f0 � k < m j P [k℄ = g [f�1g) ;

for 2 �, and where we reall that � is the alphabet of the pattern P and text

T . Notie that there are situations in whih the shift inrement given by the bad

harater rule an be negative.

It turns out that the funtions gs

P

and b

P

an be omputed during the pre-

proessing phase in time O(m) and O(m + j�j), respetively, and that the overall

worst-ase running time of the Boyer-Moore algorithm, as desribed above, is linear

(f. [GO80℄).

2.2 The Horspool Algorithm

Horspool suggested a simpli�ation of the original Boyer-Moore algorithm, de�ning a

new variant whih, though quadrati, performed better in pratial ases (f. [Hor80℄).

He just dropped the good su�x rule and proposed to ompute the shift advanement

in suh a way that the rightmost harater T [s+m� 1℄ is aligned with its rightmost

ourrene on P [0 :: m � 2℄, if present; otherwise the pattern is advaned just past

the window. This orresponds to advane the shift by hb

P

(T [s+m� 1℄) positions,

where

hb

P

() =

Def

min(f1 � k < m j P [m� 1� k℄ = g [fmg) :

12

Forward-Fast-Searh: Another Fast Variant of the Boyer-Moore String Mathing Algorithm

The resulting algorithm performs well in pratie and an be immediately translated

into programming ode (see Baeza-Yates and Régnier [BYR92℄ for a simple imple-

mentation in the C programming language).

2.3 The Tuned Boyer-Moore Algorithm

The Tuned Boyer-Moore algorithm [HS91℄ an be seen as an e�ient implementation

of the Horspool algorithm. Again, let P be a pattern of length m. Eah iteration

of the Tuned Boyer-Moore algorithm an be divided into two phases: last harater

loalization and mathing phase. The �rst phase searhes for a math of P [m�1℄, by

applying rounds of three blind shifts (based on the lassial bad harater rule) until

needed. The mathing phase tries then to math the rest of the pattern P [0 :: m� 2℄

with the orresponding haraters of the text, proeeding from right to left. At

the end of the mathing phase, the shift advanement is omputed aording to the

Horspool bad harater rule. Moreover, to begin with, the algorithm adds m opies

of P [m� 1℄ at the end of the text, as a sentinel, to ompute the last shifts orretly.

The fat that the blind shifts require no omparison is at the heart of the very

good pratial behavior of the Tuned Boyer-Moore, despite its quadrati worst-ase

time omplexity (f. [Le00℄).

2.4 The Quik-Searh Algorithm

The Quik-Searh algorithm, presented in [Sun90℄, uses a modi�ation of the original

heuristis of the Boyer-Moore algorithm, muh along the same lines of the Horspool

algorithm. Spei�ally, it is based on the following observation: when a mismath

harater is enountered, the pattern is always shifted to the right by at least one

harater, but never by more than m haraters. Thus, the harater T [s + m℄ is

always involved in testing for the next alignment. So, one an apply the bad harater

rule to T [s + m℄, rather than to the mismathing harater, obtaining larger shift

advanements. This orresponds to advane the shift by qb

P

(T [s + m℄) positions,

where

qb

P

() =

Def

min(f0 < k � m j P [m� k℄ = g [fm+ 1g) :

Experimental tests have shown that that the Quik-Searh algorithm is very fast

espeially for short patterns (f. [Le00℄).

2.5 The Berry-Ravindran Algorithm

The Berry-Ravindran algorithm [BR99℄ extends the Quik-Searh algorithm in that

its bad harater rule uses the two haraters T [s+m℄ and T [s+m+ 1℄ rather than

just the last harater T [s+m℄ of the window, where m is the size of the pattern P .

Thus, at the end of eah mathing phase with shift s, the Berry-Ravindran algorithm

advanes the pattern so that the substring of the text T [s+m :: s+m+1℄ is aligned

with its rightmost ourrene in P .

The preomputation of the table used by the bad harater rule requires O(j�j

2

)-

spae and O(m + j�j

2

)-time omplexity, where � is the alphabet of the text and

pattern. Experimental results [BR99℄ show that the Berry-Ravindran algorithm is

fast in pratie and performs a low number of text/pattern harater omparisons.

13

Proeedings of the Prague Stringology Conferene '03

2.6 The Fast-Searh Algorithm

Again, let P be a pattern of lengthm and let T be a text of length n over a �nite alpha-

bet �. The main observation upon whih the Fast-Searh algorithm [CF03℄ is based

is the following: the Horspool bad harater rule leads to larger shift inrements than

the good su�x rule if and only if a mismath ours immediately, while omparing

the pattern P with the window T [s :: s+m�1℄, namely when P [m�1℄ 6= T [s+m�1℄,

where 0 � s � m� n is a shift.

In agreement with the above observation, the Fast-Searh algorithm omputes its

shift inrements by applying the Horspool bad harater rule only if a mismath

ours during the �rst harater omparison. Otherwise it uses the good su�x rule.

Notie that hb

P

(a) = b

P

(a), whenever a 6= P [m � 1℄, so that to ompute the

shift advanement one an use the traditional bad harater rule, b

P

, rather then

the Horspool bad harater rule, hb

P

.

A more e�etive implementation of the Fast-Searh algorithm is obtained along

the same lines of the Tuned Boyer-Moore algorithm: the bad harater rule an be

iterated until the last harater P [m� 1℄ of the pattern is mathed orretly against

the text. At this point it is known that T [s+m�1℄ = P [m�1℄, so that the subsequent

mathing phase an start with the (m � 2)-nd harater of the pattern. At the end

of the mathing phase the algorithm uses the good su�x rule for shifting.

As in the ase of the Tuned Boyer-Moore algorithm, the Fast-Searh algorithm

bene�ts from the introdution of an external sentinel, whih allows to ompute or-

retly the last shifts with no extra heks.

Experimental results [CF03℄ show that the Fast-Searh algorithm obtains the best

run-time performanes in most ases and, sporadially, it is seond only to the Tuned

Boyer-Moore algorithm. Conerning the number of text harater inspetions, it turns

out that the Fast-Searh algorithm is quite lose to the Reverse Fator algorithm,

whih generally shows the best behavior. We notie, though, that in the ase of very

short patterns the Fast-Searh algorithm reahes the lowest number of text harater

aesses.

2.7 The Reverse Fator Algorithm

Unlike the variants of the Boyer-Moore algorithm summarized above, the Reverse

Fator algorithm omputes shifts whih math pre�xes of the pattern, rather than

su�xes. This is made possible by the smallest su�x automaton of the reverse of the

pattern P , whih is a deterministi �nite automaton S(P) whose aepted language

is the set of su�xes of P (for a omplete desription see [CCG

+

94℄).

The Reverse Fator algorithm has a quadrati worst-ase time omplexity, but it

is very fast in pratie (f. [Le00℄). Moreover, it has been shown that on the average

it inspets O(n log(m)=m) text haraters, reahing the best bound shown by Yao in

[Yao79℄.

3 The Forward-Fast-Searh Algorithm

In this setion we present a new e�ient variant of the Boyer-Moore algorithm ob-

tained by modifying the Fast-Searh algorithm presented in Setion 2.6.

14

Forward-Fast-Searh: Another Fast Variant of the Boyer-Moore String Mathing Algorithm

The new algorithmi variant, that we all Forward-Fast-Searh, mantains the same

struture of the Fast-Searh algorithm, but is based upon a modi�ed version of the

good su�x rule, alled forward good su�x rule, whih uses a look-ahead harater to

determine larger shift advanements.

The forward good su�x requires a preomputed table of size (m � j�j), where m

is the length of the pattern and � is the alphabet of the text and pattern.

Conerning the running time, the forward good su�x rule an be preomputed by

j�j iterations of the standard linear preomputation of the Boyer-Moore good su�x

rule, yielding a O(m � j�j) time omplexity. Nevertheless, we propose an alternative,

more diret approah whih behaves very well in pratie, though it requires O(m �

max(m; j�j)) time in the worst ase.

3.1 Strengthening the Good Su�x Rule

3.1.1 The Bakward Good Su�x Rule

A �rst natural way to strengthen the good su�x rule, whih yields the bakward good

su�x rule, an be obtained by merging it with the bad harater rule as follows.

As usual, let us assume that we are omparing a pattern P of length m with the

window T [s :: s +m � 1℄ at shift s of a given text T , sanning it from right to left.

If the �rst mismath ours at position i of the pattern P , i.e. P [i + 1 :: m � 1℄ =

T [s + i + 1 :: s + m � 1℄ and P [i℄ 6= T [s + i℄, then the bakward good su�x rule

proposes to align the substring T [s+ i+ 1 :: s+m� 1℄ with its rightmost ourrene

in P preeded by the bakward harater T [s + i℄. If suh an ourrene does not

exist, the bakward good su�x rule proposes a shift inrement whih allows to math

the longest su�x of T [s + i + 1 :: s +m � 1℄ with a pre�x of P . More formally, this

orresponds to inrement the shift s by

 �

gs

P

(i + 1; T [s+ i℄), where

 �

gs

P

(j;) =

Def

minf0 < k � m j P [j � k : : :m� k � 1℄ = P

and (k � j � 1! P [j � 1℄ =)g ;

for j = 0; 1; : : : ; m and 2 �.

3.1.2 The Forward Good Su�x Rule

As observed by Sunday [Sun90℄, after a mathing phase with shift s, the forward

harater T [s+m℄ is always involved in the subsequent mathing phase. Thus, another

possible variant of the good su�x rule, whih we all forward good su�x rule, onsists

in mathing the forward harater T [s +m℄, rather than the mismathed harater

T [s + i℄. More preisely, if as above the �rst mismath ours at position i of the

pattern P , the forward good su�x rule suggests to align the substring T [s+ i+1 :: s+

m℄ with its rightmost ourrene in P preeded by a harater di�erent from P [i℄.

If suh an ourrene does not exist, the forward good su�x rule proposes a shift

inrement whih allows to math the longest su�x of T [s+ i+1 :: s+m℄ with a pre�x

of P . This orresponds to advane the shift s by

�!

gs

P

(i+1; T [s+m℄) positions, where

�!

gs

P

(j;) =

Def

min(f0 < k � m j P [j � k ::m� k � 1℄ = P

and (k � j � 1! P [j � 1℄ 6= P [j � 1� k℄)

and P [m� k℄ = g [fm+ 1g) ;

for j = 0; 1; : : : ; m and 2 �.

15

Proeedings of the Prague Stringology Conferene '03

3.1.3 Comparing the Good Su�x Rule with its Variants

We omputed the average shift advanement suggested by the good su�x rule and

its bakward and forward variants on four Rand� problems, for � = 2; 4; 8; 20, with

pattern lengths 2; 4; 6; 8; 10; 20; 40; 80, and 160, where a Rand� problem onsists in

searhing, for eah assigned value of the pattern length, a set of 200 random patterns

over an alphabet � of size � in a 20Mb random text over the same alphabet �.

Experimental results, presented in the tables below, show that the forward and

bakward good su�x rules propose on the average muh larger shift advanements

than the standard good su�x rule (up to 400% better). In addition, the forward

good su�x rule shows always a slightly better behavior than the bakward one, whih

beomes more sensible in the ase of very small alphabets. This is partly due to the

fat that the forward harater is always used by the forward good su�x rule to

ompute shift advanements, whereas there are ases in whih the bakward good

su�x rule does not exploit the bakward harater.

� = 2 2 4 6 8 10 20 40 80 160

gs 1.540 2.762 3.869 4.765 5.468 8.464 12.254 16.137 21.807

 �

gs 1.540 2.762 3.869 4.765 5.468 8.464 12.254 16.137 21.807

�!

gs 2.269 3.642 5.026 6.310 7.394 12.21 18.200 25.586 34.798

� = 4 2 4 6 8 10 20 40 80 160

gs 1.750 3.062 4.334 5.196 6.079 8.697 12.382 16.857 22.645

 �

gs 1.750 3.540 5.170 6.691 8.097 13.62 21.604 30.540 42.891

�!

gs 2.687 4.407 6.114 7.696 9.245 15.55 25.149 36.584 51.398

� = 8 2 4 6 8 10 20 40 80 160

gs 1.880 3.453 4.833 5.399 6.656 10.05 13.613 19.510 25.807

 �

gs 1.880 3.857 5.692 7.441 9.294 17.63 31.570 51.010 75.734

�!

gs 2.860 4.775 6.671 8.399 10.24 18.72 33.225 54.825 81.334

� = 20 2 4 6 8 10 20 40 80 160

gs 1.930 3.714 5.238 6.684 8.512 12.81 19.078 25.169 33.975

 �

gs 1.930 3.956 5.892 7.919 9.867 19.47 38.167 72.950 136.45

�!

gs 2.946 4.929 6.896 8.868 10.85 20.44 39.206 74.084 138.22

Average advanements for some Rand� problems

3.1.4 Implementing the Forward Good Su�x Rule

Given a pattern P of length m over an alphabet �, we have plainly

�!

gs

P

(j;) = gs

P:

(j) ;

for j = 0; 1; : : : ; m and 2 �, where P: is the string obtained by onatenating the

harater at the end of P . Thus, a natural way to ompute the forward good su�x

funtion

�!

gs

P

onsists in omputing the standard good su�x funtions gs

P:

, for all

 2 �, by means of the O(m) triky algorithm �rstly given in [KMP77℄ and then

orreted in [Rit80℄.

Suh a proedure is asymptotially optimal, as it has O(m � j�j) spae and time

omplexity.

In Figure 1 we propose an alternative proedure to ompute the forward good

su�x funtion whih, despite its O(m � max(m; j�j)) worst-ase time omplexity,

turns out to be very e�ient in pratie, even for large values of m.

16

Forward-Fast-Searh: Another Fast Variant of the Boyer-Moore String Mathing Algorithm

preompute-forward-good-su�x(P)

Initialization:

1. m = length(P)

2. for i = 0 to m do

3. for 2 � do

4.

�!

gs[i; ℄ = m+ 1

5. for i = 0 to m� 1 do

6. next [i℄ = i� 1

Computation:

7. for slen = 0 to m� 1 do

8. last = m� 1

9. i = next [last ℄

10. while i � 0 do

11. if

�!

gs[m� slen; P [i+ 1℄℄ > m� 1� i then

12. if (i� slen < 0 or

13 (i� slen � 0 and P [i� slen℄ 6= P [m� 1� slen℄)) then

14.

�!

gs[m� slen; P [i+ 1℄℄ = m� 1� i

15. if (i� slen � 0 and P [i� slen℄ = P [last � slen℄) or

16. (i� slen < 0) then

17. next [last ℄ = i

18. last = i

19. i = next [i℄

20. if

�!

gs[m� slen; P [0℄℄ > m then

21.

�!

gs[m� slen; P [0℄℄ = m

22. next [last ℄ = �1

23. return

�!

gs

Figure 1: The funtion for omputing forward good su�xes

After an initialization phase whih takes O(m � j�j) spae and time omplexity,

the preompute-forward-good-su�x proedure arries out m iterations of its main for-

loop, starting at line 7. During the k-th iteration, for k = 1; 2; : : : ; m, it omputes

the sequene S

k

(P) of all ourrenes in P of the su�x P [m� k ::m� 1℄ of length k,

impliitly represented by means of the array next :

S

k

(P) = h P [next [m� 1℄� k + 1 :: next [m� 1℄℄ ;

P [next

(2)

[m� 1℄� k + 1 :: next

(2)

[m� 1℄℄;

: : : : : :

P [next

(r

k

)

[m� 1℄� k + 1 :: next

(r

k

)

[m� 1℄℄ i ;

(1)

where r

k

is suh that next

(r

k

+1)

[m�1℄ = �1. For that purpose, lines 15-18 implement

the reurrene

S

k

(P) = hP [j � k + 1 :: j℄ jP [j � k + 2 :: j℄ 2 S

k�1

(P) and P [j � k + 1℄ = P [m� k℄i ;

where S

0

(P) is also formally given by (1), thanks to the way the array next is ini-

tialized in lines 5-6. Moreover, during the k-th iteration of the for-loop, for eah

17

Proeedings of the Prague Stringology Conferene '03

P [j � k + 1 :: j℄ 2 S

k

(P), the proedure updates, if neessary, the value

�!

gs(m � k �

1; P [j + 1℄) by setting it to (m� 1� j) (lines 11-14).

Plainly, the proedure in Figure 1 requires O(m � j�j) spae. To ompute its

time omplexity, it is enough to observe that the k-th exeution of the while-

loop in lines 10-19, for k = 1; 2; : : : ; m, takes O(jS

k�1

(P)j) time, giving a total

of O(

P

m�1

j=0

jS

j

(P)j) = O(m

2

) time in the worst ase. This leads to an overall

O(m �max(m; j�j)) worst-ase time omplexity, taking into aount also the initizial-

ization phase.

Experimental results show that the sum

P

m�1

j=0

jS

j

(P)j has on the average an al-

most linear behavior. For instane, the following tables report the average of the

sum

P

m�1

j=0

jS

j

(P)j omputed for 100; 000 random patterns of size m over an alphabet

of size �, for � = 2; 4; 8; 20 and m = 2; 4; 6; 8; 10; 20; 40; 80; 160. The tests relative

to a natural language bu�er NL have been omputed by randomly seleting 100; 000

substrings for eah given pattern length over the 3.13Mb �le obtained by disarding

the nonalphabeti haraters from the WinEdt spelling ditionary.

m 2 4 6 8 10 20 40 80 160

m

2

(worst ase) 4 16 36 64 100 400 1600 6400 25600

Average for � = 2 2.50 7.38 13.07 19.01 25.02 55.09 114.89 234.98 474.57

Average for � = 4 2.24 5.46 8.76 12.10 15.45 32.09 65.34 132.06 264.98

Average for � = 8 2.12 4.67 7.23 9.81 12.40 25.24 50.93 102.45 204.98

Average for � = 20 2.04 4.25 6.46 8.68 10.89 21.96 44.00 88.21 176.63

Average on NL 2.04 4.23 6.47 8.84 11.99 28.57 57.97 111.61 208.00

For the same set of random tests, we also omputed the total time taken to on-

strut the forward good su�x funtion

�!

gs, using the two implementations desribed

earlier, namely the one whih has a O(m � j�j) worst-ase time and spae omplexity

and the proedure preompute-forward-good-su�x. Suh implementations are denoted

respetively �

�!

gs (I)� and �

�!

gs (II)� in the tables below, where experimental results are

expressed in hundredths of seonds.

� = 2 2 4 6 8 10 20 40 80 160

�!

gs (I) 58.1 60.1 63.1 66.1 68.1 81.1 103.2 149.2 239.3

�!

gs (II) 3.0 6.0 11.0 15.1 18.0 37.0 74.1 145.3 288.4

� = 4 2 4 6 8 10 20 40 80 160

�!

gs (I) 113.2 117.1 121.2 124.2 128.2 142.2 174.2 235.4 357.5

�!

gs (II) 3.0 6.0 10.0 13.0 16.0 33.1 64.1 126.2 250.3

� = 8 2 4 6 8 10 20 40 80 160

�!

gs (I) 225.3 230.4 237.3 240.4 243.3 268.4 313.4 401.6 577.9

�!

gs (II) 4.0 7.0 11.0 14.0 19.0 36.1 72.1 141.2 289.4

� = 20 2 4 6 8 10 20 40 80 160

�!

gs (I) 558.8 573.9 580.8 589.8 598.9 642.9 733.1 905.3 1250.8

�!

gs (II) 5.0 11.0 16.0 20.1 26.0 50.1 98.1 195.3 394.6

NL 2 4 6 8 10 20 40 80 160

�!

gs (I) 553.8 565.8 573.8 583.8 592.8 636.9 725.0 895.3 1238.8

�!

gs (II) 5.0 10.0 16.0 19.0 23.1 48.1 95.1 189.3 379.5

18

Forward-Fast-Searh: Another Fast Variant of the Boyer-Moore String Mathing Algorithm

Forward-Fast-Searh(P , T)

1. n = length(T)

2. m = length(P)

3. T

0

= T:P [m� 1℄

m+1

4. b = preompute-bad-harater(P)

5.

�!

gs = preompute-forward-good-su�x(P)

7. s = 0

8. while b[T

0

[s +m� 1℄℄ > 0 do

9. s = s+ b[T

0

[s+m� 1℄℄

10. while s � n�m do

11. j = m� 2

12. while j � 0 and P [j℄ = T

0

[s+ j℄ do

13. j = j � 1

14. if j < 0 then

15. print(s)

16. s = s+

�!

gs[j + 1; T [s+m℄℄

17. while b[T

0

[s+m� 1℄℄ > 0 do

18. s = s+ b[T

0

[s+m� 1℄℄

Figure 2: The Forward-Fast-Searh algorithm

The analysis of the above experimental results show that for alphabets of size at least

4 the proedure preompute-forward-good-su�x is on the average always faster than

the implementation of the forward good su�x funtion desribed at the beginning

the present setion.

3.2 Building up the Forward-Fast-Searh Algorithm

The implementation of the Forward-Fast-Searh algorithm an be obtained along the

same lines of the Fast-Searh and the Tuned Boyer-Moore algorithms.

In the �rst phase, alled harater loalization phase, the algorithm iterates the

bad harater rule until the last harater P [m�1℄ of the pattern is mathed orretly

against the text. More preisely, starting from a shift position s, if we denote by j

i

the total shift advanement after the i-th iteration of the bad harater rule, then we

have the following reurrene:

j

i

= j

i�1

+ b

P

(T [s+ j

i�1

+m� 1℄) :

Therefore, the bad harater rule is applied k times in a row, where k = minfi j T [s+

j

i

+m� 1℄ = P [m� 1℄g, with an overall shift advanement of j

k

.

At this point we have that T [s+ j

k

+m� 1℄ = P [m� 1℄, so that the subsequent

mathing phase an test for an ourrene of the pattern by omparing only the

remaining (m � 1) haraters of the pattern. At the end of the mathing phase the

algorithm applies the forward good su�x rule instead of the traditional good su�x

rule.

As in the ase of the Fast-Searh and Tuned Boyer-Moore algorithms, the Forward-

Fast-Searh algorithm bene�ts from the introdution of an external sentinel: sine the

19

Proeedings of the Prague Stringology Conferene '03

forward good su�x rule looks at the harater T [s+m℄ just after the urrent window,

m+ 1 opies of the harater P [m� 1℄ are added at the end of the text T , obtaining

a new text T

0

= T:P [m� 1℄

m+1

. This allows to ompute orretly the last shifts with

no extra heks. Plainly, all the valid shifts of P in T are the valid shifts s of P in T

0

suh that s � n�m, where, as usual, n and m denote respetively the lengths of T

and P . The ode of the Forward-Fast-Searh algorithm is presented in Figure 2.

4 Experimental Results

We present next experimental data whih allow to ompare the following string math-

ing algorithms under various onditions: Horspool (HOR), Quik-Searh (QS), Barry-

Ravidran (BR), Tuned Boyer-Moore (TBM), Reverse Fator (RF), Fast-Searh (FS),

and Forward-Fast-Searh (FFS).

We have hosen to ompare the algorithms in terms of running time, number of

text harater inspetions, and number of harater omparisons.

All algorithms have been implemented in the C programming language and were

used to searh for the same strings in large �xed text bu�ers on a PC with AMD

Athlon proessor of 1.19GHz. In partiular, the algorithms have been tested on four

Rand� problems, for � = 2; 4; 8; 20, and on a natural language text bu�er NL with

patterns of length m = 2; 4; 6; 8; 10; 20; 40; 80, and 160.

We reall that eah Rand� problem onsists in searhing a set of 200 random

patterns of a given length in a 20Mb random text over a ommon alphabet of size �.

The tests on the natural language text bu�er NL have been performed on a 3.13Mb

�le obtained by disarding the nonalphabeti haraters from the WinEdt spelling

ditionary. For eah pattern length m, we have seleted 200 random substrings of

length m in the �le whih subsequently have been searhed for in the same �le.

4.1 Running Times

Experimental results show that the Forward-Fast-Searh algorithm obtains the best

run-time performane in most ases and, sporadially, it is seond only to the Fast-

Searh algorithm, in the ase of natural language texts and long patterns, and to the

Berry-Ravidran algorithm, in the ase of large alphabets and patterns.

In the following tables, running times are expressed in hundredths of seonds.

� = 2 2 4 6 8 10 20 40 80 160

HOR 42.01 44.18 42.86 42.02 46.57 40.24 39.51 38.83 39.95

QS 34.33 41.12 38.35 39.30 42.80 37.42 36.77 36.42 36.54

BR 44.84 49.36 44.42 43.48 47.69 40.66 40.70 40.74 40.54

TBM 33.96 36.54 36.88 36.65 40.53 35.98 36.05 35.54 36.30

RF 249.2 200.0 145.9 114.2 107.3 57.95 36.84 27.95 22.36

FS 41.79 35.36 28.72 25.32 26.15 20.40 18.40 17.99 17.31

FFS 31.08 28.87 25.28 22.37 23.15 18.05 16.78 16.62 15.82

Running times for a Rand2 problem

20

Forward-Fast-Searh: Another Fast Variant of the Boyer-Moore String Mathing Algorithm

� = 4 2 4 6 8 10 20 40 80 160

HOR 34.66 25.57 22.05 20.76 20.27 19.68 20.05 19.54 20.20

QS 26.49 22.10 19.87 19.35 18.98 18.58 19.05 18.73 19.04

BR 32.20 25.68 22.08 20.31 19.24 17.29 16.66 16.36 16.51

TBM 25.53 20.68 19.15 18.85 18.76 18.50 18.81 18.38 18.78

RF 156.1 98.60 74.84 62.28 53.79 34.73 24.26 20.34 16.67

FS 28.60 20.58 18.91 18.26 17.86 17.22 16.53 16.18 15.82

FFS 24.87 20.06 18.35 17.65 17.22 16.23 15.61 15.33 14.40

Running times for a Rand4 problem

� = 8 2 4 6 8 10 20 40 80 160

HOR 27.71 20.19 18.40 17.43 16.84 15.70 15.56 15.62 15.71

QS 20.91 18.27 17.17 16.59 16.25 15.36 15.22 15.23 15.35

BR 25.19 20.55 18.77 17.74 17.02 15.33 14.55 14.55 13.96

TBM 21.09 17.78 16.78 16.77 16.22 15.14 15.11 15.05 15.18

RF 114.8 70.75 54.97 46.27 40.62 27.26 20.58 18.17 15.01

FS 20.66 17.75 16.75 16.41 16.01 15.02 14.89 14.80 14.81

FFS 20.20 17.58 16.60 16.17 15.82 14.87 14.54 14.52 13.92

Running times for a Rand8 problem

� = 20 2 4 6 8 10 20 40 80 160

HOR 23.45 18.17 16.58 16.21 15.89 15.21 14.90 14.84 14.98

QS 18.67 16.84 15.78 15.69 15.49 14.98 14.74 14.73 14.79

BR 21.83 18.88 17.32 16.89 16.47 15.47 14.90 14.42 12.60

TBM 18.76 16.78 15.64 15.44 15.39 14.85 14.82 14.65 14.65

RF 92.44 54.83 41.67 35.57 31.61 23.12 19.25 17.69 14.72

FS 19.11 16.59 15.57 15.49 15.24 14.81 14.66 14.65 14.58

FFS 18.76 16.51 15.51 15.44 15.24 14.83 14.64 14.65 14.35

Running times for a Rand20 problem

NL 2 4 6 8 10 20 40 80 160

HOR 3.40 2.65 2.45 2.36 2.36 2.22 2.15 2.11 1.98

QS 2.73 2.42 2.35 2.24 2.20 2.14 2.09 2.09 2.01

BR 3.28 2.87 2.66 2.59 2.47 2.33 2.25 2.21 1.95

TBM 2.77 2.39 2.27 2.25 2.18 2.19 2.09 2.12 1.93

RF 13.94 8.33 6.48 5.46 4.87 3.35 2.79 2.68 4.67

FS 2.79 2.45 2.22 2.24 2.19 2.14 2.06 2.09 1.91

FFS 2.70 2.35 2.26 2.26 2.18 2.15 2.13 2.11 2.24

Running times for a natural language problem

4.2 Average Number of Text Charater Inspetions

For eah test, the average number of harater inspetions has been obtained by

taking the total number of times a text harater is aessed, either to perform a

omparison with a pattern harater, or to perform a shift, or to ompute a transition

in an automaton, and dividing it by the length of the text bu�er.

It turns out that the Forward-Fast-Searh algorithm is always very lose the best

results whih are generally obtained by the Fast-Searh algorithm, for short patterns,

and by Reverse-Fator algorithm, for long patterns. We notie, however, that the

Forward-Fast-Searh algorithm obtains in most ases the seond best result and is

better than Reverse-Fator, for short patterns, and Fast-Searh, for long patterns.

21

Proeedings of the Prague Stringology Conferene '03

� = 2 2 4 6 8 10 20 40 80 160

HOR 1.00 1.15 1.26 1.26 1.28 1.24 1.27 1.23 1.27

QS 1.54 1.67 1.63 1.67 1.64 1.61 1.65 1.61 1.60

BR 1.28 1.25 1.20 1.20 1.19 1.19 1.19 1.18 1.16

TBM 1.23 1.35 1.46 1.46 1.47 1.43 1.46 1.42 1.46

RF 1.43 1.06 .799 .615 .519 .294 .169 .096 .054

FS 1.00 .929 .806 .698 .632 .460 .348 .270 .213

FFS 1.15 .993 .833 .703 .621 .410 .289 .210 .161

� = 4 2 4 6 8 10 20 40 80 160

HOR .714 .510 .435 .404 .392 .373 .389 .365 .392

QS 1.03 .817 .700 .675 .645 .610 .650 .622 .633

BR .949 .713 .569 .488 .429 .307 .264 .244 .251

TBM .841 .591 .504 .468 .454 .432 .450 .422 .446

RF .886 .528 .387 .316 .264 .154 .089 .051 .028

FS .714 .489 .398 .356 .330 .273 .239 .200 .177

FFS .768 .526 .418 .367 .330 .241 .182 .136 .105

� = 8 2 4 6 8 10 20 40 80 160

HOR .600 .350 .263 .222 .198 .158 .153 .149 .152

QS .842 .575 .456 .393 .358 .291 .282 .278 .277

BR .844 .582 .443 .360 .305 .179 .109 .072 .057

TBM .663 .386 .291 .245 .218 .174 .168 .164 .167

RF .674 .381 .278 .225 .191 .112 .063 .036 .020

FS .600 .348 .260 .217 .193 .150 .137 .126 .117

FFS .627 .368 .274 .227 .201 .146 .117 .093 .075

� = 20 2 4 6 8 10 20 40 80 160

HOR .538 .285 .199 .157 .132 .083 .061 .054 .053

QS .734 .463 .346 .282 .242 .157 .118 .104 .104

BR .787 .528 .397 .318 .266 .146 .078 .042 .023

TBM .563 .297 .208 .164 .137 .086 .063 .056 .056

RF .565 .302 .214 .170 .143 .084 .049 .027 .014

FS .538 .284 .198 .156 .131 .082 .060 .053 .052

FFS .550 .293 .205 .161 .135 .082 .060 .049 .043

NL 2 4 6 8 10 20 40 80 160

HOR .550 .300 .211 .171 .144 .091 .059 .042 .032

QS .759 .489 .375 .309 .261 .175 .125 .086 .066

BR .795 .538 .411 .335 .278 .155 .085 .050 .028

TBM .584 .318 .226 .182 .153 .096 .062 .044 .034

RF .588 .321 .231 .185 .153 .084 .045 .024 .013

FS .550 .299 .211 .171 .143 .087 .055 .038 .027

FFS .565 .312 .220 .180 .152 .088 .054 .036 .026

Average number of text harater inspetions for some Rand� problems and for

a natural language problem

4.3 Average Number of Comparisons

For eah test, the average number of harater omparisons has been obtained by

taking the total number of times a text harater is ompared with a harater in the

pattern and dividing it by the total number of haraters in the text bu�er.

It turns out that the Forward-Fast-Searh algorithm ahieves the best results in

most ases. Sporadially our algorithm is seond only to the Berry-Ravindran al-

gorithm whih obtains very good results for short patterns and small alphabets.

Moreover we observe that Tuned Boyer-Moore, Fast-Searh and Forward-Fast-Searh

22

Forward-Fast-Searh: Another Fast Variant of the Boyer-Moore String Mathing Algorithm

algorithms perform a very low number of haraters omparisons in the ase of large

alphabets.

� = 2 2 4 6 8 10 20 40 80 160

HOR 1.000 1.159 1.260 1.269 1.281 1.244 1.272 1.235 1.270

QS .9588 1.109 1.088 1.119 1.095 1.073 1.104 1.079 1.080

BR .2631 .3766 .3916 .3989 .3962 .3973 .3969 .3940 .3893

TBM .3333 .6044 .6995 .7154 .7249 .7082 .7215 .7024 .7205

FS .3333 .4767 .4466 .3925 .3573 .2609 .1967 .1530 .1248

FFS .3076 .4224 .3875 .3324 .2962 .1964 .1377 .1003 .0766

� = 4 2 4 6 8 10 20 40 80 160

HOR .7143 .5100 .4356 .4041 .3922 .3732 .3890 .3652 .3928

QS .6053 .4864 .4109 .3908 .3716 .3491 .3719 .3556 .3742

BR .2747 .2353 .1898 .1628 .1432 .1025 .0883 .0813 .0837

TBM .1429 .1445 .1264 .1175 .1140 .1085 .1131 .1062 .1141

FS .1429 .1373 .1141 .1024 .0949 .0784 .0690 .0577 .0526

FFS .1323 .1272 .1041 .0913 .0822 .0601 .0454 .0341 .0263

� = 8 2 4 6 8 10 20 40 80 160

HOR .6000 .3501 .2639 .2222 .1985 .1586 .1531 .1490 .1522

QS .4631 .3189 .2505 .2139 .1943 .1559 .1504 .1487 .1524

BR .2711 .1940 .1479 .1202 .1018 .0598 .0364 .0243 .0190

TBM .0667 .0482 .0365 .0307 .0274 .0219 .0212 .0206 .0210

FS .0667 .0477 .0359 .0300 .0267 .0207 .0190 .0175 .0167

FFS .0634 .0459 .0345 .0287 .0252 .0184 .0148 .0117 .0095

� = 20 2 4 6 8 10 20 40 80 160

HOR .5385 .2844 .1991 .1569 .1316 .0828 .0608 .0541 .0537

QS .3837 .2427 .1805 .1476 .1263 .0817 .0607 .0538 .0534

BR .2608 .1760 .1323 .1061 .0887 .0490 .0263 .0141 .0079

TBM .0256 .0149 .0104 .0082 .0069 .0043 .0032 .0028 .0028

FS .0256 .0149 .0104 .0082 .0069 .0043 .0032 .0028 .0027

FFS .0251 .0147 .0103 .0081 .0068 .0042 .0030 .0025 .0022

NL 2 4 6 8 10 20 40 80 160

HOR .5501 .3000 .2117 .1716 .1445 .0913 .0595 .0420 .0329

QS .4031 .2605 .2002 .1646 .1393 .0914 .0654 .0455 .0364

BR .2599 .1794 .1371 .1118 .0927 .0519 .0286 .0168 .0094

TBM .0345 .0245 .0171 .0142 .0123 .0089 .0061 .0046 .0042

FS .0345 .0245 .0171 .0141 .0121 .0066 .0043 .0030 .0025

FFS .0333 .0244 .0168 .0153 .0140 .0058 .0032 .0020 .0014

Average number of omparisons for some Rand� problems and for a natural language problem

5 Conlusion

We presented a new e�ient variant of the Boyer-Moore string mathing algorithm,

named Forward-Fast-Searh. As its progenitor Fast-Searh, the Forward-Fast-Searh

algorithm applies repeatedly the bad harater rule until the last harater of the

pattern is mathed orretly and then it begins to math the pattern against the

text from right to left. At the end of eah mathing phase, it omputes the shift

advanement as a funtion of the mathed su�x of the pattern and the �rst harater

of the text past the urrent window (forward good su�x rule).

It turns out that, despite the O(m � j�j)-spae and O(m �max(m; j�j))-time om-

plexity required in the worst ase to preompute the forward good su�x funtion, the

23

Proeedings of the Prague Stringology Conferene '03

Forward-Fast-Searh algorithm is very fast in pratie and ompares well with other

fast variants of the Boyer-Moore algorithm.

We plan to evaluate theoretially the average time omplexity of the Forward-Fast-

Searh algorithm, and to adapt it to sanning strategies depending on the harater

frequenies.

Referenes

[BM77℄ R. S. Boyer and J. S. Moore. A fast string searhing algorithm. Commun.

ACM, 20(10):762�772, 1977.

[BR99℄ T. Berry and S. Ravindran. A fast string mathing algorithm and experi-

mental results. Pro. of the Prague Stringology Club Workshop '99 Czeh

Tehnial University, Prague, Czeh Republi, Collaborative Report DC�

99�05, pp. 16�28, 1999.

[BYR92℄ R. A. Baeza-Yates and M. Régnier. Average running time of the Boyer-

Moore-Horspool algorithm. Theor. Comput. Si., 92(1):19�31, 1992.

[CF03℄ D. Cantone and S. Faro. Fast-Searh: a new variant of the Boyer-Moore

string mathing algorithm. In K. Jansen et al. (Eds.), Pro. of WEA 2003,

LNCS 2647, pp. 47�58, 2003.

[CCG

+

94℄ M. Crohemore, A. Czumaj, L. G�asienie, S. Jarominek, T. Leroq,

W. Plandowski, and W. Rytter. Speeding up two string mathing al-

gorithms. Algorithmia, 12(4/5):247�267, 1994.

[GO80℄ L. J. Guibas and A. M. Odiyzko. A new proof of the linearity of the

Boyer-Moore string searhing algorithm. SIAM J. Comput., 9(4):672�682,

1980.

[Hor80℄ R. N. Horspool. Pratial fast searhing in strings. Softw. Prat. Exp.,

10(6):501�506, 1980.

[HS91℄ A. Hume and D. M. Sunday. Fast string searhing. Softw. Prat. Exp.,

21(11):1221�1248, 1991.

[KMP77℄ D. E. Knuth, J. H. Morris, and V. B. Pratt. Fast pattern mathing in

strings. SIAM J. Comput., 6:323-350, 1977.

[Le00℄ T. Leroq. New experimental results on exat string-mathing. Rapport

LIFAR 2000.03, Université de Rouen, Frane, 2000.

[Rit80℄ W. Rytter. A orret preproessing algorithm for Boyer-Moore string

searhing. SIAM J. Comput., 9:509-512, 1980.

[Sun90℄ D. M. Sunday. A very fast substring searh algorithm. Commun. ACM,

33(8):132�142, 1990.

[Yao79℄ A. C. Yao. The omplexity of pattern mathing for a random string. SIAM

J. Comput., 8(3):368�387, 1979.

24

