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Abstrat. This paper proposes an e�ient algorithm to solve the problem of

string mathing with mismathes. For a text of length n and a pattern of length

m over an alphabet �, the problem is known to be solved in O(j�jn logm)

time by omputing a sore by the fast Fourier transformation (FFT). Atallah

et al. introdued a randomized algorithm in whih the time omplexity an

be dereased by the trade-o� with the auray of the estimates for the sore.

The algorithm in the present paper yields an estimate with smaller variane

ompared to that the algorithm by Atallah et al., moreover, and omputes the

exat sore in O(j�jn logm) time. The present paper also gives two methods to

improve the algorithm and an exat estimation of the variane of the estimates

for the sore.

Keywords: string mathing with mismathes, FFT, onvolution, deterministi

algorithm, randomized algorithm.

1 Introdution

String mathing [4, 5℄ is the problem to obtain all the ourrenes of a (short) string

alled a pattern in a (long) string alled a text. We onsider string mathing with

mismathes whih allows inexat math introdued by substitution. Let � be an

alphabet and Æ the Kroneker funtion from � � � to f0; 1g, that is, for a; b 2 �,

Æ(a; b) is 1 if a = b, 0 otherwise. The problem with mismathes is generally solved

by omputing the sore vetor C(T; P ) between a text T = t

1

� � � t

n

and a pattern

P = p

1

� � � p

m

as follows:

C(T; P ) = (

1

; : : : ; 

i

; : : : ; 

n�m+1

); where 

i

=

m

X

j=1

Æ(t

i+j�1

; p

j

):
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We an ompute the sore vetor using the fast Fourier transform (FFT) in

O(n logm) time, if the sore vetor is represented as a onvolution, that is, if the

Kroneker funtion is expressed by a produt of two mappings from � to a set of

numbers. This approah was developed by Fisher and Paterson [6℄ and is simply

summarized in Gus�eld [7℄. However, pratially, the time omplexity of the algo-

rithm depends on the number of alphabets. One of the reason for the di�ulties is

that the Kroneker funtion an not be written as a produt of mappings diretly.

For example, if � = fa; b; g, the generalized algorithm in [7℄ needs three mappings

�

1

, �

2

, and �

3

whih onvert symbols into f1; 0g as the following table.

�

1

�

2

�

3

a 1 0 0

b 0 1 0

 0 0 1

Then, we have Æ(a; b) =

P

3

`=1

�

`

(a) � �

`

(b) and the sore vetor is obtained by om-

puting the onvolution

P

m

j=1

�

`

(t

i+j�1

) � �

`

(p

j

) for 1 � i � n three times.

Atallah et al. [1℄ introdued a randomized algorithmwhere the time omplexity has

a trade-o� with the auray of the estimates for the sore vetor. In this algorithm,

symbols are onverted into omplex numbers with a primitive �-th root ! of unity

and the Hermitian inner produt is used for the onvolution. Then, the sore vetor

is obtained as the average of the results of onvolutions with respet to all possible

mappings '

`

from � to f0; : : : ; j�j � 1g, that is,



i

=

1

j�j

j�j

X

`=1

m

X

j=1

!

'

`

(t

i+j�1

)�'

`

(p

j

)

;

where � is the set of all mappings �

`

. (A deterministi algorithm onstruted by those

mappings requires the omputation of the onvolution j�j

j�j

times.) An estimate

for the sore vetor is the average of the results with respet to some mappings

hosen independently and uniformly from �. Let k be the number of randomly

hosen samples. Then, the time omplexity is O(kn logm). They showed that the

expetation of the estimates equals to the sore vetor and the variane is bounded

by (m� 

i

)

2

=k. Baba et al. [2℄ improved this algorithm by simplifying the mappings

whih onverts the strings into numbers. The odomain of the mappings is the set

f�1; 1g instead of the set of omplex numbers. Then, the sore vetor is



i

=

1

j�j

j�j

X

`=1

m

X

j=1

�

`

(t

i+j�1

) � �

`

(p

j

):

Baba et al. [3℄ pointed out that the algorithms whih ompute the sore vetor by

FFT are distinguished by the mappings whih onvert strings into numbers in eah

algorithm, and the exat sore is obtained by repeating the O(n logm) operation j�j

times.

In this paper, we propose an e�ient algorithm to solve string mathing in whih

the variane of the estimates is not greater than (m � 

i

)

2

=k. Moreover, the exat

sore vetor is omputed in O(j�jn logm) time. We also give a strit evaluation of

the variane and introdue two methods to improve our algorithm.
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2 E�ient Algorithm

We propose an e�ient algorithm for string mathing with mismathes. The time

omplexity of a deterministi algorithm and the variane of the estimates for the

sore vetor are obtained by analyzing the mappings whih onvert the symbols to

the numbers. Let p be the smallest prime number whih is greater than or equal to the

ardinality j�j of the alphabet. The odomain of the mappings is the p-adi number

�eld Z

p

. Sine suh a prime number is less than 2j�j � 2 (Chebyshev's theorem), a

deterministi algorithm with this mappings omputes the sore vetor between a text

of length n and a pattern of length m in O(j�jn logm) time. Moreover, in the same

way as the algorithm by Atallah et al, we an onstrut a randomized algorithm in

whih the variane of the estimates for the sore vetor is independent to j�j.

2.1 E�ient Mapping

Let ' be a bijetive mapping from � to f0; 1; � � � j�j � 1g. For 0 � x � p � 1 and

a 2 �, we de�ne a mapping �

x

as

�

x

(a) = !

x�'(a)

; (1)

where ! is a primitive p-th root of unity. Then, we have the following lemma.

Lemma 1 For any a; b 2 �,

Æ(a; b) =

1

p

p�1

X

x=0

�

x

(a) � �

x

(b);

where !

y

= !

�y

.

Proof. If a = b, we have �

x

(a) � �

x

(b) = !

0

= 1 for any 0 � x � p � 1. Hene,

the right side of the equation is equal to 1. If a 6= b, the di�erene '(a)� '(b) is an

element of Z

p

nf0g. Therefore, x � ('(a) � '(b)) is valued 0; : : : ; p � 1 modulo p for

0 � x � p� 1. Thus, we have

P

p�1

x=0

�

x

(a) � �

x

(b) =

P

p�1

x=0

!

x�('(a)�'(b))

= 0. 2

Lemma 2 By using the mapping �

x

, the sore vetor between a text of length n and

a pattern of length m over an alphabet � an be omputed in O(j�jn logm) time.

Proof. By the de�nition of the sore vetor and Lemma 1, the sore vetor is



i

=

1

p

p�1

X

x=0

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

): (2)

Therefore, the sore vetor is obtained by omputing the onvolution

f(i) =

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

) (1 � i � n)

p times. Sine p = O(j�j), we have the lemma. 2
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2.2 Analysis of Variane

In the same way as the algorithm by Atallah et al. [1℄, we an onstrut a randomized

algorithm in whih an estimate for the sore vetor is obtained by hoosing some

mappings from �. We de�ne a sample s

i

of an element 

i

of the sore vetor to be

s

i

=

m

X

j=1

�

x(`)

(t

i+j�1

) � �

x(`)

(p

j

):

Let k be the number of hosen samples. Then, an estimate ŝ

i

for the element 

i

of

the sore vetor is de�ned by

ŝ

i

=

1

k

k

X

`=1

s

i

:

By Eq. (2), it is lear that the mean of the estimates is equal to 

i

. The following

lemma gives the upper-bound of the variane of the estimates.

Lemma 3 In a randomized algorithm onstruted with the mapping �

x

, the variane

of the estimates for the sore vetor is bounded by (m� 

i

)

2

=k.

Proof. We denote by V (X) the variane of a random variable X. By the de�nition

of the estimate and the basi property of variane, we have V (ŝ

i

) = V (s

i

)=k. Sine

�

x(`)

(a) � �

x(`)

(a) = 1 and j�

x(`)

(a) � �

x(`)

(b)j = 1 for any 1 � ` � j�j and any a; b 2 �,

the variane of the samples is V (s

i

) =

P

j�j

`=1

(

P

m

j=1

�

x(`)

(t

i+j�1

) � �

x(`)

(p

j

)� 

i

)

2

=j�j �

(m� 

i

)

2

. 2

2.3 Desription of Algorithm

We desribe the algorithm whih uses the mapping �

x

in detail. The input is a text

string T = t

1

� � � t

n

, a pattern string P = p

1

� � � p

m

over an alphabet �, and a number k

of iterations in this algorithm. The output is an estimate for the sore vetor C(T; P )

if k < p, the exat sore vetor if k = p, where p is the smallest prime number suh

that j�j � p. By the standard tehnique [4℄ of partitioning the text, we an assume

n = (1 + �)m for � = O(m). The algorithm is onstruted by iterations of the

following operations.

� onvert the text into a numerial sequenes �

x

(T ) = !

'

x

(t

1

)

� � �!

'

x

(t

(1+�)m

)

by

the mapping �

x

from � to f!

0

; : : : ; !

p�1

g;

� onvert the pattern into �

x

(P ) = !

�'

x

(p

1

)

� � �!

�'

x

(p

m

)

by �

x

and pad with �m

zeros;

� ompute the sample s

i

for 1 � i � (1 + �)m as the onvolution of �

x

(T ) and

the reverse of the padded �

x

(P ) by FFT.

The output is omputed as the average of the results of the onvolution for 1 �

x � k. If k = p, by Lemma 2, the output is equal to the sore vetor. If k < p,

the output is regarded as an estimate for the sore vetor obtained by a randomized

algorithm with �sampling without replaement�. Therefore, by Lemma 3 the variane

of the estimates is ((p� k)=(p� 1)) � (V (s

i

)=k).
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Theorem 1 By the algorithm with the mapping �

x

, the exat sore between a text of

length n and a pattern of length m over an alphabet � is omputed in O(j�jn logm)

time. Moreover, an estimate for the sore vetor is omputed in O(kn logm) time,

where k is the number of iterations in the algorithm and the variane of the estimates

is bounded by (p� k)(m� 

i

)

2

=(p� 1)k.

In generally, the variane of the estimates obtained by sampling without replae-

ment is

j�j � k

j�j � 1

� V (ŝ

i

)

where � is the set of all mappings whih onvert symbols into numbers. The ardi-

nality j�j of the set is j�j

j�j

in the algorithm by Atallah et al [1℄. and 2

j�j

in one

by Baba et al [2℄. Hene, the �nite-size orretion term (j�j � k)=(j�j � 1) is not so

e�etive.

A key distinguishing feature of our algorithm is that the exat sore an be om-

puted in a pratial time. Sine j�j is large in the two randomized algorithms, their

deterministi versions onstruted in a similar way as our algorithm are not pratial

for a large alphabet. Although the deterministi algorithm generalized by Gus�eld [7℄

an be extended to a randomized algorithm in the same way as our algorithm, the

variane of the estimates depends on the number of alphabets.

3 Improvement of Algorithm

We propose two tehniques to improve the algorithm in the previous setion.

3.1 Removal of Defetive Mapping

Our mappings onvert the di�erent symbols to the distint numerial values. But

only the mapping �

0

onverts all symbols to 0. Therefore, we remove the mapping

�

0

from the set �. That is possible without omputing onvolution.

By Eq. (1), Æ(a; b) =

1

p

P

p�1

x=0

�

x

(a) � �

x

(b) =

1

p

(

P

p�1

x=1

�

x

(a) � �

x

(b) + �

0

(a) � �

0

(b)) =

1

p

(

P

p�1

x=1

�

x

(a) � �

x

(b) + 1). Therefore, the sore vetor is 

i

=

P

m

j=1

1

p

(

P

p�1

x=1

�(t

i+j�1

) �

�(p

j

)+1) =

1

p

P

p�1

x=1

P

m

j=1

�

x

(t

i+j�1

) ��

x

(p

j

)+

m

p

: To randomize the omputation of 

i

,

we de�ne 

0

i

as follows: 

0

i

=

1

p�1

P

p�1

x=1

P

m

j=1

�

x

(t

i+j�1

) � �

x

(p

j

): Hene, 

i

=

p�1

p



0

i

+

m

p

:

We de�ne a sample s

0

i

of an element 

0

i

to be

s

0

i

=

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

):

And an estimate

^

s

0

i

is de�ned by

^

s

0

i

=

1

k

k

X

`=1

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

)

where 1 � k � p� 1.
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And an estimate ŝ

i

for the element 

i

of the sore vetor is de�ned by

ŝ

i

=

p� 1

p

1

k

k

X

`=1

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

) +

m

p

(3)

where 1 � k � p� 1.

By the di�nition of a variane, V (s

i

) =

(p�1)

2

p

2

V (s

0

i

). Moreover, beause the number

of mappings derease by one, the variane in onsideration of that is bounded by

(p� 1)

2

p

2

�

p� 1� k

p� 2

�

(m� 

i

)

2

k

: (4)

3.2 Removal of Imaginary Part

The magnitude of �

x

(a) � �

x

(b) in Eq. (1) is 1. We used this magnitude for the

analysis of the variane until this point. However, the real part is independent of the

imaginary part. Therefore, those parts of Eq. (1) an be omputed separately.

Let <(v) be a real part of a omplex number v. By Lemma 1,

1

p

P

p�1

x=0

�

x

(a) ��

x

(b)

returns 0 or 1. Therefore, we an remove the imaginary part. Then, Æ(a; b) =

<(

1

p

P

p�1

x=0

�

x

(a) � �

x

(b)) for any a; b 2 �. By the de�nition of the sore, 

i

=

P

m

j=1

<(

1

p

P

p�1

x=0

�

x

(t

i+j�1

) � �

x

(p

j

)): Sine the order of addition is not restrited, the

sore vetor is



i

=

1

p

p�1

X

x=0

<(

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

)):

The omputation of the omplex number is neessary to ompute onvolution with

FFT. We only have to omit the imaginary part after the omputation of FFT. By this

omission, the omputation of both the sum of the imaginary part and the magnitude

of omplex number beome unneessary.

The variane is the poorest when inonsistent m �  haraters are eah a kind

of symbol on the text and the pattern. In suh a ase, �

`

(a) � �

`

(b) is �xed without

in�uene of j. By Eq. (1), <(�

x

(a) � �

x

(b)) = os �

`

, where �

`

=

2�x�('(a)�'(b))

p

. Then,

the random variable s

i

is following.

s

i

=

m

X

j=1

<(�

`

(a) � �

`

(b)) =

m

X

j=1

os �

`

= 

i

os 0+(m�

i

) os �

`

= 

i

+(m�

i

) os �

`

:

The variane V (s

i

) of this random variable s

i

are followings.

V (s

i

) =

p

X

`=1

(

i

+ (m� 

i

) os �

`

� 

i

)

2

�

1

p

=

1

p

p

X

`=1

((m� 

i

) os �

`

)

2

=

1

p

(m� 

i

)

2

p

X

`=1

os

2

�

`

=

(m� 

i

)

2

p

p

X

`=1

1 + os �

`

2
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=

(m� 

i

)

2

2p

(

p

X

`=1

1 +

p

X

`=1

os �

`

)

=

(m� 

i

)

2

2p

(p+ 0)

=

(m� 

i

)

2

2

(5)

By V (ŝ

i

) = V (s

i

)=k, the variane of the estimates ŝ

i

is bounded by

(m� 

i

)

2

2k

: (6)

3.3 Variane of Improved Algorithm

We showed two improvement points. That both an be applied to the basi algorithm

at a time.

Now, the hange point of the algorithm from the basis one shown in Subsetion 2.3

is showed in the followings.

� We remove �

0

, and hoose a sample from the remaining mappings.

� An estimate ŝ

0

i

is omputed using that samples.

� Only a real part is used for a omputation of an estimate from the result of

FFT.

� We ompute ŝ

i

by Eq. (3), and make it the estimate of 

i

.

When these improvements are applied, by Eq. (4) and Eq. (6), the variane of the

estimates is bounded by

(p� 1)

2

p

2

�

p� 1� k

p� 2

�

(m� 

i

)

2

2k

:

It is smaller than one in the algorithm of Setion 2.

4 Exat Estimation of Variane

Atallah et al. presented an upper bound of the variane of the estimates for the sore

in their algorithm as (m � 

i

)

2

=k. The reason for this variane is that their set of

mappings inludes many mappings whih onvert some di�erent symbols into same

numerial value. One of the features of our mappings is that it does not onvert some

di�erent symbols into same numerial value beause a single exeptional mapping

was removed in Subsetion 3.1. Using this feature, we give an exat estimation of the

variane based on our mappings.

Let a; b be symbols in �. If a produt �(a) � �(b) in one position is independent

of it in other position, the estimate of

P

(m�

i

)

j

�

x

(t

j

) � �

x

(p

j

) is 0: The two following

onditions must be satis�ed for that. One of those onditions is that a symbol in one

position is independent of symbols in other positions. In this paper, we suppose that

ondition. The independene an not be expeted in the general English text muh.

But, we expet high independene about the omparison of the produt �(a) � �(b).

�

�

In this paper, we did not get to the veri�ation of that point. It is a future work.
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Another ondition is the following lemma.

Lemma 4 If all mappings onvert di�erent symbols into distint numerial values,

then the produt �(a) � �(b) in one position is independent of that in other position.

Proof. Let t

1

; t

2

; p

1

; p

2

be symbols in �, x a value whih an be returned by mappings

and r the number of kinds of x. Let �

x

be a set of the mappings whih onvert more

than one of some symbols into x, and �

xy

denotes �

x

\ �

y

. We de�ne D

x

as the

di�erene between the number of x whih the mappings onvert a given symbol into

and the number of mappings used for it. The number of ertain value x whih a

ertain symbol a onvert to is

j�j

r

beause

P

j�j

`=1

�

`

(a) = 0. Then, the number of

ertain value x whih all the symbols onvert to is �. Therefore, j�

x

j = j�j �D

x

. In

the mapping that onverts the di�erent symbols to the distint numerial values, �

x

equal to �.

Pr(X) denotes the probability of event X. Let A be the event �(t

1

) � �(p

1

) = x

and B the event �(t

2

) � �(p

2

) = x. And let A

0

be the event �(t

1

) = d

1

, A

00

the event

�(p

1

) = d

2

, B

0

the event �(t

2

) = d

3

, and B

00

the event �(p

2

) = d

4

.

If a ertain event ourred, that a result of a mapping was value x, the mapping in

the next event is restrited to mappings whih return value x. After the event A, a set

of mappings is �

d

1

d

2

beause the mapping returned d

1

and d

2

were used in the event

A. A probability that a mapping return a value x is (the number of ombinations

of the mapping and the symbol whih an return x)/(the produt of the number of

mappings and the number of symbols). Then we have

Pr(B

0

) =

1

r

� j�j � j�j

j�j � j�j

=

1

r

;

Pr(B

00

jB

0

) =

1

r

� j�j � j�j

j�

d

3

j � j�j

=

j�j

r � j�

d

3

j

;

Pr(B) =

r�1

X

d

3

=0

Pr(B

0

) Pr(B

00

jB

0

) =

r�1

X

d

3

=0

(

1

r

�

j�j

r � j�

d

3

j

) =

1

r

2

r�1

X

d

3

=0

(

j�j

j�

d

3

j

);

and

Pr(BjA) =

r�1

X

d

3

=0

(

j�j

r � j�

d

1

d

2

j

�

j�j

r � j�

d

1

d

2

d

3

j

) =

1

r

2

r�1

X

d

3

=0

(

j�j

2

j�

d

1

d

2

j � j�

d

1

d

2

d

3

j

):

We get Pr(BjA) 6= Pr(B), hene �(t

1

) � �(p

1

) is not independent of �(t

2

) � �(p

2

).

However, if � = �

d

1

d

2

= �

d

1

d

2

d

3

, then Pr(BjA) = Pr(B). This ondition is satis-

�ed only when all mappings should onvert di�erent symbols into distint numerial

values. 2

Other two mappings an not satisfy the ondition of Lemma 4 while only our

mappings an satisfy it in ase of j�j = p. Therefore, we add a dummy symbol in

ase of j�j < p. Then we an orret a sampling bias beause we an know that by

the dummy symbol in advane.

When �

`

is drawn uniformly randomly from �, the random variable ŝ is ŝ =

1

k

P

k

`=1

P

m

j=1

�

`

(t

j

) � �

`

(p

j

):

Then, we get the following lemma.
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Lemma 5 Given that the produt �(a)��(b) in one position is independent of that in

other position. When  symbols align in the m symbols, the variane V (ŝ) of random

variable s are

V (ŝ) =

m� 

i

k

:

Proof. Let s

j

be the random variable as �

`

(t

j

) � �

`

(p

j

), then s

j

= �

`

(t

j

) � �

`

(p

j

) =

!

d(t

j

;p

j

)

where d(t

j

; p

j

) = x � ( (t

j

)�  (p

j

)). s

(t

j

=p

j

)

denotes that s in t

j

= p

j

and

s

(t

j

6=p

j

)

denotes that s in t

j

6= p

j

.

If t

j

= p

j

, s

j

= 1. If t

j

6= p

j

, s

j

= !

d(t

j

;p

j

)

: Then, those means are E(s

(t

j

=p

j

)

) =

1; E(s

(t

j

6=p

j

)

) =

P

p�1

x=0

!

d(t

j

;p

j

)

�

1

p

= 0: And those variane are V (s

(t

j

=p

j

)

) = (s

(t

j

=p

j

)

�

E(s

(t

j

=p

j

)

))

2

� 1 = (1 � 1)

2

� 1 = 0; V (s

(t

j

6=p

j

)

) =

P

p�1

x=0

(s

(t

j

6=p

j

)

�E(s

(t

j

6=p

j

)

))

2

�

1

p

=

1

p

P

p�1

x=0

(j!

d(t

j

;p

j

)

j)

2

=

1

p

P

p�1

x=0

1 = 1:

Beause we assume that the produt �(a) � �(b) in one position is independent of

that in other position, a variane V (s) of s are the simple total of a variane of every

position. Then, V (s) =

P



V (s

(t

j

=p

j

)

)+

P

m�

i

V (s

(t

j

6=p

j

)

) =

P



0+

P

m�

i

1 = m� 

i

:

Using k samples s, a variane V (ŝ) of the estimate s is V (ŝ) =

1

k

V (s). Then

V (ŝ) =

m� 

i

k

:

2

This analysis an be applied to the algorithm whih improvement in Setion 3 was

added to.

Then Eq. (5) hanges as follow,

V (s

j(t

j

6=p

j

)

) =

p�1

X

x=0

(s

j(t

j

6=p

j

)

� E(s

j(t

j

6=p

j

)

))

2

1

p

=

1

p

p�1

X

x=0

(os

2�g(a; b)

p

� 0)

2

=

1

p

p�1

X

x=0

os

2

2�g(a; b)

p

=

1

p

p�1

X

x=0

1 + os

2�g(a;b)

p

2

=

1

2p

(

p�1

X

x=0

1 +

p�1

X

x=0

os

2�g(a; b)

p

)

=

1

2

(7)

By Eq. (7), we analyze the variane as the proof of Lemma 5.

V (ŝ) =

m� 

i

2k

: (8)

By Eq. (4) and Eq. (8), we get the following theorem.

Theorem 2 The variane of the estimates for the sore in our algorithm is

V (ŝ) =

(p� 1)

2

p

2

�

p� 1� k

p� 2

�

m� 

i

2k

:
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Conlusion

We gave an e�ient randomized algorithm for string mathing with mismathes. This

randomized algorithm uses onvolution with FFT, like that proposed by Atallah et

al. and Baba et al. We used the mappings whih onvert the symbols to the p-

adi number �eld. One of the features of our mappings is that it does not onvert

some di�erent symbols into same numerial value. By that feature, the variane of the

estimate of the sore vetor is smaller. The other feature of our mappings is that there

are not so many mappings. The number of mapping is p�1 where j�j � p < 2j�j�2.

We analyzed the variane of the estimates for the sore in this algorithm. And it

is very small as ompared to the randomized algorithms proposed in the past. The

variane in this algorithm is

(p�1)

2

p

2

�

p�1�k

p�2

�

m�

i

2k

. Its time omplexity is O(kn logm)

where k is the number of samples, and the upper bound of k is p � 1. When k is

p� 1, this algorithm is deterministi, and the estimate beomes the real value.

Experiments with read texts and the evaluation of omputation time are future

work. We have a plan to apply the method for pattern extration from Web pages [8℄.
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