An Efficient Mapping for Score of String Matching

Tetsuya Nakatoh!, Kensuke Baba?, Daisuke Ikeda!, Yasuhiro Yamada?,
and Sachio Hirokawa!

! Computing and Communications Center, Kyushu University
Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
e-mail: {nakatoh,daisuke,hirokawa}@cc.kyushu-u.ac.jp

2 PRESTO, Japan Science and Technology Corporation
Honcho 4-1-8, Kawaguchi City, Saitama 332-0012, Japan
e-mail: baba@i.kyushu-u.ac. jp

3 Graduate School of Information Science and Electrical Engineering
Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
e-mail: yshiro@cc.kyushu-u.ac. jp

Abstract. This paper proposes an efficient algorithm to solve the problem of
string matching with mismatches. For a text of length n and a pattern of length
m over an alphabet X, the problem is known to be solved in O(|X|nlogm)
time by computing a score by the fast Fourier transformation (FFT). Atallah
et al. introduced a randomized algorithm in which the time complexity can
be decreased by the trade-off with the accuracy of the estimates for the score.
The algorithm in the present paper yields an estimate with smaller variance
compared to that the algorithm by Atallah et al., moreover, and computes the
exact score in O(|X|nlogm) time. The present paper also gives two methods to
improve the algorithm and an exact estimation of the variance of the estimates

for the score.

Keywords: string matching with mismatches, FFT, convolution, deterministic
algorithm, randomized algorithm.

1 Introduction

String matching [4, 5] is the problem to obtain all the occurrences of a (short) string
called a pattern in a (long) string called a text. We consider string matching with
mismatches which allows inexact match introduced by substitution. Let ¥ be an
alphabet and ¢ the Kronecker function from ¥ x ¥ to {0,1}, that is, for a,b € ¥,
d(a,b) is 1 if a = b, 0 otherwise. The problem with mismatches is generally solved
by computing the score vector C'(T, P) between a text T = t;---t, and a pattern
P =p---p, as follows:

C(T, P) = (Cl, ey Gy Cn—m-l—l)a where c;, = Z 6(ti+j—17pj)-
7=1

127

Proceedings of the Prague Stringology Conference 03

We can compute the score vector using the fast Fourier transform (FFT) in
O(nlogm) time, if the score vector is represented as a convolution, that is, if the
Kronecker function is expressed by a product of two mappings from ¥ to a set of
numbers. This approach was developed by Fischer and Paterson [6] and is simply
summarized in Gusfield [7]. However, practically, the time complexity of the algo-
rithm depends on the number of alphabets. One of the reason for the difficulties is
that the Kronecker function can not be written as a product of mappings directly.
For example, if ¥ = {a, b, c}, the generalized algorithm in 7] needs three mappings
b1, ¢2, and ¢3 which convert symbols into {1,0} as the following table.

o1 P2 @3
a 1 0 0
b 0 1 0
c 0 0 1

Then, we have §(a,b) = S5_, ¢s(a) - ¢¢(b) and the score vector is obtained by com-
puting the convolution 37, ¢y(t;yj-1) - ¢e(p;) for 1 <7 < n three times.

Atallah et al. [1] introduced a randomized algorithm where the time complexity has
a trade-off with the accuracy of the estimates for the score vector. In this algorithm,
symbols are converted into complex numbers with a primitive o-th root w of unity
and the Hermitian inner product is used for the convolution. Then, the score vector
is obtained as the average of the results of convolutions with respect to all possible
mappings @, from X to {0,...,|X| — 1}, that is,

1 12l m

— 3] Z Z w‘ﬂl(tiﬂfl)*ﬁﬂl(?’j)’

/=1j5=1

C;

where @ is the set of all mappings ¢,. (A deterministic algorithm constructed by those
mappings requires the computation of the convolution |Z|*l times.) An estimate
for the score vector is the average of the results with respect to some mappings
chosen independently and uniformly from ®. Let £ be the number of randomly
chosen samples. Then, the time complexity is O(knlogm). They showed that the
expectation of the estimates equals to the score vector and the variance is bounded
by (m — ¢;)?/k. Baba et al. [2] improved this algorithm by simplifying the mappings
which converts the strings into numbers. The codomain of the mappings is the set
{—1,1} instead of the set of complex numbers. Then, the score vector is

1 2] m

= 13 > eltivj1) - de(p;)-

(=1j=1

Baba et al. [3] pointed out that the algorithms which compute the score vector by
FFT are distinguished by the mappings which convert strings into numbers in each
algorithm, and the exact score is obtained by repeating the O(nlogm) operation |®|
times.

In this paper, we propose an efficient algorithm to solve string matching in which
the variance of the estimates is not greater than (m — ¢;)?/k. Moreover, the exact
score vector is computed in O(|X|nlogm) time. We also give a strict evaluation of
the variance and introduce two methods to improve our algorithm.

128

An Efficient Mapping for Score of String Matching

2 Efficient Algorithm

We propose an efficient algorithm for string matching with mismatches. The time
complexity of a deterministic algorithm and the variance of the estimates for the
score vector are obtained by analyzing the mappings which convert the symbols to
the numbers. Let p be the smallest prime number which is greater than or equal to the
cardinality || of the alphabet. The codomain of the mappings is the p-adic number
field Z,. Since such a prime number is less than 2|X| — 2 (Chebyshev’s theorem), a
deterministic algorithm with this mappings computes the score vector between a text
of length n and a pattern of length m in O(|X|nlogm) time. Moreover, in the same
way as the algorithm by Atallah et al, we can construct a randomized algorithm in
which the variance of the estimates for the score vector is independent to |X|.

2.1 Efficient Mapping

Let ¢ be a bijective mapping from ¥ to {0,1,---|X| —1}. For 0 < x < p—1 and
a € ¥, we define a mapping ¢, as

$u(a) = W™, (1)
where w is a primitive p-th root of unity. Then, we have the following lemma.

Lemma 1 For any a,b € ¥,

1”1

Zqﬁz Pu(

where w9 = w Y.

Proof. If a = b, we have ¢,(a) - ¢,(b) = w® = 1 for any 0 < 2 < p — 1. Hence,
the right side of the equation is equal to 1. If a # b, the difference p(a) — ¢(b) is an
element of Z,\{0}. Therefore, z - (gp(a) — (b)) is valued 0,...,p — 1 modulo p for
0 <z <p—1. Thus, we have 327§ ¢,(a) - ¢, (b) = TPy w @@ —¢®) = (. O

Lemma 2 By using the mapping ¢,, the score vector between a text of length n and
a pattern of length m over an alphabet ¥ can be computed in O(|X|nlogm) time.

Proof. By the definition of the score vector and Lemma 1, the score vector is
1R
Z Z ¢x i+j— 1 ¢x(pj)- (2)

zO]l

Therefore, the score vector is obtained by computing the convolution

FG) =3 baltivi1) - dalpy) (1 <i<n)
i=1
p times. Since p = O(|X|), we have the lemma. O

129

Proceedings of the Prague Stringology Conference 03

2.2 Analysis of Variance

In the same way as the algorithm by Atallah et al. [1], we can construct a randomized
algorithm in which an estimate for the score vector is obtained by choosing some
mappings from ®. We define a sample s; of an element ¢; of the score vector to be

m

i =Y buo)(tisj-1) - ba(e)(p))-

=1

Let £ be the number of chosen samples. Then, an estimate §; for the element ¢; of
the score vector is defined by

1
S; = — S;.

By Eq. (2), it is clear that the mean of the estimates is equal to ¢;. The following
lemma gives the upper-bound of the variance of the estimates.

Lemma 3 In a randomized algorithm constructed with the mapping ¢, the variance
of the estimates for the score vector is bounded by (m — ¢;)?/k.

Proof. We denote by V(X) the variance of a random variable X. By the definition
of the estimate and the basic property of variance, we have V(s;) = V (s;)/k. Since

ba(e)(a) - Paey(a) = 1 and [py() (@) - o) (b)| = 1 for any 1 < ¢ < |®| and any a,b € X,
the variance of the samples is V'(s;) = Z‘;;'l(Ty bae) (tirj=1) - ooy (p;) — ci)?/|@| <

(m —¢;)?. O

2.3 Description of Algorithm

We describe the algorithm which uses the mapping ¢, in detail. The input is a text
string T' =ty - - - t,,, a pattern string P = py - - - p,, over an alphabet X, and a number &
of iterations in this algorithm. The output is an estimate for the score vector C(T, P)
if £ < p, the exact score vector if k& = p, where p is the smallest prime number such
that |X| < p. By the standard technique [4] of partitioning the text, we can assume
n = (1+ a)m for « = O(m). The algorithm is constructed by iterations of the
following operations.

e convert the text into a numerical sequences ¢, (T) = w#=) ... e=ltatam) by
the mapping ¢, from 3 to {w° ... wP1};

e convert the pattern into ¢,(P) = w=?=(P1) ... y=%=(Pn) by ¢, and pad with am
7€108;

e compute the sample s; for 1 < i < (1 + a)m as the convolution of ¢,(7) and
the reverse of the padded ¢, (P) by FFT.

The output is computed as the average of the results of the convolution for 1 <
xr < k. If K = p, by Lemma 2, the output is equal to the score vector. If k < p,
the output is regarded as an estimate for the score vector obtained by a randomized
algorithm with “sampling without replacement”. Therefore, by Lemma 3 the variance
of the estimates is ((p — k)/(p — 1)) - (V(s:)/k).

130

An Efficient Mapping for Score of String Matching

Theorem 1 By the algorithm with the mapping ¢,, the exact score between a text of
length n and a pattern of length m over an alphabet ¥ is computed in O(|X|nlogm)
time. Moreover, an estimate for the score vector is computed in O(knlogm) time,
where k is the number of iterations in the algorithm and the variance of the estimates
is bounded by (p — k)(m — ¢;)*/(p — 1)k.

In generally, the variance of the estimates obtained by sampling without replace-
ment is
|P] — K
@] -1

V(3:)

where @ is the set of all mappings which convert symbols into numbers. The cardi-
nality |®| of the set is |X| in the algorithm by Atallah et al [1]. and 2*' in one
by Baba et al [2|. Hence, the finite-size correction term (|®| — k)/(|®| — 1) is not so
effective.

A key distinguishing feature of our algorithm is that the exact score can be com-
puted in a practical time. Since |®| is large in the two randomized algorithms, their
deterministic versions constructed in a similar way as our algorithm are not practical
for a large alphabet. Although the deterministic algorithm generalized by Gusfield [7]
can be extended to a randomized algorithm in the same way as our algorithm, the
variance of the estimates depends on the number of alphabets.

3 Improvement of Algorithm

We propose two techniques to improve the algorithm in the previous section.

3.1 Removal of Defective Mapping

Our mappings convert the different symbols to the distinct numerical values. But
only the mapping ¢y converts all symbols to 0. Therefore, we remove the mapping
¢o from the set ®. That is possible without computing convolution.

By Eq. (1), 6(a,b) = + 5070 ¢a(a) - 6.(0) = 2 (071 dala) - 62 (b) + do(a) - do(h)) =
%(Z’;;i (@) - ¢z(b) + 1). Therefore, the score vector is ¢; = 37", %(ZZ; (tivj—1) -

o(pj)+1) =5 SPTL ST Bultivj—1) - bulps) + ™. To randomize the computation of ¢;,
we define ¢} as follows: ¢, = zﬁ Pl Ty Ga(tivi 1) - d2(pj). Hence, ¢; = %cg + 7
/

We define a sample s of an element ¢, to be

St = bultivi1) - 02(p)).
=1

And an estimate s/ is defined by

where 1 < k <p—1.

131

Proceedings of the Prague Stringology Conference 03

And an estimate §; for the element ¢; of the score vector is defined by

Z i_l: (tivj—1) - dz(pj) +

SAE

(3)

E’?‘I»—l

where 1 < k <p-—1.
2
By the difinition of a variance, V' (s;) = (pp%l)V(s;). Moreover, because the number
of mappings decrease by one, the variance in consideration of that is bounded by

p—1)? p—1—k (m—g¢)
»” p-2 kO)

3.2 Removal of Imaginary Part

The magnitude of ¢,(a) - ¢,(b) in Eq. (1) is 1. We used this magnitude for the
analysis of the variance until this point. However, the real part is independent of the
imaginary part. Therefore, those parts of Eq. (1) can be computed separately.
Let R(v) be a real part of a complex number v. By Lemma 1, Il) S8 dala) - o (b)
returns 0 or 1. Therefore, we can remove the imaginary part. Then, §(a,b) =
(1 P dala) ¢.(b)) for any a,b € X. By the definition of the score, ¢; =

(S o @x(tivj—1) - ¢2(pj)). Since the order of addition is not restricted, the
score vector is

1?’1 m

Z% Z¢x 1+j— 1 d)x(p]))
0 =

The computation of the complex number is necessary to compute convolution with
FFT. We only have to omit the imaginary part after the computation of FFT. By this
omission, the computation of both the sum of the imaginary part and the magnitude
of complex number become unnecessary.

The variance is the poorest when inconsistent m — ¢ characters are each a kind
of symbol on the text and the pattern. In such a case, ¢;(a) ¢4—@) is fixed without
influence of j. By Eq. (1), R(¢4(a) - ¢5(b)) = cos B, where 6, = M. Then,
the random variable s; is following.

m

si= > R(pe(a) - ¢e(b)) =3 cosy = c; cos 0+ (m—c;) cos Oy = ¢;+(m—c;) cos Oy

j:l j 1

The variance V' (s;) of this random variable s; are followings.

Ms

Visi) = (ci+ (m —¢;) cos by — ;) -~

~
Il

1

= = i((m — ¢;) cos f)?

P =1
P
(m —¢;)* > cos® b,
=1

. (m—g)? i 1+ cos b,
B 2

p =1

—

=

132

An Efficient Mapping for Score of String Matching

N2 P P

_ (m—a) D1+ cosby)

2p —1 —1
2
m — c;

= %(p +0)

B (m —¢;)?
By V(8;) = V(s;)/k, the variance of the estimates §; is bounded by

(m — ¢;)?

3.3 Variance of Improved Algorithm

We showed two improvement points. That both can be applied to the basic algorithm
at a time.

Now, the change point of the algorithm from the basis one shown in Subsection 2.3
is showed in the followings.

e We remove ¢g, and choose a sample from the remaining mappings.
e An estimate §, is computed using that samples.

e Only a real part is used for a computation of an estimate from the result of
FFT.

e We compute §; by Eq. (3), and make it the estimate of ¢;.

When these improvements are applied, by Eq. (4) and Eq. (6), the variance of the
estimates is bounded by
(p—1? p=1-k (m—c)
P2 p—2 2k

It is smaller than one in the algorithm of Section 2.

4 Exact Estimation of Variance

Atallah et al. presented an upper bound of the variance of the estimates for the score
in their algorithm as (m — ¢;)2/k. The reason for this variance is that their set of
mappings includes many mappings which convert some different symbols into same
numerical value. One of the features of our mappings is that it does not convert some
different symbols into same numerical value because a single exceptional mapping
was removed in Subsection 3.1. Using this feature, we give an exact estimation of the
variance based on our mappings.

Let a,b be symbols in X. If a product ¢(a) - ¢(b) in one position is independent
of it in other position, the estimate of ng_ci) ¢u(t) - ¢x(p;) is 0. The two following
conditions must be satisfied for that. One of those conditions is that a symbol in one
position is independent of symbols in other positions. In this paper, we suppose that
condition. The independence can not be expected in the general English text much.
But, we expect high independence about the comparison of the product ¢(a) @*

*In this paper, we did not get to the verification of that point. It is a future work.

133

Proceedings of the Prague Stringology Conference 03

Another condition is the following lemma.

Lemma 4 If all mappings convert different symbols into distinct numerical values,
then the product ¢(a) - ¢(b) in one position is independent of that in other position.

Proof. Let tq,t5, p1, p2 be symbols in ¥, x a value which can be returned by mappings
and r the number of kinds of z. Let ®, be a set of the mappings which convert more
than one of some symbols into z, and ®,, denotes ®, N ®,. We define D, as the
difference between the number of x which the mappings convert a given symbol into
and the number of mappings used for it. The number of certain value x which a
certain symbol a convert to is @ because Z';I;‘l ¢¢(a) = 0. Then, the number of
certain value x which all the symbols convert to is ®. Therefore, |®,| = |®| — D,. In
the mapping that converts the different symbols to the distinct numerical values, @,
equal to P.

Pr(X) denotes the probability of event X. Let A be the event ¢(t;) - ¢(p1) = =
and B the event ¢(t3) - ¢(ps) = z. And let A’ be the event ¢(t;) = dy, A” the event
d(p1) = da, B’ the event ¢(t2) = d3, and B” the event ¢(ps) = dy.

If a certain event occurred, that a result of a mapping was value z, the mapping in
the next event is restricted to mappings which return value z. After the event A, a set
of mappings is ®4,4, because the mapping returned d; and dy were used in the event
A. A probability that a mapping return a value z is (the number of combinations
of the mapping and the symbol which can return x)/(the product of the number of
mappings and the number of symbols). Then we have

el Bl
Pr(B) = r ' "1~
"B = @ T
N D]
P BII Bl — r —
WIAB) = sl T el
r—1 r—1 1 |®| 1 r—1 |(P|
Pr(B) = S Pr(B)Pr(B"|B)= Y (- y= Ly 2y
dgz:O dgzzo rer: |q)d3| r? d3Z:0 |(I>d3|
and
S o 1 jep
PI“BA == . —_ — .
(|) d32—0(r'|q)d1d2| r'|q)d1d2d3| r d3:0(|®d1d2|'|®d1d2d3|)

We get Pr(B|A) # Pr(B), hence ¢(t;) - ¢(p1) is not independent of ¢(ts) - ¢(p2).
However, if ® = &4 4, = P4, 4,45, then Pr(B|A) = Pr(B). This condition is satis-
fied only when all mappings should convert different symbols into distinct numerical
values. O

Other two mappings can not satisfy the condition of Lemma 4 while only our
mappings can satisfy it in case of |X| = p. Therefore, we add a dummy symbol in
case of |X| < p. Then we can correct a sampling bias because we can know that by
the dummy symbol in advance.

When ¢, is drawn uniformly randomly from &, the random variable § is § =
% Yo 2 Ge(t;) - Ge(py)-

Then, we get the following lemma.

134

An Efficient Mapping for Score of String Matching

Lemma 5 Given that the product ¢(a)-¢(b) in one position is independent of that in
other position. When ¢ symbols align in the m symbols, the variance V'(§) of random

variable s are
m — c;

V(%) =

Proof. Let s; be the random variable as ¢,(t;) - ¢s(p;), then s; = @u(t;) - de(p;) =
wili i) where d(t;,p;) =z - (¥(t;) — ¥(p;)). Su,=p,) denotes that s in ¢; = p; and
S(t;#p;) denotes that s in t; # p;.

If t; = p;, s; = 1. If t; # pj, s; = w¥%). Then, those means are E(s(t;=p;)) =
L E(5(t;2p,)) = TP o wdltipi) . % = 0. And those Variancle are V(s=p;)) = (S(t;=p;) —
E(st=p))? -1 = (1= 1)* - 1 = 0,V(sg,) = LazolStt;n,) — E(st,))? '1_1) -
Ly n ()2 = Lynin =1,

Because we assume that the product ¢(a) - ¢(b) in one position is independent of
that in other position, a variance V'(s) of s are the simple total of a variance of every
position. Then, V(s) = XV (s4,—p,)) + X7 “ V(5@ 2p)) = 20+ 1 =m—c;.

Using k samples s, a variance V(8) of the estimate s is V(8) = £V (s). Then

A m— ¢
V(s) = T

This analysis can be applied to the algorithm which improvement in Section 3 was
added to.
Then Eq. (5) changes as follow,

p—1

Visjtr) = 2 (Sit2p) — B(Sje,)
=0

ISR

S
8
g
=

1 2mg(a,b)
1 P11+ cos —

59L‘0 2
= 21+Zcos (a.

=3 (7)

By Eq. (7), we analyze the variance as the proof of Lemma 5.

b))

V() = o (®)

By Eq. (4) and Eq. (8), we get the following theorem.

Theorem 2 The variance of the estimates for the score in our algorithm is
—1)? p—-1—k m-—g¢
p? p—2 2k

V() = 2

135

Proceedings of the Prague Stringology Conference 03

Conclusion

We gave an efficient randomized algorithm for string matching with mismatches. This
randomized algorithm uses convolution with FFT, like that proposed by Atallah et
al. and Baba et al. We used the mappings which convert the symbols to the p-
adic number field. One of the features of our mappings is that it does not convert
some different symbols into same numerical value. By that feature, the variance of the
estimate of the score vector is smaller. The other feature of our mappings is that there
are not so many mappings. The number of mapping is p— 1 where || < p < 2|3| 2.
We analyzed the variance of the estimates for the score in this algorithm. And it
is very small as compared to the randomized algorithms proposed in the past. The
variance in this algorithm is (p;Ql)z : ”;Sk - I Its time complexity is O(knlogm)
where k£ is the number of samples, and the upper bound of k£ is p — 1. When £k is
p — 1, this algorithm is deterministic, and the estimate becomes the real value.
Experiments with read texts and the evaluation of computation time are future
work. We have a plan to apply the method for pattern extraction from Web pages [8].

References

[1] Atallah, M. J., Chyzak, F., and Dumas, P.: A Randomized Algorithm for
Approximate String Matching. Algorithmica 29, 468-486. 2001.

[2] Baba, K., Shinohara, A., Takeda, M., Inenaga, S., and Arikawa, S.: A
Note on Randomized Algorithm for String Matching with Mismatches.
Nordic Journal of Computing 10, 2-12. 2003.

[3] Baba, K., Tanaka, Y., Nakatoh, T., Shinohara, A.: A Unification of FFT
Algorithm for String Matching. Proc. International Symposium on Infor-
mation Science and Electrical Engineering 2003, to appear.

[4] Crochemore, M. and Rytter, W.: Text Algorithms. Oxford University
Press, New York. 1994.

rochemore, M. an ytter, W.: Jewels of Stringology. Wor cientific.
5| Croch M d R W.: Jewels of Stringol World Scientifi
2003.

[6] Fischer, M. J. and Paterson, M. S.: String-matching and other products.
In Complexity of Computation (Proceedings of the STAM-AMS Applied
Mathematics Symposium, New York, 1973), 113-125. 1974.

[7] Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge
University Press, New York. 1997.

[8] Taguchi, T., Koga, Y. and Hirokawa, S.: Integration of Search Sites of
the World Wide Web. Proc. of International Forum cum Conference on
Information Technology and Communication, Vol. 2, pp. 25-32, 2000.

136

