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Abstract. Evolution acts in several ways on biological sequences: either by mu-
tating an element, or by inserting, deleting or copying a segment of the sequence.
Varré et al. [VDROS8| defined a transformation distance for the sequences, in
which the evolutionary operations are copy, reverse copy and insertion of a seg-
ment. They also proposed an algorithm to calculate the transformation distance.
This algorithm is O(n?) in time and O(n*) in space, where n is the size of the
sequences. In this paper, we propose an improved algorithm which costs O(n?)
in time and O(n?) in space. Furthermore, we extend the operation set by adding
point deletions. We present an algorithm which is O(n?) in time and O(n?) in
space for this extended case.
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1 Introduction

Building models and tools to quantify evolution is an important domain of biology.
Evolutionary trees or diagrams are based on statistical methods which exploit com-
parison methods between genomic sequences. Many comparison models have been
proposed according to the type of physico-chemical phenomena that underly the evo-
lutionary process [Do81|. Different evolutionary operation sets are studied. Mutation,
deletion and insertion were the first operations dealt with [SaKr83|. Duplication and
contraction were then added to the operation set [BeRi02, BeSt03]|. All these oper-
ations were acting on single letters, representing bases, aminoacids or more complex
sequences: they are called point transformations. Segment operations are also very
important to study. In a number of papers [VDR97, VDR98, VDR99|, Varré et al.
have studied an evolutionary distance based on the amount of segment moves that
Nature needed (or is supposed to have needed) to transfer a sequence from one species
to the equivalent sequence in another one. Their model is concerned with segments
copy with or without reversal and on segment insertion: it is thus a very simple and
robust model which can easily be explained from biological mechanisms. They devel-
oped this study on DNA sequences, but the basic concepts and algorithms apply as
well to proteins or satellites.

The algorithm they propose to compute the minimal transformation sequence is
based on an encoding into a graph formalism, from which one can get the solution
by computing shortest paths. This gives an O(n*) answer both in space and time'.

'Even O(nf) in the last french version [Va00].
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In fact it is possible to give a direct solution based on dynamic programming which
costs only O(n?) in time and space. This solution is obviously more efficient for long
sequences and makes the problem tractable even for very long sequences.

In the second section we describe the model and the problem description.

In the third section our algorithm for calculating the transformation distance is
presented. Firstly, in the preprocessing part we show how to find efficiently the
existence of all the substrings of one string in another one. Then the core of the
algorithm is presented, which is basically a dynamic programming algorithm.

In section 4, we introduce the point deletions in our model and we give an al-
gorithm to solve the transformation distance problem in presence of point deletions:
this algorithm runs in time O(n?®) and space O(n?).

Finally, section 5 is dedicated to conclusions and remarks.

2 Model and Problem Description

The symbols are elements from an alphabet 3. The set of all finite-length strings
formed using symbols from alphabet ¥ is denoted by ¥*. In this paper, we use the
letters x, y, z,... for the symbols in ¥ and S, T, P, R, ... for strings over X*.
The empty string is denoted by e. The length of a string S is denoted by |S|. The
concatenation of a string P and R, denoted PR, has length |P|+ |R| and consists of
the symbols from P followed by the symbols from R.

We will denote by S[i] the symbol in position i of the string S (the first symbol of
a string S is S[1]). The substring of S starting at position i and ending at position
j is denoted by S[i..j] = S[i]S[i + 1]...S[j]. The reverse of a string S is denoted
by S~t. Thus, if n is the length of S, S71[i..j] = S[(n —j + 1)..(n — i + 1)]"! and
Sli.g] ' =87 [(n—7j+1)..(n—i+1)]. We say that a string P is a prefiz of a string
S, denoted P C S, if S = PR for some string R € ¥*. Similarly, we say that a
string P is a suffix of a string S, denoted by P 3 S, if S = RP for some R € ¥*.
For brevity of notation, we denote the k-symbol prefix P[1..k] of a string pattern
P[1..m] by P;. Thus, Py = ¢ and P,, = P = P[l..m]. We recall the definition of
a subsequence: Given a string S[1..n], another string R[1..k] is a subsequence of S,
denoted by R < S, if there exists a strictly increasing sequence < iy, 1s,...,1; > of
indices of S such that for all j = 1,2,...,k, we have S[i;] = R[j]. For example, if
S = zxyzyyzr, R = zzxx and P = xxzz, then P is a subsequence of S, while R is
not a subsequence of S. When a string S is a subsequence of a string 7', T" is called
a supersequence of S, denoted by T > S. In the last example, S is a supersequence
of P.

Varré et al. [VDR98, VDR99| propose a new measure which evaluates segment-
based dissimilarity between two strings: the source string S and the target string 7.
This measure is related to the process of constructing the target string T with segment
operations®. The construction starts with the empty string € and proceeds from left
to right by adding segments (concatenation), one segment per operation. The left-to-
right generation is not a restriction but a fact that can be formally proved. A list of
operations is called a script. Three types of segment operations are considered: the
copy adds segments that are contained in the source string S, the reverse copy adds

2In this paper we use segment as an equivalent word for substring.
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the segments that are contained in S in reverse order, and the insertion adds segments
that are not necessarily contained in S. The measure depends on a parameter that
is the Minimum Factor Length (MFL); it is the minimum length of the segments
that can be copied or reverse copied. Depending on the number of common segments
between S and 7', there exist several scripts for constructing the target 7. Among
these scripts, some are more likely; in order to identify them, we introduce a cost
function for each operation. InsertCost(Ti..j]) is the cost of insertion of substring
Tli..j]. CopyCost(TTi..j]) is the cost of copying the segment T7i..j] from S if it is
contained in S. Finally RevCopyCost(T]i..j]) is the cost of copying substring T'[i..j]
from S if the reverse of this substring is contained in the source S. The cost of a
script is the sum of the costs of its operations. The minimal scripts are all scripts of
minimum cost and the transformation distance® (TD) is the cost of a minimal script.
The problem which we solve in this paper is the computation of the transformation
distance. It is clear that it is also possible to get a minimal script.

3 Algorithm

In this section we describe the algorithm to determine the transformation distance
between two strings. The algorithm consists of two parts. The first part is a prepro-
cessing part in which we determine for each substring of target string 7', whether it
exists in the source string S or not. In the second part, which is the core algorithm, we
determine the transformation distance with help of the information that we obtained
in the preprocessing part. This core algorithm is a dynamic programming algorithm.

3.1 Preprocessing

Deciding whether a given substring exists in S or not, and finding its position in the
case of presence, needs to apply a string matching algorithm. For this aim, we design
an algorithm based on KMP (Knutt-Moris-Pratt) string matching algorithm with
some changes. Let F'P[i,j] be the the first position of occurrence of the substring
Tli..j] in S if such an occurrence exists and oo otherwise. Similarly FPRJ[i, j] is the
first position of an occurrence of T~'[i..j] in S. We need to recall the definition of
prefix function m (adapted from the original KMP one), which is needed for precom-
putation. Given a pattern P[1..m], the prefix function for pattern P is the function
m:{1,2,...,m} — {0,1,...,m — 1} such that n[¢] = max{k : k < ¢ and P, J P,}.
That is, 7, is the length of the longest prefix of P that is a proper suffix of P,. We
have the following lemma for the prefix functions.

Lemma 1 The prefix function of P, is a restriction of prefix function of P to the set
{1,2,...,k}.

Proof: The proof is immediate by the definition of the prefix function because 7i]
for a given i can be obtained only from P,_; = P[1..(i — 1)] and P[i].

Although simple, this lemma is a corner-stone of the algorithm. It shows that, one
can search for the presence of the prefixes of a pattern string in the source string, in the

3 Although this measure is not a mathematical distance but we will use the term transformation
distance which was introduced by Varré et al. [VDR98, VDR99].
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Algorithm 1 Prefix-Matcher(A, S, P, index) %% index — || + 1— length of the

1. n < length[S] %%  suffix P being searched in S

2. m < length[P] %% Apnxn) @ Aliyi +q] # oo iff the prefix
3. q <0 %% of P of length g+1 occurs in S
4. fori< 1ton

5. do while ¢ >0 and P[q + 1] # S]]

6. do q < 7[q]

7. if Plg+ 1] = S[i] then

8. q+q-+1

9. if Alindex,index + q] = oo then

10. Alindex,index + q] =i —q

11. if ¢ = m then

12. Exit %% the suffix P has been discovered

Figure 1: Prefix-Matcher

Algorithm 2 PreProcessing(S, T')

FillArray(F' P, oo)

FillArray(FPR, )

n < length|T]

for k < 1 ton

do P« Tlk..n]
Preﬁx—Matcher(FP, S, P, k) %% direct pattern
PR < T 'k..n]
Preﬁx-Matcher(FPR, S, PR, k) %% reverse pattern

X NSOt WD =

Figure 2: PreProcessing

same time of searching for the complete pattern, without increasing the complexity
of the search. The algorithm is given in pseudocode in figure 1 as the procedure
Prefix-Matcher. The complexity of the Prefix-Matcher algorithm is O(n) in time.
For the proof of the complexity and correctness of this algorithm, see chapter 34.4 of
[CLR90]. Prefix-Matcher finds the position of the first occurrence of all prefixes of a
pattern string P in string S. In the PreProcessing algorithm (figure 2), we call the
Prefix-Matcher with patterns T[1..n], T[2..n], ..., T[n]. Thus, we have the position of
the first occurrences of all of the substrings of 7" in S. Similarly, the first position of
all substrings of 7! are found in S. The total complexity the preprocessing part is
O(n?) in time and O(n?) in space.

3.2 Core Algorithm

As the scripts construct the target string 7' from left to right by adding segments,
dynamic programming is an ideal tool for computing the transformation distance.
The core part of the algorithm determines the transformation distance between S
and T by a dynamic programming algorithm. Let C[k] be the minimum production
cost of T'[1..k] using the segments of S. The algorithm is given in figure 3. We make
use of generic functions CopyCost, RevCopyCost and InsertCost as defined at the end
of section 2. These functions are defined using the PreProcessing algorithm: arrays

4
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Algorithm 3 TransformationDistance(S, T')
1. PreProcessing(S, T)

2. C0]«0

3. fork« 1to|T|

Cli — 1] + CopyCost(Ti..k]) if FPli,k] < oo
: Cli — 1] + RevCopyCost(T[i..k]) if FPRn —k+1,n—i+1] < oo
4 ClH < 0<i<k Cli — 1] + InsertCost(Ti..k])
00

5. return C|n]

Figure 3: Transformation Distance: a dynamic programming solution

FP and FPR. In order to fix ideas, one can consider that these costs are proportional
to the length of the searched segment (and oo if this segment does not occur in S).
In fact any sub-additive function would be convenient.

Proposition 1 The recurrence relations of Algorithm 3, correctly determine the
transformation distance of S and 7.

Proof: We prove by induction on k that after the algorithm execution, C[k] contains
the minimum production cost of target T[1..k] with the source string S. C[0] is
initialized to 0, because the cost of production of € from S is zero.

Now, we suppose that C[i] is calculated correctly for all i < k for some positive
value of k. Let us consider the calculation of C[k]. The last operation in a minimal
script which generates T'[1..k], creates a suffix of T[1..k]. Let this suffix be T'[i..k].
As the script is minimal, the script without its last operation is a minimal script for
T[1..(: —1)]. The minimum cost of the script for T'[1..(i — 1)] is C[i — 1] by induction
hypothesis. If TTi..k] exists in S and the last operation of the minimal script is
a copy operation, the minimal cost of the script is C[i — 1] + CopyCost(T]i..k]).
Similarly, if the reverse of T'[i..k] exists in S and the last operation in the minimal
script of T[1..k] is a reverse copy operation, the minimal cost of the script is C[i —
1] + RevCopyCost(T[i..k]). Finally, if the last operation in the minimal script of
T[1..k] is an insertion, the minimal cost of the script is C[i — 1] 4+ InsertCost(T[i..k])
(see figure 4). Thus, C[n] is the minimum cost of production of 7" = T[1..n| and the
algorithm determines correctly the transformation distance of S and T'.

Note that when the length of the substring T'[i..k] is smaller than M F'L, Copy-
Cost(Ti..k]) and RevCopyCost(T[i..k]) are equal to oo.

The complexity of Algorithm 3 is O(n?) in time and O(n) in space. So the total
complexity of our algorithm (preprocessing + core algorithm) is O(n?) in time and
O(n?) in space.

4 An Additional Operation: Point Deletion

In this section, we extend the set of evolutionary operations by adding the point dele-
tion operation. During a point deletion (or simply deletion) operation, a symbol of
the string which is under evolution is eliminated. This is an important operation from

Y
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i k
T ¥ 1 Copy
S |T 1 Ci — 1] + CopyCost(Ti..k])
FP[i, K]
i k
T 1 ) | 1 Reverse Copy
S +% 1 C[i — 1] + RevCopyCost(T[i..k])
FPR[i, k]
1
T | ) | 1 Insertion

Cli — 1] + InsertCost(Ti..k])

Figure 4: The three different possibilities for generation of a suffix of T'[1..k]

the biological point of view; in the real evolution of biological sequences, in several
cases after or during the copy operations some bases (symbols) are eliminated. We
denote the cost of deletion of a symbol by DelCost. For simplicity, we suppose that
the cost of deletion of every unique symbol is the same. Since we have only point
deletions, deleting a segment of k£ symbols amounts to delete the k£ symbols one by
one, which will cost k& x DelCost. As before, our objective is to find the minimum
cost for a script generating a target string 7', with the help of segments of a source
string S. As the costs are independent of time, we consider that the deletions are
applied only in the latest added segment (rightmost one), at any moment during the
evolution. It should be clear that in an optimal transformation, deletions are not
applied into an inserted substring (a substring which is the result of an insertion
operation). Depending on the assigned costs, deletions can be used after the copy
or reverse copy operations. We consider a copy operation together with all deletions
which are applied to that copied segment as a unit operation. So we have a new op-
eration called NewCopy which is a copy operation followed by zero or more deletions
on the copied segment. In figure 5 a schema of a NewCopy operation is illustrated.
Similarly, NewRevCopy is a reverse copy operation followed by zero or more deletions.
Solving the extended transformation distance with the point deletions, amounts to
solve the transformation distance with the following three operations: Insertion, New-
Copy and NewRevCopy. A substring T'[i..j] of the target string can be produced by
a unique NewCopy operation if and only if 7T'[i..j] is a subsequence string of source
S. Conversely, T[i..j] can be produced by a unique NewRevCopy operation if and
only if T[i..j]™" is a subsequence string of the source S. In a preprocessing part, the
algorithm determines the minimum generation cost by a NewCopy or NewRevCopy
operation, for any substring of the target string 1. Very similar to the last section
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Copy(STh..lg])

7 k
T 1 1 ] - l +
S % / / ; ; Delete(S[ls..I3])
Loy T 5 14[ s s +

Delete(S|ly..1
Deleted segments (Slla- 1s])

NewCopy(Ti..k])

Figure 5: The illustration of NewCopy operation: A copy operation + zero or more
deletions

algorithm, a dynamic programming algorithm calculates the extended transformation
distance in the new core algorithm.

4.1 New Preprocessing

In the preprocessing part, we compute the costs of these new operations for any sub-
string of the target: NewCopyCost[i, j] is the minimum cost of generating the T'[i..j]
by a NewCopy operation. Similarly, New RevCopyCost|i, j| is the minimum cost of
generating T'[i..j] by a NewRevCopy operation. Computing the NewCopyCost]i, j]
amounts to find the shortest substring (with minimum length) of the source string
which contains T7Ti..j] as a subsequence string. By this way, the number of deletions
which are needed for this NewCopy operation is minimized. For NewRevCopyCost|i, j],
we need to find the shortest substring in S~' which contains T7i..j] as a subsequence.

In the NewPreProcessing algorithm listed in figure 6, the cost tables New-
CopyCost and LastOcc are initially filled with oo (lines 1-2). The algorithm scans the
source from left to right to find the shortest supersequence for each segment of the
target. The algorithm uses an auxiliary table LastOcc for this aim.

After the k-th letter of S is processed (loop of line 3), the following is true:
LastOccli, j] is the largest [ < k such that S[l..k] is a supersequence of T'[i..j]. The loop
on T (line 4) is processed with decreasing indices for memory optimization. Whenever
the letter S[k| occurs in j-th position in 7" (line 5), then there is an opportunity of
obtaining a better supersequence for some of T'i..j]’s, i < j. LastOccli, j]| takes the
value LastOccli,j — 1] (computed for k — 1) since S[LastOccl[i,j — 1]..k] is now the
rightmost supersequence for T'[i..j] (line 9). Its cost is compared to the cost of the
best previous one; if better, the new cost is stored in NewCopyCost (lines 11-13). One
should observe that rightmost sequences are updated only when a new common letter
is scanned. This is necessary and sufficient as stated in the following lemma:

Lemma 2 If S[l..k] is the best supersequence for T7i..j] over S[1..N], then it is the
rightmost supersequence for T'[i..j] on S[1..k].

Proof: SJi..k] is the best sequence for Ti..j] over S[1..k] then it is better than
all S[I'..k] for I' < I and no S[I"..k] can be a supersequence for [" < [.

7
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Algorithm 4 NewPreProcessing(S, T)

1. FillArray(NewCopyCost, o)

2. FillArray(LastOcc,00) %% LastOcc is a sub-diagonal array: LastOccli, j] = oo for i > j
3. for k <+ 1 to |S| %% Source scanned left to right

4. for each j « |T| downto 1 %9% find matches in T for S[K]

%% for a fixed k: LastOccli, j] =largest | such that S[l..k] = T[i..j]

5 if S[k] = T[j] then

6. LastOcclj, j] <+ k

7. NB’LUCOpyCOSt[j, j] — COpyCOSt(T[j]) %% deletions are not needed

8 for i+ 1toj—1 %% for all suffixes of T[1..]

9. LastOccli, j] < LastOccli, j—1] %% S[LastOccli,j—1].k—1]] = T[i..j—1]
10. NumDel + k — LastOccli, j| —i — j %% difference in lengths

11. ThisCost < DelCost x NumDel 4+ CopyCost(S[LastOccli, j]..k])
12. if ThisCost < NewCopyCost|i, j] then

13. NewCopyCostli, j] < ThisCost

Figure 6: NewPreProcessing (simplified: reverse copies have been omitted)

Algorithm 5 NewTransformationDistance(S, T)
1. NewPreProcessing(S,T)

2. C[0]«0

3. fork« 1ton

C[i — 1] + NewCopyCost|i, k| if FP[i, k] < o0
: Cli — 1) + NewRevCopyCostli, k| if FPR[i, k] < co
4 ClH] < 0<i<k Cli — 1] + InsertCost(Ti..k])
00

5.  return C|n]

Figure 7: New Transformation Distance: dynamic programming

4.2 New Core Algorithm

In the core algorithm, the minimum generation costs of the prefixes of the target
string 1" are determined from left to right. This is realized by a dynamic programming
algorithm: Let C[k] be the minimum production cost of T[1..k] using the segments of
S. The algorithm is given in figure 7. The proof of the following proposition is very
similar to the proof of proposition 1:

Proposition 2 The recurrence relations of Algorithm 5, correctly determine the ex-
tended transformation distance of S and T

The complexity of the preprocessing part, is O(n?) in time and O(n?) in space.
The complexity of the core algorithm is O(n?) both in time and space. Therefore, the
whole complexity of the new algorithm for the calculation of extended transformation
distance is O(n?) in time and O(n?) in space.

8
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Remarks and Conclusion

In this paper, we presented a new improved algorithm for calculation of the transfor-
mation distance problem. We also gave an algorithm for the transformation distance
problem in presence of the deletion operations. In this version, costs have been given
a special additive form for clarity. In fact a number of variations are possible within
our framework: the main property needed on costs seems to be their subadditivity.

In this paper, we state that Algorithm 3 complexity is O(n?); this stands for
the worst case complexity; in fact only a small proportion of pairs (S[k], T[j]) imply
running the inner loop. Under certain additional statistical hypotheses the average
complexity could be less than O(n?).
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