
The Transformation Distan
e Problem Revisited

Behshad Behzadi and Jean-Mar
 Steyaert

LIX, É
ole Polyte
hnique

Palaiseau 
edex 91128, Fran
e

e-mail: {behzadi,steyaert}�lix.polyte
hnique.fr

Abstra
t. Evolution a
ts in several ways on biologi
al sequen
es: either by mu-

tating an element, or by inserting, deleting or 
opying a segment of the sequen
e.

Varré et al. [VDR98℄ de�ned a transformation distan
e for the sequen
es, in

whi
h the evolutionary operations are 
opy, reverse 
opy and insertion of a seg-

ment. They also proposed an algorithm to 
al
ulate the transformation distan
e.

This algorithm is O(n

4

) in time and O(n

4

) in spa
e, where n is the size of the

sequen
es. In this paper, we propose an improved algorithm whi
h 
osts O(n

2

)

in time and O(n

2

) in spa
e. Furthermore, we extend the operation set by adding

point deletions. We present an algorithm whi
h is O(n

3

) in time and O(n

2

) in

spa
e for this extended 
ase.

Keywords: dynami
 programming, pattern mat
hing

1 Introdu
tion

Building models and tools to quantify evolution is an important domain of biology.

Evolutionary trees or diagrams are based on statisti
al methods whi
h exploit 
om-

parison methods between genomi
 sequen
es. Many 
omparison models have been

proposed a

ording to the type of physi
o-
hemi
al phenomena that underly the evo-

lutionary pro
ess [Do81℄. Di�erent evolutionary operation sets are studied. Mutation,

deletion and insertion were the �rst operations dealt with [SaKr83℄. Dupli
ation and


ontra
tion were then added to the operation set [BeRi02, BeSt03℄. All these oper-

ations were a
ting on single letters, representing bases, aminoa
ids or more 
omplex

sequen
es: they are 
alled point transformations. Segment operations are also very

important to study. In a number of papers [VDR97, VDR98, VDR99℄, Varré et al.

have studied an evolutionary distan
e based on the amount of segment moves that

Nature needed (or is supposed to have needed) to transfer a sequen
e from one spe
ies

to the equivalent sequen
e in another one. Their model is 
on
erned with segments


opy with or without reversal and on segment insertion: it is thus a very simple and

robust model whi
h 
an easily be explained from biologi
al me
hanisms. They devel-

oped this study on DNA sequen
es, but the basi
 
on
epts and algorithms apply as

well to proteins or satellites.

The algorithm they propose to 
ompute the minimal transformation sequen
e is

based on an en
oding into a graph formalism, from whi
h one 
an get the solution

by 
omputing shortest paths. This gives an O(n

4

) answer both in spa
e and time

1

.

1

Even O(n

6

) in the last fren
h version [Va00℄.

1



Pro
eedings of the Prague Stringology Conferen
e '03

In fa
t it is possible to give a dire
t solution based on dynami
 programming whi
h


osts only O(n

2

) in time and spa
e. This solution is obviously more e�
ient for long

sequen
es and makes the problem tra
table even for very long sequen
es.

In the se
ond se
tion we des
ribe the model and the problem des
ription.

In the third se
tion our algorithm for 
al
ulating the transformation distan
e is

presented. Firstly, in the prepro
essing part we show how to �nd e�
iently the

existen
e of all the substrings of one string in another one. Then the 
ore of the

algorithm is presented, whi
h is basi
ally a dynami
 programming algorithm.

In se
tion 4, we introdu
e the point deletions in our model and we give an al-

gorithm to solve the transformation distan
e problem in presen
e of point deletions:

this algorithm runs in time O(n

3

) and spa
e O(n

2

).

Finally, se
tion 5 is dedi
ated to 
on
lusions and remarks.

2 Model and Problem Des
ription

The symbols are elements from an alphabet �. The set of all �nite-length strings

formed using symbols from alphabet � is denoted by �

�

. In this paper, we use the

letters x, y, z,... for the symbols in � and S, T , P , R, ... for strings over �

�

.

The empty string is denoted by �. The length of a string S is denoted by jSj. The


on
atenation of a string P and R, denoted PR, has length jP j+ jRj and 
onsists of

the symbols from P followed by the symbols from R.

We will denote by S[i℄ the symbol in position i of the string S (the �rst symbol of

a string S is S[1℄). The substring of S starting at position i and ending at position

j is denoted by S[i::j℄ = S[i℄S[i + 1℄ : : : S[j℄. The reverse of a string S is denoted

by S

�1

. Thus, if n is the length of S, S

�1

[i::j℄ = S[(n � j + 1)::(n � i + 1)℄

�1

and

S[i::j℄

�1

= S

�1

[(n� j + 1)::(n� i+ 1)℄. We say that a string P is a pre�x of a string

S, denoted P v S, if S = PR for some string R 2 �

�

. Similarly, we say that a

string P is a su�x of a string S, denoted by P w S, if S = RP for some R 2 �

�

.

For brevity of notation, we denote the k-symbol pre�x P [1::k℄ of a string pattern

P [1::m℄ by P

k

. Thus, P

0

= � and P

m

= P = P [1::m℄. We re
all the de�nition of

a subsequen
e: Given a string S[1::n℄, another string R[1::k℄ is a subsequen
e of S,

denoted by R � S, if there exists a stri
tly in
reasing sequen
e < i

1

; i

2

; : : : ; i

k

> of

indi
es of S su
h that for all j = 1; 2; : : : ; k, we have S[i

j

℄ = R[j℄. For example, if

S = xxyzyyzx, R = zzxx and P = xxzz, then P is a subsequen
e of S, while R is

not a subsequen
e of S. When a string S is a subsequen
e of a string T , T is 
alled

a supersequen
e of S, denoted by T � S. In the last example, S is a supersequen
e

of P .

Varré et al. [VDR98, VDR99℄ propose a new measure whi
h evaluates segment-

based dissimilarity between two strings: the sour
e string S and the target string T .

This measure is related to the pro
ess of 
onstru
ting the target string T with segment

operations

2

. The 
onstru
tion starts with the empty string � and pro
eeds from left

to right by adding segments (
on
atenation), one segment per operation. The left-to-

right generation is not a restri
tion but a fa
t that 
an be formally proved. A list of

operations is 
alled a s
ript. Three types of segment operations are 
onsidered: the


opy adds segments that are 
ontained in the sour
e string S, the reverse 
opy adds

2

In this paper we use segment as an equivalent word for substring.

2



The Transformation Distan
e Problem Revisited

the segments that are 
ontained in S in reverse order, and the insertion adds segments

that are not ne
essarily 
ontained in S. The measure depends on a parameter that

is the Minimum Fa
tor Length (MFL); it is the minimum length of the segments

that 
an be 
opied or reverse 
opied. Depending on the number of 
ommon segments

between S and T , there exist several s
ripts for 
onstru
ting the target T . Among

these s
ripts, some are more likely; in order to identify them, we introdu
e a 
ost

fun
tion for ea
h operation. InsertCost(T [i::j℄) is the 
ost of insertion of substring

T [i::j℄. CopyCost(T [i::j℄) is the 
ost of 
opying the segment T [i::j℄ from S if it is


ontained in S. Finally RevCopyCost(T [i::j℄) is the 
ost of 
opying substring T [i::j℄

from S if the reverse of this substring is 
ontained in the sour
e S. The 
ost of a

s
ript is the sum of the 
osts of its operations. The minimal s
ripts are all s
ripts of

minimum 
ost and the transformation distan
e

3

(TD) is the 
ost of a minimal s
ript.

The problem whi
h we solve in this paper is the 
omputation of the transformation

distan
e. It is 
lear that it is also possible to get a minimal s
ript.

3 Algorithm

In this se
tion we des
ribe the algorithm to determine the transformation distan
e

between two strings. The algorithm 
onsists of two parts. The �rst part is a prepro-


essing part in whi
h we determine for ea
h substring of target string T , whether it

exists in the sour
e string S or not. In the se
ond part, whi
h is the 
ore algorithm, we

determine the transformation distan
e with help of the information that we obtained

in the prepro
essing part. This 
ore algorithm is a dynami
 programming algorithm.

3.1 Prepro
essing

De
iding whether a given substring exists in S or not, and �nding its position in the


ase of presen
e, needs to apply a string mat
hing algorithm. For this aim, we design

an algorithm based on KMP (Knutt-Moris-Pratt) string mat
hing algorithm with

some 
hanges. Let FP [i; j℄ be the the �rst position of o

urren
e of the substring

T [i::j℄ in S if su
h an o

urren
e exists and 1 otherwise. Similarly FPR[i; j℄ is the

�rst position of an o

urren
e of T

�1

[i::j℄ in S. We need to re
all the de�nition of

pre�x fun
tion � (adapted from the original KMP one), whi
h is needed for pre
om-

putation. Given a pattern P [1::m℄, the pre�x fun
tion for pattern P is the fun
tion

� : f1; 2; : : : ; mg ! f0; 1; : : : ; m� 1g su
h that �[q℄ = maxfk : k < q and P

k

w P

q

g.

That is, �

q

is the length of the longest pre�x of P that is a proper su�x of P

q

. We

have the following lemma for the pre�x fun
tions.

Lemma 1 The pre�x fun
tion of P

k

is a restri
tion of pre�x fun
tion of P to the set

f1; 2; : : : ; kg.

Proof: The proof is immediate by the de�nition of the pre�x fun
tion be
ause �[i℄

for a given i 
an be obtained only from P

i�1

= P [1::(i� 1)℄ and P [i℄.

Although simple, this lemma is a 
orner-stone of the algorithm. It shows that, one


an sear
h for the presen
e of the pre�xes of a pattern string in the sour
e string, in the

3

Although this measure is not a mathemati
al distan
e but we will use the term transformation

distan
e whi
h was introdu
ed by Varré et al. [VDR98, VDR99℄.

3



Pro
eedings of the Prague Stringology Conferen
e '03

Algorithm 1 Pre�x-Mat
her(A, S, P, index) %% index = jT j+ 1� length of the

1. n  length[S℄ %% su�x P being sear
hed in S

2. m  length[P ℄ %% A

[n�n℄

: A[i; i+ q℄ 6=1 i� the pre�x

3. q  0 %% of P of length q+1 o

urs in S

4. for i  1 to n

5. do while q > 0 and P [q + 1℄ 6= S[i℄

6. do q  �[q℄

7. if P [q + 1℄ = S[i℄ then

8. q  q + 1

9. if A[index; index + q℄ =1 then

10. A[index; index + q℄ = i� q

11. if q = m then

12. Exit %% the su�x P has been dis
overed

Figure 1: Pre�x-Mat
her

Algorithm 2 PrePro
essing(S, T )

1. FillArray(FP;1)

2. FillArray(FPR;1)

3. n length[T ℄

4. for k  1 to n

5. do P  T [k::n℄

6. Pre�x-Mat
her(FP; S; P; k) %% dire
t pattern

7. PR T

�1

[k::n℄

8. Pre�x-Mat
her(FPR; S; PR; k) %% reverse pattern

Figure 2: PrePro
essing

same time of sear
hing for the 
omplete pattern, without in
reasing the 
omplexity

of the sear
h. The algorithm is given in pseudo
ode in �gure 1 as the pro
edure

Pre�x-Mat
her. The 
omplexity of the Pre�x-Mat
her algorithm is O(n) in time.

For the proof of the 
omplexity and 
orre
tness of this algorithm, see 
hapter 34.4 of

[CLR90℄. Pre�x-Mat
her �nds the position of the �rst o

urren
e of all pre�xes of a

pattern string P in string S. In the PrePro
essing algorithm (�gure 2), we 
all the

Pre�x-Mat
her with patterns T [1::n℄; T [2::n℄; :::; T [n℄. Thus, we have the position of

the �rst o

urren
es of all of the substrings of T in S. Similarly, the �rst position of

all substrings of T

�1

are found in S. The total 
omplexity the prepro
essing part is

O(n

2

) in time and O(n

2

) in spa
e.

3.2 Core Algorithm

As the s
ripts 
onstru
t the target string T from left to right by adding segments,

dynami
 programming is an ideal tool for 
omputing the transformation distan
e.

The 
ore part of the algorithm determines the transformation distan
e between S

and T by a dynami
 programming algorithm. Let C[k℄ be the minimum produ
tion


ost of T [1::k℄ using the segments of S. The algorithm is given in �gure 3. We make

use of generi
 fun
tions CopyCost, RevCopyCost and InsertCost as de�ned at the end

of se
tion 2. These fun
tions are de�ned using the PrePro
essing algorithm: arrays

4



The Transformation Distan
e Problem Revisited

Algorithm 3 TransformationDistan
e(S, T )

1. PrePro
essing(S, T)

2. C[0℄ 0

3. for k  1 to jT j

4 : C[k℄ min

0<i�k

8

>

>

>

<

>

>

>

:

C[i� 1℄ + CopyCost(T [i::k℄) if FP [i; k℄ <1

C[i� 1℄ +RevCopyCost(T [i::k℄) if FPR[n� k + 1; n� i+ 1℄ <1

C[i� 1℄ + InsertCost(T [i::k℄)

1

5. return C[n℄

Figure 3: Transformation Distan
e: a dynami
 programming solution

FP and FPR. In order to �x ideas, one 
an 
onsider that these 
osts are proportional

to the length of the sear
hed segment (and 1 if this segment does not o

ur in S).

In fa
t any sub-additive fun
tion would be 
onvenient.

Proposition 1 The re
urren
e relations of Algorithm 3, 
orre
tly determine the

transformation distan
e of S and T .

Proof: We prove by indu
tion on k that after the algorithm exe
ution, C[k℄ 
ontains

the minimum produ
tion 
ost of target T [1::k℄ with the sour
e string S. C[0℄ is

initialized to 0, be
ause the 
ost of produ
tion of � from S is zero.

Now, we suppose that C[i℄ is 
al
ulated 
orre
tly for all i < k for some positive

value of k. Let us 
onsider the 
al
ulation of C[k℄. The last operation in a minimal

s
ript whi
h generates T [1::k℄, 
reates a su�x of T [1::k℄. Let this su�x be T [i::k℄.

As the s
ript is minimal, the s
ript without its last operation is a minimal s
ript for

T [1::(i� 1)℄. The minimum 
ost of the s
ript for T [1::(i� 1)℄ is C[i� 1℄ by indu
tion

hypothesis. If T [i::k℄ exists in S and the last operation of the minimal s
ript is

a 
opy operation, the minimal 
ost of the s
ript is C[i � 1℄ + CopyCost(T [i::k℄).

Similarly, if the reverse of T [i::k℄ exists in S and the last operation in the minimal

s
ript of T [1::k℄ is a reverse 
opy operation, the minimal 
ost of the s
ript is C[i �

1℄ + RevCopyCost(T [i::k℄). Finally, if the last operation in the minimal s
ript of

T [1::k℄ is an insertion, the minimal 
ost of the s
ript is C[i� 1℄+ InsertCost(T [i::k℄)

(see �gure 4). Thus, C[n℄ is the minimum 
ost of produ
tion of T = T [1::n℄ and the

algorithm determines 
orre
tly the transformation distan
e of S and T .

Note that when the length of the substring T [i::k℄ is smaller than MFL, Copy-

Cost(T [i::k℄) and RevCopyCost(T [i::k℄) are equal to 1.

The 
omplexity of Algorithm 3 is O(n

2

) in time and O(n) in spa
e. So the total


omplexity of our algorithm (prepro
essing + 
ore algorithm) is O(n

2

) in time and

O(n

2

) in spa
e.

4 An Additional Operation: Point Deletion

In this se
tion, we extend the set of evolutionary operations by adding the point dele-

tion operation. During a point deletion (or simply deletion) operation, a symbol of

the string whi
h is under evolution is eliminated. This is an important operation from

5



Pro
eedings of the Prague Stringology Conferen
e '03

T

ki

Insertion

C[i� 1℄ + InsertCost(T [i::k℄)

T

S

ki

6

FPR[i; k℄

Reverse Copy

C[i� 1℄ +RevCopyCost(T [i::k℄)

T

S

ki

6

FP [i; k℄

Copy

C[i� 1℄ + CopyCost(T [i::k℄)

Figure 4: The three di�erent possibilities for generation of a su�x of T [1::k℄

the biologi
al point of view; in the real evolution of biologi
al sequen
es, in several


ases after or during the 
opy operations some bases (symbols) are eliminated. We

denote the 
ost of deletion of a symbol by DelCost. For simpli
ity, we suppose that

the 
ost of deletion of every unique symbol is the same. Sin
e we have only point

deletions, deleting a segment of k symbols amounts to delete the k symbols one by

one, whi
h will 
ost k � DelCost. As before, our obje
tive is to �nd the minimum


ost for a s
ript generating a target string T , with the help of segments of a sour
e

string S. As the 
osts are independent of time, we 
onsider that the deletions are

applied only in the latest added segment (rightmost one), at any moment during the

evolution. It should be 
lear that in an optimal transformation, deletions are not

applied into an inserted substring (a substring whi
h is the result of an insertion

operation). Depending on the assigned 
osts, deletions 
an be used after the 
opy

or reverse 
opy operations. We 
onsider a 
opy operation together with all deletions

whi
h are applied to that 
opied segment as a unit operation. So we have a new op-

eration 
alled NewCopy whi
h is a 
opy operation followed by zero or more deletions

on the 
opied segment. In �gure 5 a s
hema of a NewCopy operation is illustrated.

Similarly, NewRevCopy is a reverse 
opy operation followed by zero or more deletions.

Solving the extended transformation distan
e with the point deletions, amounts to

solve the transformation distan
e with the following three operations: Insertion, New-

Copy and NewRevCopy. A substring T [i::j℄ of the target string 
an be produ
ed by

a unique NewCopy operation if and only if T [i::j℄ is a subsequen
e string of sour
e

S. Conversely, T [i::j℄ 
an be produ
ed by a unique NewRevCopy operation if and

only if T [i::j℄

�1

is a subsequen
e string of the sour
e S. In a prepro
essing part, the

algorithm determines the minimum generation 
ost by a NewCopy or NewRevCopy

operation, for any substring of the target string T . Very similar to the last se
tion

6



The Transformation Distan
e Problem Revisited

T

S

l

1

l

2

l

3

l

4

l

5

l

6

ki

Copy(S[l

1

::l

6

℄)

+

Delete(S[l

2

::l

3

℄)

+

Delete(S[l

4

::l

5

℄)

NewCopy(T [i::k℄)

6 6

Deleted segments

Figure 5: The illustration of NewCopy operation: A 
opy operation + zero or more

deletions

algorithm, a dynami
 programming algorithm 
al
ulates the extended transformation

distan
e in the new 
ore algorithm.

4.1 New Prepro
essing

In the prepro
essing part, we 
ompute the 
osts of these new operations for any sub-

string of the target: NewCopyCost[i; j℄ is the minimum 
ost of generating the T [i::j℄

by a NewCopy operation. Similarly, NewRevCopyCost[i; j℄ is the minimum 
ost of

generating T [i::j℄ by a NewRevCopy operation. Computing the NewCopyCost[i; j℄

amounts to �nd the shortest substring (with minimum length) of the sour
e string

whi
h 
ontains T [i::j℄ as a subsequen
e string. By this way, the number of deletions

whi
h are needed for this NewCopy operation is minimized. ForNewRevCopyCost[i; j℄,

we need to �nd the shortest substring in S

�1

whi
h 
ontains T [i::j℄ as a subsequen
e.

In the NewPrePro
essing algorithm listed in �gure 6, the 
ost tables New-

CopyCost and LastO

 are initially �lled with1 (lines 1-2). The algorithm s
ans the

sour
e from left to right to �nd the shortest supersequen
e for ea
h segment of the

target. The algorithm uses an auxiliary table LastO

 for this aim.

After the k-th letter of S is pro
essed (loop of line 3), the following is true:

LastO

[i; j℄ is the largest l � k su
h that S[l::k℄ is a supersequen
e of T [i::j℄. The loop

on T (line 4) is pro
essed with de
reasing indi
es for memory optimization. Whenever

the letter S[k℄ o

urs in j-th position in T (line 5), then there is an opportunity of

obtaining a better supersequen
e for some of T [i::j℄'s, i � j. LastO

[i; j℄ takes the

value LastO

[i; j � 1℄ (
omputed for k � 1) sin
e S[LastO

[i; j � 1℄::k℄ is now the

rightmost supersequen
e for T [i::j℄ (line 9). Its 
ost is 
ompared to the 
ost of the

best previous one; if better, the new 
ost is stored in NewCopyCost (lines 11-13). One

should observe that rightmost sequen
es are updated only when a new 
ommon letter

is s
anned. This is ne
essary and su�
ient as stated in the following lemma:

Lemma 2 If S[l::k℄ is the best supersequen
e for T [i::j℄ over S[1::N ℄, then it is the

rightmost supersequen
e for T [i::j℄ on S[1::k℄.

Proof: S[l::k℄ is the best sequen
e for T [i::j℄ over S[1::k℄ then it is better than

all S[l

0

::k℄ for l

0

< l and no S[l

00

::k℄ 
an be a supersequen
e for l

00

< l.

7



Pro
eedings of the Prague Stringology Conferen
e '03

Algorithm 4 NewPrePro
essing(S, T )

1. FillArray(NewCopyCost;1)

2. FillArray(LastO

;1) %% LastO

 is a sub-diagonal array: LastO

[i; j℄ =1 for i > j

3. for k  1 to jSj %% Sour
e s
anned left to right

4. for ea
h j  jT j downto 1 %% �nd mat
hes in T for S[k℄

%% for a �xed k: LastO

[i; j℄ =largest l su
h that S[l::k℄ � T [i::j℄

5. if S[k℄ = T [j℄ then

6. LastO

[j; j℄ k

7. NewCopyCost[j; j℄ CopyCost(T [j℄) %% deletions are not needed

8. for i 1 to j � 1 %% for all su�xes of T[1..j℄

9. LastO

[i; j℄ LastO

[i; j�1℄ %% S[LastO

[i; j�1℄::k�1℄℄ � T [i::j�1℄

10. NumDel  k � LastO

[i; j℄� i� j %% di�eren
e in lengths

11. ThisCost DelCost�NumDel+CopyCost(S[LastO

[i; j℄::k℄)

12. if ThisCost < NewCopyCost[i; j℄ then

13. NewCopyCost[i; j℄ ThisCost

Figure 6: NewPrePro
essing (simpli�ed: reverse 
opies have been omitted)

Algorithm 5 NewTransformationDistan
e(S, T )

1. NewPrePro
essing(S,T)

2. C[0℄ 0

3. for k  1 to n

4 : C[k℄ min

0<i�k

8

>

>

>

<

>

>

>

:

C[i� 1℄ +NewCopyCost[i; k℄ if FP [i; k℄ <1

C[i� 1℄ +NewRevCopyCost[i; k℄ if FPR[i; k℄ <1

C[i� 1℄ + InsertCost(T [i::k℄)

1

5. return C[n℄

Figure 7: New Transformation Distan
e: dynami
 programming

4.2 New Core Algorithm

In the 
ore algorithm, the minimum generation 
osts of the pre�xes of the target

string T are determined from left to right. This is realized by a dynami
 programming

algorithm: Let C[k℄ be the minimum produ
tion 
ost of T [1::k℄ using the segments of

S. The algorithm is given in �gure 7. The proof of the following proposition is very

similar to the proof of proposition 1:

Proposition 2 The re
urren
e relations of Algorithm 5, 
orre
tly determine the ex-

tended transformation distan
e of S and T .

The 
omplexity of the prepro
essing part, is O(n

3

) in time and O(n

2

) in spa
e.

The 
omplexity of the 
ore algorithm is O(n

2

) both in time and spa
e. Therefore, the

whole 
omplexity of the new algorithm for the 
al
ulation of extended transformation

distan
e is O(n

3

) in time and O(n

2

) in spa
e.

8



The Transformation Distan
e Problem Revisited

Remarks and Con
lusion

In this paper, we presented a new improved algorithm for 
al
ulation of the transfor-

mation distan
e problem. We also gave an algorithm for the transformation distan
e

problem in presen
e of the deletion operations. In this version, 
osts have been given

a spe
ial additive form for 
larity. In fa
t a number of variations are possible within

our framework: the main property needed on 
osts seems to be their subadditivity.

In this paper, we state that Algorithm 3 
omplexity is O(n

3

); this stands for

the worst 
ase 
omplexity; in fa
t only a small proportion of pairs (S[k℄; T [j℄) imply

running the inner loop. Under 
ertain additional statisti
al hypotheses the average


omplexity 
ould be less than O(n

3

).

Referen
es

[BeSt03℄ Behzadi B. and Steyaert J.-M.: An Improved Algorithm for Generalized

Comparison of Minisatellites. CPM 2003.

[BeRi02℄ Bérard, S., Rivals, E.: Comparison of Minisatellites. Pro
eedings of the 6th

Annual International Conferen
e on Resear
h in Computational Mole
ular

Biology. ACM Press, 2002.

[CLR90℄ Cormen, T.H., Leiserson, C.E., Rivest R.L.: Introdu
tion to Algorithms.

MIT Press, 1990.

[Do81℄ Doolittle, R.F.: Similar amino a
id sequen
es: 
han
e or 
ommon an
es-

try?, S
ien
e,214,149-159, 1981.

[SaKr83℄ Sanko�, D. and Kruskal, J.B: Time Warps, String Edits and Ma
ro-

mole
ules: The Theory and Pra
ti
e of Sequen
e Comparison. Addison-

Wesley, 1983.

[Va00℄ Varré, J.S.: Con
epts et algorithmes pour la 
omparaison de séquen
es

génétiques : une appro
he informationnelle. PhD thesis, 2000.

[VDR99℄ Varré, J.S., Delahaye, J.P., Rivals, E.: Transformation Distan
es: a family

of dissimilarity measures based on movements of segments. Bioinformati
s,

vol. 15, no. 3, pp 194-202, 1999.

[VDR98℄ Varré, J.S., Delahaye, J.P., Rivals, E.: The Transformation Distan
e : A

Dissimilarity Measure Based On Movements Of Segments,German Confer-

en
e on Bioinformati
s, Koel - Germany, 1998.

[VDR97℄ Varré, J.S., Delahaye, J.P., Rivals, E.: The Transformation Distan
e.

Genome Informati
s Workshop, Tokyo, Japan, 1997.

9


