
The Transformation Distane Problem Revisited

Behshad Behzadi and Jean-Mar Steyaert

LIX, Éole Polytehnique

Palaiseau edex 91128, Frane

e-mail: {behzadi,steyaert}�lix.polytehnique.fr

Abstrat. Evolution ats in several ways on biologial sequenes: either by mu-

tating an element, or by inserting, deleting or opying a segment of the sequene.

Varré et al. [VDR98℄ de�ned a transformation distane for the sequenes, in

whih the evolutionary operations are opy, reverse opy and insertion of a seg-

ment. They also proposed an algorithm to alulate the transformation distane.

This algorithm is O(n

4

) in time and O(n

4

) in spae, where n is the size of the

sequenes. In this paper, we propose an improved algorithm whih osts O(n

2

)

in time and O(n

2

) in spae. Furthermore, we extend the operation set by adding

point deletions. We present an algorithm whih is O(n

3

) in time and O(n

2

) in

spae for this extended ase.

Keywords: dynami programming, pattern mathing

1 Introdution

Building models and tools to quantify evolution is an important domain of biology.

Evolutionary trees or diagrams are based on statistial methods whih exploit om-

parison methods between genomi sequenes. Many omparison models have been

proposed aording to the type of physio-hemial phenomena that underly the evo-

lutionary proess [Do81℄. Di�erent evolutionary operation sets are studied. Mutation,

deletion and insertion were the �rst operations dealt with [SaKr83℄. Dupliation and

ontration were then added to the operation set [BeRi02, BeSt03℄. All these oper-

ations were ating on single letters, representing bases, aminoaids or more omplex

sequenes: they are alled point transformations. Segment operations are also very

important to study. In a number of papers [VDR97, VDR98, VDR99℄, Varré et al.

have studied an evolutionary distane based on the amount of segment moves that

Nature needed (or is supposed to have needed) to transfer a sequene from one speies

to the equivalent sequene in another one. Their model is onerned with segments

opy with or without reversal and on segment insertion: it is thus a very simple and

robust model whih an easily be explained from biologial mehanisms. They devel-

oped this study on DNA sequenes, but the basi onepts and algorithms apply as

well to proteins or satellites.

The algorithm they propose to ompute the minimal transformation sequene is

based on an enoding into a graph formalism, from whih one an get the solution

by omputing shortest paths. This gives an O(n

4

) answer both in spae and time

1

.

1

Even O(n

6

) in the last frenh version [Va00℄.

1

Proeedings of the Prague Stringology Conferene '03

In fat it is possible to give a diret solution based on dynami programming whih

osts only O(n

2

) in time and spae. This solution is obviously more e�ient for long

sequenes and makes the problem tratable even for very long sequenes.

In the seond setion we desribe the model and the problem desription.

In the third setion our algorithm for alulating the transformation distane is

presented. Firstly, in the preproessing part we show how to �nd e�iently the

existene of all the substrings of one string in another one. Then the ore of the

algorithm is presented, whih is basially a dynami programming algorithm.

In setion 4, we introdue the point deletions in our model and we give an al-

gorithm to solve the transformation distane problem in presene of point deletions:

this algorithm runs in time O(n

3

) and spae O(n

2

).

Finally, setion 5 is dediated to onlusions and remarks.

2 Model and Problem Desription

The symbols are elements from an alphabet �. The set of all �nite-length strings

formed using symbols from alphabet � is denoted by �

�

. In this paper, we use the

letters x, y, z,... for the symbols in � and S, T , P , R, ... for strings over �

�

.

The empty string is denoted by �. The length of a string S is denoted by jSj. The

onatenation of a string P and R, denoted PR, has length jP j+ jRj and onsists of

the symbols from P followed by the symbols from R.

We will denote by S[i℄ the symbol in position i of the string S (the �rst symbol of

a string S is S[1℄). The substring of S starting at position i and ending at position

j is denoted by S[i::j℄ = S[i℄S[i + 1℄ : : : S[j℄. The reverse of a string S is denoted

by S

�1

. Thus, if n is the length of S, S

�1

[i::j℄ = S[(n � j + 1)::(n � i + 1)℄

�1

and

S[i::j℄

�1

= S

�1

[(n� j + 1)::(n� i+ 1)℄. We say that a string P is a pre�x of a string

S, denoted P v S, if S = PR for some string R 2 �

�

. Similarly, we say that a

string P is a su�x of a string S, denoted by P w S, if S = RP for some R 2 �

�

.

For brevity of notation, we denote the k-symbol pre�x P [1::k℄ of a string pattern

P [1::m℄ by P

k

. Thus, P

0

= � and P

m

= P = P [1::m℄. We reall the de�nition of

a subsequene: Given a string S[1::n℄, another string R[1::k℄ is a subsequene of S,

denoted by R � S, if there exists a stritly inreasing sequene < i

1

; i

2

; : : : ; i

k

> of

indies of S suh that for all j = 1; 2; : : : ; k, we have S[i

j

℄ = R[j℄. For example, if

S = xxyzyyzx, R = zzxx and P = xxzz, then P is a subsequene of S, while R is

not a subsequene of S. When a string S is a subsequene of a string T , T is alled

a supersequene of S, denoted by T � S. In the last example, S is a supersequene

of P .

Varré et al. [VDR98, VDR99℄ propose a new measure whih evaluates segment-

based dissimilarity between two strings: the soure string S and the target string T .

This measure is related to the proess of onstruting the target string T with segment

operations

2

. The onstrution starts with the empty string � and proeeds from left

to right by adding segments (onatenation), one segment per operation. The left-to-

right generation is not a restrition but a fat that an be formally proved. A list of

operations is alled a sript. Three types of segment operations are onsidered: the

opy adds segments that are ontained in the soure string S, the reverse opy adds

2

In this paper we use segment as an equivalent word for substring.

2

The Transformation Distane Problem Revisited

the segments that are ontained in S in reverse order, and the insertion adds segments

that are not neessarily ontained in S. The measure depends on a parameter that

is the Minimum Fator Length (MFL); it is the minimum length of the segments

that an be opied or reverse opied. Depending on the number of ommon segments

between S and T , there exist several sripts for onstruting the target T . Among

these sripts, some are more likely; in order to identify them, we introdue a ost

funtion for eah operation. InsertCost(T [i::j℄) is the ost of insertion of substring

T [i::j℄. CopyCost(T [i::j℄) is the ost of opying the segment T [i::j℄ from S if it is

ontained in S. Finally RevCopyCost(T [i::j℄) is the ost of opying substring T [i::j℄

from S if the reverse of this substring is ontained in the soure S. The ost of a

sript is the sum of the osts of its operations. The minimal sripts are all sripts of

minimum ost and the transformation distane

3

(TD) is the ost of a minimal sript.

The problem whih we solve in this paper is the omputation of the transformation

distane. It is lear that it is also possible to get a minimal sript.

3 Algorithm

In this setion we desribe the algorithm to determine the transformation distane

between two strings. The algorithm onsists of two parts. The �rst part is a prepro-

essing part in whih we determine for eah substring of target string T , whether it

exists in the soure string S or not. In the seond part, whih is the ore algorithm, we

determine the transformation distane with help of the information that we obtained

in the preproessing part. This ore algorithm is a dynami programming algorithm.

3.1 Preproessing

Deiding whether a given substring exists in S or not, and �nding its position in the

ase of presene, needs to apply a string mathing algorithm. For this aim, we design

an algorithm based on KMP (Knutt-Moris-Pratt) string mathing algorithm with

some hanges. Let FP [i; j℄ be the the �rst position of ourrene of the substring

T [i::j℄ in S if suh an ourrene exists and 1 otherwise. Similarly FPR[i; j℄ is the

�rst position of an ourrene of T

�1

[i::j℄ in S. We need to reall the de�nition of

pre�x funtion � (adapted from the original KMP one), whih is needed for preom-

putation. Given a pattern P [1::m℄, the pre�x funtion for pattern P is the funtion

� : f1; 2; : : : ; mg ! f0; 1; : : : ; m� 1g suh that �[q℄ = maxfk : k < q and P

k

w P

q

g.

That is, �

q

is the length of the longest pre�x of P that is a proper su�x of P

q

. We

have the following lemma for the pre�x funtions.

Lemma 1 The pre�x funtion of P

k

is a restrition of pre�x funtion of P to the set

f1; 2; : : : ; kg.

Proof: The proof is immediate by the de�nition of the pre�x funtion beause �[i℄

for a given i an be obtained only from P

i�1

= P [1::(i� 1)℄ and P [i℄.

Although simple, this lemma is a orner-stone of the algorithm. It shows that, one

an searh for the presene of the pre�xes of a pattern string in the soure string, in the

3

Although this measure is not a mathematial distane but we will use the term transformation

distane whih was introdued by Varré et al. [VDR98, VDR99℄.

3

Proeedings of the Prague Stringology Conferene '03

Algorithm 1 Pre�x-Mather(A, S, P, index) %% index = jT j+ 1� length of the

1. n length[S℄ %% su�x P being searhed in S

2. m length[P ℄ %% A

[n�n℄

: A[i; i+ q℄ 6=1 i� the pre�x

3. q 0 %% of P of length q+1 ours in S

4. for i 1 to n

5. do while q > 0 and P [q + 1℄ 6= S[i℄

6. do q �[q℄

7. if P [q + 1℄ = S[i℄ then

8. q q + 1

9. if A[index; index + q℄ =1 then

10. A[index; index + q℄ = i� q

11. if q = m then

12. Exit %% the su�x P has been disovered

Figure 1: Pre�x-Mather

Algorithm 2 PreProessing(S, T)

1. FillArray(FP;1)

2. FillArray(FPR;1)

3. n length[T ℄

4. for k 1 to n

5. do P T [k::n℄

6. Pre�x-Mather(FP; S; P; k) %% diret pattern

7. PR T

�1

[k::n℄

8. Pre�x-Mather(FPR; S; PR; k) %% reverse pattern

Figure 2: PreProessing

same time of searhing for the omplete pattern, without inreasing the omplexity

of the searh. The algorithm is given in pseudoode in �gure 1 as the proedure

Pre�x-Mather. The omplexity of the Pre�x-Mather algorithm is O(n) in time.

For the proof of the omplexity and orretness of this algorithm, see hapter 34.4 of

[CLR90℄. Pre�x-Mather �nds the position of the �rst ourrene of all pre�xes of a

pattern string P in string S. In the PreProessing algorithm (�gure 2), we all the

Pre�x-Mather with patterns T [1::n℄; T [2::n℄; :::; T [n℄. Thus, we have the position of

the �rst ourrenes of all of the substrings of T in S. Similarly, the �rst position of

all substrings of T

�1

are found in S. The total omplexity the preproessing part is

O(n

2

) in time and O(n

2

) in spae.

3.2 Core Algorithm

As the sripts onstrut the target string T from left to right by adding segments,

dynami programming is an ideal tool for omputing the transformation distane.

The ore part of the algorithm determines the transformation distane between S

and T by a dynami programming algorithm. Let C[k℄ be the minimum prodution

ost of T [1::k℄ using the segments of S. The algorithm is given in �gure 3. We make

use of generi funtions CopyCost, RevCopyCost and InsertCost as de�ned at the end

of setion 2. These funtions are de�ned using the PreProessing algorithm: arrays

4

The Transformation Distane Problem Revisited

Algorithm 3 TransformationDistane(S, T)

1. PreProessing(S, T)

2. C[0℄ 0

3. for k 1 to jT j

4 : C[k℄ min

0<i�k

8

>

>

>

<

>

>

>

:

C[i� 1℄ + CopyCost(T [i::k℄) if FP [i; k℄ <1

C[i� 1℄ +RevCopyCost(T [i::k℄) if FPR[n� k + 1; n� i+ 1℄ <1

C[i� 1℄ + InsertCost(T [i::k℄)

1

5. return C[n℄

Figure 3: Transformation Distane: a dynami programming solution

FP and FPR. In order to �x ideas, one an onsider that these osts are proportional

to the length of the searhed segment (and 1 if this segment does not our in S).

In fat any sub-additive funtion would be onvenient.

Proposition 1 The reurrene relations of Algorithm 3, orretly determine the

transformation distane of S and T .

Proof: We prove by indution on k that after the algorithm exeution, C[k℄ ontains

the minimum prodution ost of target T [1::k℄ with the soure string S. C[0℄ is

initialized to 0, beause the ost of prodution of � from S is zero.

Now, we suppose that C[i℄ is alulated orretly for all i < k for some positive

value of k. Let us onsider the alulation of C[k℄. The last operation in a minimal

sript whih generates T [1::k℄, reates a su�x of T [1::k℄. Let this su�x be T [i::k℄.

As the sript is minimal, the sript without its last operation is a minimal sript for

T [1::(i� 1)℄. The minimum ost of the sript for T [1::(i� 1)℄ is C[i� 1℄ by indution

hypothesis. If T [i::k℄ exists in S and the last operation of the minimal sript is

a opy operation, the minimal ost of the sript is C[i � 1℄ + CopyCost(T [i::k℄).

Similarly, if the reverse of T [i::k℄ exists in S and the last operation in the minimal

sript of T [1::k℄ is a reverse opy operation, the minimal ost of the sript is C[i �

1℄ + RevCopyCost(T [i::k℄). Finally, if the last operation in the minimal sript of

T [1::k℄ is an insertion, the minimal ost of the sript is C[i� 1℄+ InsertCost(T [i::k℄)

(see �gure 4). Thus, C[n℄ is the minimum ost of prodution of T = T [1::n℄ and the

algorithm determines orretly the transformation distane of S and T .

Note that when the length of the substring T [i::k℄ is smaller than MFL, Copy-

Cost(T [i::k℄) and RevCopyCost(T [i::k℄) are equal to 1.

The omplexity of Algorithm 3 is O(n

2

) in time and O(n) in spae. So the total

omplexity of our algorithm (preproessing + ore algorithm) is O(n

2

) in time and

O(n

2

) in spae.

4 An Additional Operation: Point Deletion

In this setion, we extend the set of evolutionary operations by adding the point dele-

tion operation. During a point deletion (or simply deletion) operation, a symbol of

the string whih is under evolution is eliminated. This is an important operation from

5

Proeedings of the Prague Stringology Conferene '03

T

ki

Insertion

C[i� 1℄ + InsertCost(T [i::k℄)

T

S

ki

6

FPR[i; k℄

Reverse Copy

C[i� 1℄ +RevCopyCost(T [i::k℄)

T

S

ki

6

FP [i; k℄

Copy

C[i� 1℄ + CopyCost(T [i::k℄)

Figure 4: The three di�erent possibilities for generation of a su�x of T [1::k℄

the biologial point of view; in the real evolution of biologial sequenes, in several

ases after or during the opy operations some bases (symbols) are eliminated. We

denote the ost of deletion of a symbol by DelCost. For simpliity, we suppose that

the ost of deletion of every unique symbol is the same. Sine we have only point

deletions, deleting a segment of k symbols amounts to delete the k symbols one by

one, whih will ost k � DelCost. As before, our objetive is to �nd the minimum

ost for a sript generating a target string T , with the help of segments of a soure

string S. As the osts are independent of time, we onsider that the deletions are

applied only in the latest added segment (rightmost one), at any moment during the

evolution. It should be lear that in an optimal transformation, deletions are not

applied into an inserted substring (a substring whih is the result of an insertion

operation). Depending on the assigned osts, deletions an be used after the opy

or reverse opy operations. We onsider a opy operation together with all deletions

whih are applied to that opied segment as a unit operation. So we have a new op-

eration alled NewCopy whih is a opy operation followed by zero or more deletions

on the opied segment. In �gure 5 a shema of a NewCopy operation is illustrated.

Similarly, NewRevCopy is a reverse opy operation followed by zero or more deletions.

Solving the extended transformation distane with the point deletions, amounts to

solve the transformation distane with the following three operations: Insertion, New-

Copy and NewRevCopy. A substring T [i::j℄ of the target string an be produed by

a unique NewCopy operation if and only if T [i::j℄ is a subsequene string of soure

S. Conversely, T [i::j℄ an be produed by a unique NewRevCopy operation if and

only if T [i::j℄

�1

is a subsequene string of the soure S. In a preproessing part, the

algorithm determines the minimum generation ost by a NewCopy or NewRevCopy

operation, for any substring of the target string T . Very similar to the last setion

6

The Transformation Distane Problem Revisited

T

S

l

1

l

2

l

3

l

4

l

5

l

6

ki

Copy(S[l

1

::l

6

℄)

+

Delete(S[l

2

::l

3

℄)

+

Delete(S[l

4

::l

5

℄)

NewCopy(T [i::k℄)

6 6

Deleted segments

Figure 5: The illustration of NewCopy operation: A opy operation + zero or more

deletions

algorithm, a dynami programming algorithm alulates the extended transformation

distane in the new ore algorithm.

4.1 New Preproessing

In the preproessing part, we ompute the osts of these new operations for any sub-

string of the target: NewCopyCost[i; j℄ is the minimum ost of generating the T [i::j℄

by a NewCopy operation. Similarly, NewRevCopyCost[i; j℄ is the minimum ost of

generating T [i::j℄ by a NewRevCopy operation. Computing the NewCopyCost[i; j℄

amounts to �nd the shortest substring (with minimum length) of the soure string

whih ontains T [i::j℄ as a subsequene string. By this way, the number of deletions

whih are needed for this NewCopy operation is minimized. ForNewRevCopyCost[i; j℄,

we need to �nd the shortest substring in S

�1

whih ontains T [i::j℄ as a subsequene.

In the NewPreProessing algorithm listed in �gure 6, the ost tables New-

CopyCost and LastO are initially �lled with1 (lines 1-2). The algorithm sans the

soure from left to right to �nd the shortest supersequene for eah segment of the

target. The algorithm uses an auxiliary table LastO for this aim.

After the k-th letter of S is proessed (loop of line 3), the following is true:

LastO[i; j℄ is the largest l � k suh that S[l::k℄ is a supersequene of T [i::j℄. The loop

on T (line 4) is proessed with dereasing indies for memory optimization. Whenever

the letter S[k℄ ours in j-th position in T (line 5), then there is an opportunity of

obtaining a better supersequene for some of T [i::j℄'s, i � j. LastO[i; j℄ takes the

value LastO[i; j � 1℄ (omputed for k � 1) sine S[LastO[i; j � 1℄::k℄ is now the

rightmost supersequene for T [i::j℄ (line 9). Its ost is ompared to the ost of the

best previous one; if better, the new ost is stored in NewCopyCost (lines 11-13). One

should observe that rightmost sequenes are updated only when a new ommon letter

is sanned. This is neessary and su�ient as stated in the following lemma:

Lemma 2 If S[l::k℄ is the best supersequene for T [i::j℄ over S[1::N ℄, then it is the

rightmost supersequene for T [i::j℄ on S[1::k℄.

Proof: S[l::k℄ is the best sequene for T [i::j℄ over S[1::k℄ then it is better than

all S[l

0

::k℄ for l

0

< l and no S[l

00

::k℄ an be a supersequene for l

00

< l.

7

Proeedings of the Prague Stringology Conferene '03

Algorithm 4 NewPreProessing(S, T)

1. FillArray(NewCopyCost;1)

2. FillArray(LastO;1) %% LastO is a sub-diagonal array: LastO[i; j℄ =1 for i > j

3. for k 1 to jSj %% Soure sanned left to right

4. for eah j jT j downto 1 %% �nd mathes in T for S[k℄

%% for a �xed k: LastO[i; j℄ =largest l suh that S[l::k℄ � T [i::j℄

5. if S[k℄ = T [j℄ then

6. LastO[j; j℄ k

7. NewCopyCost[j; j℄ CopyCost(T [j℄) %% deletions are not needed

8. for i 1 to j � 1 %% for all su�xes of T[1..j℄

9. LastO[i; j℄ LastO[i; j�1℄ %% S[LastO[i; j�1℄::k�1℄℄ � T [i::j�1℄

10. NumDel k � LastO[i; j℄� i� j %% di�erene in lengths

11. ThisCost DelCost�NumDel+CopyCost(S[LastO[i; j℄::k℄)

12. if ThisCost < NewCopyCost[i; j℄ then

13. NewCopyCost[i; j℄ ThisCost

Figure 6: NewPreProessing (simpli�ed: reverse opies have been omitted)

Algorithm 5 NewTransformationDistane(S, T)

1. NewPreProessing(S,T)

2. C[0℄ 0

3. for k 1 to n

4 : C[k℄ min

0<i�k

8

>

>

>

<

>

>

>

:

C[i� 1℄ +NewCopyCost[i; k℄ if FP [i; k℄ <1

C[i� 1℄ +NewRevCopyCost[i; k℄ if FPR[i; k℄ <1

C[i� 1℄ + InsertCost(T [i::k℄)

1

5. return C[n℄

Figure 7: New Transformation Distane: dynami programming

4.2 New Core Algorithm

In the ore algorithm, the minimum generation osts of the pre�xes of the target

string T are determined from left to right. This is realized by a dynami programming

algorithm: Let C[k℄ be the minimum prodution ost of T [1::k℄ using the segments of

S. The algorithm is given in �gure 7. The proof of the following proposition is very

similar to the proof of proposition 1:

Proposition 2 The reurrene relations of Algorithm 5, orretly determine the ex-

tended transformation distane of S and T .

The omplexity of the preproessing part, is O(n

3

) in time and O(n

2

) in spae.

The omplexity of the ore algorithm is O(n

2

) both in time and spae. Therefore, the

whole omplexity of the new algorithm for the alulation of extended transformation

distane is O(n

3

) in time and O(n

2

) in spae.

8

The Transformation Distane Problem Revisited

Remarks and Conlusion

In this paper, we presented a new improved algorithm for alulation of the transfor-

mation distane problem. We also gave an algorithm for the transformation distane

problem in presene of the deletion operations. In this version, osts have been given

a speial additive form for larity. In fat a number of variations are possible within

our framework: the main property needed on osts seems to be their subadditivity.

In this paper, we state that Algorithm 3 omplexity is O(n

3

); this stands for

the worst ase omplexity; in fat only a small proportion of pairs (S[k℄; T [j℄) imply

running the inner loop. Under ertain additional statistial hypotheses the average

omplexity ould be less than O(n

3

).

Referenes

[BeSt03℄ Behzadi B. and Steyaert J.-M.: An Improved Algorithm for Generalized

Comparison of Minisatellites. CPM 2003.

[BeRi02℄ Bérard, S., Rivals, E.: Comparison of Minisatellites. Proeedings of the 6th

Annual International Conferene on Researh in Computational Moleular

Biology. ACM Press, 2002.

[CLR90℄ Cormen, T.H., Leiserson, C.E., Rivest R.L.: Introdution to Algorithms.

MIT Press, 1990.

[Do81℄ Doolittle, R.F.: Similar amino aid sequenes: hane or ommon anes-

try?, Siene,214,149-159, 1981.

[SaKr83℄ Sanko�, D. and Kruskal, J.B: Time Warps, String Edits and Maro-

moleules: The Theory and Pratie of Sequene Comparison. Addison-

Wesley, 1983.

[Va00℄ Varré, J.S.: Conepts et algorithmes pour la omparaison de séquenes

génétiques : une approhe informationnelle. PhD thesis, 2000.

[VDR99℄ Varré, J.S., Delahaye, J.P., Rivals, E.: Transformation Distanes: a family

of dissimilarity measures based on movements of segments. Bioinformatis,

vol. 15, no. 3, pp 194-202, 1999.

[VDR98℄ Varré, J.S., Delahaye, J.P., Rivals, E.: The Transformation Distane : A

Dissimilarity Measure Based On Movements Of Segments,German Confer-

ene on Bioinformatis, Koel - Germany, 1998.

[VDR97℄ Varré, J.S., Delahaye, J.P., Rivals, E.: The Transformation Distane.

Genome Informatis Workshop, Tokyo, Japan, 1997.

9

