
Researh Report

Proeedings

of the Prague Stringology Conferene '03

Edited by Milan �imánek

September 2003

Department of Computer Siene and Engineering

Faulty of Eletrial Engineering

Czeh Tehnial University

Karlovo nám. 13

121 35 Prague 2

Czeh Republi

Program Committee

Gabriela Andrejková, Jun-ihi Aoe, Maxime Crohemore, Jan Holub,

Costas S. Iliopoulos, Thierry Leroq, Bo°ivoj Melihar (hair), Brue W. Watson,

Geraint Wiggins

Organizing Committee

Miroslav Balík, Jan Holub, Bo°ivoj Melihar, Milan �imánek

URL

http://s.felk.vut.z/ps

Proeedings of the Prague Stringology Conferene '03

Published by Vydavatelství �VUT, Zikova 4, 16635 Praha 6, Czeh Republi

Edited by Milan �imánek

Contat: Prague Stringology Club

Katedra po£íta£ �u, �VUT�FEL

Karlovo nám. 13, Praha 2, Czeh Republi.

E-mail: ps�s.felk.vut.z Phone: +420-2-2435-7470

Printed by Edi£ní st°edisko �VUT, Zikova 4, Praha 6

 Czeh Tehnial University, Prague, Czeh Republi, 2003

ISBN 80-01-02823-2

ii

Table of Contents

The Transformation Distane Problem Revisited by Behshad Behzadi and

Jean-Mar Steyaert 1

Forward-Fast-Searh: Another Fast Variant of the Boyer-Moore String

Mathing Algorithm by Domenio Cantone and Simone Faro 10

Approximate Seeds of Strings by Manolis Christodoulakis and Costas S. Il-

iopoulos and Kunsoo Park and Jeong Seop Sim 25

Construting Fator Orales by Loek Cleophas and Gerard Zwaan and Brue

W. Watson 37

Computing the Minimum k-Cover of a String by Rihard Cole , Costas S.

Iliopoulos , Manal Mohamed , W. F. Smyth and Lu Yang 51

Learning the Morphologial Features of a Large Set of Words by Abolfazl

Fatholahzadeh 65

A Linear Algorithm for the Detetion of Evolutive Tandem Repeats by

Rihard Groult, Martine Léonard and Laurent Mouhard 77

Computing the Repetitions in a Weighted Sequene by Costas S. Iliopou-

los, Laurent Mouhard, Katerina Pedikuri and Athanasios K. Tsakalidis 91

Mathing Numeri Strings under Noise by Veli Mäkinen, Gonzalo Navarro,

and Esko Ukkonen 99

Operation L-INSERT on Fator Automaton by Bo°ivoj Melihar and Milan

�imánek 111

An E�ient Mapping for Sore of String Mathing by Tetsuya Nakatoh,

Kensuke Baba, Daisuke Ikeda, Yasuhiro Yamada, and Sahio Hirokawa 127

iii

iv

Prefae

The Prague Stringology Conferene 2003 (PSC'03) was held at the Department of

Computer Siene and Engineering of the Czeh Tehnial University in Prague,

Czeh Republi, on September 22�24, 2003. The onferene foused on stringology

and related topis. Stringology is a disipline onerned with algorithmi proessing

of strings and sequenes.

The papers submitted were reviewed by the programme ommittee and eleven

were seleted for presentation at the onferene, based on originality and quality.

This volume ontains these seleted papers.

In the years 1996�2000 the Prague Stringology Club Workshops (PSCW's) and

the Prague Stringology Conferenes in 2001 and 2002 preeded this onferene. The

proeedings of these workshops and the onferenes had been published by Czeh

Tehnial University and are available on WWW pages of the Prague Stringology

Club (PSC). Seleted ontributions were published in a speial issue of the journal

Kybernetika and those seleted from PSC'02 were published in a speial issue of the

Nordi Journal of Computing.

The Prague Stringology Club was founded in 1996 as a researh group at the

Department of Computer Siene and Engineering of the Czeh Tehnial University

in Prague. The goal of PSC is to study algorithms on strings and sequenes with em-

phasis on �nite automata theory. The �rst event organized by PSC was the workshop

PSCW'96 featuring only a handful invited talks. However, sine PSCW'97 the papers

and talks are seleted by a rigorous peer review proess. The objetive is not only to

present new results in stringology, but also to failitate personal ontats among the

people working on these problems.

I would like to thank all those who had submitted papers for PSC'03 as well as

the reviewers. Speial thanks goes to all the members of the programme ommittee,

without whose e�orts it would not have been possible to put together suh a stimu-

lating program of PSC'03. Last, but not least, my thanks go to the members of the

organizing ommittee for ensuring suh a smooth running of the onferene.

In Hamilton, Ontario, Canada

on August 2003

Jan Holub

v

vi

The Transformation Distane Problem Revisited

Behshad Behzadi and Jean-Mar Steyaert

LIX, Éole Polytehnique

Palaiseau edex 91128, Frane

e-mail: {behzadi,steyaert}�lix.polytehnique.fr

Abstrat. Evolution ats in several ways on biologial sequenes: either by mu-

tating an element, or by inserting, deleting or opying a segment of the sequene.

Varré et al. [VDR98℄ de�ned a transformation distane for the sequenes, in

whih the evolutionary operations are opy, reverse opy and insertion of a seg-

ment. They also proposed an algorithm to alulate the transformation distane.

This algorithm is O(n

4

) in time and O(n

4

) in spae, where n is the size of the

sequenes. In this paper, we propose an improved algorithm whih osts O(n

2

)

in time and O(n

2

) in spae. Furthermore, we extend the operation set by adding

point deletions. We present an algorithm whih is O(n

3

) in time and O(n

2

) in

spae for this extended ase.

Keywords: dynami programming, pattern mathing

1 Introdution

Building models and tools to quantify evolution is an important domain of biology.

Evolutionary trees or diagrams are based on statistial methods whih exploit om-

parison methods between genomi sequenes. Many omparison models have been

proposed aording to the type of physio-hemial phenomena that underly the evo-

lutionary proess [Do81℄. Di�erent evolutionary operation sets are studied. Mutation,

deletion and insertion were the �rst operations dealt with [SaKr83℄. Dupliation and

ontration were then added to the operation set [BeRi02, BeSt03℄. All these oper-

ations were ating on single letters, representing bases, aminoaids or more omplex

sequenes: they are alled point transformations. Segment operations are also very

important to study. In a number of papers [VDR97, VDR98, VDR99℄, Varré et al.

have studied an evolutionary distane based on the amount of segment moves that

Nature needed (or is supposed to have needed) to transfer a sequene from one speies

to the equivalent sequene in another one. Their model is onerned with segments

opy with or without reversal and on segment insertion: it is thus a very simple and

robust model whih an easily be explained from biologial mehanisms. They devel-

oped this study on DNA sequenes, but the basi onepts and algorithms apply as

well to proteins or satellites.

The algorithm they propose to ompute the minimal transformation sequene is

based on an enoding into a graph formalism, from whih one an get the solution

by omputing shortest paths. This gives an O(n

4

) answer both in spae and time

1

.

1

Even O(n

6

) in the last frenh version [Va00℄.

1

Proeedings of the Prague Stringology Conferene '03

In fat it is possible to give a diret solution based on dynami programming whih

osts only O(n

2

) in time and spae. This solution is obviously more e�ient for long

sequenes and makes the problem tratable even for very long sequenes.

In the seond setion we desribe the model and the problem desription.

In the third setion our algorithm for alulating the transformation distane is

presented. Firstly, in the preproessing part we show how to �nd e�iently the

existene of all the substrings of one string in another one. Then the ore of the

algorithm is presented, whih is basially a dynami programming algorithm.

In setion 4, we introdue the point deletions in our model and we give an al-

gorithm to solve the transformation distane problem in presene of point deletions:

this algorithm runs in time O(n

3

) and spae O(n

2

).

Finally, setion 5 is dediated to onlusions and remarks.

2 Model and Problem Desription

The symbols are elements from an alphabet �. The set of all �nite-length strings

formed using symbols from alphabet � is denoted by �

�

. In this paper, we use the

letters x, y, z,... for the symbols in � and S, T , P , R, ... for strings over �

�

.

The empty string is denoted by �. The length of a string S is denoted by jSj. The

onatenation of a string P and R, denoted PR, has length jP j+ jRj and onsists of

the symbols from P followed by the symbols from R.

We will denote by S[i℄ the symbol in position i of the string S (the �rst symbol of

a string S is S[1℄). The substring of S starting at position i and ending at position

j is denoted by S[i::j℄ = S[i℄S[i + 1℄ : : : S[j℄. The reverse of a string S is denoted

by S

�1

. Thus, if n is the length of S, S

�1

[i::j℄ = S[(n � j + 1)::(n � i + 1)℄

�1

and

S[i::j℄

�1

= S

�1

[(n� j + 1)::(n� i+ 1)℄. We say that a string P is a pre�x of a string

S, denoted P v S, if S = PR for some string R 2 �

�

. Similarly, we say that a

string P is a su�x of a string S, denoted by P w S, if S = RP for some R 2 �

�

.

For brevity of notation, we denote the k-symbol pre�x P [1::k℄ of a string pattern

P [1::m℄ by P

k

. Thus, P

0

= � and P

m

= P = P [1::m℄. We reall the de�nition of

a subsequene: Given a string S[1::n℄, another string R[1::k℄ is a subsequene of S,

denoted by R � S, if there exists a stritly inreasing sequene < i

1

; i

2

; : : : ; i

k

> of

indies of S suh that for all j = 1; 2; : : : ; k, we have S[i

j

℄ = R[j℄. For example, if

S = xxyzyyzx, R = zzxx and P = xxzz, then P is a subsequene of S, while R is

not a subsequene of S. When a string S is a subsequene of a string T , T is alled

a supersequene of S, denoted by T � S. In the last example, S is a supersequene

of P .

Varré et al. [VDR98, VDR99℄ propose a new measure whih evaluates segment-

based dissimilarity between two strings: the soure string S and the target string T .

This measure is related to the proess of onstruting the target string T with segment

operations

2

. The onstrution starts with the empty string � and proeeds from left

to right by adding segments (onatenation), one segment per operation. The left-to-

right generation is not a restrition but a fat that an be formally proved. A list of

operations is alled a sript. Three types of segment operations are onsidered: the

opy adds segments that are ontained in the soure string S, the reverse opy adds

2

In this paper we use segment as an equivalent word for substring.

2

The Transformation Distane Problem Revisited

the segments that are ontained in S in reverse order, and the insertion adds segments

that are not neessarily ontained in S. The measure depends on a parameter that

is the Minimum Fator Length (MFL); it is the minimum length of the segments

that an be opied or reverse opied. Depending on the number of ommon segments

between S and T , there exist several sripts for onstruting the target T . Among

these sripts, some are more likely; in order to identify them, we introdue a ost

funtion for eah operation. InsertCost(T [i::j℄) is the ost of insertion of substring

T [i::j℄. CopyCost(T [i::j℄) is the ost of opying the segment T [i::j℄ from S if it is

ontained in S. Finally RevCopyCost(T [i::j℄) is the ost of opying substring T [i::j℄

from S if the reverse of this substring is ontained in the soure S. The ost of a

sript is the sum of the osts of its operations. The minimal sripts are all sripts of

minimum ost and the transformation distane

3

(TD) is the ost of a minimal sript.

The problem whih we solve in this paper is the omputation of the transformation

distane. It is lear that it is also possible to get a minimal sript.

3 Algorithm

In this setion we desribe the algorithm to determine the transformation distane

between two strings. The algorithm onsists of two parts. The �rst part is a prepro-

essing part in whih we determine for eah substring of target string T , whether it

exists in the soure string S or not. In the seond part, whih is the ore algorithm, we

determine the transformation distane with help of the information that we obtained

in the preproessing part. This ore algorithm is a dynami programming algorithm.

3.1 Preproessing

Deiding whether a given substring exists in S or not, and �nding its position in the

ase of presene, needs to apply a string mathing algorithm. For this aim, we design

an algorithm based on KMP (Knutt-Moris-Pratt) string mathing algorithm with

some hanges. Let FP [i; j℄ be the the �rst position of ourrene of the substring

T [i::j℄ in S if suh an ourrene exists and 1 otherwise. Similarly FPR[i; j℄ is the

�rst position of an ourrene of T

�1

[i::j℄ in S. We need to reall the de�nition of

pre�x funtion � (adapted from the original KMP one), whih is needed for preom-

putation. Given a pattern P [1::m℄, the pre�x funtion for pattern P is the funtion

� : f1; 2; : : : ; mg ! f0; 1; : : : ; m� 1g suh that �[q℄ = maxfk : k < q and P

k

w P

q

g.

That is, �

q

is the length of the longest pre�x of P that is a proper su�x of P

q

. We

have the following lemma for the pre�x funtions.

Lemma 1 The pre�x funtion of P

k

is a restrition of pre�x funtion of P to the set

f1; 2; : : : ; kg.

Proof: The proof is immediate by the de�nition of the pre�x funtion beause �[i℄

for a given i an be obtained only from P

i�1

= P [1::(i� 1)℄ and P [i℄.

Although simple, this lemma is a orner-stone of the algorithm. It shows that, one

an searh for the presene of the pre�xes of a pattern string in the soure string, in the

3

Although this measure is not a mathematial distane but we will use the term transformation

distane whih was introdued by Varré et al. [VDR98, VDR99℄.

3

Proeedings of the Prague Stringology Conferene '03

Algorithm 1 Pre�x-Mather(A, S, P, index) %% index = jT j+ 1� length of the

1. n length[S℄ %% su�x P being searhed in S

2. m length[P ℄ %% A

[n�n℄

: A[i; i+ q℄ 6=1 i� the pre�x

3. q 0 %% of P of length q+1 ours in S

4. for i 1 to n

5. do while q > 0 and P [q + 1℄ 6= S[i℄

6. do q �[q℄

7. if P [q + 1℄ = S[i℄ then

8. q q + 1

9. if A[index; index + q℄ =1 then

10. A[index; index + q℄ = i� q

11. if q = m then

12. Exit %% the su�x P has been disovered

Figure 1: Pre�x-Mather

Algorithm 2 PreProessing(S, T)

1. FillArray(FP;1)

2. FillArray(FPR;1)

3. n length[T ℄

4. for k 1 to n

5. do P T [k::n℄

6. Pre�x-Mather(FP; S; P; k) %% diret pattern

7. PR T

�1

[k::n℄

8. Pre�x-Mather(FPR; S; PR; k) %% reverse pattern

Figure 2: PreProessing

same time of searhing for the omplete pattern, without inreasing the omplexity

of the searh. The algorithm is given in pseudoode in �gure 1 as the proedure

Pre�x-Mather. The omplexity of the Pre�x-Mather algorithm is O(n) in time.

For the proof of the omplexity and orretness of this algorithm, see hapter 34.4 of

[CLR90℄. Pre�x-Mather �nds the position of the �rst ourrene of all pre�xes of a

pattern string P in string S. In the PreProessing algorithm (�gure 2), we all the

Pre�x-Mather with patterns T [1::n℄; T [2::n℄; :::; T [n℄. Thus, we have the position of

the �rst ourrenes of all of the substrings of T in S. Similarly, the �rst position of

all substrings of T

�1

are found in S. The total omplexity the preproessing part is

O(n

2

) in time and O(n

2

) in spae.

3.2 Core Algorithm

As the sripts onstrut the target string T from left to right by adding segments,

dynami programming is an ideal tool for omputing the transformation distane.

The ore part of the algorithm determines the transformation distane between S

and T by a dynami programming algorithm. Let C[k℄ be the minimum prodution

ost of T [1::k℄ using the segments of S. The algorithm is given in �gure 3. We make

use of generi funtions CopyCost, RevCopyCost and InsertCost as de�ned at the end

of setion 2. These funtions are de�ned using the PreProessing algorithm: arrays

4

The Transformation Distane Problem Revisited

Algorithm 3 TransformationDistane(S, T)

1. PreProessing(S, T)

2. C[0℄ 0

3. for k 1 to jT j

4 : C[k℄ min

0<i�k

8

>

>

>

<

>

>

>

:

C[i� 1℄ + CopyCost(T [i::k℄) if FP [i; k℄ <1

C[i� 1℄ +RevCopyCost(T [i::k℄) if FPR[n� k + 1; n� i+ 1℄ <1

C[i� 1℄ + InsertCost(T [i::k℄)

1

5. return C[n℄

Figure 3: Transformation Distane: a dynami programming solution

FP and FPR. In order to �x ideas, one an onsider that these osts are proportional

to the length of the searhed segment (and 1 if this segment does not our in S).

In fat any sub-additive funtion would be onvenient.

Proposition 1 The reurrene relations of Algorithm 3, orretly determine the

transformation distane of S and T .

Proof: We prove by indution on k that after the algorithm exeution, C[k℄ ontains

the minimum prodution ost of target T [1::k℄ with the soure string S. C[0℄ is

initialized to 0, beause the ost of prodution of � from S is zero.

Now, we suppose that C[i℄ is alulated orretly for all i < k for some positive

value of k. Let us onsider the alulation of C[k℄. The last operation in a minimal

sript whih generates T [1::k℄, reates a su�x of T [1::k℄. Let this su�x be T [i::k℄.

As the sript is minimal, the sript without its last operation is a minimal sript for

T [1::(i� 1)℄. The minimum ost of the sript for T [1::(i� 1)℄ is C[i� 1℄ by indution

hypothesis. If T [i::k℄ exists in S and the last operation of the minimal sript is

a opy operation, the minimal ost of the sript is C[i � 1℄ + CopyCost(T [i::k℄).

Similarly, if the reverse of T [i::k℄ exists in S and the last operation in the minimal

sript of T [1::k℄ is a reverse opy operation, the minimal ost of the sript is C[i �

1℄ + RevCopyCost(T [i::k℄). Finally, if the last operation in the minimal sript of

T [1::k℄ is an insertion, the minimal ost of the sript is C[i� 1℄+ InsertCost(T [i::k℄)

(see �gure 4). Thus, C[n℄ is the minimum ost of prodution of T = T [1::n℄ and the

algorithm determines orretly the transformation distane of S and T .

Note that when the length of the substring T [i::k℄ is smaller than MFL, Copy-

Cost(T [i::k℄) and RevCopyCost(T [i::k℄) are equal to 1.

The omplexity of Algorithm 3 is O(n

2

) in time and O(n) in spae. So the total

omplexity of our algorithm (preproessing + ore algorithm) is O(n

2

) in time and

O(n

2

) in spae.

4 An Additional Operation: Point Deletion

In this setion, we extend the set of evolutionary operations by adding the point dele-

tion operation. During a point deletion (or simply deletion) operation, a symbol of

the string whih is under evolution is eliminated. This is an important operation from

5

Proeedings of the Prague Stringology Conferene '03

T

ki

Insertion

C[i� 1℄ + InsertCost(T [i::k℄)

T

S

ki

6

FPR[i; k℄

Reverse Copy

C[i� 1℄ +RevCopyCost(T [i::k℄)

T

S

ki

6

FP [i; k℄

Copy

C[i� 1℄ + CopyCost(T [i::k℄)

Figure 4: The three di�erent possibilities for generation of a su�x of T [1::k℄

the biologial point of view; in the real evolution of biologial sequenes, in several

ases after or during the opy operations some bases (symbols) are eliminated. We

denote the ost of deletion of a symbol by DelCost. For simpliity, we suppose that

the ost of deletion of every unique symbol is the same. Sine we have only point

deletions, deleting a segment of k symbols amounts to delete the k symbols one by

one, whih will ost k � DelCost. As before, our objetive is to �nd the minimum

ost for a sript generating a target string T , with the help of segments of a soure

string S. As the osts are independent of time, we onsider that the deletions are

applied only in the latest added segment (rightmost one), at any moment during the

evolution. It should be lear that in an optimal transformation, deletions are not

applied into an inserted substring (a substring whih is the result of an insertion

operation). Depending on the assigned osts, deletions an be used after the opy

or reverse opy operations. We onsider a opy operation together with all deletions

whih are applied to that opied segment as a unit operation. So we have a new op-

eration alled NewCopy whih is a opy operation followed by zero or more deletions

on the opied segment. In �gure 5 a shema of a NewCopy operation is illustrated.

Similarly, NewRevCopy is a reverse opy operation followed by zero or more deletions.

Solving the extended transformation distane with the point deletions, amounts to

solve the transformation distane with the following three operations: Insertion, New-

Copy and NewRevCopy. A substring T [i::j℄ of the target string an be produed by

a unique NewCopy operation if and only if T [i::j℄ is a subsequene string of soure

S. Conversely, T [i::j℄ an be produed by a unique NewRevCopy operation if and

only if T [i::j℄

�1

is a subsequene string of the soure S. In a preproessing part, the

algorithm determines the minimum generation ost by a NewCopy or NewRevCopy

operation, for any substring of the target string T . Very similar to the last setion

6

The Transformation Distane Problem Revisited

T

S

l

1

l

2

l

3

l

4

l

5

l

6

ki

Copy(S[l

1

::l

6

℄)

+

Delete(S[l

2

::l

3

℄)

+

Delete(S[l

4

::l

5

℄)

NewCopy(T [i::k℄)

6 6

Deleted segments

Figure 5: The illustration of NewCopy operation: A opy operation + zero or more

deletions

algorithm, a dynami programming algorithm alulates the extended transformation

distane in the new ore algorithm.

4.1 New Preproessing

In the preproessing part, we ompute the osts of these new operations for any sub-

string of the target: NewCopyCost[i; j℄ is the minimum ost of generating the T [i::j℄

by a NewCopy operation. Similarly, NewRevCopyCost[i; j℄ is the minimum ost of

generating T [i::j℄ by a NewRevCopy operation. Computing the NewCopyCost[i; j℄

amounts to �nd the shortest substring (with minimum length) of the soure string

whih ontains T [i::j℄ as a subsequene string. By this way, the number of deletions

whih are needed for this NewCopy operation is minimized. ForNewRevCopyCost[i; j℄,

we need to �nd the shortest substring in S

�1

whih ontains T [i::j℄ as a subsequene.

In the NewPreProessing algorithm listed in �gure 6, the ost tables New-

CopyCost and LastO are initially �lled with1 (lines 1-2). The algorithm sans the

soure from left to right to �nd the shortest supersequene for eah segment of the

target. The algorithm uses an auxiliary table LastO for this aim.

After the k-th letter of S is proessed (loop of line 3), the following is true:

LastO[i; j℄ is the largest l � k suh that S[l::k℄ is a supersequene of T [i::j℄. The loop

on T (line 4) is proessed with dereasing indies for memory optimization. Whenever

the letter S[k℄ ours in j-th position in T (line 5), then there is an opportunity of

obtaining a better supersequene for some of T [i::j℄'s, i � j. LastO[i; j℄ takes the

value LastO[i; j � 1℄ (omputed for k � 1) sine S[LastO[i; j � 1℄::k℄ is now the

rightmost supersequene for T [i::j℄ (line 9). Its ost is ompared to the ost of the

best previous one; if better, the new ost is stored in NewCopyCost (lines 11-13). One

should observe that rightmost sequenes are updated only when a new ommon letter

is sanned. This is neessary and su�ient as stated in the following lemma:

Lemma 2 If S[l::k℄ is the best supersequene for T [i::j℄ over S[1::N ℄, then it is the

rightmost supersequene for T [i::j℄ on S[1::k℄.

Proof: S[l::k℄ is the best sequene for T [i::j℄ over S[1::k℄ then it is better than

all S[l

0

::k℄ for l

0

< l and no S[l

00

::k℄ an be a supersequene for l

00

< l.

7

Proeedings of the Prague Stringology Conferene '03

Algorithm 4 NewPreProessing(S, T)

1. FillArray(NewCopyCost;1)

2. FillArray(LastO;1) %% LastO is a sub-diagonal array: LastO[i; j℄ =1 for i > j

3. for k 1 to jSj %% Soure sanned left to right

4. for eah j jT j downto 1 %% �nd mathes in T for S[k℄

%% for a �xed k: LastO[i; j℄ =largest l suh that S[l::k℄ � T [i::j℄

5. if S[k℄ = T [j℄ then

6. LastO[j; j℄ k

7. NewCopyCost[j; j℄ CopyCost(T [j℄) %% deletions are not needed

8. for i 1 to j � 1 %% for all su�xes of T[1..j℄

9. LastO[i; j℄ LastO[i; j�1℄ %% S[LastO[i; j�1℄::k�1℄℄ � T [i::j�1℄

10. NumDel k � LastO[i; j℄� i� j %% di�erene in lengths

11. ThisCost DelCost�NumDel+CopyCost(S[LastO[i; j℄::k℄)

12. if ThisCost < NewCopyCost[i; j℄ then

13. NewCopyCost[i; j℄ ThisCost

Figure 6: NewPreProessing (simpli�ed: reverse opies have been omitted)

Algorithm 5 NewTransformationDistane(S, T)

1. NewPreProessing(S,T)

2. C[0℄ 0

3. for k 1 to n

4 : C[k℄ min

0<i�k

8

>

>

>

<

>

>

>

:

C[i� 1℄ +NewCopyCost[i; k℄ if FP [i; k℄ <1

C[i� 1℄ +NewRevCopyCost[i; k℄ if FPR[i; k℄ <1

C[i� 1℄ + InsertCost(T [i::k℄)

1

5. return C[n℄

Figure 7: New Transformation Distane: dynami programming

4.2 New Core Algorithm

In the ore algorithm, the minimum generation osts of the pre�xes of the target

string T are determined from left to right. This is realized by a dynami programming

algorithm: Let C[k℄ be the minimum prodution ost of T [1::k℄ using the segments of

S. The algorithm is given in �gure 7. The proof of the following proposition is very

similar to the proof of proposition 1:

Proposition 2 The reurrene relations of Algorithm 5, orretly determine the ex-

tended transformation distane of S and T .

The omplexity of the preproessing part, is O(n

3

) in time and O(n

2

) in spae.

The omplexity of the ore algorithm is O(n

2

) both in time and spae. Therefore, the

whole omplexity of the new algorithm for the alulation of extended transformation

distane is O(n

3

) in time and O(n

2

) in spae.

8

The Transformation Distane Problem Revisited

Remarks and Conlusion

In this paper, we presented a new improved algorithm for alulation of the transfor-

mation distane problem. We also gave an algorithm for the transformation distane

problem in presene of the deletion operations. In this version, osts have been given

a speial additive form for larity. In fat a number of variations are possible within

our framework: the main property needed on osts seems to be their subadditivity.

In this paper, we state that Algorithm 3 omplexity is O(n

3

); this stands for

the worst ase omplexity; in fat only a small proportion of pairs (S[k℄; T [j℄) imply

running the inner loop. Under ertain additional statistial hypotheses the average

omplexity ould be less than O(n

3

).

Referenes

[BeSt03℄ Behzadi B. and Steyaert J.-M.: An Improved Algorithm for Generalized

Comparison of Minisatellites. CPM 2003.

[BeRi02℄ Bérard, S., Rivals, E.: Comparison of Minisatellites. Proeedings of the 6th

Annual International Conferene on Researh in Computational Moleular

Biology. ACM Press, 2002.

[CLR90℄ Cormen, T.H., Leiserson, C.E., Rivest R.L.: Introdution to Algorithms.

MIT Press, 1990.

[Do81℄ Doolittle, R.F.: Similar amino aid sequenes: hane or ommon anes-

try?, Siene,214,149-159, 1981.

[SaKr83℄ Sanko�, D. and Kruskal, J.B: Time Warps, String Edits and Maro-

moleules: The Theory and Pratie of Sequene Comparison. Addison-

Wesley, 1983.

[Va00℄ Varré, J.S.: Conepts et algorithmes pour la omparaison de séquenes

génétiques : une approhe informationnelle. PhD thesis, 2000.

[VDR99℄ Varré, J.S., Delahaye, J.P., Rivals, E.: Transformation Distanes: a family

of dissimilarity measures based on movements of segments. Bioinformatis,

vol. 15, no. 3, pp 194-202, 1999.

[VDR98℄ Varré, J.S., Delahaye, J.P., Rivals, E.: The Transformation Distane : A

Dissimilarity Measure Based On Movements Of Segments,German Confer-

ene on Bioinformatis, Koel - Germany, 1998.

[VDR97℄ Varré, J.S., Delahaye, J.P., Rivals, E.: The Transformation Distane.

Genome Informatis Workshop, Tokyo, Japan, 1997.

9

Forward-Fast-Searh: Another Fast Variant of the

Boyer-Moore String Mathing Algorithm

Domenio Cantone and Simone Faro

Dipartimento di Matematia e Informatia, Università di Catania, Italy

e-mail: {antone, faro}�dmi.unit.it

Abstrat. We present a variation of the Fast-Searh string mathing algorithm,

a reent member of the large family of Boyer-Moore-like algorithms, and we om-

pare it with some of the most e�etive string mathing algorithms, suh as Hor-

spool, Quik Searh, Tuned Boyer-Moore, Reverse Fator, Berry-Ravindran, and

Fast-Searh itself. All algorithms are ompared in terms of run-time e�ieny,

number of text harater inspetions, and number of harater omparisons.

It turns out that our new proposed variant, though not linear, ahieves very

good results espeially in the ase of very short patterns or small alphabets.

Keywords: string mathing, experimental algorithms, text proessing.

1 Introdution

Given a text T and a pattern P over some alphabet �, the string mathing prob-

lem onsists in �nding all ourrenes of the pattern P in the text T . It is a very

extensively studied problem in omputer siene, mainly due to its diret applia-

tions to suh diverse areas as text, image and signal proessing, speeh analysis and

reognition, information retrieval, omputational biology and hemistry, et.

Several string mathing algorithms have been proposed over the years. The Boyer-

Moore algorithm [BM77℄ deserves a speial mention, sine it has been partiularly

suessful and has inspired muh work. It is based upon three simple ideas: right-to-

left sanning, bad harater heuristis, and good su�x heuristis. We will review it

at length in Setion 2.1.

Many subsequent algorithms have been based on variations on how to apply the

two mentioned heuristis. For instane, the Fast-Searh algorithm, reently introdued

by the authors [CF03℄, requires that the bad harater heuristis is used only if the

mismathing harater is the last harater of the pattern, otherwise the good su�x

heuristis is to be used.

In this paper, we present a variation of the Fast-Searh algorithm in whih the good

su�x heuristis uses also a look-ahead harater to determine larger advanements.

We also propose a pratial algorithm to preompute the table enoding suh an

extended good su�x rule.

Before entering into details, we need a bit of notations and terminology. A string

P is represented as a �nite array P [0 :: m � 1℄, with m � 0. In suh a ase we say

10

Forward-Fast-Searh: Another Fast Variant of the Boyer-Moore String Mathing Algorithm

that P has length m and write length(P) = m. In partiular, for m = 0 we obtain

the empty string, also denoted by ". By P [i℄ we denote the (i+ 1)-st harater of P ,

for 0 � i < length(P). Likewise, by P [i :: j℄ we denote the substring of P ontained

between the (i + 1)-st and the (j + 1)-st haraters of P , for 0 � i � j < length(P).

Moreover, for any i; j 2 Z, we put

P [i :: j℄ =

(

" if i > j

P [max(i; 0);min(j; length(P)� 1)℄ otherwise:

For any two strings P and P

0

, we write P

0

= P to indiate that P

0

is a su�x of P , i.e.,

P

0

= P [i :: length(P)� 1℄, for some 0 � i < length(P). Similarly, we write P

0

< P to

indiate that P

0

is a pre�x of P , i.e., P

0

= P [0 :: i� 1℄, for some 0 � i � length(P).

In addition, we write P:P

0

to denote the onatenation of P and P

0

.

Let T be a text of length n and let P be a pattern of lengthm. When the harater

P [0℄ is aligned with the harater T [s℄ of the text, so that the harater P [i℄ is aligned

with the harater T [s+ i℄, for i = 0; : : : ; m� 1, we say that the pattern P has shift

s in T . In this ase the substring T [s :: s+m� 1℄ is alled the urrent window of the

text. If T [s :: s+m�1℄ = P , we say that the shift s is valid. Thus the string mathing

problem an be rephrased as the problem of �nding all valid shifts of a pattern P

relative to a text T .

Most string mathing algorithms have the following general struture. First, dur-

ing a preproessing phase, they alulate useful mappings, in the form of tables,

whih later are aessed to determine nontrivial shift advanements. Next, start-

ing with shift s = 0, they look for all valid shifts, by exeuting a mathing phase,

whih determines whether the shift s is valid and omputes a positive shift inrement

�s. Suh inrement �s is used to produe the new shift s + �s to be fed to the

subsequent mathing phase. Observe that for the orretness of the algorithm it is

plainly neessary that eah shift inrement �s omputed is safe, namely the interval

fs+ 1; : : : ; s+�s� 1g ontains no valid shifts.

For instane, in the ase of the naive string mathing algorithm, there is no pre-

proessing phase and the mathing phase always returns a unitary shift inrement,

i.e., all possible shifts are atually proessed.

The paper is organized as follows. In Setion 2 we survey some of the most e�etive

string mathing algorithms. Next, in Setion 3, we introdue a new variant of the Fast-

Searh algorithm. Experimental data obtained by running under various onditions

all the algorithms reviewed are presented and ompared in Setion 4. Finally, we

draw our onlusions in Setion 5.

2 Some Very Fast String Mathing Algorithms

In this setion we brie�y review the Boyer-Moore algorithm and some of its most e�-

ient variants that have been proposed over the years. In partiular, we present the

Horspool [Hor80℄, Tuned Boyer-Moore[HS91℄, Quik-Searh[Sun90℄, Berry-Ravindran

[BR99℄, and the Fast-Searh [CF03℄ algorithms.

We also review the Reverse Fator algorithm [CCG

+

94℄, whih is based on the

smallest su�x automaton of the reverse pattern.

11

Proeedings of the Prague Stringology Conferene '03

2.1 The Boyer-Moore Algorithm

The Boyer-Moore algorithm [BM77℄ is the progenitor of several algorithmi variants

whih aim at omputing lose to optimal shift inrements very e�iently. Spei�ally,

the Boyer-Moore algorithm heks whether s is a valid shift by sanning the pattern P

from right to left and, at the end of the mathing phase, omputes the shift inrement

as the maximum value suggested by the good su�x rule and the bad harater rule

below, using the funtions gs

P

and b

P

respetively, provided that both of them are

appliable.

If the �rst mismath ours at position i of the pattern P , the good su�x rule

suggests to align the substring T [s + i + 1 : : : s + m � 1℄ = P [i + 1 : : :m � 1℄ with

its rightmost ourrene in P preeded by a harater di�erent from P [i℄. If suh an

ourrene does not exist, the good su�x rule suggests a shift inrement whih allows

to math the longest su�x of T [s+ i+ 1 : : : s+m� 1℄ with a pre�x of P .

More formally, if the �rst mismath ours at position i of the pattern P , the good

su�x rule states that the shift an be safely inremented by gs

P

(i+1) positions, where

gs

P

(j) =

Def

minf0 < k � m j P [j � k ::m� k � 1℄ = P

and (k � j � 1! P [j � 1℄ 6= P [j � 1� k℄)g ;

for j = 0; 1; : : : ; m. (The situation in whih an ourrene of the pattern P is found

an be regarded as a mismath at position �1.)

The bad harater rule states that if = T [s + i℄ 6= P [i℄ is the �rst mismathing

harater, while sanning P and T from right to left with shift s, then P an be safely

shifted in suh a way that its rightmost ourrene of , if present, is aligned with

position (s+ i) in T . In the ase in whih does not our in P , then P an be safely

shifted just past position (s + i) in T . More formally, the shift inrement suggested

by the bad harater rule is given by the expression (i� b

P

(T [s+ i℄)), where

b

P

() =

Def

max(f0 � k < m j P [k℄ = g [f�1g) ;

for 2 �, and where we reall that � is the alphabet of the pattern P and text

T . Notie that there are situations in whih the shift inrement given by the bad

harater rule an be negative.

It turns out that the funtions gs

P

and b

P

an be omputed during the pre-

proessing phase in time O(m) and O(m + j�j), respetively, and that the overall

worst-ase running time of the Boyer-Moore algorithm, as desribed above, is linear

(f. [GO80℄).

2.2 The Horspool Algorithm

Horspool suggested a simpli�ation of the original Boyer-Moore algorithm, de�ning a

new variant whih, though quadrati, performed better in pratial ases (f. [Hor80℄).

He just dropped the good su�x rule and proposed to ompute the shift advanement

in suh a way that the rightmost harater T [s+m� 1℄ is aligned with its rightmost

ourrene on P [0 :: m � 2℄, if present; otherwise the pattern is advaned just past

the window. This orresponds to advane the shift by hb

P

(T [s+m� 1℄) positions,

where

hb

P

() =

Def

min(f1 � k < m j P [m� 1� k℄ = g [fmg) :

12

Forward-Fast-Searh: Another Fast Variant of the Boyer-Moore String Mathing Algorithm

The resulting algorithm performs well in pratie and an be immediately translated

into programming ode (see Baeza-Yates and Régnier [BYR92℄ for a simple imple-

mentation in the C programming language).

2.3 The Tuned Boyer-Moore Algorithm

The Tuned Boyer-Moore algorithm [HS91℄ an be seen as an e�ient implementation

of the Horspool algorithm. Again, let P be a pattern of length m. Eah iteration

of the Tuned Boyer-Moore algorithm an be divided into two phases: last harater

loalization and mathing phase. The �rst phase searhes for a math of P [m�1℄, by

applying rounds of three blind shifts (based on the lassial bad harater rule) until

needed. The mathing phase tries then to math the rest of the pattern P [0 :: m� 2℄

with the orresponding haraters of the text, proeeding from right to left. At

the end of the mathing phase, the shift advanement is omputed aording to the

Horspool bad harater rule. Moreover, to begin with, the algorithm adds m opies

of P [m� 1℄ at the end of the text, as a sentinel, to ompute the last shifts orretly.

The fat that the blind shifts require no omparison is at the heart of the very

good pratial behavior of the Tuned Boyer-Moore, despite its quadrati worst-ase

time omplexity (f. [Le00℄).

2.4 The Quik-Searh Algorithm

The Quik-Searh algorithm, presented in [Sun90℄, uses a modi�ation of the original

heuristis of the Boyer-Moore algorithm, muh along the same lines of the Horspool

algorithm. Spei�ally, it is based on the following observation: when a mismath

harater is enountered, the pattern is always shifted to the right by at least one

harater, but never by more than m haraters. Thus, the harater T [s + m℄ is

always involved in testing for the next alignment. So, one an apply the bad harater

rule to T [s + m℄, rather than to the mismathing harater, obtaining larger shift

advanements. This orresponds to advane the shift by qb

P

(T [s + m℄) positions,

where

qb

P

() =

Def

min(f0 < k � m j P [m� k℄ = g [fm+ 1g) :

Experimental tests have shown that that the Quik-Searh algorithm is very fast

espeially for short patterns (f. [Le00℄).

2.5 The Berry-Ravindran Algorithm

The Berry-Ravindran algorithm [BR99℄ extends the Quik-Searh algorithm in that

its bad harater rule uses the two haraters T [s+m℄ and T [s+m+ 1℄ rather than

just the last harater T [s+m℄ of the window, where m is the size of the pattern P .

Thus, at the end of eah mathing phase with shift s, the Berry-Ravindran algorithm

advanes the pattern so that the substring of the text T [s+m :: s+m+1℄ is aligned

with its rightmost ourrene in P .

The preomputation of the table used by the bad harater rule requires O(j�j

2

)-

spae and O(m + j�j

2

)-time omplexity, where � is the alphabet of the text and

pattern. Experimental results [BR99℄ show that the Berry-Ravindran algorithm is

fast in pratie and performs a low number of text/pattern harater omparisons.

13

Proeedings of the Prague Stringology Conferene '03

2.6 The Fast-Searh Algorithm

Again, let P be a pattern of lengthm and let T be a text of length n over a �nite alpha-

bet �. The main observation upon whih the Fast-Searh algorithm [CF03℄ is based

is the following: the Horspool bad harater rule leads to larger shift inrements than

the good su�x rule if and only if a mismath ours immediately, while omparing

the pattern P with the window T [s :: s+m�1℄, namely when P [m�1℄ 6= T [s+m�1℄,

where 0 � s � m� n is a shift.

In agreement with the above observation, the Fast-Searh algorithm omputes its

shift inrements by applying the Horspool bad harater rule only if a mismath

ours during the �rst harater omparison. Otherwise it uses the good su�x rule.

Notie that hb

P

(a) = b

P

(a), whenever a 6= P [m � 1℄, so that to ompute the

shift advanement one an use the traditional bad harater rule, b

P

, rather then

the Horspool bad harater rule, hb

P

.

A more e�etive implementation of the Fast-Searh algorithm is obtained along

the same lines of the Tuned Boyer-Moore algorithm: the bad harater rule an be

iterated until the last harater P [m� 1℄ of the pattern is mathed orretly against

the text. At this point it is known that T [s+m�1℄ = P [m�1℄, so that the subsequent

mathing phase an start with the (m � 2)-nd harater of the pattern. At the end

of the mathing phase the algorithm uses the good su�x rule for shifting.

As in the ase of the Tuned Boyer-Moore algorithm, the Fast-Searh algorithm

bene�ts from the introdution of an external sentinel, whih allows to ompute or-

retly the last shifts with no extra heks.

Experimental results [CF03℄ show that the Fast-Searh algorithm obtains the best

run-time performanes in most ases and, sporadially, it is seond only to the Tuned

Boyer-Moore algorithm. Conerning the number of text harater inspetions, it turns

out that the Fast-Searh algorithm is quite lose to the Reverse Fator algorithm,

whih generally shows the best behavior. We notie, though, that in the ase of very

short patterns the Fast-Searh algorithm reahes the lowest number of text harater

aesses.

2.7 The Reverse Fator Algorithm

Unlike the variants of the Boyer-Moore algorithm summarized above, the Reverse

Fator algorithm omputes shifts whih math pre�xes of the pattern, rather than

su�xes. This is made possible by the smallest su�x automaton of the reverse of the

pattern P , whih is a deterministi �nite automaton S(P) whose aepted language

is the set of su�xes of P (for a omplete desription see [CCG

+

94℄).

The Reverse Fator algorithm has a quadrati worst-ase time omplexity, but it

is very fast in pratie (f. [Le00℄). Moreover, it has been shown that on the average

it inspets O(n log(m)=m) text haraters, reahing the best bound shown by Yao in

[Yao79℄.

3 The Forward-Fast-Searh Algorithm

In this setion we present a new e�ient variant of the Boyer-Moore algorithm ob-

tained by modifying the Fast-Searh algorithm presented in Setion 2.6.

14

Forward-Fast-Searh: Another Fast Variant of the Boyer-Moore String Mathing Algorithm

The new algorithmi variant, that we all Forward-Fast-Searh, mantains the same

struture of the Fast-Searh algorithm, but is based upon a modi�ed version of the

good su�x rule, alled forward good su�x rule, whih uses a look-ahead harater to

determine larger shift advanements.

The forward good su�x requires a preomputed table of size (m � j�j), where m

is the length of the pattern and � is the alphabet of the text and pattern.

Conerning the running time, the forward good su�x rule an be preomputed by

j�j iterations of the standard linear preomputation of the Boyer-Moore good su�x

rule, yielding a O(m � j�j) time omplexity. Nevertheless, we propose an alternative,

more diret approah whih behaves very well in pratie, though it requires O(m �

max(m; j�j)) time in the worst ase.

3.1 Strengthening the Good Su�x Rule

3.1.1 The Bakward Good Su�x Rule

A �rst natural way to strengthen the good su�x rule, whih yields the bakward good

su�x rule, an be obtained by merging it with the bad harater rule as follows.

As usual, let us assume that we are omparing a pattern P of length m with the

window T [s :: s +m � 1℄ at shift s of a given text T , sanning it from right to left.

If the �rst mismath ours at position i of the pattern P , i.e. P [i + 1 :: m � 1℄ =

T [s + i + 1 :: s + m � 1℄ and P [i℄ 6= T [s + i℄, then the bakward good su�x rule

proposes to align the substring T [s+ i+ 1 :: s+m� 1℄ with its rightmost ourrene

in P preeded by the bakward harater T [s + i℄. If suh an ourrene does not

exist, the bakward good su�x rule proposes a shift inrement whih allows to math

the longest su�x of T [s + i + 1 :: s +m � 1℄ with a pre�x of P . More formally, this

orresponds to inrement the shift s by

 �

gs

P

(i + 1; T [s+ i℄), where

 �

gs

P

(j;) =

Def

minf0 < k � m j P [j � k : : :m� k � 1℄ = P

and (k � j � 1! P [j � 1℄ =)g ;

for j = 0; 1; : : : ; m and 2 �.

3.1.2 The Forward Good Su�x Rule

As observed by Sunday [Sun90℄, after a mathing phase with shift s, the forward

harater T [s+m℄ is always involved in the subsequent mathing phase. Thus, another

possible variant of the good su�x rule, whih we all forward good su�x rule, onsists

in mathing the forward harater T [s +m℄, rather than the mismathed harater

T [s + i℄. More preisely, if as above the �rst mismath ours at position i of the

pattern P , the forward good su�x rule suggests to align the substring T [s+ i+1 :: s+

m℄ with its rightmost ourrene in P preeded by a harater di�erent from P [i℄.

If suh an ourrene does not exist, the forward good su�x rule proposes a shift

inrement whih allows to math the longest su�x of T [s+ i+1 :: s+m℄ with a pre�x

of P . This orresponds to advane the shift s by

�!

gs

P

(i+1; T [s+m℄) positions, where

�!

gs

P

(j;) =

Def

min(f0 < k � m j P [j � k ::m� k � 1℄ = P

and (k � j � 1! P [j � 1℄ 6= P [j � 1� k℄)

and P [m� k℄ = g [fm+ 1g) ;

for j = 0; 1; : : : ; m and 2 �.

15

Proeedings of the Prague Stringology Conferene '03

3.1.3 Comparing the Good Su�x Rule with its Variants

We omputed the average shift advanement suggested by the good su�x rule and

its bakward and forward variants on four Rand� problems, for � = 2; 4; 8; 20, with

pattern lengths 2; 4; 6; 8; 10; 20; 40; 80, and 160, where a Rand� problem onsists in

searhing, for eah assigned value of the pattern length, a set of 200 random patterns

over an alphabet � of size � in a 20Mb random text over the same alphabet �.

Experimental results, presented in the tables below, show that the forward and

bakward good su�x rules propose on the average muh larger shift advanements

than the standard good su�x rule (up to 400% better). In addition, the forward

good su�x rule shows always a slightly better behavior than the bakward one, whih

beomes more sensible in the ase of very small alphabets. This is partly due to the

fat that the forward harater is always used by the forward good su�x rule to

ompute shift advanements, whereas there are ases in whih the bakward good

su�x rule does not exploit the bakward harater.

� = 2 2 4 6 8 10 20 40 80 160

gs 1.540 2.762 3.869 4.765 5.468 8.464 12.254 16.137 21.807

 �

gs 1.540 2.762 3.869 4.765 5.468 8.464 12.254 16.137 21.807

�!

gs 2.269 3.642 5.026 6.310 7.394 12.21 18.200 25.586 34.798

� = 4 2 4 6 8 10 20 40 80 160

gs 1.750 3.062 4.334 5.196 6.079 8.697 12.382 16.857 22.645

 �

gs 1.750 3.540 5.170 6.691 8.097 13.62 21.604 30.540 42.891

�!

gs 2.687 4.407 6.114 7.696 9.245 15.55 25.149 36.584 51.398

� = 8 2 4 6 8 10 20 40 80 160

gs 1.880 3.453 4.833 5.399 6.656 10.05 13.613 19.510 25.807

 �

gs 1.880 3.857 5.692 7.441 9.294 17.63 31.570 51.010 75.734

�!

gs 2.860 4.775 6.671 8.399 10.24 18.72 33.225 54.825 81.334

� = 20 2 4 6 8 10 20 40 80 160

gs 1.930 3.714 5.238 6.684 8.512 12.81 19.078 25.169 33.975

 �

gs 1.930 3.956 5.892 7.919 9.867 19.47 38.167 72.950 136.45

�!

gs 2.946 4.929 6.896 8.868 10.85 20.44 39.206 74.084 138.22

Average advanements for some Rand� problems

3.1.4 Implementing the Forward Good Su�x Rule

Given a pattern P of length m over an alphabet �, we have plainly

�!

gs

P

(j;) = gs

P:

(j) ;

for j = 0; 1; : : : ; m and 2 �, where P: is the string obtained by onatenating the

harater at the end of P . Thus, a natural way to ompute the forward good su�x

funtion

�!

gs

P

onsists in omputing the standard good su�x funtions gs

P:

, for all

 2 �, by means of the O(m) triky algorithm �rstly given in [KMP77℄ and then

orreted in [Rit80℄.

Suh a proedure is asymptotially optimal, as it has O(m � j�j) spae and time

omplexity.

In Figure 1 we propose an alternative proedure to ompute the forward good

su�x funtion whih, despite its O(m � max(m; j�j)) worst-ase time omplexity,

turns out to be very e�ient in pratie, even for large values of m.

16

Forward-Fast-Searh: Another Fast Variant of the Boyer-Moore String Mathing Algorithm

preompute-forward-good-su�x(P)

Initialization:

1. m = length(P)

2. for i = 0 to m do

3. for 2 � do

4.

�!

gs[i; ℄ = m+ 1

5. for i = 0 to m� 1 do

6. next [i℄ = i� 1

Computation:

7. for slen = 0 to m� 1 do

8. last = m� 1

9. i = next [last ℄

10. while i � 0 do

11. if

�!

gs[m� slen; P [i+ 1℄℄ > m� 1� i then

12. if (i� slen < 0 or

13 (i� slen � 0 and P [i� slen℄ 6= P [m� 1� slen℄)) then

14.

�!

gs[m� slen; P [i+ 1℄℄ = m� 1� i

15. if (i� slen � 0 and P [i� slen℄ = P [last � slen℄) or

16. (i� slen < 0) then

17. next [last ℄ = i

18. last = i

19. i = next [i℄

20. if

�!

gs[m� slen; P [0℄℄ > m then

21.

�!

gs[m� slen; P [0℄℄ = m

22. next [last ℄ = �1

23. return

�!

gs

Figure 1: The funtion for omputing forward good su�xes

After an initialization phase whih takes O(m � j�j) spae and time omplexity,

the preompute-forward-good-su�x proedure arries out m iterations of its main for-

loop, starting at line 7. During the k-th iteration, for k = 1; 2; : : : ; m, it omputes

the sequene S

k

(P) of all ourrenes in P of the su�x P [m� k ::m� 1℄ of length k,

impliitly represented by means of the array next :

S

k

(P) = h P [next [m� 1℄� k + 1 :: next [m� 1℄℄ ;

P [next

(2)

[m� 1℄� k + 1 :: next

(2)

[m� 1℄℄;

: : : : : :

P [next

(r

k

)

[m� 1℄� k + 1 :: next

(r

k

)

[m� 1℄℄ i ;

(1)

where r

k

is suh that next

(r

k

+1)

[m�1℄ = �1. For that purpose, lines 15-18 implement

the reurrene

S

k

(P) = hP [j � k + 1 :: j℄ jP [j � k + 2 :: j℄ 2 S

k�1

(P) and P [j � k + 1℄ = P [m� k℄i ;

where S

0

(P) is also formally given by (1), thanks to the way the array next is ini-

tialized in lines 5-6. Moreover, during the k-th iteration of the for-loop, for eah

17

Proeedings of the Prague Stringology Conferene '03

P [j � k + 1 :: j℄ 2 S

k

(P), the proedure updates, if neessary, the value

�!

gs(m � k �

1; P [j + 1℄) by setting it to (m� 1� j) (lines 11-14).

Plainly, the proedure in Figure 1 requires O(m � j�j) spae. To ompute its

time omplexity, it is enough to observe that the k-th exeution of the while-

loop in lines 10-19, for k = 1; 2; : : : ; m, takes O(jS

k�1

(P)j) time, giving a total

of O(

P

m�1

j=0

jS

j

(P)j) = O(m

2

) time in the worst ase. This leads to an overall

O(m �max(m; j�j)) worst-ase time omplexity, taking into aount also the initizial-

ization phase.

Experimental results show that the sum

P

m�1

j=0

jS

j

(P)j has on the average an al-

most linear behavior. For instane, the following tables report the average of the

sum

P

m�1

j=0

jS

j

(P)j omputed for 100; 000 random patterns of size m over an alphabet

of size �, for � = 2; 4; 8; 20 and m = 2; 4; 6; 8; 10; 20; 40; 80; 160. The tests relative

to a natural language bu�er NL have been omputed by randomly seleting 100; 000

substrings for eah given pattern length over the 3.13Mb �le obtained by disarding

the nonalphabeti haraters from the WinEdt spelling ditionary.

m 2 4 6 8 10 20 40 80 160

m

2

(worst ase) 4 16 36 64 100 400 1600 6400 25600

Average for � = 2 2.50 7.38 13.07 19.01 25.02 55.09 114.89 234.98 474.57

Average for � = 4 2.24 5.46 8.76 12.10 15.45 32.09 65.34 132.06 264.98

Average for � = 8 2.12 4.67 7.23 9.81 12.40 25.24 50.93 102.45 204.98

Average for � = 20 2.04 4.25 6.46 8.68 10.89 21.96 44.00 88.21 176.63

Average on NL 2.04 4.23 6.47 8.84 11.99 28.57 57.97 111.61 208.00

For the same set of random tests, we also omputed the total time taken to on-

strut the forward good su�x funtion

�!

gs, using the two implementations desribed

earlier, namely the one whih has a O(m � j�j) worst-ase time and spae omplexity

and the proedure preompute-forward-good-su�x. Suh implementations are denoted

respetively �

�!

gs (I)� and �

�!

gs (II)� in the tables below, where experimental results are

expressed in hundredths of seonds.

� = 2 2 4 6 8 10 20 40 80 160

�!

gs (I) 58.1 60.1 63.1 66.1 68.1 81.1 103.2 149.2 239.3

�!

gs (II) 3.0 6.0 11.0 15.1 18.0 37.0 74.1 145.3 288.4

� = 4 2 4 6 8 10 20 40 80 160

�!

gs (I) 113.2 117.1 121.2 124.2 128.2 142.2 174.2 235.4 357.5

�!

gs (II) 3.0 6.0 10.0 13.0 16.0 33.1 64.1 126.2 250.3

� = 8 2 4 6 8 10 20 40 80 160

�!

gs (I) 225.3 230.4 237.3 240.4 243.3 268.4 313.4 401.6 577.9

�!

gs (II) 4.0 7.0 11.0 14.0 19.0 36.1 72.1 141.2 289.4

� = 20 2 4 6 8 10 20 40 80 160

�!

gs (I) 558.8 573.9 580.8 589.8 598.9 642.9 733.1 905.3 1250.8

�!

gs (II) 5.0 11.0 16.0 20.1 26.0 50.1 98.1 195.3 394.6

NL 2 4 6 8 10 20 40 80 160

�!

gs (I) 553.8 565.8 573.8 583.8 592.8 636.9 725.0 895.3 1238.8

�!

gs (II) 5.0 10.0 16.0 19.0 23.1 48.1 95.1 189.3 379.5

18

Forward-Fast-Searh: Another Fast Variant of the Boyer-Moore String Mathing Algorithm

Forward-Fast-Searh(P , T)

1. n = length(T)

2. m = length(P)

3. T

0

= T:P [m� 1℄

m+1

4. b = preompute-bad-harater(P)

5.

�!

gs = preompute-forward-good-su�x(P)

7. s = 0

8. while b[T

0

[s +m� 1℄℄ > 0 do

9. s = s+ b[T

0

[s+m� 1℄℄

10. while s � n�m do

11. j = m� 2

12. while j � 0 and P [j℄ = T

0

[s+ j℄ do

13. j = j � 1

14. if j < 0 then

15. print(s)

16. s = s+

�!

gs[j + 1; T [s+m℄℄

17. while b[T

0

[s+m� 1℄℄ > 0 do

18. s = s+ b[T

0

[s+m� 1℄℄

Figure 2: The Forward-Fast-Searh algorithm

The analysis of the above experimental results show that for alphabets of size at least

4 the proedure preompute-forward-good-su�x is on the average always faster than

the implementation of the forward good su�x funtion desribed at the beginning

the present setion.

3.2 Building up the Forward-Fast-Searh Algorithm

The implementation of the Forward-Fast-Searh algorithm an be obtained along the

same lines of the Fast-Searh and the Tuned Boyer-Moore algorithms.

In the �rst phase, alled harater loalization phase, the algorithm iterates the

bad harater rule until the last harater P [m�1℄ of the pattern is mathed orretly

against the text. More preisely, starting from a shift position s, if we denote by j

i

the total shift advanement after the i-th iteration of the bad harater rule, then we

have the following reurrene:

j

i

= j

i�1

+ b

P

(T [s+ j

i�1

+m� 1℄) :

Therefore, the bad harater rule is applied k times in a row, where k = minfi j T [s+

j

i

+m� 1℄ = P [m� 1℄g, with an overall shift advanement of j

k

.

At this point we have that T [s+ j

k

+m� 1℄ = P [m� 1℄, so that the subsequent

mathing phase an test for an ourrene of the pattern by omparing only the

remaining (m � 1) haraters of the pattern. At the end of the mathing phase the

algorithm applies the forward good su�x rule instead of the traditional good su�x

rule.

As in the ase of the Fast-Searh and Tuned Boyer-Moore algorithms, the Forward-

Fast-Searh algorithm bene�ts from the introdution of an external sentinel: sine the

19

Proeedings of the Prague Stringology Conferene '03

forward good su�x rule looks at the harater T [s+m℄ just after the urrent window,

m+ 1 opies of the harater P [m� 1℄ are added at the end of the text T , obtaining

a new text T

0

= T:P [m� 1℄

m+1

. This allows to ompute orretly the last shifts with

no extra heks. Plainly, all the valid shifts of P in T are the valid shifts s of P in T

0

suh that s � n�m, where, as usual, n and m denote respetively the lengths of T

and P . The ode of the Forward-Fast-Searh algorithm is presented in Figure 2.

4 Experimental Results

We present next experimental data whih allow to ompare the following string math-

ing algorithms under various onditions: Horspool (HOR), Quik-Searh (QS), Barry-

Ravidran (BR), Tuned Boyer-Moore (TBM), Reverse Fator (RF), Fast-Searh (FS),

and Forward-Fast-Searh (FFS).

We have hosen to ompare the algorithms in terms of running time, number of

text harater inspetions, and number of harater omparisons.

All algorithms have been implemented in the C programming language and were

used to searh for the same strings in large �xed text bu�ers on a PC with AMD

Athlon proessor of 1.19GHz. In partiular, the algorithms have been tested on four

Rand� problems, for � = 2; 4; 8; 20, and on a natural language text bu�er NL with

patterns of length m = 2; 4; 6; 8; 10; 20; 40; 80, and 160.

We reall that eah Rand� problem onsists in searhing a set of 200 random

patterns of a given length in a 20Mb random text over a ommon alphabet of size �.

The tests on the natural language text bu�er NL have been performed on a 3.13Mb

�le obtained by disarding the nonalphabeti haraters from the WinEdt spelling

ditionary. For eah pattern length m, we have seleted 200 random substrings of

length m in the �le whih subsequently have been searhed for in the same �le.

4.1 Running Times

Experimental results show that the Forward-Fast-Searh algorithm obtains the best

run-time performane in most ases and, sporadially, it is seond only to the Fast-

Searh algorithm, in the ase of natural language texts and long patterns, and to the

Berry-Ravidran algorithm, in the ase of large alphabets and patterns.

In the following tables, running times are expressed in hundredths of seonds.

� = 2 2 4 6 8 10 20 40 80 160

HOR 42.01 44.18 42.86 42.02 46.57 40.24 39.51 38.83 39.95

QS 34.33 41.12 38.35 39.30 42.80 37.42 36.77 36.42 36.54

BR 44.84 49.36 44.42 43.48 47.69 40.66 40.70 40.74 40.54

TBM 33.96 36.54 36.88 36.65 40.53 35.98 36.05 35.54 36.30

RF 249.2 200.0 145.9 114.2 107.3 57.95 36.84 27.95 22.36

FS 41.79 35.36 28.72 25.32 26.15 20.40 18.40 17.99 17.31

FFS 31.08 28.87 25.28 22.37 23.15 18.05 16.78 16.62 15.82

Running times for a Rand2 problem

20

Forward-Fast-Searh: Another Fast Variant of the Boyer-Moore String Mathing Algorithm

� = 4 2 4 6 8 10 20 40 80 160

HOR 34.66 25.57 22.05 20.76 20.27 19.68 20.05 19.54 20.20

QS 26.49 22.10 19.87 19.35 18.98 18.58 19.05 18.73 19.04

BR 32.20 25.68 22.08 20.31 19.24 17.29 16.66 16.36 16.51

TBM 25.53 20.68 19.15 18.85 18.76 18.50 18.81 18.38 18.78

RF 156.1 98.60 74.84 62.28 53.79 34.73 24.26 20.34 16.67

FS 28.60 20.58 18.91 18.26 17.86 17.22 16.53 16.18 15.82

FFS 24.87 20.06 18.35 17.65 17.22 16.23 15.61 15.33 14.40

Running times for a Rand4 problem

� = 8 2 4 6 8 10 20 40 80 160

HOR 27.71 20.19 18.40 17.43 16.84 15.70 15.56 15.62 15.71

QS 20.91 18.27 17.17 16.59 16.25 15.36 15.22 15.23 15.35

BR 25.19 20.55 18.77 17.74 17.02 15.33 14.55 14.55 13.96

TBM 21.09 17.78 16.78 16.77 16.22 15.14 15.11 15.05 15.18

RF 114.8 70.75 54.97 46.27 40.62 27.26 20.58 18.17 15.01

FS 20.66 17.75 16.75 16.41 16.01 15.02 14.89 14.80 14.81

FFS 20.20 17.58 16.60 16.17 15.82 14.87 14.54 14.52 13.92

Running times for a Rand8 problem

� = 20 2 4 6 8 10 20 40 80 160

HOR 23.45 18.17 16.58 16.21 15.89 15.21 14.90 14.84 14.98

QS 18.67 16.84 15.78 15.69 15.49 14.98 14.74 14.73 14.79

BR 21.83 18.88 17.32 16.89 16.47 15.47 14.90 14.42 12.60

TBM 18.76 16.78 15.64 15.44 15.39 14.85 14.82 14.65 14.65

RF 92.44 54.83 41.67 35.57 31.61 23.12 19.25 17.69 14.72

FS 19.11 16.59 15.57 15.49 15.24 14.81 14.66 14.65 14.58

FFS 18.76 16.51 15.51 15.44 15.24 14.83 14.64 14.65 14.35

Running times for a Rand20 problem

NL 2 4 6 8 10 20 40 80 160

HOR 3.40 2.65 2.45 2.36 2.36 2.22 2.15 2.11 1.98

QS 2.73 2.42 2.35 2.24 2.20 2.14 2.09 2.09 2.01

BR 3.28 2.87 2.66 2.59 2.47 2.33 2.25 2.21 1.95

TBM 2.77 2.39 2.27 2.25 2.18 2.19 2.09 2.12 1.93

RF 13.94 8.33 6.48 5.46 4.87 3.35 2.79 2.68 4.67

FS 2.79 2.45 2.22 2.24 2.19 2.14 2.06 2.09 1.91

FFS 2.70 2.35 2.26 2.26 2.18 2.15 2.13 2.11 2.24

Running times for a natural language problem

4.2 Average Number of Text Charater Inspetions

For eah test, the average number of harater inspetions has been obtained by

taking the total number of times a text harater is aessed, either to perform a

omparison with a pattern harater, or to perform a shift, or to ompute a transition

in an automaton, and dividing it by the length of the text bu�er.

It turns out that the Forward-Fast-Searh algorithm is always very lose the best

results whih are generally obtained by the Fast-Searh algorithm, for short patterns,

and by Reverse-Fator algorithm, for long patterns. We notie, however, that the

Forward-Fast-Searh algorithm obtains in most ases the seond best result and is

better than Reverse-Fator, for short patterns, and Fast-Searh, for long patterns.

21

Proeedings of the Prague Stringology Conferene '03

� = 2 2 4 6 8 10 20 40 80 160

HOR 1.00 1.15 1.26 1.26 1.28 1.24 1.27 1.23 1.27

QS 1.54 1.67 1.63 1.67 1.64 1.61 1.65 1.61 1.60

BR 1.28 1.25 1.20 1.20 1.19 1.19 1.19 1.18 1.16

TBM 1.23 1.35 1.46 1.46 1.47 1.43 1.46 1.42 1.46

RF 1.43 1.06 .799 .615 .519 .294 .169 .096 .054

FS 1.00 .929 .806 .698 .632 .460 .348 .270 .213

FFS 1.15 .993 .833 .703 .621 .410 .289 .210 .161

� = 4 2 4 6 8 10 20 40 80 160

HOR .714 .510 .435 .404 .392 .373 .389 .365 .392

QS 1.03 .817 .700 .675 .645 .610 .650 .622 .633

BR .949 .713 .569 .488 .429 .307 .264 .244 .251

TBM .841 .591 .504 .468 .454 .432 .450 .422 .446

RF .886 .528 .387 .316 .264 .154 .089 .051 .028

FS .714 .489 .398 .356 .330 .273 .239 .200 .177

FFS .768 .526 .418 .367 .330 .241 .182 .136 .105

� = 8 2 4 6 8 10 20 40 80 160

HOR .600 .350 .263 .222 .198 .158 .153 .149 .152

QS .842 .575 .456 .393 .358 .291 .282 .278 .277

BR .844 .582 .443 .360 .305 .179 .109 .072 .057

TBM .663 .386 .291 .245 .218 .174 .168 .164 .167

RF .674 .381 .278 .225 .191 .112 .063 .036 .020

FS .600 .348 .260 .217 .193 .150 .137 .126 .117

FFS .627 .368 .274 .227 .201 .146 .117 .093 .075

� = 20 2 4 6 8 10 20 40 80 160

HOR .538 .285 .199 .157 .132 .083 .061 .054 .053

QS .734 .463 .346 .282 .242 .157 .118 .104 .104

BR .787 .528 .397 .318 .266 .146 .078 .042 .023

TBM .563 .297 .208 .164 .137 .086 .063 .056 .056

RF .565 .302 .214 .170 .143 .084 .049 .027 .014

FS .538 .284 .198 .156 .131 .082 .060 .053 .052

FFS .550 .293 .205 .161 .135 .082 .060 .049 .043

NL 2 4 6 8 10 20 40 80 160

HOR .550 .300 .211 .171 .144 .091 .059 .042 .032

QS .759 .489 .375 .309 .261 .175 .125 .086 .066

BR .795 .538 .411 .335 .278 .155 .085 .050 .028

TBM .584 .318 .226 .182 .153 .096 .062 .044 .034

RF .588 .321 .231 .185 .153 .084 .045 .024 .013

FS .550 .299 .211 .171 .143 .087 .055 .038 .027

FFS .565 .312 .220 .180 .152 .088 .054 .036 .026

Average number of text harater inspetions for some Rand� problems and for

a natural language problem

4.3 Average Number of Comparisons

For eah test, the average number of harater omparisons has been obtained by

taking the total number of times a text harater is ompared with a harater in the

pattern and dividing it by the total number of haraters in the text bu�er.

It turns out that the Forward-Fast-Searh algorithm ahieves the best results in

most ases. Sporadially our algorithm is seond only to the Berry-Ravindran al-

gorithm whih obtains very good results for short patterns and small alphabets.

Moreover we observe that Tuned Boyer-Moore, Fast-Searh and Forward-Fast-Searh

22

Forward-Fast-Searh: Another Fast Variant of the Boyer-Moore String Mathing Algorithm

algorithms perform a very low number of haraters omparisons in the ase of large

alphabets.

� = 2 2 4 6 8 10 20 40 80 160

HOR 1.000 1.159 1.260 1.269 1.281 1.244 1.272 1.235 1.270

QS .9588 1.109 1.088 1.119 1.095 1.073 1.104 1.079 1.080

BR .2631 .3766 .3916 .3989 .3962 .3973 .3969 .3940 .3893

TBM .3333 .6044 .6995 .7154 .7249 .7082 .7215 .7024 .7205

FS .3333 .4767 .4466 .3925 .3573 .2609 .1967 .1530 .1248

FFS .3076 .4224 .3875 .3324 .2962 .1964 .1377 .1003 .0766

� = 4 2 4 6 8 10 20 40 80 160

HOR .7143 .5100 .4356 .4041 .3922 .3732 .3890 .3652 .3928

QS .6053 .4864 .4109 .3908 .3716 .3491 .3719 .3556 .3742

BR .2747 .2353 .1898 .1628 .1432 .1025 .0883 .0813 .0837

TBM .1429 .1445 .1264 .1175 .1140 .1085 .1131 .1062 .1141

FS .1429 .1373 .1141 .1024 .0949 .0784 .0690 .0577 .0526

FFS .1323 .1272 .1041 .0913 .0822 .0601 .0454 .0341 .0263

� = 8 2 4 6 8 10 20 40 80 160

HOR .6000 .3501 .2639 .2222 .1985 .1586 .1531 .1490 .1522

QS .4631 .3189 .2505 .2139 .1943 .1559 .1504 .1487 .1524

BR .2711 .1940 .1479 .1202 .1018 .0598 .0364 .0243 .0190

TBM .0667 .0482 .0365 .0307 .0274 .0219 .0212 .0206 .0210

FS .0667 .0477 .0359 .0300 .0267 .0207 .0190 .0175 .0167

FFS .0634 .0459 .0345 .0287 .0252 .0184 .0148 .0117 .0095

� = 20 2 4 6 8 10 20 40 80 160

HOR .5385 .2844 .1991 .1569 .1316 .0828 .0608 .0541 .0537

QS .3837 .2427 .1805 .1476 .1263 .0817 .0607 .0538 .0534

BR .2608 .1760 .1323 .1061 .0887 .0490 .0263 .0141 .0079

TBM .0256 .0149 .0104 .0082 .0069 .0043 .0032 .0028 .0028

FS .0256 .0149 .0104 .0082 .0069 .0043 .0032 .0028 .0027

FFS .0251 .0147 .0103 .0081 .0068 .0042 .0030 .0025 .0022

NL 2 4 6 8 10 20 40 80 160

HOR .5501 .3000 .2117 .1716 .1445 .0913 .0595 .0420 .0329

QS .4031 .2605 .2002 .1646 .1393 .0914 .0654 .0455 .0364

BR .2599 .1794 .1371 .1118 .0927 .0519 .0286 .0168 .0094

TBM .0345 .0245 .0171 .0142 .0123 .0089 .0061 .0046 .0042

FS .0345 .0245 .0171 .0141 .0121 .0066 .0043 .0030 .0025

FFS .0333 .0244 .0168 .0153 .0140 .0058 .0032 .0020 .0014

Average number of omparisons for some Rand� problems and for a natural language problem

5 Conlusion

We presented a new e�ient variant of the Boyer-Moore string mathing algorithm,

named Forward-Fast-Searh. As its progenitor Fast-Searh, the Forward-Fast-Searh

algorithm applies repeatedly the bad harater rule until the last harater of the

pattern is mathed orretly and then it begins to math the pattern against the

text from right to left. At the end of eah mathing phase, it omputes the shift

advanement as a funtion of the mathed su�x of the pattern and the �rst harater

of the text past the urrent window (forward good su�x rule).

It turns out that, despite the O(m � j�j)-spae and O(m �max(m; j�j))-time om-

plexity required in the worst ase to preompute the forward good su�x funtion, the

23

Proeedings of the Prague Stringology Conferene '03

Forward-Fast-Searh algorithm is very fast in pratie and ompares well with other

fast variants of the Boyer-Moore algorithm.

We plan to evaluate theoretially the average time omplexity of the Forward-Fast-

Searh algorithm, and to adapt it to sanning strategies depending on the harater

frequenies.

Referenes

[BM77℄ R. S. Boyer and J. S. Moore. A fast string searhing algorithm. Commun.

ACM, 20(10):762�772, 1977.

[BR99℄ T. Berry and S. Ravindran. A fast string mathing algorithm and experi-

mental results. Pro. of the Prague Stringology Club Workshop '99 Czeh

Tehnial University, Prague, Czeh Republi, Collaborative Report DC�

99�05, pp. 16�28, 1999.

[BYR92℄ R. A. Baeza-Yates and M. Régnier. Average running time of the Boyer-

Moore-Horspool algorithm. Theor. Comput. Si., 92(1):19�31, 1992.

[CF03℄ D. Cantone and S. Faro. Fast-Searh: a new variant of the Boyer-Moore

string mathing algorithm. In K. Jansen et al. (Eds.), Pro. of WEA 2003,

LNCS 2647, pp. 47�58, 2003.

[CCG

+

94℄ M. Crohemore, A. Czumaj, L. G�asienie, S. Jarominek, T. Leroq,

W. Plandowski, and W. Rytter. Speeding up two string mathing al-

gorithms. Algorithmia, 12(4/5):247�267, 1994.

[GO80℄ L. J. Guibas and A. M. Odiyzko. A new proof of the linearity of the

Boyer-Moore string searhing algorithm. SIAM J. Comput., 9(4):672�682,

1980.

[Hor80℄ R. N. Horspool. Pratial fast searhing in strings. Softw. Prat. Exp.,

10(6):501�506, 1980.

[HS91℄ A. Hume and D. M. Sunday. Fast string searhing. Softw. Prat. Exp.,

21(11):1221�1248, 1991.

[KMP77℄ D. E. Knuth, J. H. Morris, and V. B. Pratt. Fast pattern mathing in

strings. SIAM J. Comput., 6:323-350, 1977.

[Le00℄ T. Leroq. New experimental results on exat string-mathing. Rapport

LIFAR 2000.03, Université de Rouen, Frane, 2000.

[Rit80℄ W. Rytter. A orret preproessing algorithm for Boyer-Moore string

searhing. SIAM J. Comput., 9:509-512, 1980.

[Sun90℄ D. M. Sunday. A very fast substring searh algorithm. Commun. ACM,

33(8):132�142, 1990.

[Yao79℄ A. C. Yao. The omplexity of pattern mathing for a random string. SIAM

J. Comput., 8(3):368�387, 1979.

24

Approximate Seeds of Strings

Manolis Christodoulakis

1

and Costas S. Iliopoulos

1

and

Kunsoo Park

2�

and Jeong Seop Sim

3

1

Department of Computer Siene,

King's College London

e-mail: {manolis, si}�ds.kl.a.uk

2

Shool of Computer Siene and Engineering,

Seoul National University

e-mail: kpark�theory.snu.a.kr

3

Eletronis and Teleommuniations Researh Institute

Daejeon 305-350, Korea

e-mail: simjs�etri.re.kr

Abstrat. In this paper we study approximate seeds of strings, that is, sub-

strings of a given string x that over (by onatenations or overlaps) a super-

string of x, under a variety of distane rules (the Hamming distane, the edit

distane, and the weighted edit distane). We solve the smallest distane ap-

proximate seed problem and the restrited smallest approximate seed problem

in polynomial time and we prove that the general smallest approximate seed

problem is NP-omplete.

Keywords: regularities, seeds, approximate seeds, Hamming distane, edit dis-

tane, weighted edit distane, penalty matrix.

1 Introdution

Finding regularities in strings is useful in a wide area of appliations whih involve

string manipulations. Moleular biology, data ompression and omputer-assisted

musi analysis are lassi examples. By regularities we mean repeated strings of an

approximate nature. Examples of regularities inlude repetitions, periods, overs and

seeds. Regularities in strings have been studied widely the last 20 years.

There are several O(n logn)-time algorithms [11, 6, 27℄ for �nding repetitions, that

is, equal adjaent substrings, in a string x, where n is the length of x. Apostolio and

Breslauer [2℄ gave an optimal O(log logn)-time parallel algorithm (i.e., total work is

O(n logn)) for �nding all the repetitions.

The preproessing of the Knuth-Morris-Pratt algorithm [22℄ �nds all periods of

x in linear time� in fat, all periods of every pre�x of x. Apostolio, Breslauer

and Galil [3℄ derived an optimal O(log logn)-time parallel algorithm for �nding all

periods.

�

Work supported by IMT 2000 Projet AB02, MOST grant M1-0309-06-0003, and Royal Soiety

grant.

25

Proeedings of the Prague Stringology Conferene '03

The fat that in pratise it was often desirable to relax the meaning of �repetition�,

has led more reently to the study of a olletion of related patterns��overs� and

�seeds�. Covers are similar to periods, but now overlaps, as well as onatenations, are

allowed. The notion of overs was introdued by Apostolio, Farah and Iliopoulos

in [5℄, where a linear-time algorithm to test superprimitivity, was given (see also

[8, 9, 18℄). Moore and Smyth [29℄ and reently Li and Smyth [25℄ gave linear time-

time algorithms for �nding all overs of a string x. In parallel omputation, Iliopoulos

and Park [19℄ obtained an optimal O(log logn) time algorithm for �nding all overs

of x. Apostolio and Ehrenfeuht [4℄ and Iliopoulos and Mouhard [17℄ onsidered

the problem of �nding maximal quasiperiodi substrings of x. A two-dimensional

variant of the overing problem was studied in [12, 15℄, and a minimum overing by

substrings of a given length in [20℄.

An extension of the notion of overs, is that of seeds; that is, overs of a superstring

of x. The notion of seeds was introdued by Iliopoulos, Moore and Park [16℄ and an

O(n logn)-time algorithm was given for omputing all seeds of x. A parallel algorithm

for �nding all seeds was presented by Berkman, Iliopoulos and Park [7℄, that requires

O(logn) time and O(n logn) work.

In appliations suh as moleular biology and omputer-assisted musi analysis,

�nding exat repetitions is not always su�ient. A more appropriate notion is that

of approximate repetitions ([10, 13℄); that is, �nding strings that are �similar� to a

given pattern, by allowing errors. In this paper, we onsider three di�erent kinds of

�similarity� (approximation): the Hamming distane, the edit distane [1, 35℄ and a

generalization of the edit distane, the weighted edit distane, where di�erent osts

are assigned to eah substitution, insertion and deletion for eah pair of symbols.

Approximate repetitions have been studied by Landau and Shmidt [24℄, who

derived an O(kn logk logn)-time algorithm for �nding approximate squares whose

edit distane is at most k in a text of length n. Shmidt also gave an O(n

2

logn)

algorithm for �nding approximate tandem or nontandem repeats in [31℄ whih uses an

arbitrary sore for similarity of repeated strings. More reently, Sim, Iliopoulos, Park

and Smyth provided polynomial time algorithms for �nding approximate periods [33℄

and, Sim, Park, Kim and Lee solved the approximate overs problem in [34℄.

In this paper, we introdue the notion of approximate seeds, an approximate

version of seeds. We solve the smallest distane approximate seed problem and the

restrited smallest approximate seed problem and we prove that the more general

smallest approximate seed problem is NP-omplete.

The paper is organized as follows. In setion 2, we present some basi de�nitions.

In setion 3, we desribe the notion of approximate seeds and we de�ne the three

problems studied in this paper. In setion 4, we present the algorithms that solve the

�rst two problems and the proof that the third problem is NP-omplete. Setion 5

ontains our onlusion.

2 Preliminaries

A string is a sequene of zero or more symbols from an alphabet �. The set of all

strings over � is denoted by �

�

. The length of a string x is denoted by jxj. The

empty string, the string of length zero, is denoted by ". The i-th symbol of a string

x is denoted by x[i℄.

26

Approximate Seeds of Strings

A string w is a substring of x if x = uwv, where u; v 2 �

�

. We denote by x[i::j℄

the substring of x that starts at position i and ends at position j. Conversely, x is

alled a superstring of w. A string w is a pre�x of x if x = wy, for y 2 �

�

. Similarly,

w is a su�x of x if x = yw, for w 2 �

�

. We all a string w a subsequene (also alled

a subword [14℄) of x (or x is a supersequene of w) if w is obtained by deleting zero or

more symbols at any positions from x. For example, ae is a subsequene of aabdef .

For a given set S of strings, a string w is alled a ommon supersequene of S if s is

a supersequene of every string in S.

The string xy is a onatenation of the strings x and y. The onatenation of k

opies of x is denoted by x

k

. For two strings x = x[1::n℄ and y = y[1::m℄ suh that

x[n � i + 1::n℄ = y[1::i℄ for some i � 1 (that is, suh that x has a su�x equal to

a pre�x of y), the string x[1::n℄y[i + 1::m℄ is said to be a superposition of x and y.

Alternatively, we may say that x overlaps with y.

A substring y of x is alled a repetition in x, if x = uy

k

v, where u; y; v are

substrings of x and k � 2, jyj 6= 0. For example, if x = aababab, then a (appearing in

positions 1 and 2) and ab (appearing in positions 2, 4 and 6) are repetitions in x; in

partiular a

2

= aa is alled a square and (ab)

3

= ababab is alled a ube.

A substring w is alled a period of a string x, if x an be written as x = w

k

w

0

where k � 1 and w

0

is a pre�x of w. The shortest period of x is alled the period of

x. For example, if x = ababab, then ab, abab and the string x itself are periods

of x, while ab is the period of x.

A substring w of x is alled a over of x, if x an be onstruted by onatenating

or overlapping opies of w. We also say that w overs x. For example, if x = ababaaba,

then aba and x are overs of x. If x has a over w 6= x, x is said to be quasiperiodi;

otherwise, x is superprimitive.

A substring w of x is alled a seed of x, if w overs one superstring of x (this an

be any superstring of x, inluding x itself). For example, aba and ababa are some

seeds of x = ababaab.

We all the distane Æ(x; y) between two strings x and y, the minimum ost to

transform one string x to the other string y. There are several well known distane

funtions, desribed in the next paragraph. The speial symbol � is used to represent

the absene of a harater.

2.1 Distane funtions

The edit distane between two strings is the minimum number of edit operations

that transform one string into another. The edit operations are the insertion of an

extraneous symbol (e.g., � ! a), the deletion of a symbol (e.g., a ! �) and the

substitution of a symbol by another symbol (e.g., a ! b). Note that in the edit

distane model we only ount the number of edit operations, onsidering the ost of

eah operation equal to 1.

The Hamming distane between two strings is the minimum number of substitu-

tions (e.g., a ! b) that transform one string to the other. Note that the Hamming

distane an be de�ned only when the two strings have the same length, beause it

does not allow insertions and deletions.

We also onsider a generalized version of the edit distane model, the weighted

edit distane, where the edit operations no longer have the same osts. It makes use

27

Proeedings of the Prague Stringology Conferene '03

a b a e �

j j j

a b � d e g

Figure 1: Alignment example

of a penalty matrix, a matrix that spei�es the ost of eah substitution for eah pair

of symbols, and the insertion and deletion ost for eah harater. A penalty matrix

is a metri when it satis�es the following onditions for all a; b; 2 � [f�g:

� Æ(a; b) � 0,

� Æ(a; b) = Æ(b; a),

� Æ(a; a) = 0, and

� Æ(a;) � Æ(a; b) + Æ(b;) (triangle inequality).

The similarity between two strings an be seen by using an alignment ; that is, any

pairing of symbols subjet to the restrition that if lines were drawn between paired

symbols, as in Figure 1, the lines would not ross. The equality of the lengths an be

obtained by inserting or deleting zero or more symbols. In our example, the string

�abae� is transformed to �abdeg� by deleting, substituting and inserting a harater

at positions 3, 4 and 6, respetively. Note that this is not the only possible alignment

between the two strings.

We say that a distane funtion Æ(x; y) is a relative distane funtion if the lengths

of strings x and y are onsidered in the value of Æ(x; y); otherwise it is an absolute

distane funtion. The Hamming distane and the edit distane are examples of

absolute distane funtions. There are two ways to de�ne a relative distane between

x and y:

� First, we an �x one of the two strings and de�ne a relative distane funtion

with respet to the �xed string. The error ratio with respet to x is de�ned to

be d=jxj, where d is an absolute distane between x and y.

� Seond, we an de�ne a relative distane funtion symmetrially. The symmetri

error ratio is de�ned to be d=l, where d is an absolute distane between x and

y, and l = (jxj+ jyj)=2 [32℄. Note that we may take l = jxj+ jyj, in whih ase

everything is the same exept that the ratio is multiplied by 2.

If d is the edit distane between x and y, the error ratio with respet to x or the

symmetri error ratio is alled a relative edit distane. The weighted edit distane an

also be used as a relative distane funtion beause the penalty matrix an ontain

arbitrary osts.

3 Problem De�nitions

De�nition 1 Let x and s be strings over �

�

, Æ be a distane funtion and t be

a number. We all s a t-approximate seed of x if and only if there exist strings

s

1

; s

2

; : : : ; s

r

(s

i

6= ") suh that

28

Approximate Seeds of Strings

(i) Æ(s; s

i

) � t, for 1 � i � r, and

(ii) there exists a superstring y = uxv, juj < jsj and jvj < jsj, of x that an be

onstruted by overlapping or onatenating opies of the strings s

1

; s

2

; : : : ; s

r

.

Eah s

i

, 1 � i � r, will be alled a seed blok of x.

Note that y an be any superstring of x, inluding x itself (in whih ase, s is

an approximate over). Note, also, that there an be several versions of approximate

seeds aording to the de�nition of distane funtion Æ.

An example of an approximate seed is shown in Figure 2. For strings x =

BABACCB and s = ABAB, s is an approximate seed of x with error 1 (ham-

ming distane), beause there exist the strings s

1

= ABAB; s

2

= ABAC; s

3

=

CBAB, suh that the distane between s and eah s

i

is no more than 1, and by

onatenating or overlapping the strings s

1

; s

2

; s

3

we onstrut a superstring of x,

y = ABABACCBAB.

A B A B A C C B A B

s

1

s

2

s

3

Figure 2: Approximate Seed example.

We onsider the following three problems related to approximate seeds.

Problem 1 Smallest Distane Approximate Seed Let x be a string of length

n, s be a string of length m, and Æ be a distane funtion. Find the minimum number

t suh that s is a t-approximate seed of x.

In this problem, the string s is given a priori. Thus, it makes no di�erene whether

Æ is an absolute distane funtion or an error ratio with respet to s. If a threshold

k � jsj on the edit distane is given as input to Problem 1, the problem asks whether

s is a k-approximate seed of x or not (the k-approximate seed problem). Note that if

the edit distane is used for Æ, it is trivially true that s is an jsj-approximate seed of

x.

Problem 2 Restrited Smallest Approximate Seed Given a string x of

length n, �nd a substring s of x suh that: s is a t-approximate seed of x and there

is no substring of x that is a k-approximate seed of x for all k < t.

Sine any substring of x an be a andidate for s, the length of s is not (a priori)

�xed in this problem. Therefore, we need to use a relative distane funtion (i.e.,

an error ratio or a weighted edit distane) rather than an absolute distane funtion.

For example, if the absolute edit distane is used, every substring of x of length 1 is

a 1-approximate seed of x. Moreover, we assume that s is of length at most jxj=2,

beause, otherwise the longest proper pre�x of x (or any long pre�x of x) an easily

beome an approximate seed of x with a small distane. This assumption will be

applied to Problem 3, too.

29

Proeedings of the Prague Stringology Conferene '03

Problem 3 Smallest Approximate Seed Given a string x of length n, �nd a

string s suh that: s is a t-approximate seed of x and there is no substring of x that

is a k-approximate seed of x for all k < t.

Problem 3 is a generalization of Problem 2; s an now be any string, not neessarily

a substring of x. Obviously, this problem is harder than the previous one; we will

prove that it is NP-omplete.

4 Algorithms and NP-Completeness

4.1 Problem 1

Our algorithm for Problem 1 onsists of two steps. Let n = jxj and m = jsj.

1. Compute the distane between s and every substring of x.

We denote by w

ij

the distane between s and x[i::j℄, for 1 < i � j < n. Note

that, by de�nition of approximate seeds, x[i::n℄ an be mathed to any pre�x

of s, and x[1::j℄ an be mathed to any su�x of s (beause s has to over

any superstring of x). Thus, we denote w

in

the minimum value of the distanes

between all pre�xes of s and x[i::n℄, and w

1j

the minimum value of the distanes

between all su�xes of s and x[1::j℄.

2. Compute the minimum t suh that s is a t-approximate seed of x.

We use dynami programming to ompute t as follows. Let t

i

be the minimum

value suh that s is a t

i

-approximate seed of x[1::i℄. Let t

0

= 0. For i = 1 to n,

we ompute t

i

by the following formula:

t

i

= min

0�h<i

fmax fmin

h�j<i

ft

j

g; w

h+1;i

gg (1)

The value t

n

is the minimum t suh that s is a t-approximate seed of x.

To ompute the distane between two strings, x and y, in step 1, a dynami

programming table, alled the D table, of size (jxj + 1) � (jyj + 1), is used. Eah

entry D[i; j℄; 0 � i � jxj and 0 � j � jyj, stores the minimum ost of transforming

x[1::i℄ to y[1::j℄. Initially, D[0; 0℄ = 0; D[i; 0℄ = D[i� 1; 0℄ + Æ(x[i℄;�) and D[0; j℄ =

D[0; j�1℄+Æ(�; y[j℄). Then we an ompute all the entries of the D table in O(jxjjyj)

time by the following reurrene:

D[i; j℄ = min

8

>

<

>

:

D[i� 1; j℄ + Æ(x[i℄;�)

D[i; j � 1℄ + Æ(�; y[j℄)

D[i� 1; j � 1℄ + Æ(x[i℄; y[j℄)

where Æ(a; b) is the ost of substituting harater a with harater b, Æ(a;�) is the

ost of deleting a and Æ(�; a) is the ost of inserting a.

The seond step of the algorithm is omputed as shown in Figure 3. For every h,

we over x[h+1::i℄ with one opy of s, with error w

h+1;i

. What is left to be overed is

x[1::h℄. We obtain this by overing either x[1::h℄, with error t[h℄, or x[1::h + 1℄, with

error t[h+ 1℄, : : : or x[1::i� 1℄, with error t[i� 1℄, (in general x[1::j℄, with error t[j℄);

we hoose the x[1::j℄ (the shaded box) that gives the smallest error. Note that, this

box overs a superstring of x[1::j℄.

30

Approximate Seeds of Strings

x

1
i

h+ 1

n

s

j

Figure 3: The seond step of the algorithm.

Theorem 1 Problem 1 an be solved in O(mn

2

) time when a weighted edit distane

is used for Æ. If the edit or the Hamming distane is used for Æ, it an be solved in

O(mn) time.

Proof. For an arbitrary penalty matrix, step 1 takes O(mn

2

) time, sine we make a

D table of size (m+1)�(n�i+2) for eah position i of x. The fat that a superstring

of x, rather than x itself, has to be �overed� does not inrease the time omplexity,

if we use the following proedure: instead of omputing a new D-table between eah

s[1::k℄ (resp. s[k::m℄) and x[i::n℄ (resp. x[1::j℄), we just make one D-table between

s and x[i::n℄ (resp. s

R

(x[1::j℄)

R

) and take the minimum value of the last olumn of

this table.

In step 2, we an ompute the minimum t in O(n

2

) time as follows. The inner

min loop of formula (1) an be omputed in onstant time by reusing the min values

omputed in the previous round. The outer min loop is repeated i times, for 1 � i �

n, i.e., O(n

2

) repetitions.

Thus, the total time omplexity is O(mn

2

).

When the edit distane is used for the measure of similarity, this algorithm for

Problem 1 an be improved. In this ase, Æ(a; b) is always 1 if a 6= b and Æ(a; b) = 0

otherwise. Now it is not neessary to ompute the edit distanes between s and the

substrings of x whose lengths are larger than 2m beause their edit distanes with

s will exeed m. (It is trivially true that s is an m-approximate seed of x.) Step 1

now takes O(m

2

n) time sine we make a D table of size (m+ 1)� (2m+ 1) for eah

position of x. Also, step 2 an be done in O(mn) time sine we ompare O(m) values

at eah position of x. Thus, the time omplexity is redued to O(m

2

n).

However, we an do better. Step 1 an be solved in O(mn) time by the algorithm

due to Landau, Myers and Shmidt [23℄. Given two strings x and y and a forward

(resp. bakward) solution for the omparison between x and y, the algorithm in [23℄

inrementally omputes a solution for x and by (resp. yb) in O(k) time, where b is an

additional harater and k is a threshold on the edit distane. This an be done due

to the relationship between the solution for x and y and the solution for x and by.

When k = m (i.e., the threshold is not given) we an ompute all the edit distanes

between s and every substring of x whose length is at most 2m in O(mn) time using

this algorithm. Reently, Kim and Park [21℄ gave a simpler O(mn)-time algorithm

for the same problem. Therefore, we an solve Problem 1, in O(mn) time if the edit

distane is used for Æ. When the threshold k is given as input for Problem 1, it an

be solved in O(kn) time beause eah step of the above algorithm takes O(kn) time.

If we use the Hamming distane for Æ, in step 1 we onsider only the substrings

of x of length m. (Reall that the Hamming distane is de�ned only between strings

of equal length) Sine there are O(n) suh substrings, and we need O(m) time to

ompute the distane between eah substring and s, step 1 takes O(mn) time. Also,

as in the ase of the edit distane, step 2 an be done in O(mn) time (we ompare

O(m) values at eah position of x). Thus, the overall time omplexity is O(mn). �

31

Proeedings of the Prague Stringology Conferene '03

x

x

x[j::n℄

s

i

i+m-2

s = x[i::i +m� 2℄

(Previous D table)

Newly omputed

row

x

x

x[j::n℄

s

i

i+m-1

s = x[i::i +m� 1℄

(New D table)

Figure 4: Computing new D tables

4.2 Problem 2

In this problem, we are not given a string s. Any substring of x is now a andidate

for approximate seed. Let s be suh a andidate string. Reall that, sine the length

of s is not �xed in this ase, we need to use a relative distane funtion (rather than

an absolute distane funtion); that is, an error ratio, in the ase of the Hamming or

edit distane, or a weighted edit distane.

When the relative edit distane is used for the measure of similarity, Problem 2

an be solved in O(n

4

) time by our algorithm for Problem 1. If we take eah substring

of x as s and apply the O(mn) algorithm for Problem 1 (that uses the algorithm in

[23℄), it takes O(jsjn) time for eah s. Sine there are O(n

2

) substrings of x, the

overall time is O(n

4

).

For weighted edit distanes (as well as for relative edit distanes), we an solve

Problem 2 in O(n

4

) time, without using the somewhat ompliated algorithm in [23℄.

Like before, we onsider every substring of x as andidate string s, and we solve

Problem 1 for x and s. But, we do this, by proessing all the substrings of x that

start at position i, at the same time, as follows.

Let T be the minimum distane so far. Initially, T = 1. For eah i; 1 � i � n,

we proess the n� i + 1 substrings that start at position i as andidate strings. Let

m be the length of a hosen substring of x as s. Initially, m = 1.

1. Take x[i::i + m � 1℄ as s and ompute w

hj

, for all 1 � h � j � n. This

omputation an be done by making n D tables with s and eah of the n

su�xes of x. By adding just one row to eah of previous D tables (i.e., n D

tables when s = x[i::i +m� 2℄), we an ompute these new D tables in O(n

2

)

time. See Figure 4. (Note that when m = 1, we reate new D tables.)

2. Compute the minimum distane t suh that s is a t-approximate seed of x. This

step is similar to the seond step of the algorithm for Problem 1. Let t

i

be the

minimum value suh that s is a t

i

-approximate seed of x[1::i℄ and t

0

= 0. For

i = 1 to n, we ompute t

i

by the following formula:

t

i

= min

0�h<i

fmax fmin

h�j<i

ft

j

g; w

h+1;i

gg

The value t

n

is the minimum t suh that s is a t-approximate seed of x. If t

n

is

smaller than T , we update T with t

n

. If m < n� i+ 1, inrease m by 1 and go

to step 1.

When all the steps are ompleted, the �nal value of T is the minimum distane

and the substring s that is a T -approximate seed of x is an answer to Problem 2.

32

Approximate Seeds of Strings

(Note that there an be more than one substring s that are T -approximate seeds of

x).

Theorem 2 Problem 2 an be solved in O(n

4

) time when a weighted edit distane

or a relative edit distane is used for Æ. When a relative Hamming distane is used

for Æ, Problem 2 an be solved in O(n

3

) time.

Proof. For a weighted edit distane, we make n D tables in O(n

2

) time in step 1

and ompute the minimum distane in O(n

2

) time in step 2. For m = 1 to n� i+ 1,

we repeat the two steps. Therefore, it takes O(n

3

) time for eah i and the total time

omplexity of this algorithm is O(n

4

). If a relative edit distane is used, the algorithm

an be slightly simpli�ed, as in Problem 1, but it still takes O(n

4

) time.

For a relative Hamming distane, it takes O(n) time for eah andidate string and

sine there are O(n

2

) andidate strings, the total time omplexity is O(n

3

). �

4.3 Problem 3

Given a set of strings, the shortest ommon supersequene (SCS) problem is to �nd

a shortest ommon supersequene of all strings in the set. The SCS problem is NP-

omplete [26, 30℄. We will show that Problem 3 is NP-omplete by a redution from

the SCS problem. In this setion we will all Problem 3 the SAS problem (abbreviation

of the smallest approximate seed problem). The deision versions of the SCS and SAS

problems are as follows:

De�nition 2 (SCS) Given a positive integer m and a �nite set S of strings from �

�

where � is a �nite alphabet, the SCS problem is to deide if there exists a ommon

supersequene w of S suh that jwj � m.

De�nition 3 (SAS) Given a number t, a string x from (�

0

)

�

where �

0

is a �nite

alphabet, and a penalty matrix, the SAS problem is to deide if there exists a string

u suh that u is a t-approximate seed of x.

Theorem 3 The SAS problem is NP-omplete.

5 Conlusions

In this paper, we solved the smallest distane approximate seed problem, in O(mn)

time for the Hamming and edit distane and O(mn

2

) for the weighted edit distane,

and the restrited smallest approximate seed problem, in O(n

4

) time for the edit and

weighted edit distane and O(n

3

) for the Hamming distane. We also proved that the

smallest approximate seed problem is NP-omplete.

The signi�ane of our work omes from the fat that we solved the �rst two

problems for approximate seeds, with exatly the same time omplexities as those

for approximate periods [33℄ and approximate overs [34℄, despite the fat that seeds

allow overlaps, as well as onatenations, and over a superstring of a string x (rather

than overing the string x itself).

33

Proeedings of the Prague Stringology Conferene '03

Referenes

[1℄ A. Aho and T. Peterson. A minimum distane error-orreting parser for ontext-

free languages. SIAM J. Computing, 1:305�312, 1972.

[2℄ A. Apostolio and D. Breslauer. An optimalO(log logN)-time parallel algorithm

for deteting all squares in a string. SIAM Journal on Computing, 25(6):1318�

1331, 1996.

[3℄ A. Apostolio, D. Breslauer, and Z. Galil. Optimal parallel algorithms for peri-

ods, palindromes and squares. Pro. 19th Int. Colloq. Automata Languages and

Programming, 623:296�307, 1992.

[4℄ A. Apostolio and A. Ehrenfeuht. E�ient detetion of quasiperiodiities in

strings. Theoretial Computer Siene, 119(2):247�265, 1993.

[5℄ A. Apostolio, M. Farah, and C. S. Iliopoulos. Optimal superprimitivity testing

for strings. Information Proessing Letters, 39(1):17�20, 1991.

[6℄ A. Apostolio and F. P. Preparata. Optimal o�-line detetion of repetitions in a

string. Theoretial Computer Siene, 22:297�315, 1983.

[7℄ O. Berkman, C. S. Iliopoulos, and K. Park. The subtree max gap problem

with appliation to parallel string overing. Information and Computation,

123(1):127�137, 1995.

[8℄ D. Breslauer. An on-line string superprimitivity test. Information Proessing

Letters, 44(6):345�347, 1992.

[9℄ D. Breslauer. Testing string superprimitivity in parallel. Information Proessing

Letters, 49(5):235�241, 1994.

[10℄ T. Crawford, C. S. Iliopoulos, and R. Raman. String mathing tehniques for

musial similarity and melodi reognition. Computing in Musiology, 11:73�100,

1998.

[11℄ M. Crohemore. An optimal algorithm for omputing repetitions in a word.

Information Proessing Letters, 12(5):244�250, 1981.

[12℄ M. Crohemore, C. S. Iliopoulos, and M. Korda. Two-dimensional pre�x string

mathing and overing on square matries. Algorithmia, 20:353�373, 1998.

[13℄ M. Crohemore, C. S. Iliopoulos, and H. Yu. Algorithms for omputing evolu-

tionary hains in moleular and musial sequenes. In Pro. 9th Australasian

Workshop on Combinatorial Algorithms, pages 172�185, 1998.

[14℄ M. Crohemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

[15℄ C. S. Iliopoulos and M. Korda. Optimal parallel superprimitivity testing on

square arrays. Parallel Proessing Letters, 6(3):299�308, 1996.

[16℄ C. S. Iliopoulos, D. Moore, and K. Park. Covering a string. Algorithmia, 16:288�

297, 1996.

34

Approximate Seeds of Strings

[17℄ C. S. Iliopoulos and L. Mouhard. An O(n logn) algorithm for omputing all

maximal quasiperiodiities in strings. In Pro. Computing: Australasian Theory

Symposium, pages 262�272. Leture Notes in Computer Siene, 1999.

[18℄ C. S. Iliopoulos and K. Park. An optimal O(log logn)-time algorithm for parallel

superprimitivity testing. J. Korea Inform. Si. So., 21:1400�1404, 1994.

[19℄ C. S. Iliopoulos and K. Park. A work-time optimal algorithm for omputing all

string overs. Theoretial Computer Siene, 164:299�310, 1996.

[20℄ C. S. Iliopoulos and W. F. Smyth. On-line algorithms for k-overing. In Pro-

eedings of the 9th Australasian Workshop On Combinatorial Algorithms, pages

97�106, Perth, WA, Australia, 1998.

[21℄ S. Kim and K. Park. A dynami edit distane table. In Pro. 11th Symp.

Combinatorial Pattern Mathing, volume 1848, pages 60�68. Springer, Berlin,

2000.

[22℄ D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern mathing in strings.

SIAM Journal on Computing, 6(1):323�350, 1977.

[23℄ G. M. Landau, E. W. Myers, and J. P. Shmidt. Inremental string omparison.

SIAM Journal on Computing, 27(2):557�582, 1998.

[24℄ G. M. Landau and J. P. Shmidt. An algorithm for approximate tandem repeats.

In Proeedings of the 4th Annual Symposium on Combinatorial Pattern Mathing,

number 684, pages 120�133, Padova, Italy, 1993. Springer-Verlag, Berlin.

[25℄ Y. Li and W. F. Smyth. An optimal on-line algorithm to ompute all the overs

of a string.

[26℄ D. Maier. The omplexity of some problems on subsequenes and supersequenes.

Journal of the ACM, 25(2):322�336, 1978.

[27℄ M. G. Main and R. J. Lorentz. An algorithm for �nding all repetitions in a

string. Journal of Algorithms, 5:422�532, 1984.

[28℄ M. Middendorf. More on the omplexity of ommon superstring and superse-

quene problems. Theoretial Computer Siene, 125(2):205�228, 1994.

[29℄ D. Moore and W. F. Smyth. A orretion to �An optimal algorithm to ompute

all the overs of a string�. Information Proessing Letters, 54(2):101�103, 1995.

[30℄ K. J. Räihä and E. Ukkonen. The shortest ommon supersequene problem

over binary alphabet is NP-omplete. Theoretial Computer Siene, 16:187�

198, 1981.

[31℄ J. P. Shmidt. All highest soring paths in weighted grid graphs and its applia-

tion to �nding all approximate repeats in strings. SIAM Journal on Computing,

27(4):972�992, 1998.

[32℄ P. H. Sellers. Pattern reognition geneti sequenes by mismath density. Bulletin

of Mathematial Biology, 46(4):501�514, 1984.

35

Proeedings of the Prague Stringology Conferene '03

[33℄ J. S. Sim, C. S. Iliopoulos, K. Park, and W. F. Smyth. Approximate periods of

strings. Theoretial Computer Siene, 262:557�568, 2001.

[34℄ J. S. Sim, K. Park, S. Kim, and J. Lee. Finding approximate overs of strings.

Journal of Korea Information Siene Soiety, 29(1):16�21, 2002.

[35℄ R. Wagner and M. Fisher. The string-to-string orretion problem. Journal of

the ACM, 21:168�173, 1974.

36

Construting Fator Orales

Loek Cleophas

1

and Gerard Zwaan

1

and Brue W. Watson

1;2

1

Department of Mathematis and Computer Siene, Tehnishe Universiteit

Eindhoven, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

2

Department of Computer Siene, University of Pretoria,

Pretoria 0002, South Afria

e-mail: loek�loekleophas.om, g.zwaan�tue.nl, brue�brue-watson.om

Abstrat. A fator orale is a data struture for weak fator reognition. It is

an automaton built on a string p of length m that is ayli, reognizes at least

all fators of p, has m+1 states whih are all �nal, and has m to 2m� 1 transi-

tions. In this paper, we give two alternative algorithms for its onstrution and

prove the onstruted automata to be equivalent to the automata onstruted

by the algorithms in [1℄. Although these new O(m

2

) algorithms are pratially

ine�ient ompared to the O(m) algorithm given in [1℄, they give more insight

into fator orales. Our �rst algorithm onstruts a fator orale based on the

su�xes of p in a way that is more intuitive. Some of the ruial properties of

fator orales, whih in [1℄ need several lemmas to be proven, are immediately

obvious. Another important property however beomes less obvious. A seond

algorithm gives a lear insight in the relationship between the trie or dawg re-

ognizing the fators of p and the fator orale reognizing a superset thereof.

We onjeture that an O(m) version of this trie-based algorithm exists.

Keywords: fator orale, �nite automaton, weak fator reognition, algorithm

derivation, pattern mathing.

1 Introdution

A fator orale is a data struture for weak fator reognition. It an be desribed

as an automaton built on a string p of length m that (a) is ayli, (b) reognizes

at least all fators of p, () has m + 1 states (whih are all �nal), and (d) has m to

2m�1 transitions (f. [1℄). Some example fator orales are given in Figures 1 and 2.

0 1
a

2

b

4

c

b
3

b

c

c

Figure 1: Fator orale for abb (reognizing ab 62 fat(p))

37

Proeedings of the Prague Stringology Conferene '03

0 1
a

2

b

4

c

b
3

b

c

c
5

c
6

a

a

Figure 2: Fator orale for abba (reognizing ab; ab; aba; aba; abba; bba; ba 62

fat(p))

Fator orales are introdued in [1℄ as an alternative to the use of exat fator

reognition in many on-line keyword pattern mathing algorithms. In suh algorithms,

a window on a text is read bakward while attempting to math a keyword fator.

When this fails, the window is shifted using the information on the longest fator

mathed and the mismathing harater.

Instead of an automaton reognizing exatly the set of fators of the keyword,

it is possible to use a fator orale: although it reognizes more strings than just

the fators and thus might read bakwards longer than neessary, it annot miss any

mathes. The advantage of using fator orales is that they are easier to onstrut

and take less spae to represent ompared to the automata that were previously used

in these fator-based algorithms, suh as su�x, fator and subsequene automata.

This is the result of the latter automata laking one or more of the four essential

properties of the fator orale.

The fator orale is introdued in [1℄ by means of an O(m

2

) onstrution algorithm

that is used as its de�nition. Furthermore, an O(m) sequential onstrution algorithm

is desribed. It is not obvious by just onsidering the algorithms that it reognizes

at least all fators of p and has m to 2m� 1 transitions (i.e. that (b) and (d) hold).

For both algorithms, a number of lemmas are needed to prove this. In this paper, we

give two alternative algorithms for the onstrution of a fator orale.

Our �rst algorithm, in Setion 2, onstruts a fator orale based on the su�xes

of p. This algorithm is O(m

2

) and thus not of pratial interest, but it is more in-

tuitive to understand and properties (b) and (d)�two important properties of fator

orales�are immediately obvious from the algorithm. The ayliity of the fator or-

ale however�orresponding to property (a)�is not immediately obvious. Our proof

of this property (part of Property 6) is rather involved, whereas the property is imme-

diately obvious from the algorithms in [1℄. We prove that the alternative onstrution

algorithm and those given in [1℄ onstrut equivalent automata in Setion 3.

In Setion 4 we present our seond algorithm, whih onstruts a fator orale

from the trie reognizing the fators of p. Although this algorithm is O(m

2

) as well,

it gives a lear insight in the relationship between the trie and dawg reognizing the

fators of p and the fator orale reognizing a superset thereof. In addition, we

onjeture that an O(m) trie-based algorithm exists.

Finally, Setion 5 gives a summary and overview of future work.

1.1 Related Work

An earlier version of this paper appears as [3, Chapter 4℄. In that thesis, some

properties of the language of a fator orale are disussed as well. The thesis also

38

Construting Fator Orales

disusses pattern mathing algorithms�among them those using fator orales�and

the implementation of the fator orale as part of the SPARE Time pattern mathing

toolkit, a revised and extended version of SPARE Parts ([9℄).

As mentioned before, fator orales were introdued in [1℄ as an alternative to the

use of exat fator reognition in many on-line keyword pattern mathing algorithms.

A pattern mathing algorithm using the fator orale is desribed in that paper as

well.

Apart from their use in pattern mathing algorithms, fator orales have been

used in a heuristi to ompute repeated fators of a string [6℄ as well as to ompress

text [7℄. An improvement for those uses of fator orales is introdued in [8℄ in the

form of the repeat orale.

Related to the fator orale, the su�x orale�in whih only those states orre-

sponding to a su�x of p are marked �nal�is introdued in [1℄. In [2℄ the fator orale

is extended to apply to a set of strings.

1.2 Preliminaries

A string p = p

1

:::p

m

of length m is a sequene of haraters from an alphabet V . A

string u is a fator (resp. pre�x, su�x) of a string v if v = sut (resp. v = ut, v = su),

for s; t 2 V

�

. We will use pref(p), su�(p) and fat(p) for the set of pre�xes, su�xes

and fators of p respetively. A pre�x (resp. su�x or fator) is a proper pre�x (resp.

su�x or fator) of a string p if it does not equal p. We write u �

s

v to denote that u

is a su�x of v, and u <

s

v to denote that u is a proper su�x of v.

2 Constrution Based on Su�xes

Our �rst alternative algorithm for the onstrution of a fator orale onstruts a

`skeleton' automaton for p�reognizing pref(p)�and then onstruts a path for

eah of the su�xes of p in order of dereasing length, suh that eventually at least

pref(su�(p)) = fat(p) is reognized. If suh a su�x of p is already reognized, no

transition needs to be onstruted. If on the other hand the omplete su�x is not yet

reognized there is a longest pre�x of suh a su�x that is reognized. A transition on

the next, non-reognized symbol is then reated, from the state in whih this longest

pre�x of the su�x is reognized, to a state from whih there is a path leading to state

m that spells out the rest of the su�x.

Build_Orale_2(p = p

1

p

2

:::p

m

)

1: for i from 0 to m do

2: Create a new �nal state i

3: end for

4: for i from 0 to m� 1 do

5: Create a new transition from i to i + 1 by p

i+1

6: end for

7: for i from 2 to m do

8: Let the longest path from state 0 that spells a pre�x of p

i

:::p

m

end in state j

and spell out p

i

:::p

k

(i� 1 � k � m)

9: if k 6= m then

39

Proeedings of the Prague Stringology Conferene '03

10: Build a new transition from j to k + 1 by p

k+1

11: end if

12: end for

Note that this algorithm is O(m

2

) (sine the operation on line 6 an be implemented

using a while loop). The fator orale on p built using this algorithm is referred to

as Orale(p) and the language reognized by it as fatorale(p).

The �rst two properties we give are obvious given our algorithm. They orrespond

to (b) and ()-(d) respetively as mentioned in Setion 1.

Property 1 fat(p) � fatorale(p).

Proof: The algorithm onstruts a path for all su�xes of p and all states are �nal.

Property 2 For p of length m, Orale(p) has exatly m + 1 states and between m

and 2m� 1 transitions.

Proof: States an be onstruted in steps 1-2 only, and exatly m + 1 states are

onstruted there. In step 4 of the algorithm, m transitions are reated. In steps 5-8,

at most m� 1 transitions are reated.

Property 3 (Glushkov's property) All transitions reahing a state i of Orale(p)

are labeled by p

i

.

Proof: The only steps of the algorithm that reate transitions are steps 4 and 8. In

both, transitions to a state i are reated labeled by p

i

.

Property 4 (Weak determinism) For eah state of Orale(p), no two outgoing

transitions of the state are labeled by the same symbol.

Proof: The algorithm never reates an outgoing transition by some symbol if suh a

transition already exists.

We now de�ne funtion pour(u; p) to give the end position of the leftmost ourrene

of u in p (equivalent to the same funtion in [1℄):

De�nition 1 Funtion pour 2 V

�

� V

�

! N is de�ned as

pour(u; p) = minfjtuj; p = tuvg (p; t; u; v 2 V

�

)

Note that if u 62 fat(p), pour(u; p) =1.

Property 5 For su�xes and pre�xes of fators we have:

uv 2 fat(p)) pour(v; p) � pour(uv; p) (p; u; v 2 V

�

)

uv 2 fat(p)) pour(u; p) � pour(uv; p)� jvj (p; u; v 2 V

�

)

We introdue min(i) for the minimum length string reognized in state i�either in

a partially onstruted or in the omplete automaton.

In the following property, we use j

i

and k

i

to identify the values j and k attain

when onsidering su�x p

i

:::p

m

of p in steps 5-8 of the algorithm.

40

Construting Fator Orales

Property 6 For the partial automaton onstruted aording to algorithmBuild_-

Orale_2 with all su�xes of p of length greater than m� i + 1 already onsidered

in steps 5-8 (2 � i � m+ 1), we have that

i. it is ayli

ii. for eah h with 1 � h < i, all pre�xes of p

h

:::p

m

are reognized

iii. for eah state n and outgoing transition to a state q 6= n+ 1,

q � k

max

+ 1 holds where k

max

= maxfk

h

; 1 < h < i ^ k

h

< mg

iv. for eah state n, min(n) is an element of fat(p), min(n) is a su�x of eah

string reognized in n, and n = pour(min(n); p)

v. if u 2 fat(p) is reognized, it is reognized in a state n � pour(u; p)

vi. for eah state n and eah symbol a suh that there is a transition from n to a

state q by a, min(n) � a 2 fat(p) and q = pour(min(n) � a; p)

vii. for eah pair of states n and q, if min(n) �

s

min(q), then n � q, and as a

result, if min(n) <

s

min(q), then n < q

viii. if w is reognized in state n, then for any su�x u of w, if u is reognized, it is

reognized in state q � n

Proof: See Appendix A.

Note that Property 6, i. orresponds to property (a) in Setion 1.

3 Equivalene to Original Algorithms

A fator orale as introdued in [1℄ is built by the following algorithm:

Build_Orale(p = p

1

p

2

:::p

m

)

1: for i from 0 to m do

2: Create a new �nal state i

3: end for

4: for i from 0 to m� 1 do

5: Create a new transition from i to i + 1 by p

i+1

6: end for

7: for i from 0 to m� 1 do

8: Let u be a minimal length word in state i

9: for all � 2 �; � 6= p

i+1

do

10: if u� 2 Fat(p

i�juj+1

:::p

m

) then

11: Build a new transition from i to

�

i� juj+ pour(u�; p

i�juj+1

:::p

m

) by �

12: end if

13: end for

�

Note that in [1℄ the term �juj is missing in the algorithm, although from the rest of the paper

it is lear that it is used in the onstrution of the automata

41

Proeedings of the Prague Stringology Conferene '03

14: end for

To prove the equivalene of the automata onstruted by the two algorithms, we need

the following properties.

Property 7 For any state i of both Orale(p) (i.e. the fator orale onstruted a-

ording to algorithm Build_Orale_2 and the fator orale onstruted aording

to algorithm Build_Orale), if u = min(i) then

u� 2 fat(p

i�juj+1

:::p

m

) � u� 2 fat(p)

Proof:): Trivial. (: By Property 6, iv. (for Build_Orale_2) and [1, Lemma

1℄ (for Build_Orale), i = pour(u; p). By Property 5, pour(u�; p) � i, hene

u� 2 fat(p

i�juj+1

:::p

m

).

Property 8 For any state i of an automaton onstruted by either algorithm, if

u = min(i) and u� 2 fat(p) then

i� juj+ pour(u�; p

i�juj+1

:::p

m

) = pour(u�; p)

Proof:

i� juj+ pour(u�; p

i�juj+1

:::p

m

)

= { de�nition pour }

i� juj+minfjtu�j; p

i�juj+1

:::p

m

= tu�vg

= { u = min(i), hene reognized in i = pour(u; p) }

i� juj+minfjtu�j � (i� juj); p = tu�vg

= { u� 2 fat(p), property of min }

i� juj+minfjtu�j; p = tu�vg � (i� juj)

= { alulus, de�nition pour }

pour(u�; p)

Property 9 The algorithms Build_Orale_2 and Build_Orale

onstrut equivalent automata.

Proof: We prove this by indution on the states. Our indution hypothesis is that

for eah state j (0 � j < i), min(j) is the same in both automata, and the outgoing

transitions from state j are equivalent for both automata.

If i = 0, u = min(i) = " in both automata. Consider a transition reated

by Build_Orale_2, say to state k by � 6= p

i+1

. Sine this transition exists,

u� 2 fat(p) and k = pour(u�; p) (due to Property 6, vi.). Using Properties 7

and 8, suh a transition was reated by Build_Orale as well. Similarly, onsider

a transition reated by Build_Orale, say to state k by �. This transition, say

on symbol �, leads to state k = i � juj + pour(u�; p

i�juj+1

:::p

m

) and was reated

sine u� 2 fat(p

i�juj+1

:::p

m

) (see the algorithm). Using Properties 7 and 8, suh a

transition was reated by Build_Orale_2 as well.

42

Construting Fator Orales

If i > 0, using the indution hypothesis and ayliity of the automata, i has

the same inoming transitions and as a result min(i) is the same for both automata.

Using the same arguments as in ase i = 0, the outgoing transitions from state i are

equivalent for both automata.

As a result, the two automata are equivalent.

4 Constrution Based on Trie

0 1
a

5

b

9

c

2
b

3
b

4
c

6
b

8

c
7

c

Figure 3: Trie reognizing fat(abb)

0 1
a

5
b

4

c

2
b

3
b c
b

c

Figure 4: DAWG reognizing fat(abb)

0 1
a

2

b

4

c

b
3

b

c

c

Figure 5: Fator orale reognizing fat(abb) [fabg

There is a lose relationship between the data strutures Trie(fat(p)) �the trie

([5℄) on fat(p)�reognizing exatly fat(p), DAWG(fat(p)) �the direted ayli

word graph ([4℄) on fat(p)�reognizing exatly fat(p), and Orale(p)�the fator

orale on p�whih reognizes at least fat(p).

It is well known that DAWG(fat(p)) an be onstruted from Trie(fat(p)) by

merging states whose right languages are idential (see for example [4℄). The fator

orale as de�ned by Orale(p) an also be onstruted from Trie(fat(p)), by merging

states whose right languages have idential longest strings (whih are su�xes of p).

An example of a trie, DAWG and fator orale for the fators of abb an be seen in

Figures 3-5.

43

Proeedings of the Prague Stringology Conferene '03

De�nition 2 We de�ne Trie(S) as a 5-tuple <Q, V , Æ, ", F> where S is a �nite

set of strings, Q = pref(S) is the set of states, V is the alphabet, Æ is the transition

funtion, de�ned by

Æ(u; a) =

(

ua if ua 2 pref(S)

? if ua 62 pref(S)

(u 2 pref(S); a 2 V);

" is the single start state and F = S is the set of �nal states.

Property 10 For u; v 2 fat(p) we have :

uv 2 fat(p) ^ (8w : uw 2 fat(p) : jwj � jvj)) uv 2 su�(p)

uv

1

2 fat(p) ^ (8w : uw 2 fat(p) : jwj � jv

1

j)

^ uv

2

2 fat(p) ^ (8w : uw 2 fat(p) : jwj � jv

2

j)) v

1

= v

2

Property 11 For u 2 fat(p) and C 2 N,

(8w : uw 2 fat(p) : jwj � C) � (8w : uw 2 su�(p) : jwj � C)

Proof:): trivial. (: Let ux 2 fat(p), then (9y : : uxy 2 su�(p)), hene (9y : :

jxyj � C), and sine jyj � 0, jxj � C.

Using Properties 10 and 11, max

p

(u) an be de�ned as the unique longest string v

suh that uv 2 su�(p):

De�nition 3 De�ne max

p

(u) = v where v is suh that

uv 2 su�(p) ^ (8w : uw 2 su�(p) : jwj � jvj)

We now present our simple trie-based onstrution algorithm for fator orales:

Trie_To_Orale(p = p

1

p

2

:::p

m

)

1: Construt Trie(fat(p))

2: for i from 2 to m do

3: Merge all states u for whih max

p

(u) = p

i+1

:::p

m

into the single state p

1

:::p

i

4: end for

The order in whih the values of i are onsidered is not important. In addition, note

that it is not neessary to onsider the states u for whih max

p

(u) = p

2

:::p

m

sine

there is preisely one suh state u in Trie(fat(p)), u = p

1

. Due to Property 10, it is

su�ient to only onsider su�xes of p as longest strings.

Also note that the intermediate automata may be nondeterministi, but the �nal

automaton will be weakly deterministi (as per Property 4).

The above algorithm has omplexity O(m

2

) (assuming that max

p

(u) was om-

puted during onstrution of the trie). The onstrution of a Trie an be done in

O(m) time however, and the merging of the states is similar to minimization of an

44

Construting Fator Orales

ayli automaton, whih an also be done in O(m). We therefore onjeture that an

O(m) trie-based fator orale onstrution algorithm exists.

To prove that algorithm Trie_To_Orale onstruts Orale(p), we de�ne a

partition on the states of the trie, indued by an equivalene relation on the states.

De�nition 4 Relation �

p

on states of Trie(fat(p)) is de�ned by

t �

p

u � max

p

(t) = max

p

(u) (t; u 2 fat(p))

Note that relation �

p

is an equivalene relation.

We now show that the partitioning into sets of states of Trie(fat(p)) indued by �

p

,

is the same as the partitioning of Trie(fat(pa)) indued by �

pa

, restrited to the

states of Trie(fat(p)), i.e.

Property 12

t �

p

u � t �

pa

u (t; u 2 fat(p); a 2 V)

Proof:

t �

p

u

� { de�nition �

p

}

max

p

(t) = max

p

(u)

� { }

max

p

(t)a = max

p

(u)a

� { (?) }

max

pa

(t) = max

pa

(u)

� { de�nition �

pa

}

t �

pa

u

where we prove (?) by

v = max

pa

(u)

� { de�nition max

pa

}

uv 2 su�(pa) ^ (8w : uw 2 su�(pa) : jwj � jvj)

� { u 2 fat(p), hene (9x : : uxa 2 su�(pa)),

hene jxaj > 0 and jvj > 0; su�(pa) = su�(p)a [f"g }

uv 2 su�(p)a ^ (8w : uw 2 su�(pa) : jwj � jvj)

� { jvj > 0 }

uv 2 su�(p)a ^ (8w : w 6= " ^ uw 2 su�(pa) : jwj � jvj) ^ v = v

0

a

� { su�(pa) = su�(p)a [f"g }

uv 2 su�(p)a ^ (8w : w 6= " ^ uw 2 su�(p)a : jwj � jvj) ^ v = v

0

a

45

Proeedings of the Prague Stringology Conferene '03

� { w = w

0

a }

uv 2 su�(p)a ^ (8w

0

: uw

0

a 2 su�(p)a : jw

0

aj � jv

0

aj) ^ v = v

0

a

� { }

uv 2 su�(p)a ^ (8w

0

: uw

0

2 su�(p) : jw

0

j � jv

0

j) ^ v = v

0

a

� { v = v

0

a }

uv

0

2 su�(p) ^ (8w

0

: uw

0

2 su�(p) : jw

0

j � jv

0

j) ^ v = v

0

a

� { de�nition max

p

}

v

0

= max

p

(u) ^ v = v

0

a

� { }

v = max

p

(u)a

Property 13 Algorithm Trie_To_Orale onstruts Orale(p).

Proof: By indution on jpj = m. If m = 0, p = ", and Trie(fat(")) = Orale(").

If m = 1, p = a (a 2 V), and Trie(fat(a))=Orale(a). If m > 1, p = xa

(x 2 V

�

; a 2 V), and we may assume the algorithm to onstrut part Orale(x)

of Orale(xa) orretly (using fat(ua) = fat(u) [su�(u)a, Trie(fat(xa)) being

an extension of Trie(fat(x)), and Orale(xa) being an extension of Orale(x) (whih

is straightforward to see from algorithm Build_Orale_2 as well as [1, page 57,

after Corollary 4℄), and Property 12). Now onsider the states of this partially on-

verted automaton in whih su�xes of x are reognized. By onstrution of the trie,

there are transitions from these states by a. The fator orale onstrution aord-

ing to algorithm Orale_Sequential in [1℄ reates Orale(xa) from Orale(x)+a

(i.e. the fator orale for x extended with a single new state m reahable from state

m� 1 by symbol p

m

= a) by reating new transitions to state m from those states in

whih su�xes of x are reognized and that do not yet have a transition on a. Sine

Trie_To_Orale merges all states t for whih max

xa

(t) = a into the single state

m, Orale(xa) is onstruted orretly from Trie(fat(xa)).

5 Conlusions and Future Work

We have presented two alternative onstrution algorithms for fator orales and

shown the automata onstruted by them to be equivalent to those onstruted by

the algorithms in [1℄. Although both our algorithms are O(m

2

) and thus pratially

ine�ient ompared to the O(m) sequential algorithm given in [1℄, they give more

insight into fator orales.

Our �rst algorithm is more intuitive to understand and makes it immediately

obvious, without the need for several lemmas, that the fator orale reognizes at

least fat(p) and has m to 2m� 1 transitions.

Our seond algorithm gives a lear insight into the relationship between the trie

or dawg reognizing fat(p) and the fator orale reognizing a superset thereof. We

46

Construting Fator Orales

onjeture that an O(m) trie-based algorithm for the onstrution of fator orales

exists.

0 1
a

2

b

3

c

6

d

9

e

b
5

c

c
4

a

d

e

c d

e

7
a

8
c e

Figure 6: Fator orale reognizing a superset of fat(p) (inluding for example ae 62

fat(p)), for p = abadae.

0 1
a

2

b

3

c

6

d

9

e

b

c

c
4

a

d

e

5
c d

7
a

8
c e

Figure 7: Alternative automaton with m + 1 states satisy�ng Glushkov's property

yet reognizing a di�erent superset of fat(p) than the fator orale for p (inluding

for example aadae 62 fatorale(p), but not ae) and having less transitions, for

p = abadae.

As stated in [1℄, the fator orale is not minimal in terms of number of transitions

among the automata with m+ 1 states reognizing at least fat(p). We note that it

is not even minimal among the subset of suh automata having Glushkov's property

(see Figures 6 and 7).

We are working on an automaton-independent de�nition of the language reog-

nized by the fator orale. Suh a haraterization would enable us to alulate how

many strings are reognized that are not fators of the original string. This ould

be useful in determining whether to use a fator orale-based algorithm in pattern

mathing or not.

Aknowledgements

We would like to thank Mihiel Frishert for reading and ommenting on earlier ver-

sions of this paper, and the anonymous referees for their helpful omments and sug-

gestions.

47

Proeedings of the Prague Stringology Conferene '03

Referenes

[1℄ Cyril Allauzen, Maxime Crohemore, and Mathieu Ra�not. E�ient Experi-

mental String Mathing by Weak Fator Reognition. In Proeedings of the 12th

onferene on Combinatorial Pattern Mathing, volume 2089 of LNCS, pages 51�

72, 2001.

[2℄ Cyril Allauzen and Mathieu Ra�not. Orale des fateurs d'un ensemble de mots.

Tehnial Report 99-11, Institut Gaspard-Monge, Université de Marne-la-Vallée,

June 1999.

[3℄ Loek G.W.A. Cleophas. Towards SPARE Time: A New Taxonomy and Toolkit

of Keyword Pattern Mathing Algorithms. MS thesis, Tehnishe Universiteit

Eindhoven, August 2003.

[4℄ Maxime Crohemore and Wojieh Rytter. Text Algorithms. Oxford University

Press, 1994.

[5℄ E. Fredkin. Trie memory. Communiations of the ACM, 3(10):490�499, 1960.

[6℄ Arnaud Lefebvre and Thierry Leroq. Computing repeated fators with a fator

orale. In L. Brankovi and J. Ryan, editors, Proeedings of the 11th Australasian

Workshop on Combinatorial Algorithms, pages 145�158, 2000.

[7℄ Arnaud Lefebvre and Thierry Leroq. Compror: on-line losless data ompression

with a fator orale. Inf. Proess. Lett., 83(1):1�6, 2002.

[8℄ Arnaud Lefebvre, Thierry Leroq, and J. Alexandre. Drasti improvements over

repeats found with a fator orale. In E. Billington, D. Donovan, and A. Khodkar,

editors, Proeedings of the 13th Australasian Workshop on Combinatorial Algo-

rithms, pages 253�265, 2002.

[9℄ Brue W. Watson and Loek Cleophas. SPARE Parts: A C++ toolkit for String

PAttern REognition. Software: Pratie and Experiene, 2003. To be published.

A Proof of Property 6

We �rst onsider the automaton onstruted in steps 1-4 of the algorithm. It is

straightforward to verify that the properties hold for i = 2.

Now assume that the properties hold for the automaton with all su�xes of p of

length greater than m � i + 1 already onsidered. We prove that they also hold for

the automaton after the su�x of length m� i+ 1, p

i

:::p

m

, has been onsidered.

If k = m in step 6, su�x p

i

:::p

m

is already reognized, no new transition will be

reated, the automaton does not hange and the properties still hold.

If k < m, then we need to prove that eah of the properties holds for the new

automaton.

Ad i: By v., string p

i

:::p

k

is reognized in state j � pour(p

i

:::p

k

; p). Sine

p

i

:::p

k

�

s

p

1

:::p

k

and pour(p

1

:::p

k

; p) = k, pour(p

i

:::p

k

; p) � k due to Property 5.

Sine j � k, the transition reated from j to k + 1 is a forward one.

48

Construting Fator Orales

Ad ii: Trivial.

Ad iii: We prove that the property holds for the new automaton by showing that

k = k

i

� k

max

, i.e. k will beome the new k

max

.

If k

max

= �1, k � k

max

learly holds.

If k

max

> �1, assume that k

max

> k, then there is an h suh that 1 < h < i ^

k

h

< m ^ k

h

= k

max

. Fator p

h

:::p

k

is reognized in g � k due to ii. and v.

If g = k, then p

h

:::p

k

is reognized in k and p

h

:::p

m

is reognized in m; so k

h

= m

whih ontradits k

h

< m.

If g < k, then p

h

:::p

k

is reognized in g < k. Sine p

i

:::p

k

is reognized in j = j

i

and p

i

:::p

k

�

s

p

h

:::p

k

, due to viii., j � g.

If j = g, then p

h

:::p

k

is the longest pre�x of p

h

:::p

m

reognized by the old automa-

ton, whih ontradits ii.

If j < g, then j < g < k. We know that min(g) �

s

p

h

:::p

k

(using iv.), min(j) �

s

p

h

:::p

k

(using iv. and p

i

:::p

k

�

s

p

h

:::p

k

) and therefore that min(j) <

s

min(g) (due

to vii.). Let l be the state to whih the transition by p

k+1

from g leads, i.e. l is the state

in whih p

h

:::p

k+1

is reognized. Using vi., we have that l = pour(min(g) � p

k+1

; p).

Using Property 5 we have that l � pour(p

h

:::p

k+1

; p) and the latter is � k + 1 due

to the de�nition of pour (sine k + 1 marks the end of an ourrene of p

h

:::p

k+1

).

We have pour(min(j) � p

k+1

; p) � pour(min(g) � p

k+1

; p) = l sine min(j) �

s

min(g). We want to prove that k + 1 � pour(min(j) � p

k+1

; p). Assume that

pour(min(j) � p

k+1

; p) < k + 1. If the �rst ourrene of min(j) � p

k+1

starts before

position i of p, then it is a pre�x of a su�x of p longer than p

i

:::p

m

and thus by ii.

min(j) � p

k+1

is reognized. Sine min(j) is reognized in j, a transition from j by

p

k+1

must exist and we have a ontradition. If the �rst ourrene of min(j) � p

k+1

starts at or after position i of p, then there exists a shortest string x suh that

x �min(j) � p

k+1

2 pref(p

i

:::p

k

) and x �min(j) � p

k+1

is reognized in a state � j. But

then x �min(j) is reognized in a state n < j. By viii., sine min(j) �

s

x �min(j),

this means that min(j) is reognized in state s � n < j and we have a ontradition.

Thus k+1 � pour(min(j)�p

k+1

; p) � l and therefore, sine l � k+1 holds, l = k+1.

In that ase, p

h

:::p

k+1

is reognized in l = k + 1 and p

h

:::p

m

is reognized in m. But

then k

h

= m, and we have a ontradition.

Thus, k

max

= k

h

� k = k

i

and iii. holds for the new automaton.

Ad iv: Let s = min(j), t = min(k + 1) and u = min(h) (k + 1 � h � m)

respetively in the old automaton. Due to the proof of iii., k = k

i

� k

max

and

therefore a unique path between k + 1 and h exists, labeled r, and�due to iv�

u �

s

tr.

If jsp

k+1

rj � juj, u remains the minimal length string reognized in state h. Sine

s �

s

p

i

:::p

k

, sp

k+1

r �

s

p

i

:::p

k+1

r. Sine u �

s

tr, tr �

s

p

1

:::p

k+1

r and jsp

k+1

rj � juj,

u �

s

sp

k+1

r and�due to iv.�u �

s

s

0

p

k+1

r as well for any s

0

reognized in state j.

If jsp

k+1

rj < juj, sp

k+1

r is the new minimal length string reognized in state

h. Sine s �

s

p

i

:::p

k

, sp

k+1

r �

s

p

i

:::p

k+1

r. Sine u �

s

tr, tr �

s

p

1

:::p

k+1

r and

jsp

k+1

rj < juj, sp

k+1

r �

s

u and�due to iv.�sp

k+1

r �

s

s

0

p

k+1

r as well for any s

0

reognized in state j.

Sine p

i

:::p

k+1

r was not reognized before, it is not a pre�x of p, p

2

:::p

m

, ...,

p

i�1

:::p

m

(using ii.), hene pour(p

i

:::p

k+1

r; p) = k + 1 + jrj. Sine s �

s

p

i

:::p

k

,

pour(sp

k+1

r; p) � k + 1 + jrj. Assume that pour(sp

k+1

r; p) < k + 1 + jrj, then

p

i

:::p

k+1

r = usp

k+1

rv (u; v 2 V

�

, v 6= ", juj minimal), sine sp

k+1

r annot start before

49

Proeedings of the Prague Stringology Conferene '03

p

i

beause in that ase it would have already been reognized by the old automaton.

Fator us is reognized in state g < j (using i.) and�sine viii. holds�s �

s

us is

reognized in a state o � g < j. This ontradits s being reognized in j. As a result

pour(sp

k+1

r; p) = k + 1 + jrj.

Ad v: Any new fator of p reognized after reation of the transition from j to

k+1 has the form vp

k+1

r and is reognized in k+1+ jrj with v 2 fat(p) reognized

in state j. Sine k + 1 + jrj = pour(min(k + 1)r; p) (using iii., iv. holding for the

new automaton plus the fat that k is the new k

max

) and min(k+1) �r �

s

vp

k+1

r due

to iv. holding for the new automaton, k+1+ jrj � pour(vp

k+1

r; p) using Property 5.

Ad vi: The states n we have to onsider are n = j and n = h for k + 1 � h � m.

For n = j, a new transition to k+1 is reated and by iv., min(j) �

s

p

i

:::p

k

., hene

we have min(j) � p

k+1

�

s

p

i

:::p

k+1

, p

k+1�jmin(j)j

:::p

k+1

= min(j) � p

k+1

, min(j) � p

k+1

2

fat(p) and pour(min(j) �p

k+1

; p) � k+1. Sine min(j) �p

k+1

is reognized in state

k + 1, due to v. for the new automaton, k + 1 � pour(min(j) � p

k+1

; p). Therefore

k + 1 = pour(min(j) � p

k+1

; p).

For n = h with k + 1 � h � m, min(h) hanges to sp

k+1

r if and only if

jsp

k+1

rj < juj (with r; s; u as in the proof of iv.). We know that ua 2 fat(p) and

q = pour(ua; p). Sine sp

k+1

r �

s

u, sp

k+1

ra �

s

ua, hene sp

k+1

ra 2 fat(p) as well

and pour(sp

k+1

ra; p) � pour(ua; p) = q, but due to v., q � pour(sp

k+1

ra; p)

hene q = pour(sp

k+1

ra; p).

Ad vii: Assume min(n) �

s

min(q). We have pour(min(n); p) � pour(min(q);

p) due to Property 5, whih aording to iv. is equivalent to n � q.

Ad viii: By indution on jwj. It is true if jwj = 0 or jwj = 1. Assume that it

is true for all strings x suh that jxj < jwj. We will show that it is also true for w,

reognized in n.

Let w = xa (x 6= "), x is reognized in h (0 < h < n). Consider a proper su�x of

w, reognized in state q. It either equals " and is reognized in state 0 � n or it an

be written as va where v <

s

x.

Su�x va of w is reognized, therefore su�x v of x is reognized and aording

to the indution hypothesis, v is reognized in state l � h. Let �x = min(h) and

�v = min(l). Due to iv. for the new automaton, �x �

s

x and �v �

s

v. We now prove

that �v �

s

�x. If l = h, then �v = �x. Now onsider the ase l < h. Sine v �

s

x and

�v �

s

v, �v �

s

x. Due to vii., �x 6�

s

�v. Thus, sine �v and �x both are su�xes of x, �v �

s

�x.

Sine �x is reognized in h and there is a transition by a from h to n, by vi. for the new

automaton we have that �xa 2 fat(p) and n = pour(�xa; p). Sine �v is reognized

in l and there is a transition by a from l to q, �va 2 fat(p) and q = pour(�va; p) due

to vi. for the new automaton. Sine �va �

s

�xa, pour(�va; p) � pour(�xa; p) due to

Property 5 and hene q � n.

We have shown that the properties hold for every partial automaton during the

onstrution. Consequently, they hold for the omplete automaton Orale(p).

50

Computing the Minimum k-Cover of a String

Rihard Cole

1x

, Costas S. Iliopoulos

2y

, Manal Mohamed

2z

,

W. F. Smyth

3{

and Lu Yang

4

1

Computer Siene Department, Courant Institute of Mathematial Sienes,

New York University, New York, NY 10012-1185 U.S.A.

ole�s.nyu.edu

2

Algorithm Design Group, Department of Computer Siene,

King's College London, London WC2R 2LS, England

{si,manal}�ds.kl.a.uk

3

Algorithms Researh Group, Department of Computing & Software,

MMaster University, Hamilton ON L8S 4K1, Canada &

Shool of Computing, Curtin University, Perth WA 6845, Australia

smyth�mmaster.a

4

IBM Canada Limited, 8200 Warden Avenue, Markham ON L6G 1C7, Canada

luyang�a.ibm.om

Abstrat. We study the minimum k-over problem. For a given string x of

length n and an integer k, the minimum k-over is the minimum set of k-

substrings that overs x. We show that the on-line algorithm that has been

proposed by Iliopoulos and Smyth [IS92℄ is not orret. We prove that the

problem is in fat NP-hard. Furthermore, we propose two greedy algorithms

that are implemented and tested on di�erent kind of data.

Keywords: string algorithm, k-over, data ompression, NP-omplete, greedy algo-

rithm.

1 Introdution

The minimum k-over problem is to ompute, for a given string x and an integer

k < jxj, a set U = fu

1

; u

2

; : : : ; u

m

g of substrings of x suh that:

(i) every u

i

is of length k;

(ii) the set U overs the string x;

(iii) the number m = jU j of suh substrings is the smallest possible.

x

Work supported in part by NSF grant CCR-0105678.

y

Partially supported by a Marie Curie fellowship,Wellome and Royal Soiety grants.

z

Supported by an EPSRC studentship.

{

Supported by a grant from the Natural Sienes & Engineering Researh Counil of Canada.

51

Proeedings of the Prague Stringology Conferene '03

This problem was studied by Iliopoulos and Smyth [IS92℄, where they designed an

O(n

2

(n� k)) on-line algorithm. The idea of a k-over is a generalization of the idea

of a over, where a string w is alled a over of a string x if x an be onstruted

by onatenations and superpositions of w. For example, if x = ababaaba, then aba

and x are the overs of x. If w 6= x overs x then w is alled a proper over of a

overable string x. The notion of a over was introdued by Apostolio et al. [AFI91℄,

where they gave a linear time algorithm for the shortest overs problem. Breslauer

[B92℄ presented an on-line algorithm for the same problem. Moore and Smyth [MS94℄

presented a linear time algorithm to ompute all the overs of every pre�x of a string.

An on-line algorithm for the same problem was developed by Li and Smyth [LS02℄.

Two O(n logn) algorithms for omputing all maximal overable substrings of a given

string were also presented, one by Iliopoulos and Mouhard [IM93℄ and the other by

Brodal and Pederson [BP00℄. A lot of work has been done on parallel omputation

of overs; see for example [B94℄ and [IP94℄.

A minimum k-over provides a theoretial lassi�ation of strings aording to

approximate periodiity. For every k, some strings have a minimum k-over of ar-

dinality 1, some a minimum k-over of ardinality 2, and so on. Thus for a range of

k, a minimum k-over an provide a measure of how lose to periodi every string

x is. Pratially, a minimum k-over has a potential appliation in data ompres-

sion of nonrandom strings. A minimum k-over may also be useful in DNA sequene

analysis. A DNA sequene is based on a four-letter alphabet for example fa; ; g; tg.

Hene, �nding the k-over of a DNA sequene ould be helpful for the analysis of its

struture.

In this paper, we brie�y present Iliopoulos and Smyth's on-line algorithm. Their

algorithm omputes the minimum k-overs for all pre�xes of a given string x in

O(n

2

(n� k)) time. We show why the algorithm does not work orretly (Setion 3).

In the rest of the paper we onsider two losely-related problems:

(Problem 1) for given x, k and m, deide whether there exists a k-over of x of

ardinality m;

(Problem 2) ompute a minimum k-over of x.

For m = 1, Problem 1 an be solved in �(n) time simply by omputing all

the overs of x [MS94, MS95, LS02℄ while at the same time testing to determine

whether or not eah one is of length k. For m > 1 we show by redution to 3-SAT

that Problem 1 is NP-hard (Setion 4). We then desribe two e�ient algorithms

that yield approximate solutions to Problem 2 (Setion 5). These approximation

algorithms have been tested and shown to provide good results (Setion 6). More

approximation algorithms were proposed in [Y00℄.

2 Preliminaries

A string is a sequene of zero or more symbols drawn from an alphabet �. The set

of all strings over � is denoted by �

�

. The string of length zero is the empty string �;

a string x of length n > 0 is represented by x

1

x

2

� � �x

n

, where x

i

2 � for 1 � i � n.

A string w is a substring of x if x = uwv for u; v 2 �

�

. More preisely, let i � n and

j � n denote nonnegative integers: if 1 � i � j, x[i::j℄ denotes the substring of x

52

Computing the Minimum k-Cover of a String

that starts at position i and has length j � i+ 1; otherwise, x[i::j℄ = �. A string w is

a pre�x of x if x = wu for some u 2 �

�

. Similarly, w is a su�x of x if x = uw for

some u 2 �

�

.

The string xy is a onatenation of two strings x and y. The onatenation of k

opies of x is denoted by x

k

. For two strings x = x

1

� � �x

n

and y = y

1

� � �y

m

suh

that x

n�i+1

� � �x

n

= y

1

� � � y

i

for some i � 1 (that is, suh that x has a su�x equal to

a pre�x of y), the string x

1

� � �x

n

y

i+1

� � � y

m

is said to be a superposition of x and y.

Alternatively, we may say that x overlaps with y.

A substring w is said to be a over of a given string x if every position of x lies

within an ourrene of a string w within x. Additionally, if jwj < jxj then w is alled

a proper over of x. For example, x is always a over of x, and w = aba is a proper

over of x = abaababa.

For a given a nonempty string x of length n and a set

U = fu

1

; u

2

; : : : ; u

m

g

of m strings eah of length k, we say that U is a k-over of x if and only if every

position of x lies within an ourrene of some u

i

, 1 � i � m. If m is the minimum

integer for whih suh a set U exists, then U is said to be a minimum k-over of x. To

avoid trivialities we suppose throughout that 1 < k < n=2. Note that 1 � m � dn=ke.

Next we state some basi fats about the minimum k-over.

Fat 1 The pre�x x[1::k℄ and the su�x x[n� k+1::n℄ are both neessarily elements

of every minimum k-over of x.

Fat 2 The ardinality of a minimum k-over of a string of length n is at most dn=ke.

Fat 3 A minimum k-over of a string x is not unique.

For example, if x = abdefg, then the sets

fab; bd; efgg; fab; de; efgg; fab; def; efgg

are all minimum 3-overs of x.

In [IS92℄, the number of distint minimum k-overs of a given string x of length

n has been proved to be exponential in n. This is a major ompliating fator in the

design of polynomial time algorithm for omputing the minimum k-overs of a given

string.

3 Iliopoulos & Smyth On-Line Algorithm

Reall that in [IS92℄, Iliopoulos and Smyth designed an O(n

2

(n � k)) time on-line

algorithm for omputing a minimum k-over of a given string x of length n. Their

algorithm sans a given string x from left to right and iteratively alulates a minimum

k-over for every pre�x of x. The algorithm is based upon the following two main

ideas:

1. Fat 1 states that a minimum k-over of x[1::i + 1℄ must inlude the su�x

x[i� k + 2::i+ 1℄. This is used as a yardstik to �nd a minimum k-over.

53

Proeedings of the Prague Stringology Conferene '03

2. For i � k, a minimum k-over of x[1::i + 1℄ depends only on the minimum

k-overs of the previous k positions; that is, the minimum k-over of x[1::i �

k + 1℄; : : : ; x[1::i� 1℄; x[1::i℄.

To ahieve e�ieny, the algorithm stores for eah positions i in x an array whih

identi�es all the k-substrings that our in at least one of the minimum k-overs.

Let

i

be the ardinality of this set. At step i + 1, the algorithm heks for eah

position j 2 i�k+1::i, whether the urrent su�x x[i�k+2::i+1℄ has already been

inluded in the stored minimum k-over of x[1::j℄. If so then the set overs x[1::i+1℄,

otherwise the urrent su�x has to be added to the set. Among these k andidates,

the algorithm hooses a set with the smallest ardinality as a minimum k-over of

x[1::i + 1℄. For more details see [IS92℄.

Lemma 3.1 For i � 2k and l; l

0

= 1; 2; : : :, let U

i;l

denotes the distint minimum

k-over for x[1::i℄. Then every minimum set U

i+1;l

is a superset of some minimum set

U

j;l

0

, i� k + 1 � j � i.

The above lemma is stated in [IS92℄ and it follows diretly from the two ideas

stated at the beginning of this setion. The algorithm as we brie�y desribed also

relies on the orretness of the lemma. In the next example we will show that the

lemma is not orret and onsequentially nor is the algorithm. The following example

illustrates just one of the situations where the algorithm fails to ompute a minimum

k-over.

Example: If x = baaababbaaaaabbabbbaaaa and k = 3 then when i + 1 = 27,

j 2 24::26, and position 27 should form its minimum k-over from position 24 beause

24

= min(

j

); j 2 24::27. The minimum k-overs of position 24 are as follows:

U

24;1

= fba; aab; abb; baa; ag;

U

24;2

= fba; aab; abb; baa; ag:

Neither of them ontains the su�x aa, so we get

27

=

24

+ 1 = 6, and aordingly

the minimum k-overs of position 27 are as follows:

U

27;1

= fba; aab; abb; baa; a; aag;

U

27;2

= fba; aab; abb; baa; a; aag:

But we an �nd at least one minimum k-over that is di�erent from U

27;1

and U

27;2

;

namely:

U

27;3

= fba; aab; abb; baa; aa; aag:

U

27;3

is a k-over of position 24, but not the minimum. However it will ontribute to

the minimum when position 27 is reahed. There is a potential problem for future

alulations if we lose U

27;3

at position 27; for example if we extend x by adding aa to

the end. As we an see, U

27;3

an be a minimum k-over of x[1::29℄. Without keeping

U

27;3

, we shall get

29

= 7, one greater than the minimum.

The above suggests that in order to ompute a minimum k-over of the urrent

position, we have to refer to every single k-over of the previous positions. Sine

the number of minimum k-overs of a string may be exponential, we doubt that the

problem of omputing a minimum k-over an be solved in polynomial time.

54

Computing the Minimum k-Cover of a String

4 Problem 1 and NP-Completeness

The k-over problem is to �nd a set over of minimum size for a given string. Restating

this optimization problem as a deision one, we wish to determine whether a given

string has a k-over of a given size m.

k

m

-COVER = fhx; k;mi : string x has a k-over of size mg.

The following theorem shows that this problem is NP-omplete.

Theorem 4.1 The k

m

-COVER 2 NP.

Proof. To show that k

m

-COVER 2 NP, for a given string x, we use the set U

m

of m

substrings all of length k as a erti�ate for x. Cheking whether U

m

is a k-over an

be aomplished in O(n logn) time by heking whether, for eah position 1 � i � n,

i is overed by at least one of the k-substrings in U

m

.

We next prove that 3-SAT �

p

k

m

-COVER, whih shows that a minimum k-over

problem is NP-hard. 3-SAT is well-known to be NP-omplete [C71℄. We transform 3-

SAT to k

m

-COVER. Let V = fv

1

; v

2

; : : : ; v

p

g be a set of variables, C = f

1

;

2

; : : : ;

q

g

be the set of lauses and F =

1

^

2

^ : : :^

q

be a 3-SAT formula with

i

= `

i

1

_`

i

2

_`

i

3

,

1 � i � q.

We shall show how to onstrut from F a string x suh that x will have a k-over

of size m if and only if F is satis�able. We hoose k = 3 and note that there is an

easy redution to 2-CNF for k = 2. The string x is build of substrings separated by

sequenes of sssss; hene sss is one of the hosen overing k-strings, and thus we an

fous on the individual substrings. The onstrution will be made up of truth-setting

omponents, and satisfation testing omponents.

Variable Choie

For eah variable v 2 V , we onstrut the following 6 substrings (eah substring is

proeeded and followed by sssss); eah harater is indexed by v:

(i) #

a

r r $ v � � r r #

a

(ii)#

b

t t $ �v � � t t #

b

(iii)#

a

(iv) #

b

(v)#

a

#

b

(vi)#

b

#

a

The only ways to over the above strings with 9 or fewer length 3 strings, are one of

the following (notie the uninteresting �exibility in (v) and (vi)):

1. fss#

a

; rr$; v��; rr#

a

;#

b

tt; $�v�; �tt;#

b

ssg and one of fs#

b

#

a

;#

b

#

a

sg.

2. f#

a

rr; $v�; �rr;#

a

ss; ss#

b

; tt$; �v��; tt#

b

g and one of fs#

a

#

b

;#

a

#

b

sg.

To see this, onsider overing string (iii). It an be done by one of ss#

a

, #

a

ss,

s#

a

s, but only the �rst two ould be used elsewhere, so one of them may as well be

hosen. Clearly, 8 strings at least are needed to over (i) and (ii) as they have no

length 3 substring in ommon. Thus, to use only 1 additional string to over (v) and

(vi) we need to hoose either ss#

a

;#

b

ss or #

a

ss; ss#

b

.

The hoie v�� and $�v� (given by hoosing ss#

a

) orresponds to v = T while the

hoie �v�� and $v� (given by hoosing #

a

ss) orresponds to v = F .

55

Proeedings of the Prague Stringology Conferene '03

Clause Satis�ability

For eah lause 2 C, where = `

1

_`

2

_`

3

, the following substrings are reated, again

preeded and followed by sssss. The haraters, exept for $

i

; �

i

; �

i

; `

i

; i = 1; 2; 3 are

indexed by also; $

i

; �

i

; �

i

; `

i

arry the index for the literal.

(i)$

1

`

1

�

1

�

1

h

1

(ii) $

2

`

2

�

2

�

2

h

2

(iii) $

3

`

3

�

3

�

3

h

3

(iv)$

1

(v)$

2

(vi)$

3

(vii)h

1

(viii)h

2

(ix)h

3

(x)�

1

�

1

h

1

d

1

�

2

�

2

h

2

(xi)�

2

�

2

h

2

d

2

�

3

�

3

h

3

(xii)�

3

�

3

h

3

d

3

�

1

�

1

h

1

(xiii)�

1

(xiv)�

2

(xv)�

3

To over (iv)-(ix) and (xiii)-(xv) we may as well hoose ss$

i

; h

i

ss and ss�

i

as these

are the only reusable substrings.

If `

i

is true, then `

i

�

i

�

i

was already hosen; otherwise $

i

`

i

�

i

was hosen. Thus, if

`

i

is false; in (i)-(iii), �

i

remains to be overed. The only reusable overing string is

�

i

�

i

h

i

.

Consider strings (x)-(xii) and suppose at least one `

i

is true. Without loss of

generality let it be `

1

. Then it is not hard to see that 5 more strings that inlude

�

2

�

2

h

2

and �

3

�

3

h

3

thereby overing �

2

in (ii) and �

3

in (iii) su�e. We hoose:

�

2

�

2

h

2

; �

3

�

3

h

3

; �

1

h

1

d

1

; d

2

�

3

�

3

and d

3

�

1

�

1

. It is not hard to see that 5 overing strings

are needed: 3 to over d

1

; d

2

and d

3

, but this an only ompletely over one of �

1

; �

2

and �

3

as eah ours twie, and hene two more overing strings are needed for the

remaining pair among �

1

; �

2

and �

3

.

If no `

i

is true, we are obliged to hoose �

1

�

1

h

1

; �

2

�

2

h

2

and �

3

�

3

h

3

as well as 3

strings to over d

1

; d

2

and d

3

. At least 6 overing strings in all are needed. Thus, if

F is satis�able then the full string an be overed by

m = 9p+ 6p+ 3q + 5q + 1 = 15p+ 8q + 1

overing strings, where p is the number of variables in F and q is the number of

lauses. Otherwise, it needs at least 15p+ 8q + 2 overing strings. 2

5 Approximate Minimum k-Cover

In this setion we introdue two greedy algorithms to ompute a minimum k-over.

The greedy method works by piking, at eah stage, the k-substring whih overs the

greatest number of unovered positions. The �rst algorithm works globally while the

seond algorithm follows a loal strategy. To alulate all possible k-substrings in a

given string x, both greedy algorithms use Crohemore's partitioning algorithm [C81℄

to preproess the input string x.

Originally, Crohemore's algorithm was designed to ompute the repetitions in a

string inO(n logn) time. A string has a repetition when it has at least two onseutive

equal substrings. For example, abab is a repetition in aababba = a(ab)

2

ba. We shall

use the algorithm in another way � to �nd the sets of the starting positions of all

the distint substrings of length k in a given string x. This idea an be expressed

more preisely as follows:

56

Computing the Minimum k-Cover of a String

Given a string x[1::n℄ and an integer k, Crohemore's algorithm is used to ompute

the equivalene lasses of all equal substrings of length k in x. We denote these equiv-

alene lasses by e

1

; e

2

; :::; e

m

, where the elements in e

i

are sorted integers denoting

starting positions of equal substrings, and m is the number of possible equivalene

lasses returned by the algorithm.

These elements are stored using a global array L[1::n℄, suh that L[i℄ is the next

position in the same equivalene lass of equal substrings of length k. That is, L[i℄ = j

if L[i::i+ k� 1℄ = x[j::j + k� 1℄ and the irular sequene i; L[i℄; L[L[i℄℄; : : : ; L

`

[i℄ = i

identi�es all ` k-substrings in x that are equal to x[i::i + k � 1℄.

For example, if x = abaababaabaab and k = 3 then e

1

= f3; 8; 11g; e

2

=

f1; 4; 6; 9g; e

3

= f2; 7; 10g; and e

4

= f5g are the equivalene lasses. Where aab; aba;

baa; bab are the orresponding 3-substrings. Hene, the value of array L is as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13

x = a b a a b a b a a b a a b

L[i℄ 4 7 8 6 5 9 10 11 1 2 3

Eid[i℄ 2 3 1 2 4 2 3 1 2 3 1

In the above, Eid[i℄ identi�es the equivalene lass ontaining position i. In the

following subsetions, we shall present two approximation algorithms. We all the

�rst Global-Unovered and the seond Loal-Unovered.

5.1 Global-Unovered Algorithm

Reall that the greedy algorithmworks by seleting one k-substring at a time that ov-

ers the most positions among the unovered ones. Our greedy algorithm is omparable

to the greedy one [J74℄ to onstrut the minimum set over. The ost of a greedy

solution is known to ome always within a multipliative fator of H(max

j

jEC

j

j),

where EC

j

is the number of positions that ould be overed by the k-substring j.

Here, H(d) =

P

d

i=1

1

i

is the dth harmoni number and is bounded by 1 + log d. This

was shown by Johnson [J74℄ and Lovasz [L75℄ for the general SET COVER problem.

The key to Algorithm Global-Unovered is �nding the equivalene lass whih an

over the maximum number of so-far-unovered positions e�iently. The details of

the algorithm are provided in Figure 1. To ahieve e�ieny, the algorithm uses the

following data strutures:

1. An array Ebuket[1::n℄ indexed by the number of so-far-unovered positions

that ould be overed by a single equivalene lass. Eah element (buket) of

the array is doubly-linked list of the equivalene lasses that ould over equal

number of so-far-unovered positions. Thus, every element of the doubly linked

list ontains an index of an equivalene lass in addition to the left and the right

pointers to the adjaent elements.

2. A two dimensional array Eptr[1::m℄ indexed by the equivalene lass j. Where

Eptr[j℄[buket℄ identi�es the buket that inludes j in its doubly linked list.

In other words, equivalene lass j ould over Eptr[j℄[buket℄ so-far-unovered

positions. Additionally Eptr[j℄[ptr℄ is a pointer to the orresponding element

of the doubly linked list Ebuket[Eptr[j℄[buket℄℄. Thus, any elements of the

doubly linked lists an be referened in onstant time by using Eptr.

57

Proeedings of the Prague Stringology Conferene '03

Algorithm Global-Unovered(x; k)

Input: A string x of length n, an integer 0 < k < n

Output: An approximate minimum k-over U

g

1. (L[1::n℄; Eid[1::n℄; start[1::m℄;m) CrohemorePar(x; k)

2. over_so_far[1::n℄ F; F; : : : ; F

3. initialization:

4. U

g

 ;

5. for e 1 to m do

6. Eunov[e℄ 0 **number of positions that ould be overed by equivalene lass e**

7. for i 1 to n� k + 1

8. if i < L[i℄

9. then Eunov[Eid[i℄℄ + = min(k; L[i℄� i)

10. else Eunov[Eid[i℄℄ + = k

11. (Ebuket; Eptr) Buket-Sort(Eunov)

12. The algorithm:

13. k_prefix; k_suffix Eid[1℄; Eid[n� k + 1℄

14. GU-Cover(k_prefix; Ebuket; Eptr)

15. Add(U

g

; k_prefix)

16. if k_suffix 6= k_prefix

17. then GU-Cover(k_suffix; Ebuket; Eptr)

18. Add(U

g

; k_suffix)

19. e Head(Ebuket)

20. while e 6= 0

21. GU-Cover(e; Ebuket; Eptr)

22. Add(U

g

; e)

23. e Head(Ebuket)

24. return U

g

25. Funtion GU-Cover(e; Ebuket; Eptr)

26. i start[e℄ **the �rst element in the equivalene lass e**

27. repeat

28. for j 1 to k do

29. if over_so_far[i+ j � 1℄ = F then

30. over_so_far[i+ j � 1℄ T

31. for every l 2 Eid[(i+ j � 1)� k + 1℄; : : : Eid[i+ j � 1℄ do

32. Delete(Ebuket[Eptr[l℄[buket℄℄,Eptr[l℄[ptr℄)

33. if Eptr[l℄[buket℄ 6= 1

34. then Insert(Ebuket[Eptr[l℄[buket� 1℄℄,Eptr[l℄[ptr℄)

35. Eptr[l℄[buket℄ Eptr[l℄[buket℄� 1

36. i L[i℄

37. until (i = start[e℄)

Figure 1: Global-Unovered Algorithm.

58

Computing the Minimum k-Cover of a String

One Ebuket is established, the k-pre�x and the k-su�x are the �rst elements

to be inluded in the approximate minimum k-over. The algorithm then iteratively

hoose a head element of Ebuket as an element of the approximate minimum k-

over. The head element is an equivalene lass that overs the largest number of so

far unovered positions. Finding suh equivalene lasses osts O(n) time throughout

the alulations.

The algorithm requires O(n logn) time to run Crohemore's algorithm and an

additional O(n) time to onstrut and initialize Ebuket and Eptr. Note that a

linear time Buket-Sort has been used beause the number of positions that ould be

overed by any equivalene lass is bounded.

For eah position i, over_so_far[i℄ is initialized to F and set to T one during

the alulation. When over_so_far[i℄ is set from F to T , O(k) elements in Ebuket

may need to be deleted from the urrent buket and inserted to the next buket.

Eah rearrangement osts O(1) time. Thus, the total time required to maintain the

elements in Ebuket throughout the alulation is O(kn). Summing the above gives

the total running time: O(n logn) + O(n) + O(kn) = maxfO(n logn); O(kn)g time,

whih for a �xed k, asymptotially approahes O(n logn) as n inreases to 1.

5.2 Loal-Unovered Algorithm

Algorithm Loal-Unovered hooses its andidate element, of the approximate mini-

mum k-over, in a range of Eid[left_unover�k+1℄::Eid[left_unover℄; the integer

left_unover keeps trak of the leftmost so-far-unovered position. The algorithm

uses the array unover_no. The array unover_no[1::m℄ is indexed by the equiva-

lene lasses, where unover_no[j℄ is the number of positions orresponding to equiv-

alene lass j that have not been overed. Hene, the values of the array need to be

updated dynamially during the omputation. The details of the algorithm are pro-

vided in Figure 2.

The initialization is just the same as in Global-Unovered. However, we need to

update unover_no. As in Global-Unovered, the k-pre�x and the k-su�x are the

�rst two elements to be inluded in the approximate minimum k-over. The algorithm

then tries to over the leftmost unovered position with the k-substring orresponding

to the equivalene lass whih an over the maximum number of unovered positions.

That is, let j = left_unover if j < n, then the hosen k-substring is the one

orresponding to equivalene lass satisfying

maxfunover_no[Eid[j � k + 1℄; unover_no[j � k + 2℄; : : : ; unover_no[Eid[j℄℄g:

A brief analysis of the algorithm shows that the algorithm requires:

� O(n logn): to run Crohemore's algorithm;

� O(n): Step 2, the loop on (Steps 6-9), and the total time spent in Add();

� O(k): the loop on (Steps 19-23);

� O(kn): is the total time of the LU-Cover subroutine.

Summing the above gives the total running time O(n logn)+O(n)+O(k)+O(kn) =

maxfO(n logn); O(kn)g time.

59

Proeedings of the Prague Stringology Conferene '03

Algorithm Loal-Unovered(x; k)

Input: A string x of length n, an integer 0 < k < n

Output: An approximate minimum k-over U

l

1. (L[1::n℄; Eid[1::n℄;m) CrohemorePar(x; k)

2. over_so_far[1::n℄ F; F; : : : ; F

3. initialization:

4. U

l

 ;

5. left_unover 1

6. for i 1 to n� k + 1 do

7. if i < L[i℄

8. then unover_no[Eid[i℄℄ + = min(k; L[i℄� i)

9. else unover_no[Eid[i℄℄ + = k

10. The algorithm:

11. k_prefix; k_suffix Eid[1℄; Eid[n� k + 1℄

12. LU-Cover(k_prefix; 1; unover_no; left_unover)

13. Add(U

l

; k_prefix)

14. if k_suffix 6= k_prefix then

15. LU-Cover(k_suffix; n� k + 1; unover_no; left_unover)

16. Add(U

l

; k_suffix)

17. while left_unover < n do

18. max = 0

19. for j 1 to k do

20. if unover_no[Eid[left_unover � j + 1℄℄ > max then

21. max unover_no[Eid[left_unover � j + 1℄℄

22. e Eid[left_unover � j + 1℄

23. s left_unover � j + 1

24. LU-Cover(e; s; unover_no; left_unover)

25. Add(U

l

; e)

26. return U

l

27. Funtion LU-Cover(e; start; unover_no; left_unover)

28. i start

29. repeat

30. for j 1 to k do

31. if over_so_far[i+ j � 1℄ = F then

32. over_so_far[i+ j � 1℄ T

33. for every l 2 Eid[(i+ j � 1)� k + 1℄; : : : Eid[i+ j � 1℄ do

34. unover_no[l℄ � = 1

35. i L[i℄

36. until (i = start)

37. while left_unover � n and over_so_far[left_unover℄ do

38. left_unover ++

Figure 2: Loal-Unovered Algorithm.

60

Computing the Minimum k-Cover of a String

Length jU

N

j jU

GU

j jU

LU

j jU

best

j �

N

(%) �

GU

(%) �

LU

(%)

100 12 11 11 11 9.09 0 0

200 14 14 14 14 0 0 0

300 14 15 15 14 0 7.14 7.14

400 16 15 17 15 6.67 0 13.3

500 17 17 17 17 0 0 0

600 16 16 16 16 0 0 0

700 18 16 16 16 12.5 0 0

800 17 17 19 17 0 0 11.8

900 18 16 18 16 12.5 0 12.5

1000 18 17 16 16 12.5 6.25 0

Average (%) = / / / 5.33 1.34 4.47

Table 1: Pseudo-Random Strings on Alphabet fa; b; g, and k = 3

6 Experimental Results

We used four types of strings: sturmian strings, pseudo random strings on the al-

phabets: fa; bg, fa; b; g, fa; b; ; dg, DNA sequenes

�

, and English text. In order

to ompare our approximate methods in term of e�etiveness, we developed a naive

algorithm based on the Iliopoulos and Smyth algorithm. This naive algorithm �nds

the minimum k-over at position i+ 1 by testing eah position j 2 i� k + 1::i in the

same way as in Iliopoulos and Smyth's. However, the key di�erene is that the algo-

rithm stores not only the overs that are minimum but also those that are one more

than minimum at every position. Thus, the aim here is to store as muh informa-

tion as possible taking into onsideration the limitation of the omputer's resoures.

The implementation results show that the naive algorithm does not always yield the

best k-over - in most ases the two approximate algorithms yield better results. Let

U

min

be the minimum k-over of a string x, U

N

be the result omputed by our naive

method, U

GU

be the result omputed by Global-Unovered algorithm, and U

LU

be

the result omputed by Loal-Unovered algorithm. Then the following simplifying

assumption has been made:

jU

min

j � jU

best

j = minfjU

N

j; jU

GU

j; jU

LU

jg

Table 1, 2, 3 show that Algorithm Global-Unovered yields the best result in most

ases, the naive algorithm never exeed a deviation of 7:83%, and Algorithm Loal-

Unovered never exeed 6:24%. The following observations are also worth mentioning:

� The Sturmian strings are very well-strutured. For the tested Sturmian strings,

from length of 20 to 1000, for every k 2 3; 4; 5, jU

best

j = 2.

� For the tested pseudo-random strings and DNA sequenes, jU

best

j inreases as

the values of k, the length n, and the alphabet size are inreasing.

� Let jU

best�DNA

j denotes the ardinality of the approximate minimum k-over

of DNA sequene and jU

best�abd

j denotes the ardinality of the approximate

�

exerpted from www.bs.dtu.dk/databases/DNA2protSS/nuall.seq.

61

Proeedings of the Prague Stringology Conferene '03

Length jU

N

j jU

GU

j jU

LU

j jU

best

j �

N

(%) �

GU

(%) �

LU

(%)

100 19 19 19 19 0 0 0

200 25 26 27 25 0 4.00 8.00

300 32 29 29 29 10.3 0 0

400 37 34 36 34 8.80 0 5.88

500 36 36 35 35 2.86 2.86 0

600 37 36 37 36 2.78 0 2.78

700 37 35 38 35 5.71 0 8.57

800 42 37 39 37 16.2 0 5.41

900 42 35 42 35 20 0 20

1000 42 38 39 38 10.5 0 2.63

Average (%) / / / / 7.71 0.68 5.32

Table 2: Pseudo-Random Strings on Alphabet fa; b; ; dg, and k = 3

Length jU

N

j jU

GU

j jU

LU

j jU

best

j �

N

(%) �

GU

(%) �

LU

(%)

60 13 13 13 13 0 0 0

126 21 22 23 21 0 4.76 9.52

171 23 22 23 22 4.54 0 4.54

234 25 24 26 24 4.17 0 8.33

312 32 29 30 29 10.3 0 3.45

432 26 27 29 26 0 3.85 11.5

591 34 31 35 31 9.68 0 12.9

771 40 34 36 34 17.6 0 5.89

1233 43 38 37 37 24.3 2.70 0

Average (%) / / / / 7.83 1.26 6.24

Table 3: DNA Sequenes, and k = 3

62

Computing the Minimum k-Cover of a String

minimum k-over of pseudo-random strings on alphabet fa; b; ; dg. For the

same value of k and n, jU

best�DNA

j < jU

best�abd

j. We an make a onjeture

that DNA sequenes are better strutured than pseudo-random strings on an

alphabet of size 4.

Conlusions

We have shown that for k � 2, the k-over problem (Problem1) is NP-Complete. We

have then proposed two O(n logn) greedy algorithms that an be used to alulate an

approximate minimum k-over. The results obtained by the algorithms are believed

to ome within a multipliative fator of the minimum. Prove this has been left as

an open problem.

Referenes

[AFI91℄ A. Apostolio, M. Farah & C. S. Iliopoulos,Optimal superprimitivity

testing for strings, Information Proessing Letters 39-1 (1991) 17-20.

[B92℄ D. Breslauer, An on-line string superprimitivity test, Information

Proessing Letters 44 (1992) 345-347.

[B94℄ D. Breslauer, Testing string superprimitivity in parallel, Informa-

tion Proessing Letters 49-5 (1994) 235-241.

[BP00℄ G. S. Brodal & C. Pederson, Finding maximal quasiperiodiities in

strings. In Proeedings of the 11th Annual Symposium on Combinatorial

Pattern Mathing (CPM) (2000) 397-411.

[C71℄ Stephen A. Cook, The omplexity of theorem-proving proedures,

Pro. Third Annual ACM Symp. on Theory of Computing (1971) 151-158.

[C81℄ M. Crohemore, An optimal algorithm for omputing all the repe-

titions in a word, Information Proessing Letters 12-5 (1981) 244-248.

[IM93℄ C. S. liopoulos & L. Mouhard, An O(n logn) algorithm for omput-

ing all maximal quasiperiodiities in strings, Theoratial Computer

Siene 119-2 (1993) 247-265.

[IP94℄ C. S. Iliopoulos & K. Park, An optimal O(log logn)-time algorithm

for parallel superprimitivity testing, Journal of the Korea Informa-

tion Siene Soiety 21-8 (1994) 1400-1404.

[IS92℄ C. S. Iliopoulos & W. F. Smyth, An on-line algorithm of omputing

a minimum set of k-overs of a string, Pro. Ninth Australasian

Workshop on Combinatorial Algorithms (AWOCA), (1998) 97-106.

[J74℄ D. S. Johnson, Approximation algorithms for ombinatorial prob-

lems, Journal of Computer and System Siene 9 (1974) 256-278.

63

Proeedings of the Prague Stringology Conferene '03

[MS94℄ D. Moore & W. F. Smyth, An optimal algorithm to ompute all the

overs of a string, Information Proessing Letters 50-5 (1994) 239-246.

[MS95℄ D. Moore & W. F. Smyth, A orretion to: An optimal algorithm

to ompute all the overs of a string, Information Proessing Letters

54 (1995) 101-103.

[L75℄ L. Lovasz, On the ratio of optimal integral and frational overs,

Disrete Mathematis 13 (1975) 383-390.

[LS02℄ Y. Li & W. F. Smyth, Computing the over array in linear time,

Algorithmia 32-1, (2002) 95-106.

[Y00℄ Lu Yang, Computing the Minimum k-Cover of a String, M. S.

thesis, MMaster University, (2000).

64

Learning the Morphologial Features of a Large Set

of Words

�

Abolfazl Fatholahzadeh

Supéle - Campus de Metz

2, rue Édouard Belin, 57078 Metz, Frane.

e-mail: Abolfazl.Fatholahzadeh�supele.fr

Abstrat. Given K - a large set of words - this paper presents a new method

for learning the morphologial features of K. The method, LMF, has two om-

ponents : preproessing and proessing. The �rst omponent makes use of two

separate methods, namely, re�nement and time�spae optimization. The for-

mer is a method that uses the losed world assumption of the default logi for

partitioning K into a set of hierarhial languages. The latter is for e�iently

learning the morphologial features of eah language outputted by the former

method. Although, the �nite-state transduers or the two-trie struture an be

used to map a language onto a set of values, but we use our own ompetitor

whih has reently been proposed for suh a mapping, onsisting of assoiating

a �nite-state automaton aepting the input language with a deision tree (dt)

representing the output values. The advantages of this approah are that it

leads to more ompat representations than transduers, and that deision trees

an easily be synthesized by mahine learning tehniques.

In the proessing phase, given an input string (x), thanks to the hierarhial

languages establishing the prefereny order for the utilization of the urrent

automaton(g

i

) among the multiple ones, if x an be spelled out using g

i

, then

the output is returned using its ounterpart namely dt

i

, otherwise, we inspet

other alternative until an output or failure be done. LMF has learned good

strategies for the large sets of the words whih are onsuming tasks form spae

and times point of views e.g., all the verbs in Frenh, inluding all the onjugated

forms of eah verb.

Keywords: morphologial features, automata, deision trees, learning.

1 Introdution

The morphologial features (i.e., mode, tense, person and gender) are supposed to

be the important ingredients of the lexions whih are widely used in the proess

of determining for a word (e.g., �livre�) its output values (e.g., Verb+IND-PRES-

1-SING, Verb+IND-PRES-3-SING, Verb+IMP-PRES-3-SING, Noun+MASC-SING

and Noun+FEM-SING).

�

This work is partially supported by le Conseil Régional de Lorrain.

65

Proeedings of the Prague Stringology Conferene '03

0

1

2

3

4

5

6

7

8

9

10

11

12

 : x

 : y

a : x

a : y

a : y

b : x

b : z

b : x

b : y

b : y

b : y

 : x

 : y

a : x

a : y

Figure 1: Example of ambiguous �nite-

state transduer shown by a (13,16) au-

tomaton [4, Page 158℄.

0 1 2 3

4

5

6

 a b

b

a

a

Figure 2: Our alternative - a (7,7) un-

labeled automaton along with two de-

ision rules. If b2 = 'b' Then v1 =

[xxxxx,xxyyx,xtzyx℄. If b2 = '' Then

v2 = [yzxxy,yzyyy℄. b

2

stands for the

seond harater from right to left of

the input language.

An obvious solution to suh a task is to store all the desired words along with

their assoiated output values in a large-sale ditionary. But in this ase two major

problems have to be solved: fast lookup and ompat representation. Two modern

and e�ient methods an ahieve fast lookup by determination and ompat repre-

sentation by minimization. The �rst method is the tehnique of two�tries proposed

by Aoe et al [1℄. This method has the advantage of being appliable to a dynami

set of keys but unfortunately it has the disadvantage (Please refer to the page 488

of [1℄) of ontaining more than states (hene the transitions) representing the data

ompared to its ompetitor, namely, the automata [13℄.

The seond method is the transduers (i.e., automata with outputs) [6, 8, 9℄

whih have proved to be a very formal and robust exeution framework for linguisti

phenomena, but there are still some aspets that should be investigated. In partiular,

as shown in Figures 1, the transduers assign the unneessary labels to some ars of the

graph representing the automaton. That is why, in our reent work, we have proposed

a method to avoid suh unneessary labels (hene the states and the transitions) as

pitured in Figure 2. Our solution for mapping a language onto a set of values is

based on assoiating a �nite-state automaton aepting the input language with a

deision tree representing the output values. The advantages of this approah are

that it leads to more ompat representations than transduers, and that deision

trees an easily be synthesized by mahine learning tehniques.

For the sake of larity, we onsider only the verbs in a given language and will

show how our alternate approah an be ombined with the losed world assumptions

of the default reasoning. We show that the representation developed here provides a

riher language for dealing with a set of strings where eah of whih is assoiated with

one or more set of strings while keeping in the ore of our system the two mentioned

desiderata: ompat representation and fast lookup. After presenting the default

reasoning and its appliability to the morphology, we illustrate in Setion 3 ombining

the automata and the deision tree. In Setion 4 the re�nement is desribed. The

main algorithm of LMF along with examples in four languages loses: Azeri, English,

Frenh and Persian are desribed in Setion 5. Finally, the onluding remarks lose

the paper.

2 Using Default Logi in Morphology

Default reasoning is a speial but very important form of non�monotoni reasoning [5℄.

The term �default reasoning� is used to denote the proess of arriving at onlusions

66

Learning the Morphologial Features of a Large Set of Words

based upon patterns of inferenes of the form �In the absene of any information to

the ontrary assume . . . � (e.g., if all elephants we have seen had a trunk, we might

think that all elephants have a trunk). Of ourse, the possible irumstanes in whih

any �presumed� orret line of reasoning an be defeated astound, and we are doomed

to make mistakes when our experienes does not support the urrent situation. If we

assume that the morphology world of the natural languages is losed one then there

is a great hane that the rate of the lassi�ation noise be lower, even zero.

Example 1: w.r.t. the world of the verbs in Frenh, even if there is no indiations

about the verb �zaper� in our system, LMF is able to learn 95 morphologial features

assoiated with the onjugated forms (e.g., �zapons�) of that verb.

Remark 1: The number 95 ame from the fat that LMF is designed to learn the

morphologial features of all modes, namely indiative (IND), subjuntive (SUB),

onditional (COND), imperative (IMP), in�nitive(INF) and partiipate (PART). IND

mode has 48 forms in eight tenses: present, imperfet, past, future, et. Eah of whih

allows to generate six forms aording to: (1) gender (singular and plural); and (2)

the person (1, 2, and 3). SUB mode has 24 forms in four tenses. COND mode has 24

forms in two tenses. IMP, INF modes has two and three forms, respetively. PART

mode has usually three forms, two for some irregular verbs.

2.1 The Closed World Assumption

It seems not generally reognized that the reasoning omponents of many natural

language understanding systems have default assumption built into them. The repre-

sentation of knowledge upon whih the reasoner omputes does not expliitly indiate

ertain default assumptions. Rather, these default are realized as part of the ode of

the reasoner's proess struture ontaining the hierarhies.

The starting point of the default reasoning is a set of inferene rules(axioms) pos-

sibly along with some fats of the domain at hand olleted in database whih we all

axiomal database (noted by G

ax

). Given G

ax

, the task based on the �spei�ity� and

�inheritane� is to draw a plausible inferene for the input. These an be illustrated

by the lassial Tweety example as follows: Consider the database ontaining four de-

faults: �penguins are birds�, �penguins do not �y�, �birds �y� and �birds have wings�.

�Spei�ity� tell us Tweety is a penguin, then Tweety doesn't �y beause penguin is

a more spei� lassi�ation of Tweety than bird . �Inheritane� on the other hand,

does equip Tweety with wings, by virtue of being a bird, albeit an exeptional bird

w.r.t. �ying ability.

From e�ient implementation of the reasoner's proess struture point of view, if

the lass �Spei�ity� lies �above� the generi lass i.e., there is some pointer leading

from penguin's to node bird in G

ax

, then given a partiular penguin we an onlude

that it doesn't �y. Notie that the reasoner's proess struture of G

ax

an be either

a network - the graph of the taxonomy - or a set of �rst order formulae. The seond

option has been hosen to form G

ax

of the morphology world in our work. In that

option for fast inferene purpose, G

ax

is organized aording to priorities whih are

given as ordering of prediates formulae, or default rules: in on�iting situations

preferene is given to item with high priority. That is to say, the data are added

in G

ax

in the following orders: (1) the fats of the exeptional data; (2) the fats

67

Proeedings of the Prague Stringology Conferene '03

assoiated with generi axioms; (3) the exeptional axioms desribing the spei�ity;

and �nally (4) the generi axioms.

Example 2: w.r.t. Tweety the orders of G

ax

is as follows: (1) Penguin(tweety); (2)

Bird(tweety); (3) (8x)Penguin(x)! :F lies(x); (4) (8x)Bird(x)! F lies(x):

(3) an be paraphrased as �penguins usually annot �y�. If a partiular penguin

(say Foo) an �y, this is obviously a ounter exeptional data (or insensitivity to

spei�ity) w.r.t. to (3). Although, how the representation of the insensitivity to

spei�ity an be done in the open world (i.e., the data related to the exeptions and

in partiular those of the ounter exeptions are not known in advane), but this is

not a limitation for our work beause the databases of LMF is omposed only using

three prediates : regular, exeptional and ounter-exeptional. The seletion of the

ounter exeptional data is based on the fast inferene purpose.

The LMF poliy for suh above purpose is to take into aount both the high

priority of usage in the text of a given language (e.g., the auxiliary verbs of a given

language suh as �avoir� - to have - or �être� - to be -) and the seldom of data w.r.t.

exeptional data (e.g., �aller� -to go - the only member of the lass 22 of the irregular

verbs) or its spei�ity w.r.t. the general data (e.g., �Haïr� meaning to hate, whih

is also a unique member of the 20th lass of the regular verb).

3 Combing the Automata and the Deision Trees

In what follows, we summarize our reent work [3℄ onerning the ombination of the

automata and the deision trees. We assume the reader to be familiar with both the

theory of �nite automaton and the deision tree learning as presented in standard

books e.g., [13℄ and [7℄, respetively. We refer to a key and a value denoted by k

and kv, respetively, as a sequene of haraters surrounded by empty spaes whih

may have one or more internal spaes. We may use key and word (inluding verbs),

interhangeably, as well as, the value, key�value and the morphologial features.

The input of our algorithm for suh above ombination is the following ustomary

form: f = f(k

i

; v

i

)ji = 1; : : : ; ng for representation and fast lookup. The point of our

idea is as follows: If an input string(x) an be reognized using the unlabeled �nite-

state-automaton (g) assoiated with the keys (of f) - hene having less states and

transitions ompared to the transduer as shown in Figures 1 and 2 - then use the learn

deision tree (dt) for outputting the value assoiated with x. Table 1 shows a sim-

ple deision tree (dt) of f1 = f(Iran; Tehran); (Iraq; Baghdad); (Ireland;Dublin)g.

Note that the dt w.r.t. f

2

= f(Iran,Asia),(Iraq,Asia)g has a unique solution-path i.e.

(kvAsia) - no ondition (i.e., question) is required to disriminate the key-value.

3.1 Ayli Finite-state Automaton

Reall that an ayli �nite-state automaton is a graph of the form g = (Q;�; Æ; q

0

; F)

where Q is a �nite set of states, � is the alphabet, q

0

is the start state, F � Q is the

aepting states. Æ is a partial mapping Æ : Q � � �! Q denoting transition. If

a 2 �, the notation Æ(q; a) = ? is used to mean that Æ(q; a) is unde�ned. Let �

?

denotes the set ontaining all strings over � inluding zero-length string, alled the

68

Learning the Morphologial Features of a Large Set of Words

Table 1: Bakward attribute-based Data and Deision Tree.

b

7

b

6

b

5

b

4

b

3

b

2

b

1

KV Solution-Path Question KV

? ? ? I r a n Tehran (b

1

n kv Tehran) b

1

= n? Tehran

? ? ? I r a q Baghdad (b

1

q kv Baghdad) b

1

= q? Baghdad

I r e l a n d Dublin (b

1

d kv Dublin) b

1

= d? Dublin

Table 2: Ten keys of the same lengths along with assoiated values.

Key onC myC mnH onH nnH nnC mnC nyC myH oyC

Value down down up down up up up up down down

empty string ". The extension of the partial Æ mapping with x 2 �

?

is a funtion

Æ

?

: Q� �

?

�! Q and de�ned as follows:

Æ

?

(q; ") = q

Æ

?

(q; ax) =

(

Æ

?

(Æ(q; a); x) if Æ(q; a) 6= ?

? otherwise.

A �nite automaton is said to be (n,m)�automaton if jQj = n and jEj = m where E

denotes the set of the edges (transitions) of g. The property Æ

?

allows fast retrieval for

variable-length strings and quik unsuessful searh determination. The pessimisti

time omplexity of Æ

?

is O(n) w.r.t. a string of length n.

3.2 Deision Tree Learning

Deision tree learning is a method for approximating disrete�valued target funtions,

in whih the learned funtion is represented by a deision tree (dt). Learned deision

trees an also be re-represented as a set of if�then rules to improve human readability.

Example 3: Below we list the if�then rules representing the deision tree assoiated

with data of Table 2.

If f

1

= `o' Then KV = `down';

If f

1

= `m

0

^ f

2

=

0

y

0

Then KV = `down';

If f

1

= `m

0

^ f

2

=

0

n

0

Then KV = `up';

If f

1

= `n

0

Then KV = `up';

where f

1

and f

2

denote �rst harater and seond harater (of the key from left to

right), respetively. Deision trees lassify instanes by sorting them down the tree

from the root to some leaf node, whih provides the lassi�ation of the instanes.

Eah node in the tree spei�es a test of some attribute (e.g., b1 of Table 1) instane,

and eah branh desending from that node orresponds to one of the possible values

for this attribute. An instane is lassi�ed by starting at the root of the tree, testing

the attribute value by this node, then moving down the tree branh orresponding to

the value of the attribute in the given example. This proess is then repeated for the

subtree rooted at the new node. Notie that the implementation of the deision tree

is based on m-array tree rather than the binary one. The former allows to save the

deision tree in a less spae ompared to the latter. Figure 4 shows suh a learned

tree representing the values of the keys of Table 2.

69

Proeedings of the Prague Stringology Conferene '03

0

1

2

3

4 5

m

n

o

n

y

n

y

H

C

C

Figure 3: A (6,10) unlabeled automa-

ton for reognizing the keys of Table 2.

1 : omn

0 : down 2 : yn 0 : up

0 : down 0 : up

o

m

n

y

n

Figure 4: Learned deision tree for de-

termining the value of any reognized

key of Table 2.

Table 3: Distribution of Frenh regular verbs aording to the lass and the frequeny

noted by C and F, respetively.

C 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F 3875 156 165 342 69 114 19 12 9 254 26 49 2 302 1

4 Re�nement

The re�nement proess has the following tasks to perform:

1. Transform the input of LMF, namely our input, namely f = f(k

i

; v

i

)ji =

1; : : : ; ng into axiomal database D

ax

, as desribed in Setion 2.1.

2. Partition D

ax

into the ounter-exeptional, exeptional and general axioms.

The transformation is based on the losed world assumption of the morphology

assuming that the set of the words of (f) noted by K an be divided into two subsets

of so-alled regular and irregular words. The regular forms follows the fat that their

derivate/in�etional forms (eah noted by d

k

) an be generated using those axioms

spei�ed by the linguists whih are usually further re�ned in a set of �ner regular

axioms (axiom). Using a root (of the word) eah axiom allows to generate all d

k

s of

the word. The root is obtained by removing a partiular substring of used axiom.

Example 4: The regular forms of the verbs in Frenh is divided into the �rst group

ontaining 13 lasses (ranged from 6 to 18) and the seond group whih is omposed of

two lasses (ranged from 19 to 20), where eah number stands for an axiom. Below

the repartition of 5189 in�nitives (of the regular verbs) used in our experiment is

shown in Table 3.

Remark 2: As appear from Table 3, 20th lass has only one member, namely �Haïr�.

However, as we mentioned earlier, it is not onsidered is a a regular data. Indeed,

w.r.t. to the inferene proess, it is wise to onsider it as a ounter-exeptional data.

The reason is to speed up the inferene proessing by mentioning expliitly the data

and axioms is the following order: ounter-exeptional, exeptional and general. This

proess onstitutes the well known pratial trik of the default logi. So, 5188 (i.e.,

5189 -1) roots along with 19 lasses will be used as the reservoir for learning the

extended database of 492860 (i.e., 5188� 95) d

k

s of the lexiographers expressed in

a raw database.

An axiom an be desribed using a two dimensional vetor of size r, where r

stands for the number of morphologial features in use. The �rst row of suh a vetor

70

Learning the Morphologial Features of a Large Set of Words

Table 4: Information on size of 13943 verbs of the third group in Frenh and mor-

phologial information along with the forest of the deision trees obtained by the

partitive learning mode. Ent. refers to number of all to the entropy funtion.

Data Deision Tree Gain

Len. Freq.

2 11

4 183

5 412

6 943

7 1480

8 2160

9 2317

10 2115

11 1729

12 1168

13 733

14 389

15 183

16 72

17 25

18 7

Inodes Leaves Ent.

9 3 15

133 40 371

225 66 904

460 131 2149

578 202 3388

727 240 5065

692 342 6664

582 252 6531

445 207 6361

318 125 4980

164 69 3472

106 50 2620

59 22 1624

36 18 1063

9 4 288

3 2 83

K% V%

66% 19%

81% 23%

88% 44%

91% 47%

93% 57%

94% 62%

95% 67%

96% 70%

96% 72%

97% 70%

97% 75%

97% 70%

97% 68%

95% 50%

97% 64%

96% 58%

is omposed of r the values. The seond row ontain di�erent substrings related to

d

k

s. Usually, the lexiographers are used to add the word in expliit database in

whih eah entry is omposed one d

k

and a value. Sine it may happen that for a d

k

di�erent values be assoiated with it (e.g., aime IND-PRES-1-SING, IMP-PRES-3-

SING, et.) therefore, the learning proess should assure to ollet them into a set of

morphologial features representing a set of unique ambiguity lass. In summary, the

entire lexion an viewed as follows. First on an form the the four following reservoir

f

g

, s

g

, f

e

and f

representing: (1) f

g

: Database related to the general axioms; (2) s

g

:

Database of su�xes of the regular (general) words; (3) f

e

: Database of derivate forms

expressed as the exeptional data; (4) f

: Database of derivate forms based on the

high priority relating the ounter exeptional data. Notie that f

g

along with s

g

will

be used to reognize the derivate forms of the words governed by the general axioms.

4.1 More Re�nement: Learning by Partitive Mode

As we mentioned earlier, the input of deision tree learning is a �xed attributes the

size of this table is `+1�n, where ` denotes the length of the longest keys of f and n

is the number of keys. Usually, we have to use the dummy haraters (noted by ? see

Table 1). Using the dummy haraters augment the size of the input table. Beause

of the very reursive nature of the learning proess, inluding the haraterization of

the deision tree may be a time onsuming task for the large data. An alternative to

the a unique table is to employ multiple tables as follows. First f is divided into q

71

Proeedings of the Prague Stringology Conferene '03

user-inputs (f

i

) suh that the length of the keys of eah f

i

be idential, then form the

orresponding deision trees. So, in the partitive mode, we have to learn a forest of

the deision tress : omposed a vetor of r positive integers. ith number is pointed

to the ith deision tree.

Searhing a value for an input string (x of length y) works as follows. If y belongs

to the vetor of above mentioned numbers, �rst we spell out x this time using the

automaton assoiated with entire keys of K. If x spelled out orretly, then we use

the y

th

deision tree to output the value.

Example 5: The value of x = abababad an not be learned w.r.t. urrent f =

f(ab; 1); (ababba; 2)(ababab; 3)g. We have length(x) = 8 whih is not member of

{3,5,7}. In the ontrary, for x = ab the value is 1 i.e., (1) length(x) 2 f3; 5; 7g, (2)

x is reognized using the automaton assoiated with K = fab; abab; abababg and

(3) no question is required for f

3

the value is 1. Table 4 shows the Information on

size of 13943 verbs of the third group in Frenh and morphologial information along

with the forest of the deision trees obtained by the partitive learning mode.

5 Main Algorithm

Below the algorithm for learning morphologial features is given whih is omposed of

two omponents: preproessing and proessing. In the �rst omponent four automata

and two deision trees along with a forest deision trees ontaining r deision trees are

formed, where r stands for the number of partitions of the exeptional data aording

to the same key-length riterion. In the seond omponent, if an user-input (x) an

be reognized by one of the four automata (see below for the order in use) then the

orresponding deision tree will be inspeted to output the value. The argument of

main funtion are:

1. f

g

= f(root

i

; axiom

i

)ji = 1 : : : ; n

1

g i.e., Database related to the general axioms;

2. s

g

= f(suf

i

; mf

i

ji = 1 : : : ; m

1

g i.e., Database of su�xes of the regular (general)

words; mf stands for a morphologial features or a set of alternate morpholog-

ial features;

3. f

e

= f(d

i

; mf

i

)ji = 1 : : : ; n

2

g i.e., Database of derivate forms expressed as the

exeptional data; d

i

refers to a derivate form of a base word (e.g., in�nitive);

4. f

= f(d

i

; mf

i

)ji = 1 : : : n

3

g i.e., Database of derivate forms based on the high

priority relating the ounter exeptional data.

fun LearningMorphologialFeatures(f

g

; s

g

; f

e

; f

)

K

g

 ColletKeys(f

g

): K

 ColletKeys(f

):

g

kg

 FormAutomaton(K

g

); g

k

 FormAutomaton(K

):

ApplyPreproessingPartitiveMode(f

e

).

g

Ke

 FormAutomaton(K

e

):

table

 FormInputForLearning(f

):

t

 LearnDeisionTree(table

):

t

s

 LearnDeesionTreeOfSuffixes(s

g

):

72

Learning the Morphologial Features of a Large Set of Words

ApplySearh(x).{Proessing omponent, x is an input string.}

nuf

The funtion FormAutomaton() follows the elegant algorithms desribed in [2℄ for

the inremental onstrution of minimal ayli �nite state automata and transduers

from both sorted and unsorted data We adapted the former one suh that the length

of the longest key be alulated for being used later in the onstrution of suitable

input for learning the dt of the ounter exeptional data. Please refers to [3℄ for the

desription of the funtion FormInputForLearning() and LearnDeisionTree().

The onstrution of the forest of the deision trees works as follows.

fun ApplyPreproessingPartitionMode(f

e

)

S

`

x

i=`

1

f

ei

 Partition(f

e

)

for i 2 (`

1

; : : : `

x

) do

K

ei

 ColletKeys(f

ei

); g

kei

 FormAtuomaton(f

ei

).

Table

ei

 FormInputForLearning(f

ei

)

t

ei

 LearnDeisionTree(Table

ei

):

end for

nuf

Sine the searh order is based on looking at the following order : (1) ounter

exeptional, (2) exeptional and general data, then proessing omponent is as follows:

fun ApplySearh(x)

return(SearhValue(x, g

k

, t

) OR SearhValueUsingPartitionMode(x, g

ke

, forest)

OR SearhByMismath(x, g

kg

, s

g

, t

s

)).

nuf

For knowing how SearhValue() works, again onsider Figure 4 where zero used

in a node indiates that node is a leaf one. A positive integer number used in a node

has its own meaning indiating the test to be done taking into aount the ontent

of the urrent node under inspetion e.g., �1:omn� means that if the �rst harater

of x is 'm' then gets the value by desending in the sub-tree of �rst hild. Sine the

sub-tree has only one node - a leaf - then value is 'down'. If the �rst harater of x

is 'm' this time the value has to be seleted using the sub-tree of the seond hild.

Depending on the seond harater (�2:yn�) of x the output value is either �down� or

�up�.

fun SearhValue(x, g, dt)

if Æ

?

(q

0

; x) = q suh that q 2 F (ofg) then

kv GetValue(x,dt).

else

kv nil; {x is unknown w.r.t. the urrent g}

end if

nuf

73

Proeedings of the Prague Stringology Conferene '03

The funtion SearhByMismath() uses the automaton assoiated with the general

data to know if the root of (the base) word an be reognized by that automaton.

If the input string an be spelled out using a given position then there is a hane

that the su�x of the input string be reognized using the automaton of the available

su�xes (s

g

), if so, then GetValue will be ativated to output the output value.

fun SearhByMismath(x, g

kg

, t

s

)

pos MisMathPosition(x; g

kg

); s substr(x; pos): {s stands for the su�x}

return(GetValue(s, t

s

)).

nuf

5.1 Examples

Below we illustrate the traes of LMF applied to the verbs in English and Frenh,

Azeri and Persian.

Example 6 (Frenh): Let us onsider the following phrase: �Il livre un livre.� i.e.,

He is providing a book. Suppose that we are interested in learning the morpholog-

ial features of the word �livre�. The urrent word annot be spelled out neither

using the automaton assoiated with the ounter exeptional automaton nor with the

exeptional automaton. Therefore, the automaton assoiated with f

g

(database of

regular roots in Frenh orresponding to the �rst group) will be alled to partially

spell out the word �livre�. Using funtion SearhByMismath tell us to stop at the

fourth harater (from left to right). The remaining part of the urrent word - �e� -

will then be used as the entry of the deision tree assoiated with the su�xes of f

g

outputting the desired result: Verb+IND-PRES-1-SING, Verb+IND-PRES-3-SING,

Verb+IMP-PRES-3-SING, Noun+MASC-SING and Noun+FEM-SING.

Remark 3: The reason for whih it is preferable to divide the set of words (of

a language) into several �les, eah of whih ontaining the same syntati ategory

ould better be illustrated using our previous example. Indeed, one ould use the rules

of loal grammar e.g., (1) pronoun+verb as in �il livre� and (2) determinant+noun,

as in �un livre�, for the e�ient tagging purpose while learning the morphologial and

right features of used word in a text.

Example 7 (Frenh): In the the following phrase: �Bush hait Saddam et vie-versa.

i.e., Bush hates Saddam and vie-versa.� Learning the morphologial features of the

word �hait� is immediate beause this word belongs to the exeptional data ontaining

the verbs of 20th lass.

Example 8 (English): The morphologial features of the word �stood� in the fol-

lowing phrase: �He stood the hild�, an also be learned immediately, beause it

belongs to the exeptional data w.r.t. the verbs in English.

Example 9 (Azeri): Like in Turkish, the order of onstituents may hange rather

freely without a�eting the grammatiality of a sentene. Due to various syntati

and pragmati onstraints, di�erent orderings are not just stylisti variants of the

anonial order. For instane, a onstituent that is to be emphasized is generally

plaed immediately before the verb. This a�ets the plaes of all the onstituents in

74

Learning the Morphologial Features of a Large Set of Words

a sentene exept that of the verb:

Man o³haxlara ketabi verdim. I gave the book to

I hildren+DAT book+ACC give+P1S the hildren.

O³haxlara man ketabi verdim. It was me who gave

hildren+DAT I book+ACC give+P1S the hildren the book.

Man ketabi o³haxlara verdim. It was the hildren to

I book+ACC hildren+DAT give+P1S them I gave the book.

The �rst above sentene is an example of the anonial word order whereas in

the seond one the subjet, man, is emphasized. Similarly, in the last one the diret

objet, o³haxlara, is emphasized.

Remark 4: Although, Azeri has some similarity with old Turkish, but their stru-

tures di�er in several aspets, notably w.r.t. new Turkish. This is partiularly true

for the the voabularies and the morphology. All together, this makes the proessing

of Azeri di�erent from Turkish, inluding our learning proess.

Example 10 (Persian): If we onern ourselves with the unmarked order of on-

stituents, like in Turkish and Azeri, Persian an be haraterized as a subjet-objet-

verb language: (a) �Man be baçeha ketab ra dadam.� (i.e., I gave the book to the

hildren.) and (b) �Lazat bordand.� (i.e., (They) enjoyed). In (a) the morphologial

features of the verb �dadam� is determined by what we all the ounter exeptional

data whereas in (b) the segment �Lazat (adjetive) bordan (verb)� have to be onsid-

ered as a ompound verb. So, the ombination of the morphologial features of two

words would determine the morphologial feature of the mentioned segment.

6 Conluding Remarks

LMF is written in C and applied for learning of the large set of the verbs in Frenh

and very limited ones in Persian and Azeri. The experiments show that ombing

the losed world assumption, the automata and the deision trees is a good approah

sine our tests provide the right results for more than half million verbs - inluding the

onjugated form - in Frenh. Note that the transduers [8℄, as the the best available

method, have been used in the morphology world. However, the advantages of omb-

ing the automata with the deision trees are that it leads to ompat representations

than transduers, and the deision trees an easily synthesize by mahine learning

tehniques. This is emphasized in this work by Figure 2.

It must be stressed that using automata is appropriate when there is no need

for frequent updates of one or more databases. This is due to the fat that it is

di�ult to update quikly the automaton. However, w.r.t. our present work, this is

not neessarily a limitation beause we are dealing with stati keys originated from

the morphology world. From update viewpoint, using the two-trie struture of Aoe

et al. [1℄ instead of the automata is preferred where there is the need for frequent

updates. But in this ase, the ost of spae (number of states and transitions) is

(slightly) expensive ompared to the automaton.

An interesting extension is the question of addressing how to learn the regular

and irregular data from pure Stringology viewpoint i.e., without attahing a domain

to the values of the keys. That is to say, we have to disover the axioms along with

possible exeptional and/or ounter exeptional ones.

75

Proeedings of the Prague Stringology Conferene '03

Aknowledgments

I thank the anonymous referees for their onstrutive omments.

Referenes

[1℄ Aoe, J�I., Morimoto, K., Shishibori, M., and Park, K. A trie ompation algorithm

for a large set of keys. IEEE Transation on Knowledge and Data Engineering 8,

3 (1996), 476�491.

[2℄ Daiuk, J., Mihov, S., Watson, B. W., and Watson, R. E. Inremental onstrution

of �nite-state automata. Assoiation for Computational Linguistis 26, 1 (2000),

3�16.

[3℄ Fatholahzadeh, A. Implementation of ditionaries via automata and deision trees.

Champarnaud J. M. and Maurel D. (eds.): Seventh International Conferene on

Implementation of Automata (CIAA02). In LCNS Leture notes on Computer

Siene, vol. 2608. Springer, Berlin Heidelberg, (2003), 95�105.

[4℄ Kempe, A. Fatorizations of ambiguous �nite-state transduers. In International

Conferene on Implementation and Appliation of Automata (2000), Daley M.,

Eramian M., and Yu S. pre-proeeding (eds.), 157�164.

[5℄ MCarthy J., and Hayes, P.J. Some Philosophi problems from the standpoint

of Arti�ial Intelligene. In Mahine Intelligene (1969), vol. 4, Meltzer B. and

Mihie D. (eds), Edinburgh University Press, 463�502.

[6℄ Mihov, S., and Maurel, D. Diret onstrution of minimal ayli sub-sequential

transduers. In International Conferene on Implementation and Appliation of

Automata (2000), Daley M., Eramian E., and S.Yu pre-proeeding (eds.), 150�156.

[7℄ Mithell, T. M. Mahine Learning. M Graw-Hill, 1997.

[8℄ Mohri, M. On some appliation of �nite-state automata theory to natural lan-

guage. Natural Language Engineering 2, 1 (1996), 1�20.

[9℄ Mohri, M. Finite-state transduers in language and speeh proessing. Computa-

tional Linguistis 23, 2 (1997), 269�311.

[10℄ Mohri, M. Generi ��removal algorithm for weighted automata. In International

Conferene on Implementation and Appliation of Automata (2000), Daley M.,

Eramian E., and Yu S. pre-proeeding (eds.) 26�35.

[11℄ Quinlan, R. C4.5: Programs for Mahine Learning. Morgan Kaufmann, 1993.

[12℄ Reiter R. On reasoning by default. In Reading in Knowledge Representation

(1985), Brahmann R.J. and Levesque H.J. (eds), Morghan Kaufmann, 402�410.

[13℄ Rozenberg G. and Salomaa A. (eds.) Handbook of Formal Language. Springer�

Verlag, Berlin Heidelberg, 1997.

76

A Linear Algorithm for the Detetion of Evolutive

Tandem Repeats

Rihard Groult

�1

, Martine Léonard

1

and Laurent Mouhard

y2

1

LIFAR - ABISS, Faulté des Sienes, 76821 Mont Saint Aignan Cedex, Frane

2

UMR 6037 - ABISS, Faulté des Sienes, 76821 Mont Saint Aignan Cedex, Frane

and Dept. Computer Siene, King's College London, London WC2R 2LS, England

e-mail: {Rihard.Groult,Martine.Leonard,Laurent.Mouhard}�univ-rouen.fr

Abstrat. We present here a linear algorithm for the detetion of evolutive

tandem repeats. An evolutive tandem repeat onsists in a series of almost on-

tiguous opies, every opy being similar (using Hamming distane in this artile)

to its predeessor and suessor. From a global view point, evolutive tandem

repeats extend the traditional approximate tandem repeat where eah opy has

to be in a neighborhood of a given model. Due to the lak of algorithms, these

repeats have been disovered in genomi sequenes only reently. In this artile,

we present a two-stage algorithm, where we �rst ompute an array ontaining all

the Hamming distanes between andidates, then we visit this array to build a

omplete evolutive tandem repeat from insulated pairs of opies. Moreover, we

explain how it is still onsistent with the usual tehnique devoted to dynami

programming whih onsists in �lling a omparison matrix and baktraking

through it to �nd an optimal alignment.

Keywords: linear algorithm, evolutive tandem repeats, Hamming distane

1 Introdution

The notion of approximate tandem repeat is generally well-de�ned, from the formal

view point [2, 12℄, it uses a onsensus model, every opy partiipating to this repeat

being very similar to the onsensus. An evolutive tandem repeat has no need for

a onsensus model, the �rst and the last opies might be ompletely di�erent but

every time we are onsidering two suessive opies partiipating to the repeat, they

are very similar to eah other: �nding evolutive tandem repeats is obviously muh

more ompliated than deteting generi tandem repeats for whih usual well-known

strutures, suh as su�x trees, an be used during a preproessing stage [9℄.

Evolutive tandem repeats have been phrased by moleular biologists, for example

in [4℄, and have been observed in real DNA sequenes (see Appendix A for a omplete

example, deteted in A. thaliana). In [5℄, we gave a formal de�nition of evolutive

tandem repeats with jumps then we desribed a quadrati spae and time algorithm

�

Supported by a Frenh Ministry of Researh grant.

y

Partially supported by Programme inter-EPST Bio-informatique and by GenoGRID (ACI

GRID).

77

Proeedings of the Prague Stringology Conferene '03

whih detets all the maximal. Even if numerous models and algorithms searhing

for various kinds of repeats have been developed [1, 3, 10, 11, 8, 12℄, none of these

algorithms are able to loate evolutive tandem repeats, as far as we know, we therefore

designed a quadrati algorithm for their detetion, it was based on the onstrution

of two graphs and their visits.

Sine we are looking for loal repetitions having approximatively the average length

of mini (or even miro) satellites and beause we are also looking for a ertain number

of opies (having three or less opies in an evolutive tandem repeats is meaningless),

we are here interested in searhing for opies whose length may vary from 4 to 64 [6℄,

that is usually thousands times less than the size of the sequenes we are studying.

We present in this artile a O((`

max

� `

min

+ 1)� (j

max

� j

min

+ 1)� jwj)-time and

O(j

max

� j

min

+ 1)-spae algorithm where and `

min

and `

max

(resp. j

min

and j

max

)

are the minimal and maximal values of the length of the opies (resp. the jump

between two opies) and w is the studied sequene. More preisely, sine length and

jump values are very small (with respet to the length of the sequene whih an be

ounted in millions of base pairs), we still have an overall linear time-omplexity. So

in pratie, the time omplexity is in O(C � jwj), where C � (61� (j

max

� j

min

).

In setion 2, we reall some basi de�nitions and introdue the evolutive tandem

repeats. In setion 3, we present the ideas of our algorithm. In setion 4, we explain

the onnetion with omparison matries. In setion 5, we present experimental

results and �nally, in setion 6, we onlude.

2 Preliminaries

Let � be an alphabet and �

�

its assoiated free monoid. A word (resp. non empty

word) over � is an element of �

�

(resp. �

+

). The letter of a word w ourring at

position i is denoted by w

i

. The length jwj of a word w is the number of letters of w,

i.e. w = w

1

� � �w

jwj

. We will denote by �

`

the set of all possible words of length `

over �. We denote by u:v (or simply uv) the onatenation of two words u and v.

Consider w = p:f:s for some p; f; s 2 �

�

. Suh p; f; s are respetively pre�x, fator

and su�x of w. We denote f = w[i; j℄ = w

i

w

i+1

� � �w

j�1

w

j

for 1 � i � j � jwj. The

onatenation of n opies of u is denoted by u

n

.

There exist several distanes one an use for the analysis of genomi sequenes. In

this artile, we will onsider the Hamming distane: the Hamming distane between

two words of equal length is the number of positions at whih their orresponding

letters di�er: for u; v 2 �

`

, d

H

(u; v) = Cardfi 2 f1; : : : ; `g j u

i

6= v

i

g:

De�nition 2.1 (Evolutive tandem repeat)

An evolutive tandem repeat with jumps (e.t.r. for short) is a tuple (v; "; (j

min

; j

max

);

`; n; (p

i

)

1�i�n

) where v is a word, " is the maximal number of errors between two

onseutive opies, [j

min

; j

max

℄ is the range of the length of a jump (overlap or gap

between two onseutive opies) with (j

max

� j

min

+ 1) � `=2, ` is the length of

the opies, n is the number of opies, p

i

are the starting positions of the opies

i

= v[p

i

; p

i

+ `� 1℄ and

8

>

<

>

:

p

1

= 1; p

n

+ `� 1 = jvj;

j

min

� p

i+1

� (p

i

+ `) � j

max

; 8i 2 f1; : : : ; n� 1g;

d

H

(

i

;

i+1

) � "; 8i 2 f1; : : : ; n� 1g:

78

A Linear Algorithm for the Detetion of Evolutive Tandem Repeats

Example 2.1 Let onsider the word v = aaataaagg.

(v; 1; (�1; 1); 3; 4; (1; 5; 8; 10)) is an e.t.r. with jumps: p

1

= 1, p

2

= 5 (gap), p

3

= 8

and p

4

= 10 (overlap) orresponding to

1

= aaa,

2

= aa,

3

= ag and

4

= g

(see Fig. 1).

gap overlap

a a a g g

` `

`

� j

min

� " � "

p

1

p

2

p

3

p

4

` = 3

� j

max

= 1

� " = 1

v =

a

g

g

a

1

=

4

=

3

=

2

=

aaa

a

a a a t

Fig. 1: Example of an evolutive tandem repeat with jumps

We will onsider only in what follows maximal e.t.r., that is e.t.r. whih is not

embedded in a longer one: onsider for example a word w = gaaagagagggg and

` = 3. The e.t.r. etr

1

= (aagagagg; 1; (�1; 1); 3; 3; (1; 4; 7)) is not maximal in w sine

the repeat etr

2

= (aagagagggg; 1; (�1; 1); 3; 4; (1; 4; 7; 10)) ontains more opies. In

this ase, we say that etr

2

�ontains� etr

1

and remark that etr

2

is a maximal e.t.r. in

w.

In a previous artile [5℄, we �rst onsidered all fators of w having the same length.

For eah fator, we omputed the set of its starting positions using an equivalene

relation on positions in w. Then, we built a graph for whih nodes are these sets

and there exists an edge between two nodes if the orresponding fators are slightly

di�erent in the meaning of the Hamming distane. Next, we omputed a seond graph

namely the `-position graph de�ned as follows:

De�nition 2.2 (`-position graph) Let w be a word and " and jump integers. The

`-position graph orresponding to w, " and jump is the oriented graph PG

`

(w; ";

jump) = (N;E) where

8

>

>

>

<

>

>

>

:

N = f1; :::; jwj � `+ 1g and

E = f(i; i

0

; i

0

� (i + `)) for (i; i

0

) 2 N �N; i < i

0

suh that ji

0

� (i + `)j � jump;

d

H

(w[i; i+ `� 1℄; w[i

0

; i

0

+ `� 1℄) � "g:

Nodes are labeled with all the positions f1; : : : ; jwj� `+1g of fators of length ` and

there exists an edge labeled with d between two nodes if the orresponding positions

are lose in w and if the Hamming distane between their assoiated fators, denoted

d is not greater than a given ". We used a quadrati time but linear spae algorithm

to ompute it. In what follows we denote by (i; i

0

; d) an edge labeled d from the node i

to the node i

0

.

Finally, we looked for all the longest paths in the `-position graph to �nd maximal

e.t.r.

79

Proeedings of the Prague Stringology Conferene '03

3 A Linear � Time and Spae � Algorithm

In a previous artile [5℄, we desribed a quadrati spae and time algorithm whih

detets all maximal e.t.r. in a word w. In what follows, we present a linear time

and spae algorithm that starts with the �lling of a �position� array and follows on

with the visit of this array in an attempt to �nd regularities. We will �rst draw the

�big-piture� and will onsolidate the desription by explaining the strutures we used

and the strategies we developed.

The �rst important idea onsists in onsidering every `-mer (fator of length `) as

a sliding window. Sine we have to ompute the distanes between pairs of fators,

we have to use two sliding windows f and f

0

(see Fig. 2): one window, f

0

, ending

at position i will orrespond to the right-most fator (moving sequentially from left

to right, one position at a time) while the other window, f , will orrespond to the

andidates for a pair (ending at a position in the interval [i� `� j

max

; i� `� j

min

℄).

Therefore, we only have to onsider j

max

� j

min

+ 1 possible positions for the left

sliding window, for eah given position of the right sliding window and fous on the

omputation of (j

max

�j

min

+1)�(jwj�`+1) distanes, that is a linear-time and spae

onstrution of a �position� array (emulating the position graph we de�ned in [5℄).

������������
������������
������������
������������

�������������
�������������
�������������
�������������

``

i� 2`� k + 1 i� `+ 1

k

i� `� k i

f f

0

Fig. 2: The two sliding windows f and f

0

The seond important idea is the omputation of the Hamming distane by itself: if

the Hamming distane between the fators of length ` ending at position i and i

0

is

known then the Hamming distane between the fators ending at position i + 1 and

i

0

+ 1 an be omputed in O(1)-time beause (`� 1) omparisons have already been

done. It will speed up the �lling of the position array (see Fig. 3).

`

`

`� 1 omparisons in ommon

w

i+`

: : : w

i�1

w

i

d

H

(w[i+ `; i+ 1℄; w[i

0

+ `; i

0

+ 1)

d

H

(w[i+ `� 1; i℄; w[i

0

+ `� 1; i

0

)

w

i

0

+`

: : : w

i

0

�1

w

i

0

w

i+`�1

w

i

0

+`�1

w

i+1

w

i

0

+1

Fig. 3: Computing Hamming distane on inremental positions

Finally we only have to visit the position array and searh for a series of aeptable

values (smaller than ") loated at appropriate positions (the distane between two

onseutive positions has to belong to [`+ j

min

; `+ j

max

℄).

80

A Linear Algorithm for the Detetion of Evolutive Tandem Repeats

A Two-stage Algorithm

We �rst have to ompute the Hamming distanes between every possible pairs of

andidates and �ll the position array D that ontains all these omputations.

De�nition 3.1 Let w = w

1

: : : w

n

be a word over �, ` an integer and k 2 fj

min

; : : : ;

j

max

g. We de�ne D

w;`

k

(i) by

D

w;`

k

(i) =

8

>

<

>

:

0; 8i 2 f1; : : : ; `+ kg

d

H

(w[1; i� `� k℄; w[`+ k + 1; i℄); 8i 2 f`+ k + 1; : : : ; 2`+ k � 1g

d

H

(w[i� 2`� k + 1; i� `� k℄; w[i� `+ 1; i℄); 8i 2 f2`+ k; : : : ; jwjg

We assume now that D

w;`

k

(i� 1) has been previously omputed and we would like to

ompute D

w;`

k

(i), i.e we know d

H

(w[i � 2` � k; i � ` � k � 1℄; w[i � `; i � 1℄) and we

would like to ompute d

H

(w[i� 2`� k + 1; i� `� k℄; w[i� `+ 1; i℄).

We therefore de�ne two additional funtions:

� 8a; b 2 �; 11

a

(b) = 0 if b = a, 1 otherwise;

� 8k 2 fj

min

; : : : ; j

max

g; E

w;`

k

(i) = 11

w

i�`�k

(w

i

) if i 2 f` + k + 1; : : : ; jwjg, 0

otherwise.

Lemma 3.1 Let w be a word over �, ` an integer and k 2 fj

min

; : : : ; j

max

g. We have:

D

w;`

k

(i) =

8

>

<

>

:

0; 8i 2 f1; : : : ; `+ kg;

D

w;`

k

(i� 1) + E

w;`

k

(i); 8i 2 f`+ k + 1; : : : ; 2`+ k � 1g;

D

w;`

k

(i� 1) + E

w;`

k

(i)� E

w;`

k

(i� `); 8i 2 f2`+ k; : : : ; jwjg:

Proof 1 Let k 2 fj

min

; : : : ; j

max

g and i 2 f2` + k; : : : ; jwjg. If i > 2` + k then

D

w;`

k

(i� 1) = d

H

(w[i� 2`� k; i� `� k � 1℄; w[i� `; i� 1℄) and therefore

D

w;`

k

(i)

= d

H

(w[i� 2`� k + 1; i� `� k℄; w[i� `+ 1; i℄)

= d

H

(w[i� 2`� k + 1; i� `� k � 1℄; w[i� `+ 1; i� 1℄) + 11

w

i�`�k

(i)

= d

H

(w[i� 2`� k; i� `� k � 1℄; w[i� `; i� 1℄)� 11

w

i�2`�k

(i� `)+

11

w

i�`�k

(i)

= D

w;`

k

(i� 1)� E

w;`

k

(i� `) + E

w;`

k

(i):

If i = 2` + k then D

w;`

k

(i) = d

H

(w[1; i � ` � k℄; w[` + k + 1; i℄) = d

H

(w[1; i � `�

k � 1℄; w[`+ k + 1; i� 1℄) + 11

w

i�`�k

(w

i

) = D

w;`

k

(i� 1) + E

w;`

k

(i).

But we have E

w;`

k

(i � `) = E

w;`

k

((2` + k) � `) = E

w;`

k

(` + k) = 0, so D

w;`

k

(i) =

D

w;`

k

(i� 1)� E

w;`

k

(i� `) + E

w;`

k

(i).

We prove the other ase in the same manner. 2

The size of the arrays D (where D[k℄[i℄ = D

w;`

k

(i)) and E (where E[k℄[i℄ = E

w;`

k

(i))

is (j

max

� j

min

+ 1)� jwj. In order to �ll these two arrays, we now use a O((j

max

�

j

min

+ 1)� jwj)-time and spae algorithm.

Example 3.1

This example (see Fig. 4) has been obtained with w = aaataagttataataaatgtgta,

` = 4, j

min

= �1, j

max

= 1 and " = 2:

For example D

w;4

�1

(7) = d

H

(w[1; 4℄; w[4; 7℄) = d

H

(aaat; taag) = 2, D

w;4

0

(17) = d

H

(

w[10; 13℄; w[14; 17℄) = d

H

(ata; at) = 1 and D

w;4

1

(28) = d

H

(w[20; 23℄; w[25; 28℄) =

d

H

(atg; gta) = 2.

81

Proeedings of the Prague Stringology Conferene '03

��������
��������
��������

��������
��������
��������

���������
���������
���������

���������
���������
���������

��������
��������
��������

��������
��������
��������0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

0 0 0 1 1 1 2 2 3 4 3 3 2 2 3 3 4 4 4 4 4 4 4 3 3 3 43

0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1110 11
2 2 3 2 1 1 444444433213211000000 3

1 10 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 10 0 0 0 0 0 1 0 0
gap

overlap

conca−

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

���������
���������
���������
���������

2520151051 28

0 0 0 0 0 1 2 2 2 2 2 3 4 44 3 2 1 1 2 2 3 3 3 3 2 20

a a a a a g t t a t c a a t c c a a a t c g t g t c a

1001 = 2
t c g

g t c a

a t
0 0 0 1 = 1

c a

a t c c
01 0 = 21

a a a

t a a g

at

t

tenation

w

i

E

w;4

�1

(i)

D

w;4

�1

(i)

D

w;4

0

(i)

E

w;4

1

(i)

D

w;4

1

(i)

E

w;4

0

(i)

Fig. 4: D and E arrays

The spae omplexity an be improved as follows.

Sine the values E[k℄[i℄ are independent, we an derease the spae omplexity by

ignoring the �lling of the array E and by omputing E[k℄[i℄ only when needed without

inreasing the time omplexity.

Moreover, for a given `, we only need the last value D

w;`

k

(i � 1) in order to om-

pute D

w;`

k

(i) (see Lemma 3.1), thus we will only store the last olumn of the ar-

ray D. Finally (see Fig. 5), we obtain a O((j

max

� j

min

+ 1) � jwj)-time and

O(j

max

� j

min

+ 1)-spae algorithm (D is an array of size O(j

max

� j

min

+ 1)). If

we are looking for all e.t.r. for opies of length ` 2 [`

min

; `

max

℄,the omplexity is

O((`

max

� `

min

+ 1) � (j

max

� j

min

+ 1) � jwj). From a pratial point of view,

(`

max

� `

min

+ 1) � 61 is muh lower than jwj and the time omplexity is still linear:

O(C � jwj), where C � 61� (j

max

� j

min

).

Constrution of the Longest Paths

The two arrays are ompat representations of the graphs we depited in [5℄, and if

we refer to the traditional graph voabulary, we an assoiate a ell in the position

array and a node in the position graph.

Constrution of the array ontaining the longest paths(w; `; j

min

; j

max

; ")

1 for ` `

min

to `

max

do

2 for i 1 to jwj do

3 C[i℄ �1

4 L[i℄ 0

5 for k j

min

to j

max

do

6 if (i � `+ k) then

7 D[k℄ 0

8 elseif (i � 2`+ k) then

9 D[k℄ D[k℄ + 11

w

i�`�k

(w

i

)

10 else D[k℄ D[k℄ + 11

w

i�`�k

(w

i

)� 11

w

i�2`�k

(w

i�`

)

11 if (i � 2`+ k) and (D[k℄ � ") and (L[i� 2`� k + 1℄ + 1 > L[i� `+ 1℄) then

12 L[i� `+ 1℄ L[i� 2`� k + 1℄ + 1

13 C[i� `+ 1℄ i� 2`� k + 1

14 return (C;D)

Fig. 5: Constrution of the array ontaining the longest paths

When D

w;`

k

(i) � " and i � 2`+k, the ar between nodes (i�2`�k+1) and (i�`+1)

is added only if it reates a longest path to node (i� `+ 1), moreover the previously

82

A Linear Algorithm for the Detetion of Evolutive Tandem Repeats

existing, previously unique ar ending in i� ` + 1 is removed: let a path of length

ending in (i�`+1), if the length of the path ending in (i�2`�k+1) plus 1 is greater

than , then thear ending in (i� `+1) is removed and the ar from (i� 2`� k+ 1)

to (i� `+ 1) is reated.

Finally eah node i has at most one ar ending in i and therefore the `-position graph

is stored in an array C of integers, where C[i℄ is the index of the head of the ar (C[i℄,

i), and �1 otherwise. We use an array L of integers, where L[i℄ is the length of the

longest path ending in i.

Let C and L be arrays of integers of size jwj (see algorithm Fig. 5).

The determination of the longest paths, orresponding to the maximal e.t.r., uses the

traditional algorithm.

Computation of the Distane between Two Fators of Length

`+ 1

Lemma 3.2 (Computation of D

w;`+1

k

(i)) Let `; j

min

; j

max

and k be integers. We

have 8k 2 fj

min

; : : : ; j

max

g; i 2 f2`+ k; : : : ; jwjg, D

w;`+1

k

(i) = D

w;`

k+1

(i) +E

w;`

k+1

(i� `);

(see Fig. 6).

Proof 2 Let `; j

min

; j

max

; i and k integers suh that k 2 fj

min

; : : : ; j

max

g and i 2

f2`+ k; : : : ; jwjg. We have

D

w;`+1

k

(i) = d

H

(w[i� 2(`+ 1)� j + 1; i� (`+ 1)� k℄; w[i� (`+ 1) + 1; i℄)

= d

H

(w[i� 2`� k � 1; i� `� k � 1℄; w[i� `; i℄)

= d

H

(w[i� 2`� k; i� `� k � 1℄; w[i� `+ 1; i℄) + 11

w

i�2`�k�1

(w

i�`

)

= d

H

(w[i� 2`� (k + 1) + 1; i� `� (k + 1)℄; w[i� `+ 1; i℄)+

11

w

i�2`�k�1

(w

i�`

)

= D

w;`

k+1

(i) + E

w;`

k+1

(i� `):

2

�������������������������� ������������������������

������������

����������

``

`+ 1 `+ 1

i

k + 1

k

i� `� k � 1

i� 2`� k � 1

i� 2`� k

i� `� k � 1 ii� `

i� `+ 1

Fig. 6: Computation of D

w;`+1

k

(i)

������������
������������
������������
������������

������������
������������
������������
������������

����������

��������

``

` + 1 `+ 1

i

k + 1

i� `� k � 1

k

i + 1

i� 2`� k

i� `� k

i� `+ 1

i� 2`� k i� `+ 1

Fig. 7: Computation of D

w;`+1

k

(i+ 1)

Lemma 3.3 (Computation of D

w;`+1

k

(i+ 1)) Let `; j

min

and j

max

be integers. We

have 8k 2 fj

min

; : : : ; j

max

g; i 2 f2`+k; : : : ; jwjgD

w;`+1

k

(i+1) = D

w;`

k+1

(i)+E

w;`

k+1

(i+1);

(see Fig. 7).

Proof 3 Aording to Lemma 3.2, D

w;`+1

k

(i+1) = D

w;`

k+1

(i+1)+E

w;`

k+1

(i� `+1) and

by De�nition 3.1, D

w;`

k+1

(i + 1) = D

w;`

k+1

(i) � E

w;`

k+1

(i � ` + 1) + E

w;`

k+1

(i + 1), therefore,

D

w;`+1

k

(i+ 1) = D

w;`

k+1

(i) + E

w;`

k+1

(i + 1).

2

83

Proeedings of the Prague Stringology Conferene '03

Lemma 3.4 (Computation of D

w;`+1

k

(i)) Let `; j

min

and j

max

be integers. We

have 8k 2 fj

min

; : : : ; j

max

g; i 2 f2`+ k; : : : ; jwjg

D

w;`+1

k

(i) = D

w;`

k+1

(i) + E

w;`

k+1

(i� `)

= D

w;`

k+1

(i� 1) + E

w;`

k+1

(i):

4 Evolutive Tandem Repeats and Comparison Ma-

tries

Comparison Matries

We will now explain the onnetion between the arrays we are omputing and using,

and well-known tehniques used by several algorithms devoted to sequene ompari-

son.

A traditional tehnique in sequene omparison onsists in the onstrution and the

visit of the two-dimension matrix, where a ell (i; i

0

) ontains the omparison sore,

i.e. the distane, between a fator ending at position i in one sequene and a fator

ending at position i

0

in the other sequene.

Computing the positions of all the approximate repeats in one sequene an be arried

out by omparing the sequene with itself, that is by onstruting a spei� symmetri

square matrix, like the one we are presenting in Fig. 8. Note that Fig. 9 represents

the arrays D and E orresponding to the three white diagonals of Fig. 8.

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

a

c

T

a

t

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1

11

1

1

1

1

a

c

a

g

c

a

t

g

0

0

0

1

1

1

1

1

1

1

0

0 1

1

1

0

0

0

0

1

1 1 1 1 1 0 1

0 1 1 0 1 1

1 1 0 1 1

1 1 1 1 1

1 0 0 1 0 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

0 0 0 0

0

0

1 1

1 1 1 1 1 1 1

11111111

1 1 1 1 1 1 1 1 1 1

1

2

0 2 1 3

2 3

2 3

2

2

3

2

2

3

2

1

3

2

3

3

3

3

3

2

3

3

3

3

0

0

0

2

2

2

2

2

22

2 2

2

2

1

2

3

1

02

31 1 3

0

0 3

1

3

2 2

1 2 3 2 2 3 0

0

0

3

3

3

33

33

32

13

3

3

3 2

2 2

2

1 3

3

3

1

2

2

2

2 2

a c t a a c a gc a t g

2

0

−1

−1

−1

−1

−1

−1

−1

−1

−1

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0 1 0 1 1 1 1

110110100110

1
3−1

jump
1

3−1
d (s[i],s[i’])

d (s[i−2,i],s[i’−2,i’])
H

H

Fig. 8: Matrix and its diagonals for ` = 3,

j

min

= �1; j

max

= 1 and " = 1

������

��

��
��
��
��

1051

0 0 0 0 0 1 2 3 3 3 30

a t

0 0 1
0 2 3 3

0 0 0 1 0 1 1 0 1 00
2 2 1222210000

1 11 1 10 0 0 0 0 0 1

a c t a c a c g a

0
1 1 1
1 2 3

1 0
3 2

10
1 1

1 1

1

g

E

w;3

�1

(i)

E

w;3

0

(i)

E

w;3

1

(i)

D

w;3

�1

(i)

D

w;3

0

(i)

D

w;3

1

(i)

w

i

Fig. 9: The arrays D and E orrespond-

ing to the three white diagonals

In this matrix, the ontent of a ell (i; i

0

) ontains informations orresponding to

d

H

(w[i � 2; i℄; w[i

0

� 2; i

0

℄). One an observe four di�erent kinds of ells: dark gray

ells orrespond to unde�ned distanes (i < ` or i

0

< `, the fators are not long enough

84

A Linear Algorithm for the Detetion of Evolutive Tandem Repeats

to ompute d

H

(w[i� 2; i℄; w[i

0

� 2; i

0

℄), therefore only d

H

(w[i℄; w[i

0

℄) is reported in the

upper left orner), light gray ells orrespond to useless ells suh that i

0

� i < `+j

min

or i

0

� i > `+ j

max

, white ells ontain three values as expressed in Fig. 8 and are the

only ells that are really needed and �nally dashed ells tik opies partiipating to a

potential e.t.r. (for example, the dashed ell (3; 7) states that d

H

(w[1; 3℄; w[5; 7℄) � ",

that is d

H

(at; aa) � 1, whih is orret).

Remark 4.1 Dashed ells ontributing to a diagonal indiate a potential larger re-

peat: (3; 9) and (4; 10) (orresponding respetively to d

H

(at; ag) � 1 and d

H

(ta;

ga) � 1) an establish the existene of a longer repeat (in this example d

H

(ata;

aga) � 1) but more generally, dashed ells (i; i

0

) and (i+ 1; i

0

+ 1), that is d

H

(w[i�

2; i℄; w[i

0

� 2; i

0

℄) � 1 and d

H

(w[i � 1; i + 1℄; w[i

0

� 1; i

0

+ 1℄) � 1, does not imply

neessarily that d

H

(w[i� 2; i + 1℄; w[i

0

� 2; i

0

+ 1℄) � 1 (onsider (6; 8) and (7; 9) for

example).

Assume now that we are searhing for approximate tandem repeats of length ` = 3,

with an error rate " = 1 and j

min

= �1; j

max

= 1, one we have built our matrix, the

hunt for the repeats an be arried out by visiting one row at a time and reporting

regions ontaining ells with a lower right value smaller than " every at least `+j

min

=

3� 1 = 2 and at most `+ j

max

= 3 + 1 = 4 positions. In this matrix (see Fig. 10), if

we onsider the third row, one an �nd suh ells in olumns 3, 7 and 9 and therefore

dedue that there exists an approximate repetition starting at position 1 and ending

at position 9: as a matter of fat, ataaag is an approximate tandem repeat with

jumps, the letter a loated at position 4 orresponds to a gap between opies

1

= at

and

2

= aa, the letter a loates at position 7 orresponds to an overlap between

opies

2

= aa and

3

= ag. This is more or less the onept Sagot and Myers used

in [12℄ for �nding mirosatellites.

Evolutive Tandem Repeats

Finding evolutive tandem repeats with jumps is slightly di�erent, the loation of a

opy partiipating to the e.t.r. depends only on the loation of its predeessor, `,

the length of the opies and j

min

; j

max

the aeptable jump between two onseutive

opies.

Consider a opy belonging to the e.t.r. that ends at position i, its suessor must ends

at a spei� position (between i+`+j

min

and i+`+j

max

) in the matrix, we therefore

have to searh for a dashed ell at positions (i; i

0

) for i+`+ j

min

� i

0

� i+`+ j

max

. If

there exists suh a ell, it gives us a signi�ant information about the way the opies

are onneted: if i + ` + j

min

� i

0

� i + `� 1 there is an overlap of length i + `� i

0

between the opies, if i

0

= i+` the opies are ontiguous, if i+`+1 � i

0

� i+`+j

max

there exists a gap of length i

0

� i� ` between the opies. Therefore, for every row i,

we only have to onsider (j

max

� j

min

) + 1 ells. In order to �nd e.t.r. we therefore

have to ompute and visit the diagonals starting in olumns i+`+j

min

to i+`+j

max

.

That leads to omputing and visiting only O((j

max

� j

min

+ 1)� jwj) ells.

The left-most diagonal, starting in ell (1; `+ j

min

+ 1), orresponds to the maximal

authorized overlap, while the right-most diagonal, starting in ell (1; ` + j

max

+ 1),

orresponds to the maximal authorized gap. We an therefore build a matrix that

sums up all these informations as depited in Fig. 8. The three white diagonals are

85

Proeedings of the Prague Stringology Conferene '03

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

��
��
��

��
��
��

���
���
���
���

��
��
��

��
��
��

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

a c t a a c a gc a t g

1 2 3 4 5 6 7 8 9 10 11 12

a1

2 c

t3 0 3

a4

3 2 1

0 2 3 2

3

2 3

1 3 2 1

231

0 2 2 3 3 2 2 3

2

2

232120

0 3 1 2 3

32230

0 3 3 1

330

0 3

0g12

11 t

a10

g9

8 c

a7

a5

6 c

Fig. 10: Two dimension matrix orresponding to the omparison of ataaagatg

with itself, for ` = 3 and " = 1

the only ones that need to be omputed (even if in this matrix, we show all the ells).

Moreover, the omputation of the three diagonals is equivalent to the omputation of

the D and E arrays.

5 Experimental Results

We have implemented and tested this algorithm on various sequenes, we built ran-

dom sequenes over the alphabet fa; ; g; tg and no e.t.r. has been deteted (for the

same rapameters as below), it appears that this kind of repetition is not an artifat.

Moreover we foused on real sequenes from A. thaliana and for testing purpose we

used sequenes with length varying from 10kb to 200kb (see Fig. 11).

The average behaviour of the timing urves orresponds to that we were expeting.

Time and spae onsumptions enabled us to searh for e.t.r. in whole hromosomes,

we studied more spei�ally A. thaliana whih possesses �ve hromosomes (their

length varying from 17 to 29Mb) and an example is presented in Appendix A.

6 Conlusion and Perspetives

In this artile, we presented a both spae and time linear algorithm for the detetion

of evolutive tandem repeats. Furthermore, we implemented this approah, developed

a web interfae (see Fig. 12, http://abiss.rihan.fr/~rgroult/index.php) that

86

A Linear Algorithm for the Detetion of Evolutive Tandem Repeats

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 50000 100000 150000 200000

C
P

U
 T

im
e

(s
)

Length of the sequence (bp)

Execution times on sequences: length variation

Legend:
l=6, e=1, j=1
l=7, e=1, j=1
l=8, e=1, j=1

l=15, e=1, j=1

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0 50000 100000 150000 200000

C
P

U
 T

im
e

(s
)

Length of the sequence (bp)

Execution times on sequences: jump variation

Legend:
l=7, e=2, j=1
l=7, e=2, j=2
l=7, e=2, j=3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50000 100000 150000 200000

C
P

U
 T

im
e

(s
)

Length of the sequence (bp)

Execution times on sequences

Legend:
l=6, e=1, j=1

l=15, e=7, j=4
l=30, e=30, j=14

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 50000 100000 150000 200000

C
P

U
 T

im
e

(s
)

Length of the sequence (bp)

Execution times on sequences: error variation

Legend:
l=8, e=1, j=1
l=8, e=2, j=1
l=8, e=3, j=1

Fig. 11: Exeution times on sequenes, where l is the length of the opies, e is the

maximal Hamming distane and j is the jump

presents the opies, the alterations and sums up informations relative to the repeats.

We are now looking for this kind of repeats in omplete genomes, we found several

interesting e.t.r. that are not inherited from approximate tandem repeats. We are

still in the proess of studying the way it works, from the biologist viewpoint and we

are trying to �gure out their role, preferred loation and number in di�erent genomes.

Sine onsidering Hamming distane is somehow restritive, we are moving forward

by designing an algorithm that makes use of Levenshtein distane (whih allows indels

as well as substitution) instead of Hamming distane.

Referenes

[1℄ G. Benson. An algorithm for �nding tandem repeats of unspei�ed pattern size.

In S. Istrail, P. Pevzner, and M. Waterman, editors, Proeedings of the 2nd An-

nual International Conferene on Computational Moleular Biology (RECOMB-

98), pages 20�29, New York, Mar.22�25 1998. ACM Press.

[2℄ G. Benson. Tandem repeats �nder: a program to analyze DNA sequenes. Nu-

lei Aids Res., 27(2):573�580, 1999.

[3℄ O. Elemento, O. Gasuel, and M.-P. Lefran. Reonstruting the dupliation

history of tandemly repeated genes. Moleular Biology and Evolution, (19):278�

288, 2002.

87

Proeedings of the Prague Stringology Conferene '03

Fig. 12: HTML interfae

[4℄ D. Golstein and C. Shlotterer. Mirosatellites: Evolution and Appliations.

Oxford University Press, 1999.

[5℄ R. Groult, M. Léonard, and L. Mouhard. Evolutive tandem repeats using ham-

ming distane. In Proeedings of the 27th International Symposium on Mathe-

matial Foundations of Computer Siene, pages 292�304, Warszawa - Otwok,

Poland, Aug. 2002. Leture Notes in Computer Siene 2420, K. Diks, W. Rytter

(Eds.), Springer.

[6℄ A. Je�reys. Higly variable minisatellites and DNA �ngerprints. Biohem. So.

Trans., 15:309�317, 1987.

[7℄ R. M. Kolpakov and G. Kuherov. Finding maximal repetitions in a word in

linear time. In IEEE Symposium on Foundations of Computer Siene, pages

596�604, 1999.

[8℄ R. M. Kolpakov and G. Kuherov. Finding approximate repetitions under ham-

ming distane. In Proeedings of the 9th European Symposium on Algorithms

(ESA 2001), volume 2161 of Leture Notes in Computer Siene, pages 170�181,

Aarhus, Denmark, 2001.

[9℄ S. Kurtz, E. Ohlebush, C. Shleiermaher, J. Stoye, and R. G. Computation

and visualization of degenerate repeats in omplete genome. In Proeedings of

the 8th International Conferene on Intelligent Systems for Moleular Biology,

pages 228�238, La Jolla, California, 2000. The AAAI Press.

[10℄ S. Kurtz and C. Shleiermaher. Reputer - fast omputation of maximal repeats

in omplete genomes. Bioinformatis, 15(5), 1999.

[11℄ A. Lefebvre and T. Leroq. Computing repeated fators with a fator orale. In

L. Brankovi and J. Ryan, editors, Proeedings of the 11th Australasian Workshop

On Combinatorial Algorithms, pages 145�158, Hunter Valley, Australia, 2000.

88

A Linear Algorithm for the Detetion of Evolutive Tandem Repeats

[12℄ M. Sagot and E. W. Myers. Identifying satellites in nulei aid sequenes. In

S. Istrail, P. Pevzner, and M. Waterman, editors, Proeedings of the 2nd Annual

International Conferene on Computational Moleular Biology (RECOMB-98),

pages 234�242, New York, Mar.22�25 1998. ACM Press.

A An Example of e.t.r. Ourring in A. thaliana,

hr 4 (17Mb)

We found numerous e.t.r. in hr 4 (17Mb) of A. thaliana, here is an example appearing

in an exon of the AT4G38590.1 gene.

./evorep -m11 -e3 -j1 -r4 -f ~/at4.fasta

->

- number of e.t.r.: 662

- time: 0m38.758s

Example of found e.t.r.

#==

Parameters: length=11, error=3, jmin=-1, jmax=1, rMin=4

Sequene: > at4.seq (17Mb)

Exeution time: 38 se.

17245698 17245709 17245719 17245731 17245743 17245755 17245767

aaagatgagaagaagaagaaagaagataaagagaagaggaagaggagatgaagatgatgatgaagaagaag

[aagaag

17245698 aaagatgaga

17245709 agaagaagaaa

17245719 agaagataaag

17245731 gaagaggaag

17245743 ggagatgaag

17245755 tgatgatgaag

17245767 agaagaagaag

#==

We investigated this sequene using �tandem repeat �nder� [2℄ and �mreps� [7℄ and

obtained:

->

Tandem Repeat Finder:

Indies Period Copy Consensus Perent Perent Sore A C G T Entropy(0-2)

Size Number Size Mathes Indels

No Repeats Found!

->

./mreps -err 3 -minp 2 -from 1 -exp 3.0

* Proessing window [1 : 80℄ *

from -> to : size <per.> [exp.℄ repetition

--

1 -> 18 : 18 <5> [3.60℄ aaag atgag aagaa gaa

89

Proeedings of the Prague Stringology Conferene '03

5 -> 25 : 21 <6> [3.50℄ gatgag aagaag aagaaa gaa

8 -> 40 : 33 <4> [8.25℄ gaga agaa gaag aaag aaga taaa gag aaga g

10 -> 32 : 23 <7> [3.29℄ gaagaag aagaaag aagataa ag

11 -> 33 : 23 <5> [4.60℄ aagaa gaaga aagaa gataa aga

20 -> 80 : 61 <6> [10.17℄ aaagaa gataaa gagaa gaggaa gagga gatgaa

[gatgat gatgaa gaagaa gaagaa g

30 -> 80 : 51 <9> [5.67℄ aagagaag aggaagagg agatgaag atgatgatg

[aagaagaag aagaag

30 -> 80 : 51 <12> [4.25℄ aagagaagagg aagaggagatg aagatgatgatg

[aagaagaagaag aag

36 -> 47 : 12 <4> [3.00℄ aaga ggaa gagg

60 -> 80 : 21 <4> [5.25℄ atga tgaa gaag aaga agaa g

--

RESULTS: There are 10 maximal repetitions in the segment proessed

90

Computing the Repetitions in a Weighted Sequene

Costas S. Iliopoulos

1

, Laurent Mouhard

2

, Katerina Pedikuri

3;4

and

Athanasios K. Tsakalidis

3;4

1

Department of Computer Siene, King's College London Strand,

London WC2R 2LS, England

e-mail: si�ds.kl.a.uk

2

ABISS, Atelier Biology, Informatis, Statistis and Soiolinguistis,

Université de Rouen, 76821 Mont Saint Aignan Cedex, Frane

e-mail: Laurent.Mouhard�univ-rouen.fr

3

Researh Aademi Computer Tehnology Institute,

61 Riga Feraiou Str., 26221 Patras, Greee

e-mail: tsak�ti.gr

4

Department of Computer Engineering and Informatis, University of Patras,

26500 Patras, Greee

e-mail: perdikur�eid.upatras.gr

Abstrat. We present an O(n log n) algorithm for omputing the set of repe-

titions in a weighted sequene with probability of appearane larger than 1/k ,

where k is a given onstant.

1 Introdution

The key problem today in sequening a large string of DNA is that only a small

amount of DNA an be sequened in a single read. That is, whether the sequening is

done by a fully automated mahine or by a more manual method, the longest unbroken

DNA substring that an be reliably determined in a single laboratory proedure is

about 300 to 1000 (approximately 500) bases long [Celera1, Celera2℄. A longer string

an be used in the proedure but only the initial 500 bases will be determined. Hene

to sequene long strings or an entire genome, the DNA must be divided into many

short strings that are individually sequened and then used to assemble the sequene

of the full string. The ritial distintion between di�erent large-sale sequening

methods is how the task of sequening the full DNA is divided into manageable

subtasks, so that the original sequene an be reassembled from sequenes of length

500.

Reassembling DNA substrings introdues a degree of unertainty for various posi-

tions in a biosequene. This notion of unertainness was initially expressed with the

use of �don't are� haraters denoted as ���. A don't are symbol has the property of

mathing with any symbol in the given alphabet. For example the string p = AC �C�

mathes the pattern q = A�DCT . In some ases sientists determine the appearane

of a symbol in a position of a sequene by assigning a probability of appearane for

91

Proeedings of the Prague Stringology Conferene '03

every symbol. In other words a don't are symbol is replaed by a list of probabilities

of appearane for a set of haraters. Suh a sequene is alled a weighted sequene.

Other immediate appliations in moleular biology inlude: using sequenes ontain-

ing degenerate bases, IUB odes [IUB℄, where a letter an replae several bases (for

example, a B will represent a G, T or C and a H will represent A, T or C); using logo

sequenes [SS90℄ whih are more or less related to onsensus: either from assembly

or from bloks obtained by a multiple alignment program.

In this paper we present an e�ient algorithm for omputing all possible repe-

titions of primitive words in a weighted sequene. The struture of the paper is as

follows. In Setion 2 we give all the basi de�nitions used in the rest of the paper, in

Setion 3 we present our algorithm while in Setion 4 we give a brief time omplexity

analysis of the proposed method. Finally in Setion 5 we onlude and disuss our

researh interest in open problems of the area.

2 Bakground

A lot of work has been done for identifying the repetitions in a word. In [Cro81℄,

[Apo83℄, [Mai84℄ and [Sto98℄, authors have presented e�ient methods that �nd

ourrenes of squares in a string of length n in time O(nlogn) plus the time to report

the deteted squares. Moreover in [Kol99a℄ and [Kol99b℄ authors presented e�ient

algorithms to �nd maximal repetitions in a word. In the area of omputational

biology, algorithms for �nding idential repetitions in biosequenes are presented in

[Kur99℄, [Tsu99℄ and [Mar83℄. In this setion we will give all the basi de�nitions

used in the paper.

2.1 Basi De�nitions

Let � be a �nite alphabet whih onsists of a set of haraters (or symbols). The

ardinality of an alphabet denoted by j�j expresses the number of distint haraters

in the alphabet. A string or word is a sequene of zero or more haraters drawn

from an alphabet. The set of all words over the alphabet � is denoted by �

+

. A

word w of length n is represented by w[1::n℄ = w[1℄w[2℄ � � �w[n℄, where w[i℄ 2 � for

1 � i � n, and n = jwj is the length of w. The empty word is the empty sequene (of

zero length) and is denoted by "; we write �

�

= �

+

[f"g. Moreover a word is said

to be primitive if it annot be written as v

e

with v 2 �

+

and e � 2.

A fator f of length p is said to our at position i in the word w if f = w[i; � � � i+

p� 1℄. In other words f is a substring of length p ourring at position i in word w.

A word has a repetition when it has at least two onseutive equal fators. More

preisely, a repetition in w is de�ned as a triple (i; p; e) so that w[i; � � � i+p�1℄=w[i+

p; � � � i+ 2 � p� 1℄ = � � � = w[i+ (e� 1) � p; � � � i+ e � p� 1℄. The integers p and e are

alled respetively the period and exponent of the repetition.

In the ase that for a given position of a word w we onsider the presene of a

set of haraters with a given probability of appearane eah we de�ne the sense of a

weighted word w, de�ned as follow:

De�nition 1. A weighted word w = s

1

s

2

� � � s

n

is a ontinuous set of ouples

(s; �

i

(s)), where �

i

(s) is the probability of having the harater s at position i. For

every position 1 � i � n, ��

i

(s) = 1.

92

Computing the Repetitions in a Weighted Sequene

For example, if we onsider the DNA alphabet � = fA;C;G; Tg the word w=

[(A,0.5),(C,0.25),(G,0.25),(T,0)℄ [(A,0),(C,1),(G,0),(T,0)℄ [(A,1),(C,0),(G,0),(T,0)℄,

represents a word having three letters: the �rst one is either A,C,G with respetive

probabilities 0.5, 0.25 and 0.25, the seond one is always a C, while the third letter

is neessarily an A, sine its probability of presene is 1. That means that in a given

biologial sequene one of the following words: ACA, CCA, GCA might appear with

probability 0.5, 0.25 and 0.25 eah. We observe that the probability of presene of

a word is the umulative probability whih is alulated by multiplying the relative

probabilities of appearane of eah harater in every position. For the above example

the probability of the word ACA to appear in positions 1 to 3 an be analyzed as

follows: �(ACA) = �

1

(A) ��

2

(C) ��

3

(A)=0.5*1*1=0.5. The de�nition of a weighted

fator an be easily extended.

A weighted sequene has a repetition when it has at least two idential ourrenes

of a fator (weighted or not). The probability of appearane of the fator may vary

aording to the position it appears. In biologial problems sientists are interested in

disovering all the repetitions of all possible words having a probability of appearane

larger than a prede�ned onstant.

2.2 Equivalent Classes of Repetitions

In our methodology, in order to reord the repetitions of all possible words we use

a list (L

p

)

p�1

of equivalent repetitions of length p on the positions of a weighted

sequene, de�ned as follows:

De�nition 2. Let x be a weighted sequene of length jxj=n; then (i; j) 2 L

p

i�

i+p � n, j+p � n and x

i

� � �x

i+p�1

= x

j

� � �x

j+p�1

, while �(x

i

� � �x

i+p�1

) � 1=k and

�(x

j

� � �x

j+p�1

) � 1=k :

So, two positions in x are equivalent when the fators of x of length p starting at

i and j respetively are equal although the respetive probabilities of appearane an

vary. The positions of appearane of the fators as well as the respetive probabilities

are stored in a set of lasses C

p

.

De�nition 3. Let x be a weighted sequene of length jxj=n; then the (C

p

f

) lass

is the ordered list of at least 2 ouples (i

f

; �

i

(f)), whih inludes all positions of

appearane of the fator f of length p in the weighted sequene. We exlude all ouples

with probability less than 1/k .

Moreover we also de�ne a funtion on the positions of x, whih gives for every

position the next position in the same equivalene lass.

De�nition 4. D

p

(i) = the least integer k > 0, so that (i; i+ k) 2 L

p

. (If there is

no suh k the funtion is not de�ned).

One an easily hek that any list L

p+1

is a re�nement of L

p

(L

p+1

� L

p

), sine

list L

p+1

ontains all possible repetitions of length p that an be extended by one

harater. Furthermore there learly exists a smallest integer N, 1 � N � n, so that

L

1

� L

2

� � � � L

N

. Thus the omputation of the equivalenes L

p

an be done using

the values of L

p�1

, the respetive lasses C

p�1

and a proper hoiefuntion f .

De�nition 5. A hoiefuntion f is a funtion

f : fC

0

1

; � � � ; C

0

k

g �! fC

1

; � � � ; C

k

g, with the properties: for any C

0

2 fC

0

1

; � � � ; C

0

k

g

[f(C

0

) � C

0

and for any C 2 fC

1

; � � � ; C

k

gC � C

0

=) jCj � jf(C

0

)j℄;

where fC

0

1

; � � � ; C

0

k

g and fC

1

; � � � ; C

k

g the equivalene lasses of L

p�1

and L

p

re-

spetively .

93

Proeedings of the Prague Stringology Conferene '03

So f assoiates to eah E

p�1

� lass one of its E

p

� sublasses of maximal size.

Given a hoie funtion f , eah L

p

lass f(C

0

) is alled a big_lass; the others are

alled small_lasses. By de�nition, all the L

1

-lasses are small.

Now we de�ne a new sequene (S

p

)

p�1

of equivalenes on the positions of x as

follows:

De�nition 6. (i; j) 2 S

p

i� for any small lass L

p

-lass C

p

, i 2 C

p

i� j 2 C

p

.

Lemma. For any p � 1 , (i; j) 2 L

p+1

i� (i; j) 2 L

p

and (i+ 1; j + 1) 2 S

p

.

For more information on the proof of the Lemma the reader an refer to [Cro81℄.

3 Computing the Repetitions

In this paper we address the problem of omputing the set of repetitions in a weighted

biologial sequene. More formally the problem an be stated as follows:

Problem Given a weighted sequene X and an integer k �nd all the repetitions

of all possible words having a probability of appearane larger than 1/k .

0.5 0 1 10.5 0A

T

G

C

000000

000.25000.25

010.25010.25

Figure 1: Graphial approah of the problem.

In a graphial approah the problem an be represented as in the Figure 1. For

eah position of the weighted sequene we write down the probability of appearane

of eah harater of the alphabet. For the DNA alphabet whih onstitutes of 4

haraters we write down 4 respetive probabilities. The probability of appearane

of a word is the umulative probability alulated following the respetive direted

path.When the probability is larger than 1/k , the direted path is a shema that an

be extended by one harater, in the following step and graphially we searh for

a repeated shema. In the above Figure the red direted path has a probability of

appearane larger than 1/2 , (k=2) thus we searh for suh repeated shemas.

Solution. For every harater s in the alphabet we de�ne a lass C

1

as the

ordered list of ouples (i

s

; �

i

(s)), whih inludes all equivalent positions of appearane

of the harater s in the weighted sequene. We exlude all ouples with probability

less than 1/k. The set of C

1

lasses forms the L

1

list for all possible repetitions of

length one. We ontinue by omputing D

1

for eah position in the sequene.All L

1

-

lasses are small. The proess is ontinued by omputing all C

p

lasses for p � 2

94

Computing the Repetitions in a Weighted Sequene

and updating L

p

thus forming D

p

. The proess stops when we reah the maximal (in

length) repeated words with probability of appearane larger than 1/k .

The above solution uses ideas from the algorithm presented by Crohemore (see

[Cro81℄). The major di�erene is the hoie funtion that we have used in order to

inorporate the notion of probability of appearane in repetitions. A shema of the

algorithm is presented below.

FIND-WEIGHTED REPETITIONS(X,k)

Compute all possible repetitions of any length with probability larger than 1/k

FOR all s 2 � DO

reate the small lasses C

1

of ouples (s; �

i

(s)),

where �

i

(s) is the probability of having the harater s at position i.

IF �

i

(s) � 1=k exlude it from the respetive lass

Compute for p = 1 L

p

and D

p

;

WHILE

S

small_lasses 6= 0, DO

report the repetitions of period p.

p � p+ 1; if p > jxj=2 return repetitions;

L

p

 � L

p

\ S

p

; update D

p

;

small_lasses � {indies of small L

p

� lassesg

END FIND-WEIGHTED REPETITIONS

Example Suppose we want to �nd all repetitions of the weighted sequene: X=

ACTT[(A,0.5),(C,0.5)℄TC[(A,0.5),(C,0.3),(T,0.2)℄TTT, with probability larger than

1/4. We will illustrate the steps following the above presented algorithm.

1. For all haraters s 2 �

DNA

= fA;C;G; Tg reate the C

1

lasses.

C

1

A

= (1

A

; 1)(5

A

; 0:5)(8

A

; 0:5):

C

1

C

= (2

C

; 1)(5

C

; 0:5)(7

C

; 1)(8

C

; 0:3):

C

1

G

= empty:

C

1

T

= (3

T

; 1)(4

T

; 1)(6

T

; 1)(9

T

; 1)(10

T

; 1)(11

T

; 1):

2. De�ne L

1

lass as the union of C

1

lasses and the values D

1

.

L

1

= C

1

A

[C

1

C

[C

1

T

.

D

1

= f1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1g.

3. Sine

S

small_lasses 6= 0 we will ompute all possible repetitions of length

p � 2, using the lemma we presented in subsetion 2.2.

C

2

AT

= (5

AT

; 0:5)(8

AT

; 0:5):

C

2

CT

= (2

CT

; 1)(5

CT

; 0:5)(8

CT

; 0:3):

C

2

TC

= (4

TC

; 0:5)(6

TC

; 1):

C

2

TT

= (3

TT

; 1)(9

TT

; 1)(10

TT

; 1):

4. De�ne L

2

lass as the union of C

2

lasses and the values D

2

.

L

2

= C

2

AT

[C

2

CT

[C

2

TC

[C

2

TT

.

D

2

= {not de�ned, 1, 1, 1, 1, 2, not de�ned, 1, 1, not de�ned, not de�ned}.

5. Following the above proedure we onlude that the repetitions with probability

larger than 1/k are:.

L

3

= C

3

CTT

= (2

CTT

; 1)(8

CTT

; 0:3)

95

Proeedings of the Prague Stringology Conferene '03

Theorem The above algorithm omputes all repetitions in a weighted sequene

X of length jnj.

Proof. It is easy to see that the algorithm stops. The length of L

1

in the algorithm

is bounded by O(j�j

jXj

). As far as it onerns the values of the list L

p

for p � 2, are

omputed using the Lemma in subsetion 2.2 and the values of L

p�1

list. Eah list of

repetitions p+ 1 is at most half the size of the list of repetitions of length p.

4 Time Complexity Analysis

The time omplexity analysis of our algorithm is based on the ombination of the

following two fats:

1. The well known �smaller-half trik� used also in [Cro81℄, [Apo83℄, [Sto98℄,

for �nding tandem repeats. Aording to the �smaller-half trik� eah list of

repetitions of length p + 1 is at most half the size of the list of repetitions of

length p.

2. The probability of existene of a fator f in a weighted sequene X is the umu-

lative probability whih is alulated by multiplying the relative probabilities

of appearane of eah harater/symbol in every position. Note that we inter-

ested in repetitions with probability greater than 1=k. It is not di�ult to see

that given a position i of x, then there is only a onstant number of di�erent

substrings that an our at position i with probability greater than 1=k. (The

proof follows).

For every weighted sequene w of length n, w[1::n℄ = w[1℄w[2℄ � � �w[n℄, eah

position w[i℄ for 1 � i � n, is the starting position of a weighted fator i� the

respetive harater s has �(s

i

) � 1=k . Therefore the maximum probability of

appearane for the rest of the haraters in position i is bounded by p = 1�1=k .

Assume that the number of starting positions inside a weighted fator, produed

from position i is l. In order this fator to be interesting its probability of

appearane must be grater than 1=k . This is mathematially formulated as

follows:

p

l

� 1=k �! l � log

p

(k).

That means that the number of weighted positions inside a weighted fator is

bounded by a onstant and thus the number of di�erent substrings that an

our at position i with probability greater than 1=k is also a onstant number.

Based on the above two fats the time omplexity of our algorithm for omputing

the set of repetitions in a weighted sequene with probability of appearane larger

than 1/k is O(n logn).

5 Conlusions

Our future diretion is foused on de�ning the notion of borders for a weighted se-

quene and developing e�ient algorithms for omputing the overs and the seeds of

weighted sequenes.

96

Computing the Repetitions in a Weighted Sequene

Moreover we are studying the same problem using the su�x tree as the fundamen-

tal data struture. The basi idea behind this approah is to inorporate the notion

of probability of appearane in the path labels and in the leaves in the su�x tree of

a weighted sequene [Ili03℄.

Another potential appliation of our algorithm is in de�ning a basis for the re-

peated motifs of a weighted sequene. In our algorithm we reate in an exhaustive

way all possible repetitions with probability larger than 1/k . We an use all primitive

repetitions and a set of allowed operations in order to de�ne a basis that e�iently

produes all repeated motifs. As any repeated word an be expressed as an array of

primitive repetitions, it is often desirable to �nd only primitive repetitions.

Referenes

[Cro81℄ Crohemore, M.: An Optimal Algorithm for Computing the Repetitions in

a Word. Information Proessing Letters, Vol.12 (5), (1981) 244-250.

[Celera1℄ Celera Genomis: The Genome Sequene of Drosophila melanogaster, Si-

ene 287, (2000) 2185-2195

[Celera2℄ Celera Genomis: The Sequene of the Human Genome, Siene 291, (2001)

1304-1351.

[IUB℄ Nomenlature Committee of the International Union of Biohemistry (NC-

IUB). Nomenlature for inompletely spei�ed bases in nulei aid se-

quenes, Eur. J. Biohem. 150(1985) 1-5.

[SS90℄ Shneider T. D., Stephens R. M.: Sequene Logos: A New Way to Display

Consensus Sequenes, Nulei Aids Res. 18, (1990) 6097-6100.

[Knu77℄ Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern mathing in strings,

SIAM J. Comput., (6), (1977) 322-350.

[Apo83℄ Apostolio, A., Preparata, F.P.,: Optimal o�-line detetion of repetitions

in a string. Theoretial Computer Siene, (22), (1983) 297-315.

[Mai84℄ Main, M.G., Lorentz, R.J.,: An O(nlogn) algorithm for �nding all repeti-

tions in a string. Journal of Algorithms, (5), (1984) 422-432.

[Sto98℄ Stoye, J., Gus�eld, D.,: Simple and �exible detetion of ontiguous re-

peats using a su�x tree. In proeedings of the 9th Annual Symposium on

Combinatorial Pattern mathing (CPM), volume 1448 of Leture Notes in

Computer Siene, (1998) 140-152.

[Kol99a℄ Kolpakov, R., Kuherov, G.,: Finding maximal repetitions in a word in

linear time. Proeedings of IEEE Foundations of Computer Siene, (1999).

[Kol99b℄ Kolpakov, R., Kuherov, G.,: On maximal repetitions in words. Proeedings

of Foundamentals of Computation Theory, (1999) 374-385.

[Mar83℄ Martinez, H.,: An E�ient Method for Finding Repeats in Moleular Se-

quenes. Nulei Aid Researh, (11), (1983) 4626-4634.

97

Proeedings of the Prague Stringology Conferene '03

[Tsu99℄ Tsunoda, T., Fukagawa, M., Takagi, T.,: Time and memory e�ient algo-

rithm for extrating palindromi and repetitive subsequenes in nulei aid

sequenes. Pai� Symposium on Bioomputing, (4), (1999) 202-213.

[Kur99℄ Kurtz, S., Shleiermaher, C.,: REPuter: fast omputation of maximal

repetas in omplete genomes. Bioinformatis, (15), (1999) 426-427.

[Ili03℄ Iliopoulos, C., Makris, Ch., Panagis, I., Perdikuri, K., Theodoridis, E.,

Tsakalidis, A.,: Computing the Repetitions in a Weighted Sequene using

Weighted Su�x Trees. European Conferene On Computational Biology

(ECCB 2003), (aepted).

98

Mathing Numeri Strings under Noise

Veli Mäkinen

1�

, Gonzalo Navarro

2y

, and Esko Ukkonen

1�

1

Department of Computer Siene, P.O Box 26 (Teollisuuskatu 23)

FIN-00014 University of Helsinki, Finland.

e-mail: {vmakinen,ukkonen}�s.helsinki.fi

2

Center for Web Researh, Department of Computer Siene, University of Chile

Blano Enalada 2120, Santiago, Chile.

e-mail: gnavarro�d.uhile.l

Abstrat. Numeri string is a sequene of symbols from an alphabet � �

U, where U is some numerial universe losed under addition and subtration.

Given two numeri strings A = a

1

� � � a

m

and B = b

1

� � � b

n

and a distane

funtion d(A;B) that gives the sore of the best (partial) mathing of A and

B, the transposition invariant distane is min

t2U

fd(A + t; B)g, where A + t =

(a

1

+ t)(a

2

+ t) : : : (a

m

+ t). The orresponding mathing problem is to �nd

ourrenes j ofA inB where d(A+t; B

j

0

:::j

) is smaller than some given threshold

and B

j

0

:::j

is a substring of B. In this paper, we give e�ient algorithms for

mathing numeri strings � with and without transposition invariane � under

noise; we onsider distane funtions d(A;B) suh that symbols a 2 A and b 2 B

an be mathed if jb�aj � Æ, or the � largest di�erenes jb�aj an be disarded.

Keywords: approximate mathing, transposition invariane, (Æ;)�mathing

1 Introdution

Transposition invariant string mathing is the problem of mathing two strings when

all the haraters of either of them an be �shifted� by some amount t. By �shifting�

we mean that the strings are sequenes of numbers and we add number t to eah

harater of one of them.

Interest in transposition invariant string mathing problems has reently arisen in

the �eld of musi information retrieval (MIR) [CIR98, LT00, LU00℄. In musi analysis

and retrieval, one often wants to ompare two musi piees to test how similar they

are. A reasonable way of modeling musi is to onsider the pithes and durations

of the notes. Often the durations are omitted, too, sine it is usually possible to

reognize the melody from a sequene of pithes. Hene, our fous is on distane

measures for pith sequenes (of monophoni musi) and their omputation.

We studied the omputation of edit distanes under transposition invariane in

[MNU03℄. We notied that sparse dynami programming is useful in transposition

�

Supported by the Aademy of Finland under grant 22584.

y

Supported by Millenium Nuleus Center for Web Researh, Grant P01-029-F, Mideplan, Chile.

99

Proeedings of the Prague Stringology Conferene '03

invariant mathing, and obtained e.g. an O(mn log logm) algorithm for transposition

invariant longest ommon subsequene problem.

In this paper, we omplement our earlier results by studying �non-gapped� distane

measures for numeri strings. That is, we study measures where the ith symbol of

the soure is mathed with the ith symbol of the target. To allow some noise in the

values to be ompared, we study measures that either allow mathing symbols that

approximately math (i.e. values are within Æ distane apart), or allow disarding some

amount (�) of largest di�erenes. We show how to ompute the transposition invariant

Hamming distane under noise inO(m logm) time, and transposition invariant sum of

absolute di�erenes (SAD) and maximum absolute di�erene (MAD) distanes under

noise in O(m+ � log�) time, where m is the length of both strings to be ompared.

For the orresponding searh problems we only give the trivial algorithm that

repeats the distane omputation at eah of the n text positions. However, the upper

bound obtained this way for SAD distane is in fat the same as what is known without

transposition invariane (see [Mut95℄, �weighted k�mismathes problem�). We also

onsider the ombined searh problem with SAD and MAD distanes, known as the

(Æ;)�mathing problem; we give an O(mn) algorithm for the transposition invariant

ase of this problem. Again the best known upper bound for (Æ;)�mathing without

transpositions is O(mn) (beause of the SAD distane).

In addition to the distane-spei� results we introdue a more general approah to

takle with noise; many distane measures that allow mathing two haraters a and b

for free when jb�aj � Æ an be omputed easily one the set of possible mathes jM

Æ

j =

jM

Æ

j(A;B) = f(i; j) j jb

j

� a

i

j � Æ; a

i

2 A; b

j

2 Bg has been omputed. We show

how to onstrut this set in O(m log j�j + n log j�j + jM

Æ

jmin(log(Æ + 2); log logm))

time, where � is the alphabet of the two strings to be ompared. After the set M

Æ

is

onstruted, Hamming and MAD distanes and (Æ;)�mathing under noise an be

omputed in time linear in the size of the set.

In the transposition invariant ase, the onstrution of the sets of possible mathes

for all relevant transpositions is useful as well (e.g. for edit distane under noise). We

show how to do this in linear time in the overall size of these sets (plus some additive

fators of m,n, and log j�j).

Some of the results of this paper appear in a tehnial report [MNU02℄.

2 De�nitions

Let � be a �nite numerial alphabet, whih is a subset of some universe U that is

losed under addition and subtration. Let A = a

1

a

2

: : : a

m

and B = b

1

b

2

: : : b

n

be

two numeri strings over �

�

, i.e. the symbols (haraters) a

i

; b

j

of the two strings

are in � for all 1 � i � m; 1 � j � n. We will assume w.l.o.g. that m � n. String

A

0

is a substring of A if A

0

= A

i:::j

= a

i

: : : a

j

for some 1 � i � j � m. String A

00

is a subsequene of A, denoted by A

00

v A, if A

00

= a

i

1

a

i

2

: : : a

i

jA

00

j

for some indexes

1 � i

1

< i

2

< � � � < i

jA

00

j

� m.

When m = n, the following distanes an be de�ned. The Hamming distane

d

H

between strings A and B is d

H

(A;B) = m � jf(i; i) j a

i

= b

i

; 1 � i � mgj.

The maximum absolute di�erene distane d

MAD

between A and B is d

MAD

(A;B) =

max

1�i�m

fja

i

� b

i

j j 1 � i � mg. The sum of absolute di�erenes distane d

SAD

between A and B is d

SAD

(A;B) =

P

m

i=1

ja

i

� b

i

j. Note that d

MAD

is in fat the

100

Mathing Numeri Strings under Noise

maximum metri (l

1

norm) and d

SAD

the Manhattan metri (l

1

norm) when we

interprete A and B as points in m dimensional Eulidean spae.

String A is a transposed opy of B (denoted by A =

t

B) if B = (a

1

+ t)(a

2

+

t) � � � (a

m

+ t) = A + t for some t 2 U. The transposition invariant versions of

the above distane measures d

�

where � 2 fH;MAD; SADg an now be stated as

d

t

�

(A;B) = min

t2U

d

�

(A+ t; B).

So far our de�nitions allow either only exat (transposition invariant) mathes

between some haraters (d

t

H

) or approximate math between all haraters (d

t

MAD

and d

t

SAD

). To relax these onditions, we introdue a onstant Æ > 0. We write a =

Æ

b

when ja � bj � Æ, a; b 2 �. By replaing the equality a = b with a =

Æ

b in the

de�nition of d

t

H

, we get a more error-tolerant version of the distane; let us denote

the new distane d

t;Æ

H

. Similarly, by introduing another onstant � > 0, we an de�ne

distanes d

t;�

MAD

; d

t;�

SAD

suh that the � largest di�erenes ja

i

� b

i

j are disarded.

The approximate string mathing problem, based on the above distane funtions,

is to �nd the minimum distane between A and any substring of B. In this ase we

all A the pattern and denote it P

1:::m

= p

1

p

2

� � �p

m

, and all B the text and denote

it T

1:::n

= t

1

t

2

� � � t

n

, and usually assume that m << n. A losely related problem is

the thresholded searh problem where, given P , T , and a threshold value k � 0, one

wants to �nd all the text positions j suh that d(P; T

j

0

:::j

) � k for some j

0

. We will

refer olletively to these two losely related problems as the searh problem.

Notie that searhing under Hamming distane is known as the k�mismathes

problem [Abr87, ALP01, BYG94, BYP96, GG86, LB86℄. Also, a searh prob-

lem related to distanes d

MAD

and d

SAD

is known as the (Æ;)�mathing problem

[CCIMP99, CILP01, CILPR02℄ in whih ourrenes j are searhed for suh that

d

MAD

(P; T

j

0

:::j

) � Æ and d

SAD

(P; T

j

0

:::j

) � .

Our omplexity results are di�erent depending on the form of the alphabet �. We

will distinguish two ases. An integer alphabet is any alphabet � � Z. For integer

alphabets, j�j will denote max(�) � min(�) + 1. A real alphabet will be any other

� � R, and then j�j denotes the ardinality of �. For any string A = a

1

: : : a

m

, we

will all �

A

= fa

i

j 1 � i � mg the alphabet of A.

Last, we will need some orders for a set of pairs P = f(i; j)g, where a

i

2 A and

b

j

2 B. The row order of P is suh that P is sorted �rst by i (in inreasing order)

and seondary by j (in inreasing order). In olumn order P is sorted �rst by j and

seondary by i. In diagonal order P is sorted �rst by j � i and seondary by i.

3 Mathing under Noise without Transposition In-

variane

We will now present a general and e�ient method that an be used with little

modi�ations for solving both the k�mismathes problem and the (Æ;)�mathing

problem. The time omplexities will depend on the number of possible mathes

between pattern and text haraters. A similar approah will also be used later in

the transposition invariant ase.

Let M

Æ

(P; T) = M

Æ

= f(i; j) j jp

i

� t

j

j � Æg be the set of possible mathes. Let

us assume that we are given M

Æ

in diagonal order. By one traversal over M

Æ

one an

101

Proeedings of the Prague Stringology Conferene '03

easily ompute values S(d) and N(d) for eah diagonal d, where S(d) =

P

fjp

i

� t

j

j j

(i; j) 2 M

Æ

; j � i = dg and N(d) = jf(i; j) j (i; j) 2 M

Æ

; d = j � igj.

Given the arrays S(0 : : : n�m) and N(0 : : : n�m), one an solve various problems.

For example, all values d suh that S(d) � and N(d) = m, orrespond to a (Æ;)�

math starting at position d + 1 of the text. Similarly, if N(d) � m � k when

omputed for M

0

, then there is an ourrene starting at position d + 1 of the text

for the k�mismathes problem.

Thus we have an O(jM

Æ

j + n) algorithm for several problems, if we just manage

to onstrut M

Æ

in linear time in its size.

Theorem 1 Given numeri strings P (pattern) and T (text) of lengths m and n

(m << n), the set of possible mathes M

Æ

(P; T) = f(i; j) j jp

i

� t

j

j � Æg an be

onstruted in time O(j�j + m + n + jM

Æ

jmin(log(Æ + 2); log logm)) on an integer

alphabet, and in time O(m log j�j+n log j�j+jM

Æ

jmin(log(Æ+2); log logm)) on a real

alphabet. Within the same bounds, the set M

Æ

an be onstruted in row, olumn,

or diagonal order.

Proof. Let us �rst onsider the integer alphabet with Æ = 0. We onstrut an array

L(1 : : : j�j), where eah entry L() stores an inreasing list of all positions of P , where

harater ours. Array L an obviously be onstruted by one traversal over P

in O(j�j + m) time. The set M

0

an then be onstruted in olumn order in one

traversal over T by onatenating lists L(t

1

); L(t

2

); : : : L(t

n

). The running time is

O(m+ n+ j�j+ jM

0

j).

For Æ > 0, we onstrut the array L as above but the traversal over T is now

more ompliated. To onstrut the olumn j of M

Æ

we need to merge the 2Æ+1 lists

L(t

j

� Æ); : : : ; L(t

j

+ Æ) into a single list. This merging an be done using a priority

queue P as follows. Add the �rst element, say i, of eah list L() into P by using i

as the priority and as the key. Then repeat the following until all lists are empty:

Take the element with minimum priority, say (i;), from P, and add the next element

from list L() into P. Column j of M

Æ

is onstruted by inserting pair (i; j) at the

end of M

Æ

at eah step. The operations on a priority queue an be supported in

O(log(Æ + 2)) time by using some standard implementation.

Sine the priority values that need to be stored are in the range [1; m℄, we an

implement the priority queue more e�iently using a data struture of van Emde

Boas [vEB77℄. It supports, among other operations, retrieving the smallest value,

inserting a new value, and deleting the smallest value, in O(log logm) amortized time

on values in the range [1; m℄. We an store the values i using this data struture.

Then we an repeat retrieving and deleting the smallest value i until the struture is

empty, adding (i; j) at the end of M

Æ

at eah step. Thus the laimed bound on the

integer alphabet follows.

When the alphabet is real, we an use exatly the same proedure, expet that

the array L needs to be replaed by a binary searh tree. It takes O(m log j�j) time

to onstrut this searh tree. For eah harater of T we need to do a range query

on this tree to retrieve the lists of positions that orrespond to haraters in range

[t

j

� Æ; t

j

+ Æ℄. This will take O(n log j�j) time. Merging an be done similarly as in

the ase of an integer alphabet, so the laimed bound follows.

Finally, the set is in olumn order after the above onstrution. Other orders an

be onstruted easily from the olumn order in time O(m+ n+ jM

Æ

j). �

102

Mathing Numeri Strings under Noise

The above theorem gives e.g. an O(j�j + m + n + jM

0

j) time solution for the

k�mismathes problem on an integer alphabet. This an be �(mn), but in the ex-

peted ase it is muh smaller. An expeted bound �(mn=j�j) is easy to prove; see

e.g. [BYP96℄, where the above algorithmwas originally proposed for the k�mismathes

problem.

4 Mathing under Noise and Transposition Invari-

ane

For this setion, let T = ft

i

= b

i

� a

i

j 1 � i � mg = ft

i

g be the set of transpositions

that make some haraters a

i

and b

i

math. Note that the optimal transposition does

not need, in priniple, to be inluded in T, but we will show that this is the ase for

d

t

H

and d

t;�

SAD

. Note also that jTj = O(j�j) on an integer alphabet and jTj = O(m) in

any ase.

4.1 Hamming Distane

Let A = a

1

: : : a

m

and B = b

1

: : : b

m

, where a

i

; b

i

2 � for 1 � i � m. We onsider

the omputation of transposition invariant Hamming distane d

t;Æ

H

(A;B). That is, we

searh for a transposition tmaximizing the size of set fi j jb

i

�(a

i

+t)j � Æ; 1 � i � mg.

Theorem 2 Given two numeri strings A and B, both of length m, there is an

algorithm for omputing distane d

t;Æ

H

(A;B) inO(j�j+m) time on an integer alphabet,

or in O(m logm) time on a general alphabet.

Proof. It is lear that the Hamming distane is minimized for the transposition in T

that makes the maximum number of haraters math. What follows is a simple voting

sheme, where the most voted transposition wins. Sine we allow a tolerane Æ in the

mathed values, t

i

votes for range [t

i

� Æ; t

i

+ Æ℄. Construt sets S = f(t

i

� Æ; �open�) j

1 � i � mg and E = f(t

i

+ Æ; �lose�) j 1 � i � mg. Sort S [E into a list I using

order

(x

0

; y

0

) <

H

(x; y) if x

0

< x or (x

0

= x and y

0

< y);

where �open�<�lose�. Initialize variable ount = 0. Do for i = 1 to jIj if I(i) =

(x; �open�) then ount = ount+1 else ount = ount�1. Letmaxount be the largest

value of ount in the above algorithm. Then learly d

t;Æ

H

(A;B) = m�maxount, and

the optimal transposition is any value in the range [x

i

; x

i+1

℄, where I(i) = (x

i

; �), for

any i where maxount is reahed. The omplexity of the algorithm is O(m logm).

Sorting an be replaed by array lookup when � is an integer alphabet, whih gives

the bound O(j�j+m) for that ase. �

4.2 Sum of Absolute Di�erenes Distane

We shall �rst look at the basi ase where � = 0. That is, we searh for a transposition

t minimizing d

SAD

(A+ t; B) =

P

m

i=1

jb

i

� (a

i

+ t)j.

103

Proeedings of the Prague Stringology Conferene '03

Theorem 3 Given two numeri strings A and B, both of length m, there is an algo-

rithm for omputing distane d

t

SAD

(A;B) in O(m) time on both integer and general

alphabets.

Proof. Let us onsider T as a multiset, where the same element an repeat multiple

times. Then jTj = m, sine there is one element in T for eah b

i

�a

i

, where 1 � i � m.

Sorting T in asending order gives a sequene t

i

1

� t

i

2

� : : : � t

i

m

. Let t

opt

be the

optimal transposition. We will prove by indution that t

opt

= t

i

bm=2+1

, that is, the

optimal transposition is the median transposition in T.

To start the indution we laim that t

i

1

� t

opt

� t

i

m

. To see this, notie that

d

SAD

(A+(t

i

1

� �); B) = d

SAD

(A+ t

i

1

; B)+m�, and d

SAD

(A+(t

i

m

+ �); B) = d

SAD

(A+

t

i

m

; B) +m�, for any � � 0.

Our indution assumption is that t

i

k

� t

opt

� t

i

m�k+1

for some k. We

may assume that t

i

k+1

� t

i

m�k

, sine otherwise the result follows anyway. First

notie that, independently of the value of t

opt

in the above interval, the ost

P

k

l=1

jb

i

l

� (a

i

l

+ t

opt

)j +

P

m

l=m�k+1

jb

i

l

� (a

i

l

+ t

opt

)j will be the same. Then no-

tie that

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

k+1

� �)j =

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

k+1

)j+ (m � 2k)�, and

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

m�k

+ �)j =

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

m�k

)j+(m�2k)�. This ompletes

the indution, sine we showed that t

i

k+1

� t

opt

� t

i

m�k

.

The onsequene is that t

i

k

� t

opt

� t

i

m�k+1

for maximal k suh that t

i

k

� t

i

m�k+1

,

that is, k = dm=2e. Whenm is odd, it holdsm�k+1 = k and there is only one optimal

transposition, t

i

dm=2e

. When m is even, one easily noties that all transpositions t

opt

,

t

i

m=2

� t

opt

� t

i

m=2+1

, are equally good. Finally, the median an be found in linear

time [BFPRT72℄. �

To get a fast algorithm for d

t;�

SAD

when � > 0 largest di�erenes an be disarded,

we need a lemma that shows that the distane omputation an be inrementalized

from one transposition to another. Let t

i

1

; t

i

2

; : : : ; t

i

m

be the sorted sequene of T.

Lemma 4 One values S

j

and L

j

suh that d

SAD

(A + t

i

j

; B) = S

j

+ L

j

, S

j

=

P

j�1

j

0

=1

t

i

j

� t

i

j

0

, and L

j

=

P

m

j

0

=j+1

t

i

j

0

� t

i

j

, are omputed, the values of S

j+1

and

L

j+1

an be omputed in O(1) time.

Proof. Value S

j+1

an be written as

S

j+1

=

j

X

j

0

=1

t

i

j+1

� t

i

j

0

=

j

X

j

0

=1

t

i

j+1

� t

i

j

+ t

i

j

� t

i

j

0

= j(t

i

j+1

� t

i

j

) + S

j

:

Similar rearranging gives

L

j+1

=

m

X

j

0

=j+2

t

i

j

0

� t

i

j+1

= (m� j)(t

i

j

� t

i

j+1

) + L

j

:

Thus both values an be omputed in onstant time given the values of S

j

and L

j

(and t

i

j+1

). �

Theorem 5 Given two numeri strings A and B both of length m, there is an algo-

rithm for omputing distane d

t;�

SAD

(A;B) in O(m+ � log �) time on both integer and

general alphabets. On integer alphabets, time O(j�j+m+ �) an also be obtained.

104

Mathing Numeri Strings under Noise

Proof. Consider the sorted sequene t

i

1

; t

i

2

; : : : ; t

i

m

as in the proof of Theorem 3.

Clearly the andidates for the � outliers (largest di�erenes) are M(k

0

; k

00

) =

ft

i

1

; : : : ; t

i

k

0

; t

i

m�k

00

+1

; : : : t

i

m

g for some k

0

+ k

00

= �. The naive algorithm is then to

ompute the distane in all these �+1 ases: Compute the median of TnM(k

0

; k

00

) for

eah k

0

+ k

00

= � and hoose the minimum distane indued by these medians. These

� + 1 medians an be found as follows: First selet values t

�+1

and t

m��

using the

linear time seletion algorithm [BFPRT72℄. Then ollet and sort all values smaller

than t

�+1

or larger than t

m��

. After seleting the median m

0;�

of T nM(0; �) and

m

�;0

of TnM(�; 0), one an ollet all medians m

k

0

;k

00

of TnM(k

0

; k

00

) for k

0

+k

00

= �,

sine the m

k

0

;k

00

values are those between m

0;�

and m

�;0

. The �+1 medians an thus

be olleted and sorted in O(m + � log �) time, and the additional time to ompute

the distanes for all of these � + 1 medians is O(�m). However, the omputation of

distanes given by onseutive transpositions an be inrementalized using Lemma 4.

First one has to ompute the distane for the median of TnM(0; �), d

SAD

(A+m

0;�

; B),

and then ontinue inrementally from d

SAD

(A+m

k

0

;k

00

; B) to d

SAD

(A+m

k

0

+1;k

00

�1

; B),

until we reah the median of T nM(�; 0), d

SAD

(A +m

�;0

; B) (this is where we need

the medians sorted). Sine the set of outliers hanges when moving from one median

to another, one has to add value t

i

k

0

� t

i

m

to S

m

and value t

i

m

� t

i

k

00

to L

m

, where

S

m

and L

m

are the values given by Lemma 4 (here we need the outliers sorted). The

time omplexity of the whole algorithm is O(m + � log�). On an integer alphabet,

sorting an be replaed by array lookup to yield O(j�j+m+ �). �

4.3 Maximum Absolute Di�erene Distane

We onsider now how d

t;�

MAD

an be omputed. In ase � = 0, we searh for a trans-

position t minimizing d

MAD

(A + t; B) = max

m

i=1

jb

i

� (a

i

+ t)j. In ase � > 0, we are

allowed to disard the k largest di�erenes jb

i

� (a

i

+ t)j.

Theorem 6 Given two numeri strings A and B both of length m, there is an algo-

rithm for omputing distane d

t;�

MAD

(A;B) in O(m+� log�) time on both integer and

general alphabets. On integer alphabets, time O(j�j+m + �) an also be obtained.

Proof. When � = 0 the distane is learly d

t

MAD

(A;B) = (max

i

ft

i

g � min

i

ft

i

g)=2,

and the transposition giving this distane is (max

i

ft

i

g + min

i

ft

i

g)=2. When � > 0,

onsider again the sorted sequene t

i

1

; t

i

2

; : : : ; t

i

m

as in the proof of Theorem 3. Again

the � outliers are M(k

0

; k

00

) for some k

0

+ k

00

= � in the optimal transposition. The

optimal transposition is then the value (t

i

m�k

00

+ t

i

k

0

+1

)=2 that minimizes (t

i

m�k

00

�

t

i

k

0

+1

)=2, where k

0

+k

00

= �. The minimum value an be omputed in O(�) time, one

the � + 1 smallest and largest t

i

values are sorted. These values an be seleted in

O(m) time and then sorted in O(� log�) time, or O(j�j+ �) on integer alphabets. �

4.4 Searhing

Up to now we have onsidered distane omputation. Any algorithm to ompute the

distane between A and B an be trivially onverted into a searh algorithm for P in

T by omparing P against every text window of the form T

j�m+1:::j

. Atually, we do

not have any searh algorithm better than this.

105

Proeedings of the Prague Stringology Conferene '03

Lemma 7 For distanes d

t;Æ

H

, d

t;�

SAD

, and d

t;�

MAD

, if the distane an be evaluated in

O(f(m)) time, then the orresponding searh problem an be solved in O(f(m)n)

time.

On the other hand, it is not immediate how to perform transposition invariant

(Æ;)�mathing. We show how the above results an be applied to this ase.

Note that one an �nd in O(mn) time all the ourrenes fjg suh that

d

t

MAD

(P; T

j�m+1:::j

) � Æ, and all the ourrenes fj

0

g where d

t

SAD

(P; T

j

0

�m+1:::j

0

) � .

The (Æ;)�mathes are a subset of fjg \ fj

0

g, but identity does not neessarily hold.

This is beause the optimal transposition an be di�erent for d

t

MAD

and d

t

SAD

.

What we need to do is to verify this set of possible ourrenes fjg \ fj

0

g. This

an be done as follows. For eah possible math j

00

2 fjg \ fj

0

g one an ompute

limits s and l suh that d

MAD

(P + t; T

j

00

�m+1:::j

00

) � Æ for all s � t � l: If the distane

d = d

MAD

(P + t

opt

; T

j

00

�m+1:::j

00

) is given, then s = t

opt

� (Æ� d) and l = t

opt

+ (Æ� d).

On the other hand, note that d

SAD

(P +t; T

j

00

:::j

00

+m�1

), as a funtion of t, is dereasing

until t reahes the median of the transpositions, and then inreasing. Thus, depending

on the relative order of the median of the transpositions with respet to s and l, we

only need to ompute distane d

SAD

(P + t; T

j

00

�m+1:::j

00

) in one of them (t = s, t = l,

or t = t

dm=2e

). This gives the minimum value for d

SAD

in the range [s; l℄. If this value

is � , we have found a math.

One an see that using the results of Theorems 3 and 6 with � = 0, the above

proedures an be implemented so that only O(m) time at eah possible ourrene

is needed. There are at most n ourrenes to test.

Theorem 8 Given two numeri strings P (pattern) and T (text) of lengths m and

n, there is an algorithm for �nding all the transposition invariant (Æ;)�ourrenes

of P in T in O(mn) time on both integer and general alphabets.

4.5 Set of Possible Mathes Revisited

Reall that an edit distane between two strings A and B is the ost of single sym-

bol insertions, deletions, and substitutions to onvert A into B. The unit ost or

Levenshtein distane [Lev66℄ assigns ost 1 to eah operation. If substitutions are

forbidden and other operations have ost 1 the resulting distane is related to the

longest ommon subsequene (LCS) of A and B. See e.g. [MNU03℄ and the referenes

therein (like [Sel80℄) for an introdution and formal de�nition of these edit distanes.

For the sequel, it is only neessary to know the fat [MNU03℄ that the above edit

distanes an be omputed e�iently one the set of possible mathes M = f(i; j) j

a

i

= b

j

; a

i

2 A; b

j

2 Bg is given. Sine we gave an e�ient algorithm in Set. 3

for onstruting M

Æ

= f(i; j) j jb

j

� a

i

j � Æg we immediatedly have algorithms for

edit distanes under noise; just use the sparse dynami programming algorithms of

[MNU03℄ (or others' ited therein) on M

Æ

instead of on M . The e�et of parameter Æ

is that two symbols an be mathed if their values are lose enough. For example, the

method skethed above an be used to ompute the longest approximately ommon

subsequene of two numeri strings.

Now we fous on the transposition invariant edit distanes under noise. Let us

denote the size of M

Æ

as r = r(A;B; Æ) = jM

Æ

(A;B)j. Let us rede�ne T in this setion

to be the set of those transpositions that make some haraters between A and B

106

Mathing Numeri Strings under Noise

exatly Æ apart, that is T = fb

j

� a

i

� Æ j 1 � i � m; 1 � j � ng. The math set

orresponding to a transposition t 2 T is M

Æ

t

= f(i; j) j jb

j

� a

i

� tj � Æg. Notie that

there is always some t 2 T whose math set M

Æ

t

is equal to M

Æ

t

0

, where t

0

2 U. For

most edit distanes (like Levensthtein distane or LCS) same math set means that

the distane will also be the same.

As notied in [MNU03℄ (in the ase Æ = 0) one ould ompute the above edit

distanes by running the basi dynami programming algorithms [Sel80℄ over all pairs

(A+t; B), where t 2 T. In ase Æ > 0, one would just interpret symbols a be b the same

when jb� aj � Æ. One an obtain a more e�ient method using advaned algorithms

at eah transposition. Let us �rst assume that Æ = 0 and let r(A;B) = r(A;B; 0).

The following onnetion was shown in [MNU03℄:

Lemma 9 ([MNU03℄) If an algorithm omputes a distane d(A;B) in

O(r(A;B)f(m;n)) time, then there is an algorithm that omputes the transposition

invariant distane d

t

(A;B) = min

t2T

d(A+ t; B) in O(mnf(m;n)) time.

As a onsequene of the above lemma, we have O(mn polylog(n)) time algorithms

for di�erent edit distanes, sine we manage to onstrut the math sets for all trans-

positions in O(mn polylog(n)) time [MNU03℄. In our noisy ase, the above lemma

extends to giving an O(

P

t2T

jM

Æ

t

jf(m;n)) algorithm, whih equals O(mn polylog(n))

when Æ = 0. To ahieve total running time O(

P

t2T

jM

Æ

t

jf(m;n)), we still need to

show that the sets M

Æ

t

an be onstruted in linear time in their overall size.

Theorem 10 The math sets M

Æ

t

= f(i; j) j a

i

+ t = b

j

g, eah sorted in the olumn

order, for all transpositions t 2 T, an be onstruted in time O(j�j+Æmn) on an inte-

ger alphabet, and in time O(m log j�

A

j+n log j�

B

j+ j�

A

jj�

B

j log(min(j�

A

j; j�

B

j))+

P

t2T

jM

Æ

t

j) on a real alphabet.

Proof. (We extend the proof given in [MNU03℄ for the ase Æ = 0.) On an integer

alphabet we an proeed naively to obtain O(j�j +mn) time using array lookup to

get the transposition where eah pair (i; j) has to be added. For Æ > 0 eah pair (i; j)

is added to entries from b

j

� a

i

� Æ to b

j

� a

i

+ Æ, in O(j�j+ Æmn) time.

The ase of real alphabets is solved as follows. Let us �rst onsider the ase Æ = 0.

Create a balaned tree T

A

where every harater a = a

i

of A is inserted, maintaining

for eah suh a 2 �

A

a list L

a

of the positions i of A, in inreasing order, suh that

a = a

i

. Do the same for B and T

B

. This osts O(m log j�

A

j+n log j�

B

j). Now, reate

an array R(1 : : : j�

A

jj�

B

j), where eah R(k) stores the subset of the math set M

t

k

(in olumn order), where t

k

= b� a, b

j

= b, and a

i

= a for all (i; j) 2 R(k). There is

an entry in R for eah possible pair (a; b), where a 2 �

A

, b 2 �

B

. Clearly R an be

onstruted in O(mn) time one T

A

, T

B

, and the assoiated lists L are given. How-

ever, many pairs an produe the same transposition, thus we have to (i) sort R based

on values t

k

and (ii) merge the partial math sets that orrespond to the same trans-

position. Phase (i) an be implemented to run in O(j�

A

jj�

B

j log(min(j�

A

j; j�

B

j)))

time; onsider w.l.o.g. that j�

A

j � j�

B

j. For �xed a 2 �

A

, we an get the j�

B

j trans-

positions b � a, b 2 �

B

, in inreasing order by a depth-�rst searh on T

B

. Thus we

have j�

A

j lists, eah ontaining j�

B

j transpositions already in order. Merging these

lists (using standard tehniques) takes O(j�

A

jj�

B

j log j�

A

j) time. Phase (ii) an be

implemented to run in O(mn) time; we an traverse through B and for eah b

j

add a

107

Proeedings of the Prague Stringology Conferene '03

new olumn to eah M

t

, where b

j

� a = t, a 2 �

A

. The orret set M

t

an be found

in onstant time sine we an maintain suitable pointers when sorting R in phase (i).

Finally, let us onsider the ase where Æ > 0. As disussed earlier, eah pair

(a; b) produes two relevant transpositions, b � a � Æ and b � a + Æ. We proeed as

before until array R is onstruted and sorted. Consider sliding a window of length

2Æ over the transpositions t

k

in R. Let the middle point of urrent window be at

t. Clearly, the pairs that are inluded in the urrent window produe the whole

math set for transposition t. That is, partial math sets R(l); R(l + 1); : : : ; R(r)

are merged into math set M

Æ

t

, where t

l

= b

j

� a

i

� t � Æ for (all) (i; j) 2 R(l),

t

r

= b

j

0

�a

i

0

� t+Æ for (all) (i

0

; j

0

) 2 R(r), and [l; r℄ is maximal range of R where this

holds. The math sets hange only when the middle points of the sliding window are

from set T = fb� a� Æ j a 2 �

A

; b 2 �

B

g. We an onstrut this set in O(j�

A

jj�

B

j)

time. After sorting it, we an slide the window of length 2Æ stopping at eah middle

point t 2 T , and onstrut eah math set M

Æ

t

by merging the math sets in the

entries of R that are overed by the urrent window.

What is left is to onsider how the merging an be done e�iently. Notie that the

math sets orresponding to onseutive transpositions share a lot in ommon; the

merging does not have to be done by brute fore. We have two ases depending on

whether the onseutive math sets di�er (i) only by one entry of R, or (ii) by several

entries. In ase (i), the range [l; r℄ of R is hanged either to [l + 1; r℄ or to [l; r + 1℄.

Both situations an be handled by one traversal over math set orresponding to [l; r℄

and in the latter ase also over R(r + 1). In ase (ii), the range [l; r℄ of R is hanged

either to [l+ k; r℄ or to [l; r+ k℄ for some k (by de�nition both ranges an not hange

at the same time). Let us onsider the latter situation, sine the �rst is analogous. It

follows that t

r+1

= � � � = t

r+k

, sine otherwise there would be a relevant transposition

t

r+k

0

� Æ, for some 1 < k

0

< k, in between t

r

� Æ and t

r+k

� Æ, whih on�its the fat

that we are moving from one relevant transposition to the next. What follows is that

we an preproess R just like in the ase when Æ = 0, merging onseutive entries

of R having exatly the same transposition in O(mn) time. After this is done, ase

(ii) an be handled just like ase (i). The time omplexity of this merging phase is

bounded by

P

t2T

jM

Æ

t

j. �

Notie that

P

t2T

jM

Æ

t

j � Æmn on an integer alphabet. So the bound on a real

alphabet is analogous to the bound on an integer alphabet.

5 Conluding Remarks

The motivation to study transposition invariant distanes omes from musi infor-

mation retrieval. However, there are also other appliations where these distane

measures are useful. For example, in image omparison one ould use the trans-

position invariant SAD distane to searh for the ourrenes of a small template

inside a large image. With gray-level images the searh would then be �lighting in-

variant�. Combining other invarianes, suh as rotation or saling invariane, with

transposition invariane in a searh algorithm, is a major hallenge.

108

Mathing Numeri Strings under Noise

Referenes

[Abr87℄ K. Abrahamson. Generalized string mathing. SIAM J. Computing,

16(6):1039�1051, 1987.

[ALP01℄ A. Amir, M. Lewenstein, and E. Porat. Approximate Subset Mathing

with Don't Cares. In Pro. 12th Annual ACM-SIAM Symposium on

Disrete Algorithms (SODA'01), pp. 279�288, 2001.

[BYG94℄ R. Baeza-Yates and G. Gonnet. Fast string mathing with mismathes.

Information and Computation, 108(2):187�199, 1994.

[BYP96℄ R. Baeza-Yates and C. Perleberg. Fast and Pratial Approximate

String Mathing. Information Proessing Letters, 59:21�27, 1996.

[BFPRT72℄ M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan. Time bounds

for seletion. J. Computer and System Sienes, 7:448�461, 1972.

[CCIMP99℄ E. Cambouropoulos, M. Crohemore, C.S. Iliopoulos, L. Mouhard, and

Yoan J. Pinzón. Algorithms for omputing approximate repetitions in

musial sequenes. In Pro. 10th Australian Workshop on Combinato-

rial Algorithms, AWOCA'99, R. Raman and J. Simpson, eds., Curtin

University of Tehnology, Perth, Western Australia, pp. 129�144, 1999.

[CIR98℄ T. Crawford, C.S. Iliopoulos, and R. Raman. String mathing teh-

niques for musial similarity and melodi reognition. Computing in

Musiology 11:71�100, 1998.

[CILP01℄ M. Crohemore, C.S. Iliopoulos, T. Leroq, and Y.J. Pinzón. Approx-

imate string mathing in musial sequenes. In Pro. Prague Stringoly

Club (PSC 2001), M. Baliik and M. Simanek, eds, Czeh Tehnial

University of Prague, pp. 26�36, DC-2001-06, 2001.

[CILPR02℄ M. Crohemore, C.S. Iliopoulos, T. Leroq, W. Plandowski, and W.

Rytter. Three Heuristis for Æ�Mathing: Æ�BM Algorithms. In

Pro. 13th Annual Symposium on Combinatorial Pattern Mathing

(CPM'02), Springer-Verlag LNCS 2373, pp. 178�189, 2002.

[GG86℄ Z. Galil and R. Gianarlo. Improved string mathing with k mismathes.

SIGACT News, 17:52�54, 1986.

[LT00℄ K. Lemström and J. Tarhio. Searhing monophoni patterns within

polyphoni soures. In Pro. RIAO 2000, pp. 1261�1279 (vol 2), 2000.

[LU00℄ K. Lemström and E. Ukkonen. Inluding interval enoding into edit

distane based musi omparison and retrieval. In Pro. AISB 2000,

pp. 53�60, 2000.

[Lev66℄ V. Levenshtein. Binary odes apable of orreting deletions, insertions

and reversals. Soviet Physis Doklady 6:707�710, 1966.

109

Proeedings of the Prague Stringology Conferene '03

[LB86℄ G. Landau and U. Vishkin. E�ient string mathing with k mismathes.

Theoretial Computer Siene, 43:239�249, 1986.

[Mut95℄ S. Muthukrishnan. New results and open problems related to non-

standard stringology. In Pro. 6th Annual Symposium on Combinatorial

Pattern Mathing (CPM'95), LNCS 937, pp. 298�317, 1995.

[MNU02℄ V. Mäkinen, G. Navarro, and E. Ukkonen. Algorithms for Transposition

Invariant String Mathing. TR/DCC-2002-5, Dept. of CS, Univ. Chile,

July 2002,

�ftp://ftp.d.uhile.l/pub/users/gnavarro/ti_mathing.ps.gz�

[MNU03℄ V. Mäkinen, G. Navarro and E. Ukkonen. Algorithms for Transposition

Invariant String Mathing (Extended Abstrat). In Pro. 20th Interna-

tional Symposium on Theoretial Aspets of Computer Siene (STACS

2003), Springer-Verlag LNCS 2607, pp. 191�202, Berlin, February, 2003.

[Sel80℄ P. Sellers. The theory and omputation of evolutionary distanes: Pat-

tern reognition. J. of Algorithms, 1(4):359�373, 1980.

[vEB77℄ P. van Emde Boas. Preserving order in a forest in less than logarithmi

time and linear spae. Inf. Pro. Letters 6(3):80�82, 1977.

110

Operation L-INSERT on Fator Automaton

�

Bo°ivoj Melihar and Milan �imánek

Department of Computer Siene & Engineering

Faulty of Eletrial Engineering

Czeh Tehnial University Prague

e-mail: melihar�fel.vut.z, simanek�fel.vut.z

Abstrat. The fator automaton is used for time-optimal searhing for sub-

strings in text. In general, if the text is hanged the new fator automaton has

to be onstruted. When the text hange is simple enough we an hange the

original fator automaton to re�et the hanges of the text and save the time of

the new fator automaton onstrution.

This paper deals with operation L-INSERT and desribes the algorithm modi-

fying the fator automaton when a new symbol is prepended to the text. This

algorithm an be also used for on-line bakward onstrution of fator automa-

ton.

Keywords: fator automaton, DAWG, operation on fator automaton, on-

strution of fator automaton, �nite automaton.

1 Introdution

The fator automaton is a �nite automaton aepting the set of all fators (substrings)

of the given text (string) T . The fator automaton an be onstruted for arbitrary

text by one of the ommon onstrution algorithms. The time omplexity of the

onstrution is linear to the size of the text T , while pattern mathing for pattern P

is linear to the size of the pattern P and is independent of the size of text T . So, in

the most ommon ase the fator automaton is one onstruted and many time used

for pattern mathing. However, when we hange the text T the fator automaton

must be dropped and new fator automaton has to be onstruted.

If the hanges in the text are simple enough then we an �nd an algorithm mod-

ifying the original fator automaton aording text T . The time omplexity of this

algorithm is often better then the omplete onstrution of the new fator automaton

for the hanged text.

A nie example of suh algorithm is the APPEND algorithm desribed in [1, Chap-

ter 6.3℄, whih an modify given fator automaton when a new symbol is appended to

the text T . The authors use this algorithm as a part of their on-line fator automa-

ton onstrution algorithm for text T = t

1

t

2

� � � t

n

: they start with one-node fator

�

This researh has been partialy supported by the Ministry of Eduation, Youth, and Sports

of the Czeh Republi under researh program No. J04/98:212300014 (Researh in the area of

information tehnologies and ummuniations) and by Grant Ageny of Czeh Republi grant No.

201/01/1433.

111

Proeedings of the Prague Stringology Conferene '03

automaton for empty text " and ompute suessively fator automata for texts t

1

,

t

1

t

2

, t

1

t

2

t

3

, � � �, t

1

t

2

� � � t

n

.

Another known fator automaton modifying algorithm is the L-DELETE algo-

rithm [2℄. It an make desired hanges to the fator automaton when the text T is

redued by deleting the leftmost symbol. The L-DELETE algorithm an be used in

onjuntion with the APPEND algorithm to implement fast substring mathing in

sliding window data ompression method.

This paper desribes an L-INSERT algorithm modifying the fator automaton

when the text T is prepended by a new symbol. Like the APPEND algorithm,

this algorithm an also be used for the onstrution of the fator automaton. The

well-known onstrution using operation APPEND reates the fator automaton by

appending symbols of the text T from left to right. On the ontrary, the onstrution

based on L-INSERT reates the fator automaton starting with the rightmost symbol

to the left.

2 Basi De�nitions

The fator automaton for text T is de�ned as a �nite automaton M aepting the

language L(M) = Fa(T) of all fators of T . There is an in�nite number of suh

automata, hene we selet one with very regular struture of its transition diagram

(Figure 1). All its states are both initial and �nal.

n

t

n

n-1

� � �

3

t

3

2

t

2

1

t

1

0

Figure 1: Canonial nondeterministi fator automaton (CNFA)

De�nition 2.1 � Canonial nondeterministi fator automaton (CNFA)

Canonial nondeterministi fator automaton CNFA for text T = t

1

t

2

t

3

� � � t

n

is a

nondeterministi �nite automaton M = (Q;A; Æ; I; F) whih satis�es:

1. Q = fq

0

; q

1

; q

2

; � � � q

n

g

2. 8q

i

2 Q; a 2 A : Æ(q

i

; a) =

(

fq

i+1

g 8i < n; a = t

i+1

; in other ases

3. I = Q

4. F = Q

We annot diretly use CNFA beause of a nondeterminism. Eah nondetermin-

isti �nite automaton an be transformed to deterministi one aepting the same

language. The transformation an be done by subset onstrution [3℄. We use the

variant of the transformation whih does not insert inaesible states into the resulting

DFA [4, algorithm 3.6℄ and we denote it as the standard determinization method.

The standard determinization method is based on the following state-sets on-

strution: For eah nondeterministi �nite automaton M = (Q;A; Æ; I; F) we an

112

Operation L-INSERT on Fator Automaton

�nd a deterministi �nite automaton

^

M = (

^

Q;A;

^

Æ; q̂

0

;

^

F) aepting the same lan-

guage satisfying the following onditions:

�

^

Q � P(Q) suh that

^

Q = fq̂ : q̂ = Æ

�

(I; w);w 2 A

�

g

�

^

Æ is a mapping

^

Æ :

^

Q�A 7!

^

Q

8q̂ 2 Q; a 2 A :

^

Æ(q̂; a) =

S

q2q̂

Æ(q; a),

� q̂

0

2

^

Q q̂

0

= I,

�

^

F �

^

Q

^

F = fq̂ 2

^

Q : q̂ \ F 6= ;g.

We use the hat aent to denote deterministi automaton, its states and transition

funtion. States of CDFA are sets of CNFA. Note, that that CDFA ontains only

reahable states.

De�nition 2.2 � Canonial deterministi fator automaton (CDFA)

Canonial deterministi fator automaton CDFA for text T is a deterministi au-

tomaton given as the result of the standard determinization of the anonial nonde-

terministi fator automaton for the same text T .

The L-INSERT algorithm modifying CNFA is very simple (it just inserts a new

state and one transition). We use that algorithm and the standard determinization to

�nd L-INSERT algorithm modifying CDFA. To keep the relationship between states

of CNFA and CDFA automata we use several adjaent data strutures.

3 Adjaent Data Strutures

To enable e�ient algorithm modifying CDFA we extend CDFA by following addi-

tional information:

� su�x links,

� text pointers,

� in-degree of nodes.

3.1 Su�x Links

Eah state q̂ of the CDFA represents a set of ative states of the CNFA � after

aepting any string w the ative state q̂

w

=

^

Æ

�

(q̂

0

; w) of CDFA represents a set of

ative states Q

w

= Æ

�

(I; w) of CNFA, formally q̂

w

= Q

w

.

Lemma 3.1 If two states q̂

u

; q̂

w

2

^

Q have nonempty intersetion, q̂

u

\ q̂

w

6= ;, then

one of them is a subset of the other (q̂

w

� q̂

u

).

113

Proeedings of the Prague Stringology Conferene '03

w

T = t

1

t

2

t

3

� � � t

n

n

t

n

� � �

t

i+1

i

t

i

i-1

t

i�1

� � �

t

2

1

t

1

0

Figure 2: If state q̂

w

=

^

Æ

�

(q̂

0

; w) ontains a state q

i

then string w ends at position i

Proof:

If both two states q̂

u

and q̂

w

ontain state q

i

then both represent the CNFA

ative state q

i

. Beause of very regular struture of CNFA the state q

i

beomes ative only if the aepted string is a fator of the text T ending

at position i (see Figure 2). It means that both strings u and w (leading

to states q̂

u

and q̂

w

) are fators of the text T ending on the same position

i. Therefore one of them must be a su�x of the other (Figure 3). Let

u

w

n

t

n

� � �

t

i+1

i

t

i

i-1

t

i�1

� � �

t

2

1

t

1

0

Figure 3: Strings u and w end in the same position.

u be a su�x of w. The state q̂

w

represents states q̂

w

= fq

j

1

; q

j

2

; q

j

3

; � � �g

where j

k

are ending positions of all ourrenes of the string w in the text.

The string u is a su�x of w so that it ours at least on the same ending

positions, therefore q̂

w

� q̂

u

(Figure 4).

uuuu

www

T = t

1

t

2

t

3

� � � t

n

Figure 4: String u ends at least on the same ending positions as string w.

From the lemma above, any pair of CDFA states ontaining any ommon CNFA

state q

i

are ordered by set inlusion. Therefore all CDFA states representing any

CNFA state q

i

reate ordered set (hain of states). The initial state q̂

0

= I = Q =

fq

0

; q

1

; � � � q

n

g ontaining all CNFA states is a superset of any set of CNFA states and

it is the biggest set of any hain of sets. We an say that all states of CDFA are

114

Operation L-INSERT on Fator Automaton

ordered in a rooted tree with the root q̂

0

. The ommon name for suh tree is su�x

tree.

CNFA:

4

a

3

b

2

b

1

a

0

CDFA:

a

b

23

4

a

3

b

2

b

14

b

a

01234

Su�x tree:

324

2314

01234

Positions in text T :

0

a

1

b

2

b

3

a

4

state words ending pos.

q̂

fq

0

;q

1

;q

2

;q

3

;q

4

g

" 0, 1, 2, 3, 4

q̂

fq

1

;q

4

g

a 1, 4

q̂

fq

2

;q

3

g

b 2, 3

q̂

fq

2

g

ab 2

q̂

fq

3

g

bb 3

abb

q̂

fq

4

g

ba 4

bba

abba

Figure 5: An example of su�x tree for T = abba

This su�x tree (as a data struture) an be implemented by pointers from eah

state q̂ 2

^

Q to its parent p̂ in the su�x tree. We all suh pointer as su�x link and

denote p̂ = suf [q̂℄. The state suf

k

[q̂℄ means k

th

iteration of su�x link and suf

�

[q̂℄

(transitive losure) denotes a set of all iterations of su�x link of the state q̂.

suf

�

[q̂℄ = fq̂; suf [q̂℄; suf

2

[q̂℄; suf

3

[q̂℄; � � �g

Lemma 3.2 If two nonequal states p̂; q̂ 2

^

Q di�er by a one state q 2 Q i.e. p̂ = q̂[fqg

then there exists a diret su�x link between them: p̂ = suf [q̂℄.

115

Proeedings of the Prague Stringology Conferene '03

Proof:

Any two states p̂; q̂ 2

^

Q where q̂ is a proper subset of p̂ (; � q̂ � p̂) are

onneted by a su�x link i� there does not exist another state r suh that

q̂ � r̂ � p̂. As states p̂ and q̂ di�er only by one state, no suh state r̂ may

exist.

g

q

i

;

= fp̂

q

i

T = t

1

t

2

t

3

� � � t

n

w

p̂

Figure 6: The state p̂ has no inoming su�x link i� it ontain only one state

Lemma 3.3 State p̂ 2

^

Q has no inoming su�x link if and only if the set q̂ ontains

exatly one state q 2 Q.

Proof:

We divide the proof of equivalene to proofs of the both impliations. The

proof of the �rst impliation (the state p̂ has no inoming su�x link =)

the set p̂ ontains only one state) follows from this ontradition:

g

q

j

;

= fq̂

g

q

j

;

q

i

;

= fp̂

q

j

q

i

T = t

1

t

2

t

3

� � � t

n

waw

q̂p̂

Figure 7: If the state p̂ ontains two states then it has inoming su�x link.

If the set p̂ would ontain more than one state (see Figure 7) then there

would exist the longest fator w of the text T , whih would end at ending

positions represented by members of p̂. Not all ourrenes of string w are

preeded by the same symbol (beause w is the longest string with these

endings) and therefore there would exist a string aw whih is a fator of

the text T and would end at positions q̂ where q̂ � p̂. Due to this inlusion

both states p̂ and q̂ would share the same branh of su�x tree whih would

lead from q̂ to p̂. The state p̂ would have at least one inoming su�x link,

whih gives the ontradition.

116

Operation L-INSERT on Fator Automaton

The seond part, the proof of bakward impliation (the set p̂ ontains

only one state =) the state p̂ has no inoming su�x link) is trivial beause

a su�x link an lead only from a subset to a superset and a set with just

only one state has no regular subsets.

Lemma 3.4 If a state p̂ 2

^

Q has just one inoming su�x link and w is the longest

string leading to this state p̂ =

^

Æ

�

(q̂

0

; w) (see Figure 8) then

a) there are at least two ourrenes of the string w in the text T ,

b) the string w is a pre�x of the text T ,

) all ourrenes of w in T exept the very �rst one (the pre�x of T) are preeded

by the same symbol.

g

q

k

3

q

k

2

;q

k

1

;

q

i

;

= fq̂

q

i

T = t

1

t

2

t

3

� � � t

n

awawaww

q̂

Figure 8: The only one inoming su�x link leads to a state p̂.

Proof:

The proof of part a) follows from the Lemma 3.3.

There are no ouple of ourrenes of string w following two di�erent

symbols. If two strings aw and bw (where a 6= b) would our in text

T then both states q̂

aw

and q̂

bw

would be disjunt subsets of p̂ and their

su�x links would lead to state p̂. At least one ourrene of w must not

be preeded by the same symbol as others beause w is the longest string

leading to state p̂. Therefore w ours at the beginning of T and all next

ourrenes are preeded by the same symbol. w is a pre�x of T . This

proves parts b) and).

Lemma 3.5 If a su�x link suf [q̂℄ = p̂ is the only su�x link leading to state p̂ then

set p̂ is larger then q̂ by just one state q

i

(i.e. p̂ = fq

i

g [q̂).

Proof:

Let w be a string leading to the state p̂ =

^

Æ

�

(q̂

0

; w) (see Figure 8). Due to

Lemma 3.4, string w is a pre�x of the text T and all other ourrenes of

w in the text T are preeded by the same symbol a. The string aw ours

at the same ending positions as string w exept the very �rst one (w is a

pre�x of T). We an divide the set p̂ into the �rst ourrene (the state

q

i

) and the rest (ourrenes of aw): p̂ = fq

i

g[

^

Æ

�

(q̂

0

;aw). Due to Lemma

3.2 it holds p̂ = suf [

^

Æ

�

(q̂

0

;aw)℄. There is only one su�x link leading to p̂

so that states

^

Æ

�

(q̂

0

;aw) and q̂ are idential and we an write p̂ = fq

i

g[q̂.

117

Proeedings of the Prague Stringology Conferene '03

3.2 Text Pointers

Most of algorithms operating on fator automaton need to resolve whih states of

CDFA represent given state q of CNFA. Sine all relevant CDFA states ontain q they

reate a separate branh in the su�x tree. We an store only the starting state of the

branh and ontinue over the su�x tree to its root. Text pointers is a data struture

whih keeps the information about the starting state. It an be implemented as an

array TextPos[i℄ of CDFA states indexed by position i in text. In fator automata it

holds TextPos[i℄ =

^

Æ

�

(q̂

0

; t

1

t

2

� � � t

i

). An example of text pointers array for T = abba

is on Figure 9.

position 4

position 3

324

position 2

2314

position 1

01234

position 0

su�x tree

text pointers

a

b

23

4

a

3

b

2

b

14

b

a

01234

pos.4pos.3pos.2pos.1pos.0

Text positions: T =

0

a

1

b

2

b

3

a

4

text pointers table

position state

0 q̂

fq

0

;q

1

;q

2

;q

3

;q

4

g

1 q̂

fq

1

;q

4

g

2 q̂

fq

2

g

3 q̂

fq

3

g

4 q̂

fq

4

g

Figure 9: An example of the su�x tree and the automaton with text pointers for

T = abba.

Note that the number of states is often larger then the number of positions in

the text. Therefore, there exist states whih are not the value of any TextPos. An

example of that is on Figure 9. Although the state q̂

fq

2

;q

3

g

represents ending positions

2 and 3 for string b, it is neither a value of TextPos[2℄ nor TextPos[3℄. We an get

all states representing the ending position 2 by inspeting the whole branh of su�x

tree (a sequene of su�x links) from the state q̂

fq

2

g

= TextPos[2℄.

118

Operation L-INSERT on Fator Automaton

3.3 Node In-degree

We use the number of transitions leading to this state (inoming transitions) as a

referene ounter for deteting unreahable states. If the automaton has unreahable

states then one of them must have in-degree equal to zero beause the CDFA has no

loops. After its removing it holds that either another unreahable state beomes zero

in-degree or we are sure there are no unreahable states in the automaton.

3.4 Operation L-INSERT

The anonial nondeterministi fator automata (CNFA) for the texts T = t

1

t

2

t

3

� � � t

n

and aT = at

1

t

2

t

3

� � � t

n

are shown on the Figure 10.

M

T

n

t

n

n-1

� � �

3

t

3

2

t

2

1

t

1

0

M

aT

n

t

n

n-1

� � �

3

t

3

2

t

2

1

t

1

0

a

X

Figure 10: The hange in CNFA when a new symbol is prepended.

The operation L-INSERT reates a new state q

X

, whih is both initial and �nal

and a new transition from the state q

X

into the state q

0

.

The algorithm modifying CDFA follows from the relationship between nondeter-

ministi and deterministi fator automaton.

When the new initial state q

X

is reated, CDFA's initial state q̂

0

� see Figure 11

(step 1) � is hanged to the new state q̂

0

0

= q̂

0

[fq

X

g. The outgoing transitions from

this state are still the same as from q̂

0

(step 2). Now, we reate a new transition

in CNFA leading from q

X

to q

0

for symbol a. In the CDFA, we should rediret the

transition leading from q̂

0

0

labeled by a symbol a to another state whih ontains

similar set of states extended by the state q

0

, beause q

0

= Æ(q

X

; a) is the new

transition (step 3).

The algorithm is based on the reursive funtion GetExtendedState(q̂; i), whih

takes the set of states q̂ and integer i as arguments, and �nds a state q̂

0

= q̂ [fq

i

g. If

there is no suh state in the automaton, it is reated by the funtion. The value of

the funtion is the state q̂

0

(Figure 12).

Using this funtion the whole algorithm an be written in �ve steps:

1. reate a new state q̂

0

0

with the same outgoing transitions as q̂

0

,

2. get the old target of the �rst transition: q̂ =

^

Æ(q̂

0

0

; a),

3. ompute new state for that transition: q̂

0

= GetExtendedState(q̂; 0),

4. rediret the transition:

^

Æ(q̂

0

0

; a) = q̂

0

,

5. hange the initial state to q̂

0

0

.

119

Proeedings of the Prague Stringology Conferene '03

t

2

t

1

q̂

0

(step 1)

t

2

t

1

q̂

0

t

1

q̂

0

0

(step 2)

t

2

t

1

q̂

0

a

a

t

1

q̂

0

0

(step 3)

Figure 11: The hange in CDFA when symbol a is inserted.

q̂

0

q

i

T = t

1

t

2

t

3

� � � t

na

wwww

q̂

Figure 12: The state q̂

0

ontains state q

i

and all states from q̂

120

Operation L-INSERT on Fator Automaton

We assume any unreahable state is removed as soon as it looses the last inoming

transition (or the last referene).

Let us onern the funtion GetExtendedState(q̂; i). It assumes that the string

w = at

1

t

2

t

3

� � � t

i

leads to the state q̂ (i.e. q̂ =

^

Æ

�

(q̂

0

; w)). It is the shortest string

leading to this state beause the text shorter by the �rst symbol a would be a pre�x

of T an would our in advane at ending position i.

Note that the string w = at

1

t

2

t

3

� � � t

i

may not be a fator of the text T . In this

ase the state q̂ may be q̂ = fg = ;. In suh ase, the solution is a state q̂

0

= fq

i

g.

Of ourse, this state may or may not be present in the urrent automaton. We an

�nd it by inspeting the text pointer at position i. The value of TextPos[i℄ may be

the required state q̂

0

= fq

i

g or its superset. Aording to Lemma 3.3: if there is no

su�x link leading to this state then it ontains only one CNFA state fq

i

g and it is

the result value of the funtion GetExtendedState (Figure 13). If there exists a

� � �

su�x links

t

i+1

t

i

� � �

TextPos[i℄

Figure 13: The foused state has no inoming su�x links therefore it ontains only

one state q

i

su�x link leading to this state then we must reate a new state q̂

0

= fq

i

g and set its

outgoing transitions. In this ase the state q̂

0

will have only one outgoing transition

for the symbol t

i

leading to state fq

i+1

g (whih an be obtained by reursive alling

the funtion GetExtendedState(nil; i + 1)). In addition, we should set up the su�x

link of this state to lead to TextPos[i℄ and update TextPos[i℄ to new value � state

q̂

0

. (See Figure 14).

Now, we onern the ase when q̂ is an already existing state of CDFA. The

funtion GetExtendedState should loate the state representing the set q̂ [fq

i

g. If

there is no suh state, it should be reated. Due to the Lemma 3.2 if there exists

suh state it must be the target of the su�x link from state q̂. But the su�x parent

p̂ = suf(q̂) of the state q̂ may not be the required state in any ase, of ourse. We an

test it by inspeting the number of su�x links leading to it. There are two disjunt

ases:

� only one su�x link leads to state p̂,

� the state p̂ is a target of more su�x links.

At �rst we assume the su�x link from the state q̂ to the state p̂ is the only link

leading to p̂ (Figure 15). As the string w = at

1

t

2

t

3

� � � t

i

is the shortest string leading

to q̂ then the �rst su�x � string u = t

1

t

2

t

3

� � � t

i

leads to state suf(q̂) = p̂. We are

sure that string t

1

t

2

t

3

� � � t

i

ours at position i and therefore p̂ ontain the required

121

Proeedings of the Prague Stringology Conferene '03

su�x links

� � �

t

i+1

t

i

� � �

?

t

i+1

q̂

0

TextPos[i℄

Figure 14: If any su�x link leads to the state found by TextP tr[i℄ then we have

to reate a new state q̂

0

, onnet its su�x link, outgoing transition and rediret

TextP tr[i℄

g

q

k

3

q

k

2

q

k

1

q

i

= fp̂

g

q

k

3

q

k

2

q

k

1

= fq̂

q

i

0

T = t

1

t

2

t

3

� � � t

na

wwww

q̂

q̂

p̂

su�x tree

Figure 15: q̂ 7! p̂ is the only su�x link leading to p̂ therefore p̂ = q̂ [fq

i

g = p̂

0

122

Operation L-INSERT on Fator Automaton

state q̂

i

. On the other side, the state p̂ does not ontain any other state then fq

i

g or

q̂ (see Lemma 3.5) therefore state p̂ is the value of the funtion GetExtendedState .

Now, assume there exist at least two su�x links leading to the state p̂. One of

them is the link from q̂ and let another one lead from a state q̂

q

(Figure 16). The

g

q

k

3

q

k

1

q

i

= f

q̂

0

g

q

k

2

= f

q̂

q

g

q

k

3

q

k

1

= fq̂

g

q

k

3

q

k

2

q

k

1

q

i
= fp̂

q

i

T = t

1

t

2

t

3

� � � t

n

aubuauua

ww

(w)

q̂

q̂

q

q̂

q̂

0

p̂

su�x tree

Figure 16: If the state p̂ reeives more su�x links then it is unusable. A new state q̂

0

has to be reated.

sets q̂ and q̂

q

are disjunt beause they are in the di�erent branhes of the su�x tree.

The state p̂ is the superset of both sets. Therefore, the set p̂ ontains more states

then q̂ [fq

i

g and will be unusable for us. The resulting state is still not in the set of

states of the automaton and we have to reate it.

We reate a new state q̂

0

whih should represent the set q̂ [fq

i

g and therefore

it inherits the same outgoing transition as q̂. However the transition for the symbol

t

i+1

should be redireted to the state (the set of CNFA states) extended by the state

q

i+1

. We an lookup this state using the funtion GetExtendedState in reursion.

The rediretion is made by assigning

^

Æ(q̂

0

; t

i+1

) = GetExtendedState(

^

Æ(q̂; i); i + 1).

Finally, we should update su�x links. The new state q̂

0

is a subset of p̂ and a superset

of q̂ therefore we inlude it between states p̂ and q̂: suf [q̂

0

℄ = p̂ and suf [q̂℄ = q̂

0

.

Algorithm 3.1 � Operation L-INSERT using funtion GetExtendedState

Input: CDFA automaton

^

M = (

^

Q;A;

^

Æ; q̂

0

;

^

F) with su�x links, text T and

text pointers

symbol a

Output: CDFA automaton

^

M with su�x links, text T and text pointers

Loal: integer n

state p̂

state q̂

0

state q̂

0

0

state

^

t

Require:

^

M aepts fators of T = t

1

t

2

t

3

� � � t

n

Ensure:

^

M will aept fators of T = at

1

t

2

t

3

� � � t

n

1: funtion GetExtendedState(state q̂; integer i)

2: if (q̂ == nil) then

123

Proeedings of the Prague Stringology Conferene '03

3:

^

t = TextP tr[i℄

4: n = jsuf

�1

(

^

t)j { the number of su�x links inomming to

^

t }

5: if (n == 0) then

6: q̂

0

=

^

t

7: return q̂

0

8: else

9: q̂

0

=new state

10:

^

Æ(q̂

0

; a) = GetExtendedState(nil; i + 1)

11: suf [q̂

0

℄ =

^

t

12: return q̂

0

13: end if

14: else

15: p̂ = suf [q̂℄

16: n = jsuf

�1

(p̂)j

17: if (n == 1) then

18: q̂

0

= p̂

19: return q̂

0

20: else

21: q̂

0

= dupliate(q̂)

22:

^

Æ(q̂

0

; t

i+1

) = GetExtendedState(

^

Æ(q̂; t

i+1

); i+ 1)

23: suf [q̂

0

℄ = p̂

24: suf [q̂℄ = q̂

0

25: return q̂

0

26: end if

27: end if

28: endfuntion

29: q̂

0

0

= dupliate(q̂

0

)

30:

^

Æ(q̂

0

0

; a) = GetExtendedState(

^

Æ(q̂

0

; a); 0)

31: SetInitialState(q̂

0

0

)

4 E�ieny of the Algorithm

4.1 Time Complexity

The best ase from the time omplexity point of view appears when the new inserted

symbol a is equal to eah symbol in the text: T = a

n

. In suh ase, the reursive

funtion GetExtendedState is alled only one. Neither this funtion nor the main

algorithm ontain loop, therefore the time omplexity is onstant O(1) � independent

on the size of the text T .

The worst ase ours if all symbols in text T are the same but di�erent from the

new inserted symbol a: T = b

n

. In suh ase, the original automaton has n+1 states

and the new automaton will have 2n� 1 states, and so the algorithm have to reate

n � 2 states and it has asymptotially time omplexity linear O(n) with respet to

the size of the text T .

124

Operation L-INSERT on Fator Automaton

b

34

b

234

b

1234

4

b

3

b

2

b

1

b

0

b

a

X01234new CDFA:

4

b

34

b

234

b

1234

b

01234

old CDFA:

4

b

3

b

2

b

1

b

0

a

X
CNFA:

Figure 17: The worst ase

4.2 Spae Complexity

The algorithm requires extra spae for following data strutures:

� text pointers,

� su�x links,

� states,

� transitions,

� stak for reursion.

Text pointers is an array indexed by the position in text T . The size of the array is

linear to the size of text T . Text pointers are more useful for other operations with fa-

tor automata. In the ase of L-INSERT algorithm, text pointers an be substituted by

text T, beause we need suessively the values TextPos[0℄; T extPos[1℄; T extPos[2℄; :::

and TextPos[i℄ =

^

Æ(TextPos[i�1℄; t

i

) while TextPos[0℄ = q̂

0

. So that we ould om-

pute the values of TextPos during reursion of the funtion GetExtendedState.

Both su�x links and states take the same spae omplexity beause there is just

one outgoing su�x link per a state. The number of states is at most 2n (proved in

[1℄).

The number of transitions in the fator automaton is less than 3n (proved in [1℄).

The size of the stak required for the reursion is limited by the number of reursive

alls. As a new states is reated before any reursive all, the total number of reursive

alls is limited by the number of inserted states. Moreover, the reursion funtion

GetExtendedState an be transformed into an iteration loop without a need of an

extra data spae.

As the all data strutures require spae at most linear to the size of the automaton,

we an say the L-INSERT algorithm is spae-linear.

125

Proeedings of the Prague Stringology Conferene '03

5 Conlusion

This paper deals with the fator automaton and its modi�ations when the text often

hanges. We disuss several operations on the text and ite algorithms re�eting

these operations into the fator automaton. Moreover we desribe some adjaent

data strutures (su�x links and text pointers) used in algorithms modifying the fator

automaton. We present a new algorithm of operation L-INSERT. The algorithm an

e�iently modify a fator automaton when a new symbol is inserted before the �rst

symbol of the text. This algorithm an be also used for on-line bakward onstrution

of the fator automata. This means that the text grows from right to left while

onstruting the automaton. Finally, the time and spae omplexity of the L-INSERT

algorithm is also disussed.

Referenes

[1℄ M. Crohemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

[2℄ M. �imánek. The fator automaton. In J. Holub and M. �imánek, editors, Pro-

eedings of the Prague Stringologi Club Workshop '98, pages 102�106, Czeh

Tehnial University, Prague, Czeh Republi, 1998. Collaborative Report DC�

98�06.

[3℄ J. E. Hoproft and J. D. Ullman. Introdution to automata, languages and om-

putations. Addison-Wesley, Reading, MA, 1979.

[4℄ J. Holub. Simulation of nondeterministi �nite automata in approximate string

and sequene mathing. Tehnial Report DC�98�04, Department of Computer

Siene and Engineering, Czeh Tehnial University, Prague, Czeh Republi,

1998.

126

An E�ient Mapping for Sore of String Mathing

Tetsuya Nakatoh

1

, Kensuke Baba

2

, Daisuke Ikeda

1

, Yasuhiro Yamada

3

,

and Sahio Hirokawa

1

1

Computing and Communiations Center, Kyushu University

Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan

e-mail: {nakatoh,daisuke,hirokawa}�.kyushu-u.a.jp

2

PRESTO, Japan Siene and Tehnology Corporation

Honho 4-1-8, Kawaguhi City, Saitama 332-0012, Japan

e-mail: baba�i.kyushu-u.a.jp

3

Graduate Shool of Information Siene and Eletrial Engineering

Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan

e-mail: yshiro�.kyushu-u.a.jp

Abstrat. This paper proposes an e�ient algorithm to solve the problem of

string mathing with mismathes. For a text of length n and a pattern of length

m over an alphabet �, the problem is known to be solved in O(j�jn logm)

time by omputing a sore by the fast Fourier transformation (FFT). Atallah

et al. introdued a randomized algorithm in whih the time omplexity an

be dereased by the trade-o� with the auray of the estimates for the sore.

The algorithm in the present paper yields an estimate with smaller variane

ompared to that the algorithm by Atallah et al., moreover, and omputes the

exat sore in O(j�jn logm) time. The present paper also gives two methods to

improve the algorithm and an exat estimation of the variane of the estimates

for the sore.

Keywords: string mathing with mismathes, FFT, onvolution, deterministi

algorithm, randomized algorithm.

1 Introdution

String mathing [4, 5℄ is the problem to obtain all the ourrenes of a (short) string

alled a pattern in a (long) string alled a text. We onsider string mathing with

mismathes whih allows inexat math introdued by substitution. Let � be an

alphabet and Æ the Kroneker funtion from � � � to f0; 1g, that is, for a; b 2 �,

Æ(a; b) is 1 if a = b, 0 otherwise. The problem with mismathes is generally solved

by omputing the sore vetor C(T; P) between a text T = t

1

� � � t

n

and a pattern

P = p

1

� � � p

m

as follows:

C(T; P) = (

1

; : : : ;

i

; : : : ;

n�m+1

); where

i

=

m

X

j=1

Æ(t

i+j�1

; p

j

):

127

Proeedings of the Prague Stringology Conferene '03

We an ompute the sore vetor using the fast Fourier transform (FFT) in

O(n logm) time, if the sore vetor is represented as a onvolution, that is, if the

Kroneker funtion is expressed by a produt of two mappings from � to a set of

numbers. This approah was developed by Fisher and Paterson [6℄ and is simply

summarized in Gus�eld [7℄. However, pratially, the time omplexity of the algo-

rithm depends on the number of alphabets. One of the reason for the di�ulties is

that the Kroneker funtion an not be written as a produt of mappings diretly.

For example, if � = fa; b; g, the generalized algorithm in [7℄ needs three mappings

�

1

, �

2

, and �

3

whih onvert symbols into f1; 0g as the following table.

�

1

�

2

�

3

a 1 0 0

b 0 1 0

 0 0 1

Then, we have Æ(a; b) =

P

3

`=1

�

`

(a) � �

`

(b) and the sore vetor is obtained by om-

puting the onvolution

P

m

j=1

�

`

(t

i+j�1

) � �

`

(p

j

) for 1 � i � n three times.

Atallah et al. [1℄ introdued a randomized algorithmwhere the time omplexity has

a trade-o� with the auray of the estimates for the sore vetor. In this algorithm,

symbols are onverted into omplex numbers with a primitive �-th root ! of unity

and the Hermitian inner produt is used for the onvolution. Then, the sore vetor

is obtained as the average of the results of onvolutions with respet to all possible

mappings '

`

from � to f0; : : : ; j�j � 1g, that is,

i

=

1

j�j

j�j

X

`=1

m

X

j=1

!

'

`

(t

i+j�1

)�'

`

(p

j

)

;

where � is the set of all mappings �

`

. (A deterministi algorithm onstruted by those

mappings requires the omputation of the onvolution j�j

j�j

times.) An estimate

for the sore vetor is the average of the results with respet to some mappings

hosen independently and uniformly from �. Let k be the number of randomly

hosen samples. Then, the time omplexity is O(kn logm). They showed that the

expetation of the estimates equals to the sore vetor and the variane is bounded

by (m�

i

)

2

=k. Baba et al. [2℄ improved this algorithm by simplifying the mappings

whih onverts the strings into numbers. The odomain of the mappings is the set

f�1; 1g instead of the set of omplex numbers. Then, the sore vetor is

i

=

1

j�j

j�j

X

`=1

m

X

j=1

�

`

(t

i+j�1

) � �

`

(p

j

):

Baba et al. [3℄ pointed out that the algorithms whih ompute the sore vetor by

FFT are distinguished by the mappings whih onvert strings into numbers in eah

algorithm, and the exat sore is obtained by repeating the O(n logm) operation j�j

times.

In this paper, we propose an e�ient algorithm to solve string mathing in whih

the variane of the estimates is not greater than (m �

i

)

2

=k. Moreover, the exat

sore vetor is omputed in O(j�jn logm) time. We also give a strit evaluation of

the variane and introdue two methods to improve our algorithm.

128

An E�ient Mapping for Sore of String Mathing

2 E�ient Algorithm

We propose an e�ient algorithm for string mathing with mismathes. The time

omplexity of a deterministi algorithm and the variane of the estimates for the

sore vetor are obtained by analyzing the mappings whih onvert the symbols to

the numbers. Let p be the smallest prime number whih is greater than or equal to the

ardinality j�j of the alphabet. The odomain of the mappings is the p-adi number

�eld Z

p

. Sine suh a prime number is less than 2j�j � 2 (Chebyshev's theorem), a

deterministi algorithm with this mappings omputes the sore vetor between a text

of length n and a pattern of length m in O(j�jn logm) time. Moreover, in the same

way as the algorithm by Atallah et al, we an onstrut a randomized algorithm in

whih the variane of the estimates for the sore vetor is independent to j�j.

2.1 E�ient Mapping

Let ' be a bijetive mapping from � to f0; 1; � � � j�j � 1g. For 0 � x � p � 1 and

a 2 �, we de�ne a mapping �

x

as

�

x

(a) = !

x�'(a)

; (1)

where ! is a primitive p-th root of unity. Then, we have the following lemma.

Lemma 1 For any a; b 2 �,

Æ(a; b) =

1

p

p�1

X

x=0

�

x

(a) � �

x

(b);

where !

y

= !

�y

.

Proof. If a = b, we have �

x

(a) � �

x

(b) = !

0

= 1 for any 0 � x � p � 1. Hene,

the right side of the equation is equal to 1. If a 6= b, the di�erene '(a)� '(b) is an

element of Z

p

nf0g. Therefore, x � ('(a) � '(b)) is valued 0; : : : ; p � 1 modulo p for

0 � x � p� 1. Thus, we have

P

p�1

x=0

�

x

(a) � �

x

(b) =

P

p�1

x=0

!

x�('(a)�'(b))

= 0. 2

Lemma 2 By using the mapping �

x

, the sore vetor between a text of length n and

a pattern of length m over an alphabet � an be omputed in O(j�jn logm) time.

Proof. By the de�nition of the sore vetor and Lemma 1, the sore vetor is

i

=

1

p

p�1

X

x=0

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

): (2)

Therefore, the sore vetor is obtained by omputing the onvolution

f(i) =

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

) (1 � i � n)

p times. Sine p = O(j�j), we have the lemma. 2

129

Proeedings of the Prague Stringology Conferene '03

2.2 Analysis of Variane

In the same way as the algorithm by Atallah et al. [1℄, we an onstrut a randomized

algorithm in whih an estimate for the sore vetor is obtained by hoosing some

mappings from �. We de�ne a sample s

i

of an element

i

of the sore vetor to be

s

i

=

m

X

j=1

�

x(`)

(t

i+j�1

) � �

x(`)

(p

j

):

Let k be the number of hosen samples. Then, an estimate ŝ

i

for the element

i

of

the sore vetor is de�ned by

ŝ

i

=

1

k

k

X

`=1

s

i

:

By Eq. (2), it is lear that the mean of the estimates is equal to

i

. The following

lemma gives the upper-bound of the variane of the estimates.

Lemma 3 In a randomized algorithm onstruted with the mapping �

x

, the variane

of the estimates for the sore vetor is bounded by (m�

i

)

2

=k.

Proof. We denote by V (X) the variane of a random variable X. By the de�nition

of the estimate and the basi property of variane, we have V (ŝ

i

) = V (s

i

)=k. Sine

�

x(`)

(a) � �

x(`)

(a) = 1 and j�

x(`)

(a) � �

x(`)

(b)j = 1 for any 1 � ` � j�j and any a; b 2 �,

the variane of the samples is V (s

i

) =

P

j�j

`=1

(

P

m

j=1

�

x(`)

(t

i+j�1

) � �

x(`)

(p

j

)�

i

)

2

=j�j �

(m�

i

)

2

. 2

2.3 Desription of Algorithm

We desribe the algorithm whih uses the mapping �

x

in detail. The input is a text

string T = t

1

� � � t

n

, a pattern string P = p

1

� � � p

m

over an alphabet �, and a number k

of iterations in this algorithm. The output is an estimate for the sore vetor C(T; P)

if k < p, the exat sore vetor if k = p, where p is the smallest prime number suh

that j�j � p. By the standard tehnique [4℄ of partitioning the text, we an assume

n = (1 + �)m for � = O(m). The algorithm is onstruted by iterations of the

following operations.

� onvert the text into a numerial sequenes �

x

(T) = !

'

x

(t

1

)

� � �!

'

x

(t

(1+�)m

)

by

the mapping �

x

from � to f!

0

; : : : ; !

p�1

g;

� onvert the pattern into �

x

(P) = !

�'

x

(p

1

)

� � �!

�'

x

(p

m

)

by �

x

and pad with �m

zeros;

� ompute the sample s

i

for 1 � i � (1 + �)m as the onvolution of �

x

(T) and

the reverse of the padded �

x

(P) by FFT.

The output is omputed as the average of the results of the onvolution for 1 �

x � k. If k = p, by Lemma 2, the output is equal to the sore vetor. If k < p,

the output is regarded as an estimate for the sore vetor obtained by a randomized

algorithm with �sampling without replaement�. Therefore, by Lemma 3 the variane

of the estimates is ((p� k)=(p� 1)) � (V (s

i

)=k).

130

An E�ient Mapping for Sore of String Mathing

Theorem 1 By the algorithm with the mapping �

x

, the exat sore between a text of

length n and a pattern of length m over an alphabet � is omputed in O(j�jn logm)

time. Moreover, an estimate for the sore vetor is omputed in O(kn logm) time,

where k is the number of iterations in the algorithm and the variane of the estimates

is bounded by (p� k)(m�

i

)

2

=(p� 1)k.

In generally, the variane of the estimates obtained by sampling without replae-

ment is

j�j � k

j�j � 1

� V (ŝ

i

)

where � is the set of all mappings whih onvert symbols into numbers. The ardi-

nality j�j of the set is j�j

j�j

in the algorithm by Atallah et al [1℄. and 2

j�j

in one

by Baba et al [2℄. Hene, the �nite-size orretion term (j�j � k)=(j�j � 1) is not so

e�etive.

A key distinguishing feature of our algorithm is that the exat sore an be om-

puted in a pratial time. Sine j�j is large in the two randomized algorithms, their

deterministi versions onstruted in a similar way as our algorithm are not pratial

for a large alphabet. Although the deterministi algorithm generalized by Gus�eld [7℄

an be extended to a randomized algorithm in the same way as our algorithm, the

variane of the estimates depends on the number of alphabets.

3 Improvement of Algorithm

We propose two tehniques to improve the algorithm in the previous setion.

3.1 Removal of Defetive Mapping

Our mappings onvert the di�erent symbols to the distint numerial values. But

only the mapping �

0

onverts all symbols to 0. Therefore, we remove the mapping

�

0

from the set �. That is possible without omputing onvolution.

By Eq. (1), Æ(a; b) =

1

p

P

p�1

x=0

�

x

(a) � �

x

(b) =

1

p

(

P

p�1

x=1

�

x

(a) � �

x

(b) + �

0

(a) � �

0

(b)) =

1

p

(

P

p�1

x=1

�

x

(a) � �

x

(b) + 1). Therefore, the sore vetor is

i

=

P

m

j=1

1

p

(

P

p�1

x=1

�(t

i+j�1

) �

�(p

j

)+1) =

1

p

P

p�1

x=1

P

m

j=1

�

x

(t

i+j�1

) ��

x

(p

j

)+

m

p

: To randomize the omputation of

i

,

we de�ne

0

i

as follows:

0

i

=

1

p�1

P

p�1

x=1

P

m

j=1

�

x

(t

i+j�1

) � �

x

(p

j

): Hene,

i

=

p�1

p

0

i

+

m

p

:

We de�ne a sample s

0

i

of an element

0

i

to be

s

0

i

=

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

):

And an estimate

^

s

0

i

is de�ned by

^

s

0

i

=

1

k

k

X

`=1

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

)

where 1 � k � p� 1.

131

Proeedings of the Prague Stringology Conferene '03

And an estimate ŝ

i

for the element

i

of the sore vetor is de�ned by

ŝ

i

=

p� 1

p

1

k

k

X

`=1

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

) +

m

p

(3)

where 1 � k � p� 1.

By the di�nition of a variane, V (s

i

) =

(p�1)

2

p

2

V (s

0

i

). Moreover, beause the number

of mappings derease by one, the variane in onsideration of that is bounded by

(p� 1)

2

p

2

�

p� 1� k

p� 2

�

(m�

i

)

2

k

: (4)

3.2 Removal of Imaginary Part

The magnitude of �

x

(a) � �

x

(b) in Eq. (1) is 1. We used this magnitude for the

analysis of the variane until this point. However, the real part is independent of the

imaginary part. Therefore, those parts of Eq. (1) an be omputed separately.

Let <(v) be a real part of a omplex number v. By Lemma 1,

1

p

P

p�1

x=0

�

x

(a) ��

x

(b)

returns 0 or 1. Therefore, we an remove the imaginary part. Then, Æ(a; b) =

<(

1

p

P

p�1

x=0

�

x

(a) � �

x

(b)) for any a; b 2 �. By the de�nition of the sore,

i

=

P

m

j=1

<(

1

p

P

p�1

x=0

�

x

(t

i+j�1

) � �

x

(p

j

)): Sine the order of addition is not restrited, the

sore vetor is

i

=

1

p

p�1

X

x=0

<(

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

)):

The omputation of the omplex number is neessary to ompute onvolution with

FFT. We only have to omit the imaginary part after the omputation of FFT. By this

omission, the omputation of both the sum of the imaginary part and the magnitude

of omplex number beome unneessary.

The variane is the poorest when inonsistent m � haraters are eah a kind

of symbol on the text and the pattern. In suh a ase, �

`

(a) � �

`

(b) is �xed without

in�uene of j. By Eq. (1), <(�

x

(a) � �

x

(b)) = os �

`

, where �

`

=

2�x�('(a)�'(b))

p

. Then,

the random variable s

i

is following.

s

i

=

m

X

j=1

<(�

`

(a) � �

`

(b)) =

m

X

j=1

os �

`

=

i

os 0+(m�

i

) os �

`

=

i

+(m�

i

) os �

`

:

The variane V (s

i

) of this random variable s

i

are followings.

V (s

i

) =

p

X

`=1

(

i

+ (m�

i

) os �

`

�

i

)

2

�

1

p

=

1

p

p

X

`=1

((m�

i

) os �

`

)

2

=

1

p

(m�

i

)

2

p

X

`=1

os

2

�

`

=

(m�

i

)

2

p

p

X

`=1

1 + os �

`

2

132

An E�ient Mapping for Sore of String Mathing

=

(m�

i

)

2

2p

(

p

X

`=1

1 +

p

X

`=1

os �

`

)

=

(m�

i

)

2

2p

(p+ 0)

=

(m�

i

)

2

2

(5)

By V (ŝ

i

) = V (s

i

)=k, the variane of the estimates ŝ

i

is bounded by

(m�

i

)

2

2k

: (6)

3.3 Variane of Improved Algorithm

We showed two improvement points. That both an be applied to the basi algorithm

at a time.

Now, the hange point of the algorithm from the basis one shown in Subsetion 2.3

is showed in the followings.

� We remove �

0

, and hoose a sample from the remaining mappings.

� An estimate ŝ

0

i

is omputed using that samples.

� Only a real part is used for a omputation of an estimate from the result of

FFT.

� We ompute ŝ

i

by Eq. (3), and make it the estimate of

i

.

When these improvements are applied, by Eq. (4) and Eq. (6), the variane of the

estimates is bounded by

(p� 1)

2

p

2

�

p� 1� k

p� 2

�

(m�

i

)

2

2k

:

It is smaller than one in the algorithm of Setion 2.

4 Exat Estimation of Variane

Atallah et al. presented an upper bound of the variane of the estimates for the sore

in their algorithm as (m �

i

)

2

=k. The reason for this variane is that their set of

mappings inludes many mappings whih onvert some di�erent symbols into same

numerial value. One of the features of our mappings is that it does not onvert some

di�erent symbols into same numerial value beause a single exeptional mapping

was removed in Subsetion 3.1. Using this feature, we give an exat estimation of the

variane based on our mappings.

Let a; b be symbols in �. If a produt �(a) � �(b) in one position is independent

of it in other position, the estimate of

P

(m�

i

)

j

�

x

(t

j

) � �

x

(p

j

) is 0: The two following

onditions must be satis�ed for that. One of those onditions is that a symbol in one

position is independent of symbols in other positions. In this paper, we suppose that

ondition. The independene an not be expeted in the general English text muh.

But, we expet high independene about the omparison of the produt �(a) � �(b).

�

�

In this paper, we did not get to the veri�ation of that point. It is a future work.

133

Proeedings of the Prague Stringology Conferene '03

Another ondition is the following lemma.

Lemma 4 If all mappings onvert di�erent symbols into distint numerial values,

then the produt �(a) � �(b) in one position is independent of that in other position.

Proof. Let t

1

; t

2

; p

1

; p

2

be symbols in �, x a value whih an be returned by mappings

and r the number of kinds of x. Let �

x

be a set of the mappings whih onvert more

than one of some symbols into x, and �

xy

denotes �

x

\ �

y

. We de�ne D

x

as the

di�erene between the number of x whih the mappings onvert a given symbol into

and the number of mappings used for it. The number of ertain value x whih a

ertain symbol a onvert to is

j�j

r

beause

P

j�j

`=1

�

`

(a) = 0. Then, the number of

ertain value x whih all the symbols onvert to is �. Therefore, j�

x

j = j�j �D

x

. In

the mapping that onverts the di�erent symbols to the distint numerial values, �

x

equal to �.

Pr(X) denotes the probability of event X. Let A be the event �(t

1

) � �(p

1

) = x

and B the event �(t

2

) � �(p

2

) = x. And let A

0

be the event �(t

1

) = d

1

, A

00

the event

�(p

1

) = d

2

, B

0

the event �(t

2

) = d

3

, and B

00

the event �(p

2

) = d

4

.

If a ertain event ourred, that a result of a mapping was value x, the mapping in

the next event is restrited to mappings whih return value x. After the event A, a set

of mappings is �

d

1

d

2

beause the mapping returned d

1

and d

2

were used in the event

A. A probability that a mapping return a value x is (the number of ombinations

of the mapping and the symbol whih an return x)/(the produt of the number of

mappings and the number of symbols). Then we have

Pr(B

0

) =

1

r

� j�j � j�j

j�j � j�j

=

1

r

;

Pr(B

00

jB

0

) =

1

r

� j�j � j�j

j�

d

3

j � j�j

=

j�j

r � j�

d

3

j

;

Pr(B) =

r�1

X

d

3

=0

Pr(B

0

) Pr(B

00

jB

0

) =

r�1

X

d

3

=0

(

1

r

�

j�j

r � j�

d

3

j

) =

1

r

2

r�1

X

d

3

=0

(

j�j

j�

d

3

j

);

and

Pr(BjA) =

r�1

X

d

3

=0

(

j�j

r � j�

d

1

d

2

j

�

j�j

r � j�

d

1

d

2

d

3

j

) =

1

r

2

r�1

X

d

3

=0

(

j�j

2

j�

d

1

d

2

j � j�

d

1

d

2

d

3

j

):

We get Pr(BjA) 6= Pr(B), hene �(t

1

) � �(p

1

) is not independent of �(t

2

) � �(p

2

).

However, if � = �

d

1

d

2

= �

d

1

d

2

d

3

, then Pr(BjA) = Pr(B). This ondition is satis-

�ed only when all mappings should onvert di�erent symbols into distint numerial

values. 2

Other two mappings an not satisfy the ondition of Lemma 4 while only our

mappings an satisfy it in ase of j�j = p. Therefore, we add a dummy symbol in

ase of j�j < p. Then we an orret a sampling bias beause we an know that by

the dummy symbol in advane.

When �

`

is drawn uniformly randomly from �, the random variable ŝ is ŝ =

1

k

P

k

`=1

P

m

j=1

�

`

(t

j

) � �

`

(p

j

):

Then, we get the following lemma.

134

An E�ient Mapping for Sore of String Mathing

Lemma 5 Given that the produt �(a)��(b) in one position is independent of that in

other position. When symbols align in the m symbols, the variane V (ŝ) of random

variable s are

V (ŝ) =

m�

i

k

:

Proof. Let s

j

be the random variable as �

`

(t

j

) � �

`

(p

j

), then s

j

= �

`

(t

j

) � �

`

(p

j

) =

!

d(t

j

;p

j

)

where d(t

j

; p

j

) = x � ((t

j

)� (p

j

)). s

(t

j

=p

j

)

denotes that s in t

j

= p

j

and

s

(t

j

6=p

j

)

denotes that s in t

j

6= p

j

.

If t

j

= p

j

, s

j

= 1. If t

j

6= p

j

, s

j

= !

d(t

j

;p

j

)

: Then, those means are E(s

(t

j

=p

j

)

) =

1; E(s

(t

j

6=p

j

)

) =

P

p�1

x=0

!

d(t

j

;p

j

)

�

1

p

= 0: And those variane are V (s

(t

j

=p

j

)

) = (s

(t

j

=p

j

)

�

E(s

(t

j

=p

j

)

))

2

� 1 = (1 � 1)

2

� 1 = 0; V (s

(t

j

6=p

j

)

) =

P

p�1

x=0

(s

(t

j

6=p

j

)

�E(s

(t

j

6=p

j

)

))

2

�

1

p

=

1

p

P

p�1

x=0

(j!

d(t

j

;p

j

)

j)

2

=

1

p

P

p�1

x=0

1 = 1:

Beause we assume that the produt �(a) � �(b) in one position is independent of

that in other position, a variane V (s) of s are the simple total of a variane of every

position. Then, V (s) =

P

V (s

(t

j

=p

j

)

)+

P

m�

i

V (s

(t

j

6=p

j

)

) =

P

0+

P

m�

i

1 = m�

i

:

Using k samples s, a variane V (ŝ) of the estimate s is V (ŝ) =

1

k

V (s). Then

V (ŝ) =

m�

i

k

:

2

This analysis an be applied to the algorithm whih improvement in Setion 3 was

added to.

Then Eq. (5) hanges as follow,

V (s

j(t

j

6=p

j

)

) =

p�1

X

x=0

(s

j(t

j

6=p

j

)

� E(s

j(t

j

6=p

j

)

))

2

1

p

=

1

p

p�1

X

x=0

(os

2�g(a; b)

p

� 0)

2

=

1

p

p�1

X

x=0

os

2

2�g(a; b)

p

=

1

p

p�1

X

x=0

1 + os

2�g(a;b)

p

2

=

1

2p

(

p�1

X

x=0

1 +

p�1

X

x=0

os

2�g(a; b)

p

)

=

1

2

(7)

By Eq. (7), we analyze the variane as the proof of Lemma 5.

V (ŝ) =

m�

i

2k

: (8)

By Eq. (4) and Eq. (8), we get the following theorem.

Theorem 2 The variane of the estimates for the sore in our algorithm is

V (ŝ) =

(p� 1)

2

p

2

�

p� 1� k

p� 2

�

m�

i

2k

:

135

Proeedings of the Prague Stringology Conferene '03

Conlusion

We gave an e�ient randomized algorithm for string mathing with mismathes. This

randomized algorithm uses onvolution with FFT, like that proposed by Atallah et

al. and Baba et al. We used the mappings whih onvert the symbols to the p-

adi number �eld. One of the features of our mappings is that it does not onvert

some di�erent symbols into same numerial value. By that feature, the variane of the

estimate of the sore vetor is smaller. The other feature of our mappings is that there

are not so many mappings. The number of mapping is p�1 where j�j � p < 2j�j�2.

We analyzed the variane of the estimates for the sore in this algorithm. And it

is very small as ompared to the randomized algorithms proposed in the past. The

variane in this algorithm is

(p�1)

2

p

2

�

p�1�k

p�2

�

m�

i

2k

. Its time omplexity is O(kn logm)

where k is the number of samples, and the upper bound of k is p � 1. When k is

p� 1, this algorithm is deterministi, and the estimate beomes the real value.

Experiments with read texts and the evaluation of omputation time are future

work. We have a plan to apply the method for pattern extration from Web pages [8℄.

Referenes

[1℄ Atallah, M. J., Chyzak, F., and Dumas, P.: A Randomized Algorithm for

Approximate String Mathing. Algorithmia 29, 468-486. 2001.

[2℄ Baba, K., Shinohara, A., Takeda, M., Inenaga, S., and Arikawa, S.: A

Note on Randomized Algorithm for String Mathing with Mismathes.

Nordi Journal of Computing 10, 2-12. 2003.

[3℄ Baba, K., Tanaka, Y., Nakatoh, T., Shinohara, A.: A Uni�ation of FFT

Algorithm for String Mathing. Pro. International Symposium on Infor-

mation Siene and Eletrial Engineering 2003, to appear.

[4℄ Crohemore, M. and Rytter, W.: Text Algorithms. Oxford University

Press, New York. 1994.

[5℄ Crohemore, M. and Rytter, W.: Jewels of Stringology. World Sienti�.

2003.

[6℄ Fisher, M. J. and Paterson, M. S.: String-mathing and other produts.

In Complexity of Computation (Proeedings of the SIAM-AMS Applied

Mathematis Symposium, New York, 1973), 113-125. 1974.

[7℄ Gus�eld, D.: Algorithms on Strings, Trees, and Sequenes. Cambridge

University Press, New York. 1997.

[8℄ Taguhi, T., Koga, Y. and Hirokawa, S.: Integration of Searh Sites of

the World Wide Web. Pro. of International Forum um Conferene on

Information Tehnology and Communiation, Vol. 2, pp. 25-32, 2000.

136

