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Abstra
t. String mat
hing is 
riti
al in information retrieval sin
e in many


ases information is stored and manipulated as strings. Constru
ting and uti-

lizing suitable data stru
tures for text strings, we 
an solve the string mat
hing

problem eÆ
iently. Su
h stru
tures are 
alled index stru
tures. The suÆx tree is


ertainly the most widely-known and extensively-studied stru
ture of this kind.

In this paper, we present a linear-time algorithm for bidire
tional 
onstru
tion

of suÆx trees.

1 Introdu
tion

Pattern mat
hing on strings is of 
entral importan
e to Theoreti
al Computer S
ien
e.

The pattern mat
hing problem is to examine whether a given pattern string pmat
hes

a text string w. This problem 
an be solved in O(jpj) time, by using a suitable index

stru
ture.

The most basi
 index stru
ture seems to be the suÆx trie, by whose nodes all

substrings of a given string w are re
ognized. Probably the stru
ture is the easiest to

understand, but its only, however biggest drawba
k is that its spa
e requirement is

O(jwj

2

).

This fa
t led the introdu
tion of more spa
e-e
onomi
al (O(jwj)-spa
ed) stru
tures

su
h as the suÆx tree [23, 19, 22, 12℄, the dire
ted a
y
li
 word graph (DAWG) [3,

7, 2℄, the 
ompa
t dire
ted a
y
li
 word graph (CDAWG) [4, 9, 15, 13, 16℄, the suÆx

array [18℄, and some other variants. Among those, suÆx trees are possibly most

widely-known and extensively-studied [8, 12℄, perhaps be
ause there are a `myriad' [1℄

of appli
ations for them.

Constru
tion of suÆx trees has been 
onsidered in various 
ontexts: Weiner [23℄

invented the �rst algorithm that 
onstru
ts suÆx trees in linear time; M
Creight [19℄

proposed a more spa
e-e
onomi
al algorithm than Weiner's; Chen and Seiferas [6℄

showed an eÆ
ient modi�
ation of Weiner's algorithm; Ukkonen [22℄ introdu
ed an

on-line algorithm to 
onstru
t suÆx trees, whi
h Giegeri
h and Kurtz [11℄ regarded

as \the most elegant"; Fara
h [10℄ 
onsidered optimal 
onstru
tion of suÆx trees

with large alphabets; Breslauer [5℄ gave a linear-time algorithm for building the suÆx

tree of a given trie that stores a set of strings; Inenaga et al. [14℄ presented an on-

line algorithm that simultaneously 
onstru
ts both the suÆx tree of a string and the

DAWG of the reversed string.

In this paper we explore bidire
tional 
onstru
tion of suÆx trees. Namely, the

algorithm we propose allows us to update the suÆx tree of a string w to the suÆx

tree of a string xwy, where x; y are any strings. We also show that our algorithm

runs in linear time and spa
e with respe
t to the length of a given string.
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Some related work 
an be seen in literature: Stoye [20, 21℄ invented variant of suÆx

trees, 
alled aÆx trees. He proposed an algorithm for bidire
tional 
onstru
tion of

aÆx trees, and Maa� [17℄ improved the time 
omplexity of the algorithm to O(jwj).

2 SuÆx Trees

Let � be a �nite alphabet. An element of �

�

is 
alled a string. Strings x, y, and z

are said to be a pre�x, fa
tor, and suÆx of string w = xyz, respe
tively. The sets of

pre�xes, fa
tors, and suÆxes of a string w are denoted by Pre�x (w), Fa
tor(w), and

SuÆx (w), respe
tively. The length of a string w is denoted by jwj. The empty string

is denoted by ", that is, j"j = 0. Let �

+

= �

�

� f"g. The i-th 
hara
ter of a string

w is denoted by w[i℄ for 1� i� jwj. Let S � �

�

. The 
ardinality of S is denoted by

jSj. For any string u 2 �

�

, Su

�1

= fx j xu 2 Sg.

Let w 2 �

�

. We de�ne an equivalen
e relation �

L

w

on �

�

by

x �

L

w

y , Pre�x(w)x

�1

= Pre�x (w)y

�1

:

The equivalen
e 
lass of a string x 2 �

�

with respe
t to �

L

w

is denoted by [x℄

L

w

. Note

that all strings not belonging to Fa
tor(w) form one equivalen
e 
lass under �

L

w

.

This equivalen
e 
lass is 
alled the degenerate 
lass. All other 
lasses are said to be

non-degenerate.

Proposition 1 ([14℄) Let w 2 �

�

and x; y 2 Fa
tor(w). If x �

L

w

y, then either x is

a pre�x of y, or vi
e versa.

Proof. By the de�nition of �

L

w

, we have Pre�x (w)x

�1

= Pre�x (w)y

�1

. There are

three 
ases to 
onsider:

(1) When jxj = jyj. Obviously, x = y in this 
ase. Thus x 2 Pre�x (y) and

y 2 Pre�x (x ).

(2) When jxj > jyj. Let u be an arbitrary string in Pre�x (w). Assume u = sx with

s 2 �

�

. Then s 2 Pre�x(w)x

�1

, whi
h results in s 2 Pre�x(w)y

�1

. Hen
e,

there must exist a string v 2 Pre�x(w) su
h that v = sy. By the assumption

that jxj > jyj, we have juj > jvj. From the fa
t that both u and v are in

Pre�x (w), it is derived that v 2 Pre�x(u). Consequently, y 2 Pre�x (x ).

(3) When jxj < jyj. By a similar argument to the one in Case (2), we have x 2

Pre�x (y).

2

For any string x 2 Fa
tor(w), the longest member in [x℄

L

w

is denoted by

w

�!

x .

Proposition 2 ([14℄) Let w 2 �

�

. For any x 2 Fa
tor(w), there uniquely exists a

string � 2 �

�

su
h that

w

�!

x = x�.
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Proof. Let

w

�!

x= x� with � 2 �

�

. For the 
ontrary, assume there exists a string

� 2 �

�

su
h that

w

�!

x = x� and � 6= �. By Proposition 1, either x� 2 Pre�x(x�) or

x� 2 Pre�x (x�) must stand, sin
e x� �

L

w

x�. However, neither of them a
tually

holds sin
e j�j = j�j and � 6= �, whi
h yields a 
ontradi
tion. Hen
e, � is the only

string satisfying

w

�!

x= x�. 2

Proposition 3 Let w 2 �

�

and x 2 Fa
tor(w). Assume

w

�!

x= x. Then, for any

y 2 SuÆx (x ),

w

�!

y = y.

Proof. Assume 
ontrarily that there uniquely exists a string � 2 �

+

su
h that

w

�!

y = y�.

Sin
e y 2 SuÆx (x ), x is always followed by � in w. It implies that Pre�x (w)x

�1

=

Pre�x(w)(x�)

�1

, and therefore we have x �

L

w

x�. That j�j > 0 means that

w

�!

x is not

the longest in [x℄

L

w

; a 
ontradi
tion. Hen
e,

w

�!

y = y. 2

Proposition 4 Let w 2 �

�

. For any string x 2 SuÆx (w),

w

�!

x= x.

Proof. Let y 2 �

�

be an arbitrary string su
h that x �

L

w

y and x 6= y. Then, we have

Pre�x(w)x

�1

= Pre�x (w)y

�1

. Be
ause x 2 SuÆx (w), y 2 Pre�x(x )� fxg and thus

jxj > jyj. Hen
e,

w

�!

x= x. 2

The number of strings in Fa
tor(w) is O(jwj

2

). For example, 
onsider string a

n

b

n

.

However, for any string w 2 �

�

, the number of strings x su
h that x =

w

�!

x is O(jwj).

The following lemma gives a tighter upperbound.

Lemma 1 ([3, 4℄) Assume that jwj > 1. The number of the non-degenerate equiva-

len
e 
lasses in �

L

w

is at most 2jwj � 1.

In the following, we de�ne the suÆx tree of a string w 2 �

�

, denoted by STree(w),

on the basis of the above-mentioned equivalen
e 
lasses. We de�ne it as an edge-

labeled tree (V;E) with E � V � �

+

� V where the se
ond 
omponent of ea
h

edge represents its label. We also give a de�nition of the suÆx links, kinds of failure

fun
tions, frequently utilized for time-eÆ
ient 
onstru
tion of suÆx trees [23, 19, 22℄.

De�nition 1 STree(w) is the tree (V;E) su
h that

V = f

w

�!

x j x 2 Fa
tor(w)g;

E = f(

w

�!

x ; a�;

w

�!

xa) j x; xa 2 Fa
tor(w), a 2 �, � 2 �

�

,

w

�!

xa= xa�, and

w

�!

x 6=

w

�!

xag;

and its suÆx links are the set

F = f(

w

�!

ax;

w

�!

x ) j x; xa 2 Fa
tor(w); a 2 � ; and

w

�!

ax= a�

w

�!

x g:

The node

w

�!

" = " is 
alled the root node of STree(w). When a node

w

�!

x is of out-degree

zero, it is said to be a leaf node. Ea
h leaf node 
orresponds to a string in SuÆx(w).

If x 2 Fa
tor(w) satis�es x =

w

�!

x , x is said to be represented on expli
it node

w

�!

x .

If x 6=

w

�!

x , x is said to be on an impli
it node. STree(
o
o) and STree(
o
oa) are

displayed in Figure 1.

It derives from Lemma 1 that:

77



Pro
eedings of the Prague Stringology Conferen
e '02

Figure 1: STree(
o
o) on the left, and STree(
o
oa) on the right. Solid arrows

represent edges, while dotted arrows denote suÆx links.

Theorem 1 ([19℄) Let w 2 �

�

. Let STree(w) = (V ;E ). Assume jwj > 1. Then

jV j � 2jwj � 1 and jEj � 2jwj � 2.

Weiner's algorithm [23℄ and M
Creight's algorithm [19℄ 
onstru
t the suÆx tree de-

�ned above, STree(w). On the other hand, Ukkonen's algorithm 
onstru
ts a slightly

di�erent version, whi
h is suitable for his algorithm.

As a preliminary to de�ne the modi�ed suÆx tree, we �rstly introdu
e a relation

X

w

over �

�

su
h that

X

w

= f(x; xa) j x 2 Fa
tor(w) and a 2 � is unique su
h that xa 2 Fa
tor(w)g:

Let �

0

L

w

be the equivalen
e 
losure of X

w

, i.e., the smallest superset of X

w

that is

symmetri
, re
exive, and transitive.

Proposition 5 ([14℄) For any string w 2 �

�

, �

L

w

is a re�nement of �

0

L

w

.

Proof. Let x; y be any strings in Fa
tor(w) and assume x �

L

w

y. A

ording to

Proposition 1, we �rstly assume that x 2 Pre�x (y). It follows from Proposition 2

that there uniquely exist strings �; � 2 �

�

su
h that

w

�!

x = x� and

w

�!

y = y�. Note that

� 2 SuÆx (�). Let 
 2 �

�

be the string satisfying � = 
�. Then 
 is the sole string

su
h that x
 = y. By the de�nition of �

0

L

w

, we have x �

0

L

w

y. A similar argument

holds in 
ase that y 2 Pre�x (x ). 2

Corollary 1 ([14℄) For any string w 2 �

�

, every equivalen
e 
lass under �

0

L

w

is a

union of one or more equivalen
e 
lasses under �

L

w

.

For a string x 2 Fa
tor(w), the longest string in the equivalen
e 
lass with respe
t

to x under �

0

L

w

is denoted by

w

=)

x

.

The next proposition 
orresponds to Proposition 3

Proposition 6 Let w 2 �

�

and x 2 Fa
tor(w)� SuÆx (w). Assume

w

=)

x

= x. Then,

for any y 2 SuÆx(x ),

w

=)

y

= y.
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Proof. Sin
e

w

=)

x

= x and x =2 SuÆx(w), there are at least two 
hara
ters a; b 2 � su
h

that xa; xb 2 Fa
tor(w) and a 6= b. Sin
e y 2 SuÆx (x ), y is also followed by both a

and b in the string w. Thus

w

=)

y

= y. 2

Remark that the pre
ondition of the above proposition slightly di�ers from that of

Proposition 3. Namely, when x is a suÆx of w, this proposition does not always hold.

From here on, we explore some relationship between

w

�!

(�) and

w

=)

(�).

Lemma 2 ([14℄) Let w 2 �

�

. For any string x 2 Fa
tor(w),

w

�!

x is a pre�x of

w

=)

x

.

If

w

�!

x 6=

w

=)

x

, then

w

�!

x 2 SuÆx(w).

Proof. We 
an prove that

w

�!

x 2 Pre�x (

w

=)

x

) by Proposition 1 and Corollary 1. Now

suppose

w

�!

x 6=

w

=)

x

. Let

w

�!

x= x� with � 2 �

+

. Supposing

w

=)

x

= x� with � 2 �

+

, we

have � 2 Pre�x (�). Let �
 = � with 
 2 �

�

. By the assumption

w

�!

x 6=

w

=)

x

, we have

x� 6�

L

w

x�, although 
 is the sole string that follows x� in w sin
e

w

=)

x

= x�. Therefore,

x must be a suÆx of w, whi
h is followed by no 
hara
ter. 2

For example, 
onsider string w = 
o
o. Then,

w

�!


o= 
o but

w

=)


o= 
o
o, where 
o is a

suÆx of 
o
o.

Lemma 3 Let w 2 �

�

and x 2 SuÆx (w). If x =2 Pre�x (y) for any string y 2

Fa
tor(w)� fxg, then

w

�!

x=

w

=)

x

.

Proof. The pre
ondition implies that there is no 
hara
ter a 2 � satisfying xa 2

Fa
tor(w). Thus we have

w

=)

x

= x. On the other hand, we obtain

w

�!

x= x by Proposi-

tion 4, be
ause x 2 SuÆx (w). Hen
e

w

�!

x=

w

=)

x

. 2

Lemma 4 Let w 2 �

�

with jwj = n. Assume that the last 
hara
ter w[n℄ is unique

in w, that is, w[n℄ 6= w[i℄ for any 1 � i � n� 1. Then, for any string x 2 Fa
tor(w),

w

�!

x=

w

=)

x

.

Proof. By the 
ontraposition of the se
ond statement of Lemma 2, if x =2 SuÆx(w),

then

w

�!

x =

w

=)

x

. Be
ause of the unique 
hara
ter w[n℄, any suÆx z of w satis�es the

pre
ondition of Lemma 3, and thus

w

�!

z =

w

=)

z

. 2

We are now ready to de�ne STree

0

(w), whi
h is a modi�ed version of STree(w).

De�nition 2 STree

0

(w) is the tree (V;E) su
h that

V = f

w

=)

x

j x 2 Fa
tor(w)g;

E = f(

w

=)

x

; a�;

w

=)

xa) j x; xa 2 Fa
tor(w), a 2 �, � 2 �

�

,

w

=)

xa= xa�, and

w

=)

x

6=

w

=)

xag;

and its suÆx links are the set

F = f(

w

=)

ax;

w

=)

x

) j x; xa 2 Fa
tor(w); a 2 � ; and

w

=)

ax= a�

w

=)

x

g:
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Remark that STree

0

(w) 
an be obtained by repla
ing

w

�!

(�) in STree(w) with

w

=)

(�).

We have the next lemma deriving from Lemma 4.

Lemma 5 Let w 2 �

�

with jwj = n. Assume that the last 
hara
ter w[n℄ is unique

in w, that is, w[n℄ 6= w[i℄ for any 1 � i � n� 1. Then, STree(w) = STree

0

(w).

For 
omparing STree(w) and STree

0

(w), see Figure 1 and Figure 2. As shown in

Proposition 3, any suÆxes of a string represented by an expli
it node are also expli
it.

Figure 2: STree

0

(
o
o) on the left, and STree

0

(
o
oa) on the right. Solid arrows

represent the edges, while dotted arrows denote suÆx links.

A

ording to Lemma 5, using a delimiter $ that o

urs nowhere in w, we have

STree(w$) = STree

0

(w$) for any w 2 �

�

.

3 Bidire
tional Constru
tion of SuÆx Trees

3.1 Right Extension

Assume that we have STree

0

(w) with some w 2 �

�

. Now we 
onsider updating it into

STree

0

(wa) with a 2 �, by inserting the suÆxes of wa into STree

0

(w). Ukkonen [22℄

a
hieved the following result.

Theorem 2 ([22℄) For any a 2 � and w 2 �

�

, STree

0

(w) 
an be updated to

STree

0

(wa) in amortized 
onstant time.

Here we only re
all essen
e of Ukkonen's algorithm together with some supporting

lemmas and propositions.

Let y be the longest string in Fa
tor(w)\SuÆx (wa). Then y is 
alled the longest

repeated suÆx of wa and denoted by LRS (wa). Sin
e every string x 2 SuÆx(y)

belongs to Fa
tor(w), we do not need to newly insert any x into STree

0

(w).

Lemma 6 Let a 2 � and w 2 �

�

. Let y = LRS (w). For any string x 2 SuÆx (w)�

SuÆx (y),

wa

=)

x

=

w

=)

x

�a.
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Proof. Sin
e y = LRS (w), any string x 2 SuÆx (w)� SuÆx (y) appears only on
e in

w as a suÆx of w, and is therefore

w

=)

x

= x. Also, x is followed only by a in wa, and

thus

wa

=)

x

= xa. 2

This lemma implies that a leaf node of STree

0

(w) is also a leaf node in STree

0

(wa).

Thus we need no expli
it maintenan
e for leaf nodes. Namely, we 
an insert all strings

of SuÆx (w)� SuÆx (y) into STree

0

(w) automati
ally (for more detail, see [22℄).

Proposition 7 Let a 2 � and w 2 �

�

. Let y = LRS (w) and z = LRS (wa). For

any string x 2 SuÆx(y)� SuÆx (z )a

�1

,

wa

=)

x

= x.

Proof. Firstly, we 
onsider the empty string ". It always belongs to SuÆx (y) �

SuÆx (z )a

�1

, sin
e " 2 SuÆx (y) and " =2 SuÆx (z )a

�1

. It is now obvious that

wa

=)

"

= ".

Now we 
onsider other strings. That xa =2 SuÆx (z ) implies the existen
e of b 2 �

su
h that xb 2 Fa
tor(w) and b 6= a. Therefore, we have

wa

=)

x

= x. 2

We start from the lo
ation 
orresponding to LRS (w) and 
onvert STree

0

(w) to

STree

0

(wa), while 
reating new expli
it nodes if ne
essary to insert new suÆxes into

STree

0

(w), a

ording to the above proposition. Now the next question is how to

dete
t the lo
ations where new expli
it nodes should be 
reated.

We here de�ne the eliminator � for any 
hara
ter a 2 � by

a� = �a = "

and j�j = �1. Moreover, we de�ne that � 2 Pre�x (") and � 2 SuÆx ("), but � =2

Pre�x(x ) and � =2 SuÆx (x ) for any x 2 �

+

. The symbol � 
orresponds to the

auxiliary node ? introdu
ed by Ukkonen [22℄. Owing to the introdu
tion of �, we


an establish the following lemma.

Lemma 7 Let a 2 � and w 2 �

�

. Let y = LRS (w) and z = LRS (wa). Let

x 2 SuÆx (y) � SuÆx (z )a

�1

. Suppose t is the longest string in Pre�x (x ) su
h that

w

=)

t

= t. Let x

0

= SuÆx (x ) with jx

0

j+1 = jxj and t

0

= SuÆx (t) with jt

0

j+1 = jtj. For

string � 2 �

�

su
h that t� = x, t

0

� = x

0

.

Noti
e that we 
an rea
h string x

0

via the suÆx link of the node for t in STree

0

(w)

and along the path spelling out � from the node for t

0

(re
all De�nition 2). Moreover,

Proposition 6 guarantees that t

0

is an expli
it node in STree

0

(w). Ukkonen proved

that x

0


an be found in amortized 
onstant time by using the suÆx link of node

w

=)

t

.

3.2 Left Extension

Weiner [23℄ proposed an algorithm to 
onstru
t STree(aw) by updating STree(w)

with a 2 � in amortized 
onstant time. On the other hand, this se
tion is devoted to

the exposition of the 
onversion from STree

0

(w) to STree

0

(aw). In so doing, we insert

pre�xes of aw into STree

0

(w).
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Lemma 8 Let a 2 � and w 2 �

�

. For any string x 2 Fa
tor(w) � Pre�x(aw),

w

=)

x

=

aw

=)

x

.

Proof. Let b be the unique 
hara
ter that follows x in w. (When

w

=)

x

= x, then b = ".)

Sin
e x =2 Pre�x (aw), there is no new o

urren
e of x in aw. Therefore, b is also the

only 
hara
ter following x in aw. Hen
e

w

=)

x

=

aw

=)

x

. 2

The above lemma ensures that any impli
it node of STree

0

(w) does not be
ome ex-

pli
it in STree

0

(aw) if it is not asso
iated with any pre�x of aw.

Now we turn our attention to the strings in Pre�x (aw). Let x be the longest

string in set Fa
tor(w) \ Pre�x(aw). Then x is 
alled the longest repeated pre�x of

aw and denoted by LRP(aw). Sin
e all pre�xes of x belong to Fa
tor(w), we need

not newly insert any of them into STree

0

(w).

Proposition 8 Let a 2 � and w 2 �

�

. Let x = LRP(aw) and y = LRS (w). If

x =2 SuÆx (w)� SuÆx (y), then

aw

=)

x

= x. Otherwise,

aw

=)

x

= aw.

Proof. We �rst 
onsider the 
ase that x =2 SuÆx (w) � SuÆx (y). Re
all that x is

the longest string in Fa
tor(w) \ Pre�x (aw). Moreover, x =2 SuÆx (w) � SuÆx (y).

Hen
e, there exist two 
hara
ters b; 
 2 � su
h that xb; x
 2 Fa
tor(aw) and b 6= 
.

Thus we have

aw

=)

x

= x.

Now we 
onsider the se
ond 
ase, x 2 SuÆx (w)� SuÆx (y). Here, x o

urs only

on
e in w as its suÆx. Thus

w

=)

x

= x. On the other hand, by the de�nition of LRP(aw),

we obtain x 2 Pre�x (aw)�fawg. Therefore, there uniquely exists a 
hara
ter d 2 �

whi
h follows x in aw. Hen
e we have

aw

=)

x

= aw. 2

The above proposition implies that if LRP(aw) is not on a leaf node in STree

0

(w), it

is represented by an expli
it node in STree

0

(aw), and otherwise it be
omes impli
it

in STree

0

(aw). We stress that this 
hara
terizes a di�eren
e between STree

0

(w) and

STree(w). More 
on
retely, Weiner's original algorithm 
onstru
ts STree(aw) on the

basis of the next proposition.

Proposition 9 For any a 2 � and w 2 �

�

, if x = LRP(aw), then

aw

�!

x = x.

Now the next question is how to lo
ate LRP(aw) in STree

0

(w). Our idea is similar

to Weiner's strategy for 
onstru
ting STree(w) [23℄. Let y be the longest element in

set Pre�x(w) [ f�g su
h that ay 2 Fa
tor(w). Then y is 
alled the base of aw

and denoted by Base(aw). On the other hand, let z be the longest element in set

Pre�x (w) [ f�g su
h that

w

=)

az= az. Then z is 
alled the bridge of aw and denoted by

Bridge(aw).

Lemma 9 ([23℄) Let a 2 � and w 2 �

�

. If y = Base(aw), then ay = LRP(aw).

Proof. Assume 
ontrarily that y

0

is the string su
h that ay

0

= LRP(aw) and jy

0

j > jyj.

By the de�nition of LRP(aw), we have ay

0

2 Pre�x (aw), whi
h yields y

0

2 Pre�x (w).

It, however, 
ontradi
ts the pre
ondition that y = Base(aw) sin
e jy

0

j > jyj. 2
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A

ording to the above lemma, we 
an utilize Base(aw) for �nding LRP(aw) in

STree

0

(w).

Lemma 10 Let a 2 � and w 2 �

�

. If x = LRP(w), y = Base(aw) and z =

Bridge(aw), then y 2 Pre�x(x ) and z 2 Pre�x(y).

Proof. By Lemma 9 we have ay = LRP(aw). It is easy to see that jLRP(w)j+ 1 �

jLRP(aw)j, whi
h implies jxj � jyj. Sin
e x; y 2 Pre�x(w), we obtain y 2 Pre�x (x ).

It 
an be readily shown that az 2 Pre�x(ay), sin
e ay = LRP(aw). Thus we have

z 2 Pre�x (y). 2

The above lemma ensures that we 
an �nd both Base(aw) and Bridge(aw) by going

up along the path from the node of LRP(w) in STree

0

(w).

Lemma 11 Let a 2 � and w 2 �

�

. Let y = Base(aw) and z = Bridge(aw). Assume


 2 �

�

is the string satisfying z
 = y. Then, az
 = LRP(aw).

Proof. By Lemma 9 and Lemma 10. 2

A

ording to the above lemma, we 
an lo
ate LRP(aw) in STree

0

(w) by going down

from the node

w

=)

az . The only thing not 
lari�ed yet is how to move from node

w

=)

z

to

node

w

=)

az . If we maintain the set F

0

below, we 
an dete
t LRP(aw) in 
onstant time,

where

F

0

= f(

w

=)

x

; a;

w

=)

ax) j x; ax 2 Fa
tor(w); a 2 � ; and

w

=)

ax= a�

w

=)

x

g:

Comparing F

0

and F in De�nition 2, one 
an see that F

0

is the set of the labeled

reversed suÆx links of STree

0

(w).

We now have the following theorem.

Theorem 3 For any a 2 � and w 2 �

�

, STree

0

(w) 
an be updated to STree

0

(aw) in

amortized 
onstant time.

3.3 Mutual In
uen
es

Here, we 
onsider mutual in
uen
es between Left Extension and Right Extension.

The next lemma shows what happens to LRP(w) when STree

0

(w) is updated to

STree

0

(wa).

Lemma 12 Let a 2 � and w 2 �

�

. Assume LRP(w) = LRS (w). Let x = LRS (w).

If xa 2 Pre�x(w), then LRP(wa) = xa.

Proof. Sin
e xa 2 Pre�x (w), LRS (wa) = xa. Thus xa = LRP(wa). 2

This lemma shows when and where LRP(wa) moves from the lo
ation of LRP(w)

a

ording to the 
hara
ter a newly added to the right of w. Examining the pre
ondi-

tion, \if xa 2 Pre�x(w)", is feasible in O(j�j) time, whi
h regarded as O(1) if � is a

�xed alphabet.

The following lemma stands in 
ontrast to Lemma 12.
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Lemma 13 Let a 2 � and w 2 �

�

. Assume LRP(w) = LRS (w). Let x = LRP(w).

If ax 2 SuÆx (w), then LRS (aw) = ax .

This lemma shows when and where LRS (aw) moves from the lo
ation of LRS (w)

a

ording to the 
hara
ter a newly added to the left of w. Examining the pre
ondition,

\if ax 2 SuÆx (w)", is also feasible in O(j�j) time, and moving from the lo
ation of

LRS (w) to that of LRS (aw) 
an be done in 
onstant time by the use of the labeled

reversed suÆx link of LRP(w).

As a result of dis
ussion, we �nally obtain the following:

Theorem 4 For any string w 2 �

�

, STree

0

(w) 
an be 
onstru
ted in bidire
tional

manner and in O(jwj) time.

A bidire
tional 
onstru
tion of STree

0

(w) with w = 
o
oon is displayed in Fig-

ure 3.

4 Con
luding Remarks

We introdu
ed an algorithm for bidire
tional 
onstru
tion of suÆx trees, whi
h per-

forms in linear time. It should be noted that the proposed algorithm 
an 
onstru
t

an index of w

rev

at the same time, where w

rev

is the reversal of a given string w.

In [14℄, we improved Ukkonen's algorithm so as to 
onstru
t not only STree

0

(w) but

also DAWG(w

rev

) in right-to-left on-line manner. The algorithm of this paper leads

bidire
tional 
onstru
tion of STree

0

(w) and DAWG(w

rev

), although theoreti
al details

are omitted in this draft.
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Figure 3: A bidire
tional 
onstru
tion of STree

0

(w) with w = ababa
. Solid arrows

represent edges while dotted arrows denote labeled reversed suÆx links. On Right

Extension, labeled reversed suÆx links are used for the reversed dire
tion, that is,

as \normal" suÆx links. In ea
h phase, a gray triangle (star, respe
tively) indi
ates

the lo
ation of the longest repeated pre�x (suÆx, respe
tively). The newly added


hara
ter is underlined in ea
h phase. When STree

0

(ab) is updated to STree

0

(bab),

the node for string b be
omes impli
it (Proposition 8). Due to the 
onversion of

STree

0

(bab) into STree

0

(abab), LRP(abab) moves via the labeled reversed suÆx link,

and LRS (abab) also moves to the same position a

ording to Lemma 13. Then,

the suÆx tree is updated to STree

0

(ababa) where LRS (ababa) moves while spelling

out the new 
hara
ter a along the edge. Note that LRP(ababa) also moves due to

Lemma 12. Sin
e the pre
ondition of Lemma 12 is not satis�ed in the string ababa
,

LRP(ababa
) does not move in STree

0

(ababa
). For smart 
onstru
tion, we also

maintain the labeled reversed suÆx link of the longest repeated suÆx even if it is not

on an expli
it node (see STree

0

(bab), for instan
e). This labeled reversed suÆx link

is the only suÆx link that would be \modi�ed" after it is 
reated. For example, the

labeled reversed suÆx link of the node for string a in STree

0

(a) is deleted in STree

0

(ab)

sin
e it no longer satis�es the de�nition of labeled reversed suÆx links. On the other

hand, that of the node for string ab in STree

0

(abab) still exists in STree

0

(ababa) as

that of the node for string aba.
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