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Abstrat. String mathing is ritial in information retrieval sine in many

ases information is stored and manipulated as strings. Construting and uti-

lizing suitable data strutures for text strings, we an solve the string mathing

problem eÆiently. Suh strutures are alled index strutures. The suÆx tree is

ertainly the most widely-known and extensively-studied struture of this kind.

In this paper, we present a linear-time algorithm for bidiretional onstrution

of suÆx trees.

1 Introdution

Pattern mathing on strings is of entral importane to Theoretial Computer Siene.

The pattern mathing problem is to examine whether a given pattern string pmathes

a text string w. This problem an be solved in O(jpj) time, by using a suitable index

struture.

The most basi index struture seems to be the suÆx trie, by whose nodes all

substrings of a given string w are reognized. Probably the struture is the easiest to

understand, but its only, however biggest drawbak is that its spae requirement is

O(jwj

2

).

This fat led the introdution of more spae-eonomial (O(jwj)-spaed) strutures

suh as the suÆx tree [23, 19, 22, 12℄, the direted ayli word graph (DAWG) [3,

7, 2℄, the ompat direted ayli word graph (CDAWG) [4, 9, 15, 13, 16℄, the suÆx

array [18℄, and some other variants. Among those, suÆx trees are possibly most

widely-known and extensively-studied [8, 12℄, perhaps beause there are a `myriad' [1℄

of appliations for them.

Constrution of suÆx trees has been onsidered in various ontexts: Weiner [23℄

invented the �rst algorithm that onstruts suÆx trees in linear time; MCreight [19℄

proposed a more spae-eonomial algorithm than Weiner's; Chen and Seiferas [6℄

showed an eÆient modi�ation of Weiner's algorithm; Ukkonen [22℄ introdued an

on-line algorithm to onstrut suÆx trees, whih Giegerih and Kurtz [11℄ regarded

as \the most elegant"; Farah [10℄ onsidered optimal onstrution of suÆx trees

with large alphabets; Breslauer [5℄ gave a linear-time algorithm for building the suÆx

tree of a given trie that stores a set of strings; Inenaga et al. [14℄ presented an on-

line algorithm that simultaneously onstruts both the suÆx tree of a string and the

DAWG of the reversed string.

In this paper we explore bidiretional onstrution of suÆx trees. Namely, the

algorithm we propose allows us to update the suÆx tree of a string w to the suÆx

tree of a string xwy, where x; y are any strings. We also show that our algorithm

runs in linear time and spae with respet to the length of a given string.
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Some related work an be seen in literature: Stoye [20, 21℄ invented variant of suÆx

trees, alled aÆx trees. He proposed an algorithm for bidiretional onstrution of

aÆx trees, and Maa� [17℄ improved the time omplexity of the algorithm to O(jwj).

2 SuÆx Trees

Let � be a �nite alphabet. An element of �

�

is alled a string. Strings x, y, and z

are said to be a pre�x, fator, and suÆx of string w = xyz, respetively. The sets of

pre�xes, fators, and suÆxes of a string w are denoted by Pre�x (w), Fator(w), and

SuÆx (w), respetively. The length of a string w is denoted by jwj. The empty string

is denoted by ", that is, j"j = 0. Let �

+

= �

�

� f"g. The i-th harater of a string

w is denoted by w[i℄ for 1� i� jwj. Let S � �

�

. The ardinality of S is denoted by

jSj. For any string u 2 �

�

, Su

�1

= fx j xu 2 Sg.

Let w 2 �

�

. We de�ne an equivalene relation �

L

w

on �

�

by

x �

L

w

y , Pre�x(w)x

�1

= Pre�x (w)y

�1

:

The equivalene lass of a string x 2 �

�

with respet to �

L

w

is denoted by [x℄

L

w

. Note

that all strings not belonging to Fator(w) form one equivalene lass under �

L

w

.

This equivalene lass is alled the degenerate lass. All other lasses are said to be

non-degenerate.

Proposition 1 ([14℄) Let w 2 �

�

and x; y 2 Fator(w). If x �

L

w

y, then either x is

a pre�x of y, or vie versa.

Proof. By the de�nition of �

L

w

, we have Pre�x (w)x

�1

= Pre�x (w)y

�1

. There are

three ases to onsider:

(1) When jxj = jyj. Obviously, x = y in this ase. Thus x 2 Pre�x (y) and

y 2 Pre�x (x ).

(2) When jxj > jyj. Let u be an arbitrary string in Pre�x (w). Assume u = sx with

s 2 �

�

. Then s 2 Pre�x(w)x

�1

, whih results in s 2 Pre�x(w)y

�1

. Hene,

there must exist a string v 2 Pre�x(w) suh that v = sy. By the assumption

that jxj > jyj, we have juj > jvj. From the fat that both u and v are in

Pre�x (w), it is derived that v 2 Pre�x(u). Consequently, y 2 Pre�x (x ).

(3) When jxj < jyj. By a similar argument to the one in Case (2), we have x 2

Pre�x (y).

2

For any string x 2 Fator(w), the longest member in [x℄

L

w

is denoted by

w

�!

x .

Proposition 2 ([14℄) Let w 2 �

�

. For any x 2 Fator(w), there uniquely exists a

string � 2 �

�

suh that

w

�!

x = x�.
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Proof. Let

w

�!

x= x� with � 2 �

�

. For the ontrary, assume there exists a string

� 2 �

�

suh that

w

�!

x = x� and � 6= �. By Proposition 1, either x� 2 Pre�x(x�) or

x� 2 Pre�x (x�) must stand, sine x� �

L

w

x�. However, neither of them atually

holds sine j�j = j�j and � 6= �, whih yields a ontradition. Hene, � is the only

string satisfying

w

�!

x= x�. 2

Proposition 3 Let w 2 �

�

and x 2 Fator(w). Assume

w

�!

x= x. Then, for any

y 2 SuÆx (x ),

w

�!

y = y.

Proof. Assume ontrarily that there uniquely exists a string � 2 �

+

suh that

w

�!

y = y�.

Sine y 2 SuÆx (x ), x is always followed by � in w. It implies that Pre�x (w)x

�1

=

Pre�x(w)(x�)

�1

, and therefore we have x �

L

w

x�. That j�j > 0 means that

w

�!

x is not

the longest in [x℄

L

w

; a ontradition. Hene,

w

�!

y = y. 2

Proposition 4 Let w 2 �

�

. For any string x 2 SuÆx (w),

w

�!

x= x.

Proof. Let y 2 �

�

be an arbitrary string suh that x �

L

w

y and x 6= y. Then, we have

Pre�x(w)x

�1

= Pre�x (w)y

�1

. Beause x 2 SuÆx (w), y 2 Pre�x(x )� fxg and thus

jxj > jyj. Hene,

w

�!

x= x. 2

The number of strings in Fator(w) is O(jwj

2

). For example, onsider string a

n

b

n

.

However, for any string w 2 �

�

, the number of strings x suh that x =

w

�!

x is O(jwj).

The following lemma gives a tighter upperbound.

Lemma 1 ([3, 4℄) Assume that jwj > 1. The number of the non-degenerate equiva-

lene lasses in �

L

w

is at most 2jwj � 1.

In the following, we de�ne the suÆx tree of a string w 2 �

�

, denoted by STree(w),

on the basis of the above-mentioned equivalene lasses. We de�ne it as an edge-

labeled tree (V;E) with E � V � �

+

� V where the seond omponent of eah

edge represents its label. We also give a de�nition of the suÆx links, kinds of failure

funtions, frequently utilized for time-eÆient onstrution of suÆx trees [23, 19, 22℄.

De�nition 1 STree(w) is the tree (V;E) suh that

V = f

w

�!

x j x 2 Fator(w)g;

E = f(

w

�!

x ; a�;

w

�!

xa) j x; xa 2 Fator(w), a 2 �, � 2 �

�

,

w

�!

xa= xa�, and

w

�!

x 6=

w

�!

xag;

and its suÆx links are the set

F = f(

w

�!

ax;

w

�!

x ) j x; xa 2 Fator(w); a 2 � ; and

w

�!

ax= a�

w

�!

x g:

The node

w

�!

" = " is alled the root node of STree(w). When a node

w

�!

x is of out-degree

zero, it is said to be a leaf node. Eah leaf node orresponds to a string in SuÆx(w).

If x 2 Fator(w) satis�es x =

w

�!

x , x is said to be represented on expliit node

w

�!

x .

If x 6=

w

�!

x , x is said to be on an impliit node. STree(oo) and STree(ooa) are

displayed in Figure 1.

It derives from Lemma 1 that:
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Figure 1: STree(oo) on the left, and STree(ooa) on the right. Solid arrows

represent edges, while dotted arrows denote suÆx links.

Theorem 1 ([19℄) Let w 2 �

�

. Let STree(w) = (V ;E ). Assume jwj > 1. Then

jV j � 2jwj � 1 and jEj � 2jwj � 2.

Weiner's algorithm [23℄ and MCreight's algorithm [19℄ onstrut the suÆx tree de-

�ned above, STree(w). On the other hand, Ukkonen's algorithm onstruts a slightly

di�erent version, whih is suitable for his algorithm.

As a preliminary to de�ne the modi�ed suÆx tree, we �rstly introdue a relation

X

w

over �

�

suh that

X

w

= f(x; xa) j x 2 Fator(w) and a 2 � is unique suh that xa 2 Fator(w)g:

Let �

0

L

w

be the equivalene losure of X

w

, i.e., the smallest superset of X

w

that is

symmetri, reexive, and transitive.

Proposition 5 ([14℄) For any string w 2 �

�

, �

L

w

is a re�nement of �

0

L

w

.

Proof. Let x; y be any strings in Fator(w) and assume x �

L

w

y. Aording to

Proposition 1, we �rstly assume that x 2 Pre�x (y). It follows from Proposition 2

that there uniquely exist strings �; � 2 �

�

suh that

w

�!

x = x� and

w

�!

y = y�. Note that

� 2 SuÆx (�). Let  2 �

�

be the string satisfying � = �. Then  is the sole string

suh that x = y. By the de�nition of �

0

L

w

, we have x �

0

L

w

y. A similar argument

holds in ase that y 2 Pre�x (x ). 2

Corollary 1 ([14℄) For any string w 2 �

�

, every equivalene lass under �

0

L

w

is a

union of one or more equivalene lasses under �

L

w

.

For a string x 2 Fator(w), the longest string in the equivalene lass with respet

to x under �

0

L

w

is denoted by

w

=)

x

.

The next proposition orresponds to Proposition 3

Proposition 6 Let w 2 �

�

and x 2 Fator(w)� SuÆx (w). Assume

w

=)

x

= x. Then,

for any y 2 SuÆx(x ),

w

=)

y

= y.
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Proof. Sine

w

=)

x

= x and x =2 SuÆx(w), there are at least two haraters a; b 2 � suh

that xa; xb 2 Fator(w) and a 6= b. Sine y 2 SuÆx (x ), y is also followed by both a

and b in the string w. Thus

w

=)

y

= y. 2

Remark that the preondition of the above proposition slightly di�ers from that of

Proposition 3. Namely, when x is a suÆx of w, this proposition does not always hold.

From here on, we explore some relationship between

w

�!

(�) and

w

=)

(�).

Lemma 2 ([14℄) Let w 2 �

�

. For any string x 2 Fator(w),

w

�!

x is a pre�x of

w

=)

x

.

If

w

�!

x 6=

w

=)

x

, then

w

�!

x 2 SuÆx(w).

Proof. We an prove that

w

�!

x 2 Pre�x (

w

=)

x

) by Proposition 1 and Corollary 1. Now

suppose

w

�!

x 6=

w

=)

x

. Let

w

�!

x= x� with � 2 �

+

. Supposing

w

=)

x

= x� with � 2 �

+

, we

have � 2 Pre�x (�). Let � = � with  2 �

�

. By the assumption

w

�!

x 6=

w

=)

x

, we have

x� 6�

L

w

x�, although  is the sole string that follows x� in w sine

w

=)

x

= x�. Therefore,

x must be a suÆx of w, whih is followed by no harater. 2

For example, onsider string w = oo. Then,

w

�!

o= o but

w

=)

o= oo, where o is a

suÆx of oo.

Lemma 3 Let w 2 �

�

and x 2 SuÆx (w). If x =2 Pre�x (y) for any string y 2

Fator(w)� fxg, then

w

�!

x=

w

=)

x

.

Proof. The preondition implies that there is no harater a 2 � satisfying xa 2

Fator(w). Thus we have

w

=)

x

= x. On the other hand, we obtain

w

�!

x= x by Proposi-

tion 4, beause x 2 SuÆx (w). Hene

w

�!

x=

w

=)

x

. 2

Lemma 4 Let w 2 �

�

with jwj = n. Assume that the last harater w[n℄ is unique

in w, that is, w[n℄ 6= w[i℄ for any 1 � i � n� 1. Then, for any string x 2 Fator(w),

w

�!

x=

w

=)

x

.

Proof. By the ontraposition of the seond statement of Lemma 2, if x =2 SuÆx(w),

then

w

�!

x =

w

=)

x

. Beause of the unique harater w[n℄, any suÆx z of w satis�es the

preondition of Lemma 3, and thus

w

�!

z =

w

=)

z

. 2

We are now ready to de�ne STree

0

(w), whih is a modi�ed version of STree(w).

De�nition 2 STree

0

(w) is the tree (V;E) suh that

V = f

w

=)

x

j x 2 Fator(w)g;

E = f(

w

=)

x

; a�;

w

=)

xa) j x; xa 2 Fator(w), a 2 �, � 2 �

�

,

w

=)

xa= xa�, and

w

=)

x

6=

w

=)

xag;

and its suÆx links are the set

F = f(

w

=)

ax;

w

=)

x

) j x; xa 2 Fator(w); a 2 � ; and

w

=)

ax= a�

w

=)

x

g:
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Remark that STree

0

(w) an be obtained by replaing

w

�!

(�) in STree(w) with

w

=)

(�).

We have the next lemma deriving from Lemma 4.

Lemma 5 Let w 2 �

�

with jwj = n. Assume that the last harater w[n℄ is unique

in w, that is, w[n℄ 6= w[i℄ for any 1 � i � n� 1. Then, STree(w) = STree

0

(w).

For omparing STree(w) and STree

0

(w), see Figure 1 and Figure 2. As shown in

Proposition 3, any suÆxes of a string represented by an expliit node are also expliit.

Figure 2: STree

0

(oo) on the left, and STree

0

(ooa) on the right. Solid arrows

represent the edges, while dotted arrows denote suÆx links.

Aording to Lemma 5, using a delimiter $ that ours nowhere in w, we have

STree(w$) = STree

0

(w$) for any w 2 �

�

.

3 Bidiretional Constrution of SuÆx Trees

3.1 Right Extension

Assume that we have STree

0

(w) with some w 2 �

�

. Now we onsider updating it into

STree

0

(wa) with a 2 �, by inserting the suÆxes of wa into STree

0

(w). Ukkonen [22℄

ahieved the following result.

Theorem 2 ([22℄) For any a 2 � and w 2 �

�

, STree

0

(w) an be updated to

STree

0

(wa) in amortized onstant time.

Here we only reall essene of Ukkonen's algorithm together with some supporting

lemmas and propositions.

Let y be the longest string in Fator(w)\SuÆx (wa). Then y is alled the longest

repeated suÆx of wa and denoted by LRS (wa). Sine every string x 2 SuÆx(y)

belongs to Fator(w), we do not need to newly insert any x into STree

0

(w).

Lemma 6 Let a 2 � and w 2 �

�

. Let y = LRS (w). For any string x 2 SuÆx (w)�

SuÆx (y),

wa

=)

x

=

w

=)

x

�a.
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Proof. Sine y = LRS (w), any string x 2 SuÆx (w)� SuÆx (y) appears only one in

w as a suÆx of w, and is therefore

w

=)

x

= x. Also, x is followed only by a in wa, and

thus

wa

=)

x

= xa. 2

This lemma implies that a leaf node of STree

0

(w) is also a leaf node in STree

0

(wa).

Thus we need no expliit maintenane for leaf nodes. Namely, we an insert all strings

of SuÆx (w)� SuÆx (y) into STree

0

(w) automatially (for more detail, see [22℄).

Proposition 7 Let a 2 � and w 2 �

�

. Let y = LRS (w) and z = LRS (wa). For

any string x 2 SuÆx(y)� SuÆx (z )a

�1

,

wa

=)

x

= x.

Proof. Firstly, we onsider the empty string ". It always belongs to SuÆx (y) �

SuÆx (z )a

�1

, sine " 2 SuÆx (y) and " =2 SuÆx (z )a

�1

. It is now obvious that

wa

=)

"

= ".

Now we onsider other strings. That xa =2 SuÆx (z ) implies the existene of b 2 �

suh that xb 2 Fator(w) and b 6= a. Therefore, we have

wa

=)

x

= x. 2

We start from the loation orresponding to LRS (w) and onvert STree

0

(w) to

STree

0

(wa), while reating new expliit nodes if neessary to insert new suÆxes into

STree

0

(w), aording to the above proposition. Now the next question is how to

detet the loations where new expliit nodes should be reated.

We here de�ne the eliminator � for any harater a 2 � by

a� = �a = "

and j�j = �1. Moreover, we de�ne that � 2 Pre�x (") and � 2 SuÆx ("), but � =2

Pre�x(x ) and � =2 SuÆx (x ) for any x 2 �

+

. The symbol � orresponds to the

auxiliary node ? introdued by Ukkonen [22℄. Owing to the introdution of �, we

an establish the following lemma.

Lemma 7 Let a 2 � and w 2 �

�

. Let y = LRS (w) and z = LRS (wa). Let

x 2 SuÆx (y) � SuÆx (z )a

�1

. Suppose t is the longest string in Pre�x (x ) suh that

w

=)

t

= t. Let x

0

= SuÆx (x ) with jx

0

j+1 = jxj and t

0

= SuÆx (t) with jt

0

j+1 = jtj. For

string � 2 �

�

suh that t� = x, t

0

� = x

0

.

Notie that we an reah string x

0

via the suÆx link of the node for t in STree

0

(w)

and along the path spelling out � from the node for t

0

(reall De�nition 2). Moreover,

Proposition 6 guarantees that t

0

is an expliit node in STree

0

(w). Ukkonen proved

that x

0

an be found in amortized onstant time by using the suÆx link of node

w

=)

t

.

3.2 Left Extension

Weiner [23℄ proposed an algorithm to onstrut STree(aw) by updating STree(w)

with a 2 � in amortized onstant time. On the other hand, this setion is devoted to

the exposition of the onversion from STree

0

(w) to STree

0

(aw). In so doing, we insert

pre�xes of aw into STree

0

(w).
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Lemma 8 Let a 2 � and w 2 �

�

. For any string x 2 Fator(w) � Pre�x(aw),

w

=)

x

=

aw

=)

x

.

Proof. Let b be the unique harater that follows x in w. (When

w

=)

x

= x, then b = ".)

Sine x =2 Pre�x (aw), there is no new ourrene of x in aw. Therefore, b is also the

only harater following x in aw. Hene

w

=)

x

=

aw

=)

x

. 2

The above lemma ensures that any impliit node of STree

0

(w) does not beome ex-

pliit in STree

0

(aw) if it is not assoiated with any pre�x of aw.

Now we turn our attention to the strings in Pre�x (aw). Let x be the longest

string in set Fator(w) \ Pre�x(aw). Then x is alled the longest repeated pre�x of

aw and denoted by LRP(aw). Sine all pre�xes of x belong to Fator(w), we need

not newly insert any of them into STree

0

(w).

Proposition 8 Let a 2 � and w 2 �

�

. Let x = LRP(aw) and y = LRS (w). If

x =2 SuÆx (w)� SuÆx (y), then

aw

=)

x

= x. Otherwise,

aw

=)

x

= aw.

Proof. We �rst onsider the ase that x =2 SuÆx (w) � SuÆx (y). Reall that x is

the longest string in Fator(w) \ Pre�x (aw). Moreover, x =2 SuÆx (w) � SuÆx (y).

Hene, there exist two haraters b;  2 � suh that xb; x 2 Fator(aw) and b 6= .

Thus we have

aw

=)

x

= x.

Now we onsider the seond ase, x 2 SuÆx (w)� SuÆx (y). Here, x ours only

one in w as its suÆx. Thus

w

=)

x

= x. On the other hand, by the de�nition of LRP(aw),

we obtain x 2 Pre�x (aw)�fawg. Therefore, there uniquely exists a harater d 2 �

whih follows x in aw. Hene we have

aw

=)

x

= aw. 2

The above proposition implies that if LRP(aw) is not on a leaf node in STree

0

(w), it

is represented by an expliit node in STree

0

(aw), and otherwise it beomes impliit

in STree

0

(aw). We stress that this haraterizes a di�erene between STree

0

(w) and

STree(w). More onretely, Weiner's original algorithm onstruts STree(aw) on the

basis of the next proposition.

Proposition 9 For any a 2 � and w 2 �

�

, if x = LRP(aw), then

aw

�!

x = x.

Now the next question is how to loate LRP(aw) in STree

0

(w). Our idea is similar

to Weiner's strategy for onstruting STree(w) [23℄. Let y be the longest element in

set Pre�x(w) [ f�g suh that ay 2 Fator(w). Then y is alled the base of aw

and denoted by Base(aw). On the other hand, let z be the longest element in set

Pre�x (w) [ f�g suh that

w

=)

az= az. Then z is alled the bridge of aw and denoted by

Bridge(aw).

Lemma 9 ([23℄) Let a 2 � and w 2 �

�

. If y = Base(aw), then ay = LRP(aw).

Proof. Assume ontrarily that y

0

is the string suh that ay

0

= LRP(aw) and jy

0

j > jyj.

By the de�nition of LRP(aw), we have ay

0

2 Pre�x (aw), whih yields y

0

2 Pre�x (w).

It, however, ontradits the preondition that y = Base(aw) sine jy

0

j > jyj. 2
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Aording to the above lemma, we an utilize Base(aw) for �nding LRP(aw) in

STree

0

(w).

Lemma 10 Let a 2 � and w 2 �

�

. If x = LRP(w), y = Base(aw) and z =

Bridge(aw), then y 2 Pre�x(x ) and z 2 Pre�x(y).

Proof. By Lemma 9 we have ay = LRP(aw). It is easy to see that jLRP(w)j+ 1 �

jLRP(aw)j, whih implies jxj � jyj. Sine x; y 2 Pre�x(w), we obtain y 2 Pre�x (x ).

It an be readily shown that az 2 Pre�x(ay), sine ay = LRP(aw). Thus we have

z 2 Pre�x (y). 2

The above lemma ensures that we an �nd both Base(aw) and Bridge(aw) by going

up along the path from the node of LRP(w) in STree

0

(w).

Lemma 11 Let a 2 � and w 2 �

�

. Let y = Base(aw) and z = Bridge(aw). Assume

 2 �

�

is the string satisfying z = y. Then, az = LRP(aw).

Proof. By Lemma 9 and Lemma 10. 2

Aording to the above lemma, we an loate LRP(aw) in STree

0

(w) by going down

from the node

w

=)

az . The only thing not lari�ed yet is how to move from node

w

=)

z

to

node

w

=)

az . If we maintain the set F

0

below, we an detet LRP(aw) in onstant time,

where

F

0

= f(

w

=)

x

; a;

w

=)

ax) j x; ax 2 Fator(w); a 2 � ; and

w

=)

ax= a�

w

=)

x

g:

Comparing F

0

and F in De�nition 2, one an see that F

0

is the set of the labeled

reversed suÆx links of STree

0

(w).

We now have the following theorem.

Theorem 3 For any a 2 � and w 2 �

�

, STree

0

(w) an be updated to STree

0

(aw) in

amortized onstant time.

3.3 Mutual Inuenes

Here, we onsider mutual inuenes between Left Extension and Right Extension.

The next lemma shows what happens to LRP(w) when STree

0

(w) is updated to

STree

0

(wa).

Lemma 12 Let a 2 � and w 2 �

�

. Assume LRP(w) = LRS (w). Let x = LRS (w).

If xa 2 Pre�x(w), then LRP(wa) = xa.

Proof. Sine xa 2 Pre�x (w), LRS (wa) = xa. Thus xa = LRP(wa). 2

This lemma shows when and where LRP(wa) moves from the loation of LRP(w)

aording to the harater a newly added to the right of w. Examining the preondi-

tion, \if xa 2 Pre�x(w)", is feasible in O(j�j) time, whih regarded as O(1) if � is a

�xed alphabet.

The following lemma stands in ontrast to Lemma 12.
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Lemma 13 Let a 2 � and w 2 �

�

. Assume LRP(w) = LRS (w). Let x = LRP(w).

If ax 2 SuÆx (w), then LRS (aw) = ax .

This lemma shows when and where LRS (aw) moves from the loation of LRS (w)

aording to the harater a newly added to the left of w. Examining the preondition,

\if ax 2 SuÆx (w)", is also feasible in O(j�j) time, and moving from the loation of

LRS (w) to that of LRS (aw) an be done in onstant time by the use of the labeled

reversed suÆx link of LRP(w).

As a result of disussion, we �nally obtain the following:

Theorem 4 For any string w 2 �

�

, STree

0

(w) an be onstruted in bidiretional

manner and in O(jwj) time.

A bidiretional onstrution of STree

0

(w) with w = ooon is displayed in Fig-

ure 3.

4 Conluding Remarks

We introdued an algorithm for bidiretional onstrution of suÆx trees, whih per-

forms in linear time. It should be noted that the proposed algorithm an onstrut

an index of w

rev

at the same time, where w

rev

is the reversal of a given string w.

In [14℄, we improved Ukkonen's algorithm so as to onstrut not only STree

0

(w) but

also DAWG(w

rev

) in right-to-left on-line manner. The algorithm of this paper leads

bidiretional onstrution of STree

0

(w) and DAWG(w

rev

), although theoretial details

are omitted in this draft.
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Figure 3: A bidiretional onstrution of STree

0

(w) with w = ababa. Solid arrows

represent edges while dotted arrows denote labeled reversed suÆx links. On Right

Extension, labeled reversed suÆx links are used for the reversed diretion, that is,

as \normal" suÆx links. In eah phase, a gray triangle (star, respetively) indiates

the loation of the longest repeated pre�x (suÆx, respetively). The newly added

harater is underlined in eah phase. When STree

0

(ab) is updated to STree

0

(bab),

the node for string b beomes impliit (Proposition 8). Due to the onversion of

STree

0

(bab) into STree

0

(abab), LRP(abab) moves via the labeled reversed suÆx link,

and LRS (abab) also moves to the same position aording to Lemma 13. Then,

the suÆx tree is updated to STree

0

(ababa) where LRS (ababa) moves while spelling

out the new harater a along the edge. Note that LRP(ababa) also moves due to

Lemma 12. Sine the preondition of Lemma 12 is not satis�ed in the string ababa,

LRP(ababa) does not move in STree

0

(ababa). For smart onstrution, we also

maintain the labeled reversed suÆx link of the longest repeated suÆx even if it is not

on an expliit node (see STree

0

(bab), for instane). This labeled reversed suÆx link

is the only suÆx link that would be \modi�ed" after it is reated. For example, the

labeled reversed suÆx link of the node for string a in STree

0

(a) is deleted in STree

0

(ab)

sine it no longer satis�es the de�nition of labeled reversed suÆx links. On the other

hand, that of the node for string ab in STree

0

(abab) still exists in STree

0

(ababa) as

that of the node for string aba.

87


