Bidirectional Construction of Suffix Trees

Shunsuke Inenaga
Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan

e-mail: s-ine@i.kyushu-u.ac. jp

Abstract. String matching is critical in information retrieval since in many
cases information is stored and manipulated as strings. Constructing and uti-
lizing suitable data structures for text strings, we can solve the string matching
problem efficiently. Such structures are called index structures. The suffiz tree is
certainly the most widely-known and extensively-studied structure of this kind.
In this paper, we present a linear-time algorithm for bidirectional construction
of suffix trees.

1 Introduction

Pattern matching on strings is of central importance to Theoretical Computer Science.
The pattern matching problem is to examine whether a given pattern string p matches
a text string w. This problem can be solved in O(|p|) time, by using a suitable indez
structure.

The most basic index structure seems to be the suffix trie, by whose nodes all
substrings of a given string w are recognized. Probably the structure is the easiest to
understand, but its only, however biggest drawback is that its space requirement is
O(Jw]?).

This fact led the introduction of more space-economical (O(|w|)-spaced) structures
such as the suffix tree [23, 19, 22, 12|, the directed acyclic word graph (DAWG) |3,
7, 2], the compact directed acyclic word graph (CDAWG) [4, 9, 15, 13, 16], the suffix
array [18], and some other variants. Among those, suffix trees are possibly most
widely-known and extensively-studied [8, 12], perhaps because there are a ‘myriad’ [1]
of applications for them.

Construction of suffix trees has been considered in various contexts: Weiner [23]
invented the first algorithm that constructs suffix trees in linear time; McCreight [19]
proposed a more space-economical algorithm than Weiner’s; Chen and Seiferas [6]
showed an efficient modification of Weiner’s algorithm; Ukkonen [22] introduced an
on-line algorithm to construct suffix trees, which Giegerich and Kurtz [11] regarded
as “the most elegant”; Farach [10] considered optimal construction of suffix trees
with large alphabets; Breslauer [5] gave a linear-time algorithm for building the suffix
tree of a given trie that stores a set of strings; Inenaga et al. [14] presented an on-
line algorithm that simultaneously constructs both the suffix tree of a string and the
DAWG of the reversed string.

In this paper we explore bidirectional construction of suffix trees. Namely, the
algorithm we propose allows us to update the suffix tree of a string w to the suffix
tree of a string xwy, where x,y are any strings. We also show that our algorithm
runs in linear time and space with respect to the length of a given string.

5

Proceedings of the Prague Stringology Conference 02

Some related work can be seen in literature: Stoye [20, 21] invented variant of suffix
trees, called affix trees. He proposed an algorithm for bidirectional construction of
affix trees, and Maaf [17] improved the time complexity of the algorithm to O(|w]).

2 Suffix Trees

Let ¥ be a finite alphabet. An element of ¥* is called a string. Strings x, y, and z
are said to be a prefir, factor, and suffiz of string w = xyz, respectively. The sets of
prefixes, factors, and suffixes of a string w are denoted by Prefiz(w), Factor(w), and
Suffiz (w), respectively. The length of a string w is denoted by |w|. The empty string
is denoted by e, that is, || = 0. Let ¥7 = ¥* — {e}. The i-th character of a string
w is denoted by w(i] for 1< i< |w|. Let S C ¥*. The cardinality of S is denoted by
|S|. For any string u € ¥*, Su™" = {z | zu € S}.
Let w € ¥*. We define an equivalence relation =L on ©* by

r =ty & Prefir(w)r™" = Prefir(w)y™".

The equivalence class of a string x € X* with respect to =L is denoted by [z]:. Note

that all strings not belonging to Factor(w) form one equivalence class under =Z.

This equivalence class is called the degenerate class. All other classes are said to be
non-degenerate.

Proposition 1 ([14]) Let w € ¥* and z,y € Factor(w). If x =L vy, then either z is
a prefix of y, or vice versa.

Proof. By the definition of =L we have Prefiz(w)z ! = Prefizr(w)y . There are
three cases to consider:

(1) When |z| = |y|. Obviously, x = y in this case. Thus z € Prefiz(y) and
y € Prefiz(z).

(2) When |z| > |y|. Let u be an arbitrary string in Prefiz(w). Assume u = sz with
s € ¥*. Then s € Prefir(w)z !, which results in s € Prefiz(w)y—!. Hence,
there must exist a string v € Prefir(w) such that v = sy. By the assumption
that |z| > |y|, we have |u| > |v|. From the fact that both u and v are in
Prefiz(w), it is derived that v € Prefiz(u). Consequently, y € Prefiz(z).

(3) When |z| < |y|. By a similar argument to the one in Case (2), we have = €

Prefiz(y).

For any string z € Factor(w), the longest member in [2]” is denoted by 7.

Proposition 2 ([14]) Let w € ¥*. For any x € Factor(w), there uniquely exists a
string o € ¥* such that 7= za.

76

Bidirectional Construction of Suffix Trees

Proof. Let 7= ra with a € ¥*. For the contrary, assume there exists a string

B € ©* such that @= 2 and 8 # a. By Proposition 1, either za € Prefiz(z3) or
xf € Prefir(za) must stand, since o =L 3. However, neither of them actually
holds since |«| = || and « # 3, which yields a contradiction. Hence, « is the only

string satisfying 7= za. O

Proposition 3 Let w € ¥* and x € Factor(w). Assume 7= xz. Then, for any
ye SU]%ZL’(&U), 7: Y.

Proof. Assume contrarily that there uniquely exists a string o € X such that 7: ya.

Since y € Suffiz(z), x is always followed by « in w. Tt implies that Prefiz(w)z~' =

Prefir(w)(za)~', and therefore we have z =% za. That |a| > 0 means that 2’ is not

the longest in [z]”; a contradiction. Hence, /= y. O

w

Proposition 4 Let w € ¥*. For any string x € Suffiz(w), 7=z

Proof. Let y € ¥* be an arbitrary string such that x =L y and 2 # y. Then, we have

Prefiz(w)z ! = Prefiz(w)y . Because = € Suffiz(w), y € Prefiz(z) — {z} and thus

|z| > |y|. Hence, 7= O
The number of strings in Factor(w) is O(|w|?). For example, considerwstring ab".

However, for any string w € £*, the number of strings z such that z =2 is O(|w]).
The following lemma gives a tighter upperbound.

Lemma 1 ([3, 4]) Assume that |w| > 1. The number of the non-degenerate equiva-

lence classes in =L is at most 2|w| — 1.

In the following, we define the suffix tree of a string w € ¥*, denoted by STree(w),
on the basis of the above-mentioned equivalence classes. We define it as an edge-
labeled tree (V,E) with E C V x ¥ x V where the second component of each
edge represents its label. We also give a definition of the suffiz links, kinds of failure
functions, frequently utilized for time-efficient construction of suffix trees [23, 19, 22].

Definition 1 STree(w) is the tree (V, E) such that

vV = {%| x € Factor(w)},

E = {(%,aﬁ,ﬁ) | z, za € Factor(w), a € X, f € ¥*, :%: xaf, and %7&%},
and its suffiz links are the set

F = {((ﬁ,%) | ,za € Factor(w), a € X, and ai= a- %}

The node 2= ¢ is called the root node of STree(w). When a node 7 is of out-degree
zero, it is said to be a leaf node. Each leaf node corresponds to a string in Suffiz(w).
If x € Factor(w) satisfies x =7, z is said to be represented on ezplicit node 7.
If + #7, x is said to be on an implicit node. STree(coco) and STree(cocoa) are
displayed in Figure 1.

It derives from Lemma 1 that:

7

Proceedings of the Prague Stringology Conference 02

Figure 1: STree(coco) on the left, and STree(cocoa) on the right. Solid arrows
represent edges, while dotted arrows denote suffix links.

Theorem 1 ([19]) Let w € ¥*. Let STree(w) = (V,E). Assume |w| > 1. Then
V| <2lw|—1 and |F| < 2|w| — 2.

Weiner’s algorithm [23] and McCreight’s algorithm [19] construct the suffix tree de-
fined above, STree(w). On the other hand, Ukkonen’s algorithm constructs a slightly
different version, which is suitable for his algorithm.

As a preliminary to define the modified suffix tree, we firstly introduce a relation
X, over X* such that

Xy = {(z,za) | x € Factor(w) and a € X is unique such that za € Factor(w)}.

Let E'i be the equivalence closure of X, i.e., the smallest superset of X, that is
symmetric, reflexive, and transitive.

Proposition 5 ([14]) For any string w € ©*, =L is a refinement of E'i.
Proof. Let x,y be any strings in Factor(w) and assume z =, y. According to

Proposition 1, we firstly assume that = € Prefiz(y). It follows from Proposition 2

that there uniquely exist strings a, f € ¥* such that 7= za and 7: yB. Note that
[€ Suffiz(a). Let v € ¥* be the string satisfying a = yf. Then v is the sole string

such that xy = y. By the definition of E'i, we have x E'i y. A similar argument
holds in case that y € Prefiz(z). O
Corollary 1 ([14]) For any string w € ¥*, every equivalence class under E’i is a

union of one or more equivalence classes under =L.

For a string = € Factor(w), the longest string in the equivalence class with respect

to z under =" is denoted by s
The next proposition corresponds to Proposition 3

w

Proposition 6 Let w € ¥* and © € Factor(w) — Suffiz(w). Assume 7 =x. Then,

—
for any y € Suffiz(z), ¥ =y.

78

Bidirectional Construction of Suffix Trees

Proof. Since z = z and x ¢ Suffiz(w), there are at least two characters a,b € 3 such
that xza,zb € Factor(w) and a # b. Since y € Suffiz(z), y is also followed by both a

S
and b in the string w. Thus ¥ =y. O

Remark that the precondition of the above proposition slightly differs from that of
Proposition 3. Namely, when z is a suffix of w, this proposition does not always hold.

—
From here on, we explore some relationship between 8 and (-).

w.

Lemma 2 ([14]) Let w € ¥*. For any string x € Factor(w), 7 is a prefit of
If 77&?, then '€ Suffiz(w).

w
=
T .

)

Proof. We can prove that Ze Prefiz(by Proposition 1 and Corollary 1. Now

suppose ?7&? Let 7= z/3 with 8 € ©*. Supposing T = za with a € Y, we
have 5 € Prefiz(«). Let fy = a with v € ¥*. By the assumption 77&?, we have

183 #L za, although 7 is the sole string that follows /3 in w since T = za. Therefore,
x must be a suffix of w, which is followed by no character. O

w

w
For example, consider string w = coco. Then, cé= co but co= coco, where co is a
suffix of coco.

Lemma 3 Let w € ¥* and v € Suffic(w). If v ¢ Prefiz(y) for any string y €
Factor(w) — {z}, then %::}

Proof. The precondition irfulplies that there is no character a € ¥ satisfying za €
Factor(w). Thus we have 7 = z. On the other hand, we obtain %: x by Proposi-
tion 4, because x € Suffiz(w). Hence %::;} O
Lemma 4 Let w € ¥* with |{w| = n. Assume that the last character wn] is unique
in w, that is, w[n] # wli] for any 1 <i <n—1. Then, for any string x € Factor(w),
=7

Proof. By the contraposition of the second statement of Lemma 2, if ¢ Suffiz(w),

then 7= . Because of the unique character w(n], any suffix z of w satisfies the

w

precondition of Lemma 3, and thus Z=z. O

We are now ready to define STree'(w), which is a modified version of STree(w).

Definition 2 STree'(w) is the tree (V, E) such that

V o= {?| x € Factor(w)},
E = {(?,aﬁ,ﬁ) | z, xa € Factor(w), a € &, f € X%, Ta= xaf, and ?7&%},

and its suffiz links are the set

w w w w

F = {(a:f,?) | z,za € Factor(w), a € X, and W= a ?}

79

Proceedings of the Prague Stringology Conference 02

w

=

Remark that STree’(w) can be obtained by replacing (S in STree(w) with (-).
We have the next lemma deriving from Lemma 4.

w

Lemma 5 Let w € ¥* with |w| = n. Assume that the last character win] is unique
in w, that is, w[n] # wli] for any 1 <i <n —1. Then, STree(w) = STree'(w).

For comparing STree(w) and STree'(w), see Figure 1 and Figure 2. As shown in
Proposition 3, any suffixes of a string represented by an explicit node are also explicit.

Figure 2: STree'(coco) on the left, and STree’(cocoa) on the right. Solid arrows
represent the edges, while dotted arrows denote suffix links.

According to Lemma 5, using a delimiter $ that occurs nowhere in w, we have
STree(w$) = STree' (w$) for any w € X*.

3 Bidirectional Construction of Suffix Trees

3.1 Right Extension

Assume that we have STree'(w) with some w € ¥*. Now we consider updating it into
STree'(wa) with a € X, by inserting the suffixes of wa into STree’(w). Ukkonen [22]
achieved the following result.

Theorem 2 ([22]) For any a € ¥ and w € ¥*, STree'(w) can be updated to
STree'(wa) in amortized constant time.

Here we only recall essence of Ukkonen’s algorithm together with some supporting
lemmas and propositions.

Let y be the longest string in Factor(w) N Suffiz(wa). Then y is called the longest
repeated suffiz of wa and denoted by LRS(wa). Since every string z € Suffiz(y)
belongs to Factor(w), we do not need to newly insert any x into STree’(w).

Lemma 6 Leta € ¥ and w € ¥*. Let y = LRS(w). For any string x € Suffiz(w) —

wa w

Suffiz(y), T=17 -a.

80

Bidirectional Construction of Suffix Trees

Proof. Since y = LRS(w), any string x € Suffiz(w) — Suffiz(y) appears only once in

w as a suffix of w, and is therefore T =z Also, z is followed only by a in wa, and

wa

—
thus = = za. O

This lemma implies that a leaf node of STree'(w) is also a leaf node in STree’(wa).
Thus we need no explicit maintenance for leaf nodes. Namely, we can insert all strings
of Suffiz(w) — Suffiz(y) into STree’(w) automatically (for more detail, see [22]).

Proposition 7 Let a € ¥ and w € ¥*. Let y = LRS(w) and z = LRS(wa). For
any string x € Suffiz(y) — Suffiz(2)a™", T =1

Proof. Firstly, we consider the empty string . It always belongs to Suffiz(y) —

Suffiz(z)a~!, since ¢ € Suffiz(y) and £ ¢ Suffiz(z)a~!. It is now obvious that & = ¢.
Now we consider other strings. That za ¢ Suffiz(z) implies the existence of b € ¥

such that zb € Factor(w) and b # a. Therefore, we have T =z 0

We start from the location corresponding to LRS(w) and convert STree'(w) to
STree'(wa), while creating new explicit nodes if necessary to insert new suffixes into
STree'(w), according to the above proposition. Now the next question is how to
detect the locations where new explicit nodes should be created.

We here define the eliminator £ for any character a € ¥ by

a =Ea=¢

and |£] = —1. Moreover, we define that £ € Prefir(e) and £ € Suffiz(e), but & ¢
Prefix(z) and & ¢ Suffiz(z) for any z € ¥*. The symbol £ corresponds to the
auxiliary node L introduced by Ukkonen [22]. Owing to the introduction of £, we
can establish the following lemma.

Lemma 7 Let a € ¥ and w € ¥*. Let y = LRS(w) and z = LRS(wa). Let
r € Suffiz(y) — Suffiz(z)a™". Suppose t is the longest string in Prefiz(z) such that

: . .
t =t. Let &' = Suffiz(z) with |2'|+1 = |z| and t' = Suffiz(t) with |t'|+1 = [t|. For
string o € X* such that ta =z, oo = 2.

Notice that we can reach string x’ via the suffix link of the node for ¢ in STree’(w)
and along the path spelling out « from the node for ¢’ (recall Definition 2). Moreover,
Proposition 6 guarantees that t' is an explicit node in STree’(w). Ukkonen proved

—
that 2’ can be found in amortized constant time by using the suffix link of node ¢ .

3.2 Left Extension

Weiner [23] proposed an algorithm to construct STree(aw) by updating STree(w)
with @ € ¥ in amortized constant time. On the other hand, this section is devoted to
the exposition of the conversion from STree'(w) to STree'(aw). In so doing, we insert
prefixes of aw into STree’ (w).

81

Proceedings of the Prague Stringology Conference 02

Lemma 8 Let a € ¥ and w € ¥*. For any string x € Factor(w) — Prefiz(aw),
- =
r=x.
Proof. Let b be the unique character that follows z in w. (When 7 =z, then b= £.)
Since z ¢ Prefiz(aw), there is no new occurrence of z in aw. Therefore, b is also the

. . - =
only character following x in aw. Hence x =z . a

The above lemma ensures that any implicit node of STree’(w) does not become ex-
plicit in STree'(aw) if it is not associated with any prefix of aw.

Now we turn our attention to the strings in Prefiz(aw). Let z be the longest
string in set Factor(w) N Prefizr(aw). Then z is called the longest repeated prefiz of
aw and denoted by LRP(aw). Since all prefixes of = belong to Factor(w), we need
not newly insert any of them into STree'(w).

Proposition 8 Let a € ¥ and w € ¥*. Let v = LRP(aw) and y = LRS(w). If

aw

x ¢ Suffix(w) — Suffix(y), then T'= . Otherwise, = = aw.

Proof. We first consider the case that x ¢ Suffiz(w) — Suffiz(y). Recall that z is
the longest string in Factor(w) N Prefiz(aw). Moreover, = ¢ Suffiz(w) — Suffiz(y).
Hence, there exist two characters b, ¢ € ¥ such that zb, zc € Factor(aw) and b # c.

aw

=
Thus we have z = z.
Now we consider the second case, x € Suffiz(w) — Suffiz(y). Here, x occurs only

once in w as its suffix. Thus # = x. On the other hand, by the definition of LRP (aw),
we obtain x € Prefiz(aw) — {aw}. Therefore, there uniquely exists a character d € ¥

)) =
which follows x in aw. Hence we have = = aqw. O

The above proposition implies that if LRP(aw) is not on a leaf node in STree'(w), it
is represented by an explicit node in STree'(aw), and otherwise it becomes implicit
in STree'(aw). We stress that this characterizes a difference between STree’(w) and
STree(w). More concretely, Weiner’s original algorithm constructs STree(aw) on the
basis of the next proposition.

Proposition 9 For any a € ¥ and w € ¥*, if t = LRP(aw), then T=1.

Now the next question is how to locate LRP(aw) in STree’(w). Our idea is similar
to Weiner’s strategy for constructing STree(w) [23]. Let y be the longest element in
set Prefiz(w) U {{} such that ay € Factor(w). Then y is called the base of aw
and denoted by Base(aw). On the other hand, let z be the longest element in set

Prefiz(w) U {¢} such that az= az. Then z is called the bridge of aw and denoted by
Bridge(aw).

Lemma 9 ([23]) Let a € ¥ and w € ¥*. If y = Base(aw), then ay = LRP(aw).

Proof. Assume contrarily that ' is the string such that ay’ = LRP(aw) and |y| > |y|.
By the definition of LRP (aw), we have ay’ € Prefiz(aw), which yields y' € Prefiz(w).
It, however, contradicts the precondition that y = Base(aw) since |y'| > |y|. 0

82

Bidirectional Construction of Suffix Trees

According to the above lemma, we can utilize Base(aw) for finding LRP(aw) in
STree' (w).

Lemma 10 Let a € ¥ and w € ¥*. If ©+ = LRP(w), y = Base(aw) and z =
Bridge(aw), then y € Prefiz(z) and z € Prefiz(y).

Proof. By Lemma 9 we have ay = LRP(aw). It is easy to see that |LRP(w)|+ 1 >
|LRP(aw)|, which implies |z| > |y|. Since z,y € Prefizt(w), we obtain y € Prefiz(z).
It can be readily shown that az € Prefiz(ay), since ay = LRP(aw). Thus we have
z € Prefiz(y). O

The above lemma ensures that we can find both Base(aw) and Bridge(aw) by going
up along the path from the node of LRP(w) in STree'(w).

Lemma 11 Leta € ¥ and w € ¥*. Let y = Base(aw) and z = Bridge(aw). Assume
v € X* is the string satisfying zy = y. Then, azy = LRP(aw).

Proof. By Lemma 9 and Lemma 10. O

According to the above lemma, we can locate LRP(aw) in STree’'(w) by going down

w

from the node aZ. The only thing not clarified yet is how to move from node 2 to

w

node az. If we maintain the set F’ below, we can detect LRP(aw) in constant time,
where

w w w w

F' = {(?,a, ﬁ) | z,azx € Factor(w),a € X, and W= a- ?}

Comparing F' and F in Definition 2, one can see that F’ is the set of the labeled
reversed suffiz links of STree'(w).
We now have the following theorem.

Theorem 3 For any a € ¥ and w € ¥*, STree'(w) can be updated to STree'(aw) in
amortized constant time.

3.3 Mutual Influences

Here, we consider mutual influences between Left Extension and Right Extension.
The next lemma shows what happens to LRP(w) when STree'(w) is updated to
STree' (wa).

Lemma 12 Let a € ¥ and w € X*. Assume LRP(w) = LRS(w). Let x = LRS(w).
If xa € Prefiz(w), then LRP(wa) = za.

Proof. Since xa € Prefiz(w), LRS(wa) = za. Thus xa = LRP(wa). 0

This lemma shows when and where LRP(wa) moves from the location of LRP(w)
according to the character a newly added to the right of w. Examining the precondi-
tion, “if za € Prefiz(w)”, is feasible in O(|X]|) time, which regarded as O(1) if ¥ is a
fixed alphabet.

The following lemma stands in contrast to Lemma 12.

83

Proceedings of the Prague Stringology Conference 02

Lemma 13 Let a € ¥ and w € ¥*. Assume LRP(w) = LRS(w). Let v = LRP(w).
If ax € Suffiz(w), then LRS(aw) = az.

This lemma shows when and where LRS(aw) moves from the location of LRS(w)
according to the character a newly added to the left of w. Examining the precondition,
“4f ax € Suffizr(w)”, is also feasible in O(|X|) time, and moving from the location of
LRS(w) to that of LRS(aw) can be done in constant time by the use of the labeled
reversed suffix link of LRP(w).

As a result of discussion, we finally obtain the following:

Theorem 4 For any string w € ¥*, STree'(w) can be constructed in bidirectional
manner and in O(|w|) time.

A bidirectional construction of STree'(w) with w = cocoon is displayed in Fig-
ure 3.

4 Concluding Remarks

We introduced an algorithm for bidirectional construction of suffix trees, which per-
forms in linear time. It should be noted that the proposed algorithm can construct
an index of w™" at the same time, where w™ is the reversal of a given string w.
In [14], we improved Ukkonen’s algorithm so as to construct not only S7Tree'(w) but
also DAWG (w™) in right-to-left on-line manner. The algorithm of this paper leads
bidirectional construction of STree'(w) and DAWG (w™"), although theoretical details
are omitted in this draft.

rev

Acknowledgment

The author wishes to thank Prof. Ayumi Shinohara and Prof. Masayuki Takeda.
Daily fruitful and enthusiastic discussion with them led the author to the inspiration
for this work.

References

[1] A. Apostolico. The myriad virtues of subword trees. In A. Apostolico and
7. Galil, editors, Combinatorial Algorithm on Words, volume 12 of NATO Ad-
vanced Science Institutes, Series F, pages 85-96. Springer-Verlag, 1985.

[2] M. Balik. Implementation of dawg. In Proc. The Prague Stringology Club Work-
shop 98 (PSCW’98). Czech Technical University, 1998.

(3] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. Seiferas.
The smallest automaton recognizing the subwords of a text. Theoretical Com-

puter Science, 40:31-55, 1985.

84

Bidirectional Construction of Suffix Trees

[4]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht. Complete
inverted files for efficient text retrieval and analysis. J. ACM, 34(3):578-595,
1987.

D. Breslauer. The suffix tree of a tree and minimizing sequential transducers.
Theoretical Computer Science, 191:131-144, 1998.

M. T. Chen and J. Seiferas. Efficient and elegant subword tree construction.
In A. Apostolico and Z. Galil, editors, Combinatorial Algorithm on Words, vol-
ume 12 of NATO Advanced Science Institutes, Series F, pages 97-107. Springer-
Verlag, 1985.

M. Crochemore. Transducers and repetitions. Theoretical Computer Science,
45:63-86, 1986.

M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, New
York, 1994.

M. Crochemore and R. Vérin. On compact directed acyclic word graphs. In
J. Mycielski, G. Rozenberg, and A. Salomaa, editors, Structures in Logic and
Computer Science, volume 1261 of Lecture Notes in Computer Science, pages
192-211. Springer-Verlag, 1997.

M. Farach. Optimal suffix tree construction with large alphabets. In Proc. The
38th Annual Symposium on Foundations of Computer Science (FOCS °97). IEEE
Computer Society, 1997.

R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner: A unifying
view of linear-time suffix tree construction. Algorithmica, 19(3):331-353, 1997.

D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, New York, 1997.

S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. Construction
of the CDAWG for a trie. In Proc. The Prague Stringology Conference 01
(PSC’01). Czech Technical University, 2001.

S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. On-line
construction of symmetric compact directed acyclic word graphs. In Proc. of

8th International Symposium on String Processing and Information Retrieval
(SPIRE’01), pages 96-110. IEEE Computer Society, 2001.

S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri, and
G. Pavesi. On-line construction of compact directed acyclic word graphs. In
A. Amir and G. M. Landau, editors, Proc. 12th Annual Symposium on Combi-
natorial Pattern Matching (CPM’01), volume 2089 of Lecture Notes in Computer
Science, pages 169-180. Springer-Verlag, 2001.

S. Inenaga, A. Shinohara, M. Takeda, and S. Arikawa. Compact directed acyclic
graphs for a sliding window. In Proc. of 9th International Symposium on String
Processing and Information Retrieval (SPIRE’02), Lecture Notes in Computer
Science. Springer-Verlag, 2002. (to appear).

85

Proceedings of the Prague Stringology Conference 02

[17]

[18]

[19]

[20]
[21]

22]

[23]

M. G. Maa8l. Linear bidirectional on-line construction of affix trees. In R. Gian-
carlo and D. Sankoff, editors, Proc. 11th Annual Symposium on Combinatorial
Pattern Matching (CPM’00), volume 1848 of Lecture Notes in Computer Science,
pages 320-334. Springer-Verlag, 2000.

U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Compt., 22(5):935-948, 1993.

E. M. McCreight. A space-economical suffix tree construction algorithm.
J. ACM, 23(2):262-272, 1976.

J. Stoye. Affixbdume. Master’s thesis, Universitit Bielefeld, 1995. (in German).

J. Stoye. Affix trees. Technical Report 2000—4, Universitiat Bielefeld, Technische
Fakultat, 2000.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260,
1995.

P. Weiner. Linear pattern matching algorithms. In Proc. 14th Annual Symposium
on Switching and Automata Theory, pages 1-11, 1973.

86

Bidirectional Construction of Suffix Trees

Figure 3: A bidirectional construction of STree'(w) with w = ababac. Solid arrows
represent edges while dotted arrows denote labeled reversed suffix links. On Right
Extension, labeled reversed suffix links are used for the reversed direction, that is,
as “normal” suffix links. In each phase, a gray triangle (star, respectively) indicates
the location of the longest repeated prefix (suffix, respectively). The newly added
character is underlined in each phase. When STree’(ab) is updated to STree’(bab),
the node for string b becomes implicit (Proposition 8). Due to the conversion of
STree' (bab) into STree'(abab), LRP(abab) moves via the labeled reversed suffix link,
and LRS(abab) also moves to the same position according to Lemma 13. Then,
the suffix tree is updated to STree’(ababa) where LRS(ababa) moves while spelling
out the new character a along the edge. Note that LRP(ababa) also moves due to
Lemma 12. Since the precondition of Lemma 12 is not satisfied in the string ababac,
LRP(ababac) does not move in STree’(ababac). For smart construction, we also
maintain the labeled reversed suffix link of the longest repeated suffix even if it is not
on an explicit node (see STree'(bab), for instance). This labeled reversed suffix link
is the only suffix link that would be “modified” after it is created. For example, the
labeled reversed suffix link of the node for string a in STree’(a) is deleted in STree’(ab)
since it no longer satisfies the definition of labeled reversed suffix links. On the other
hand, that of the node for string ab in STree’(abab) still exists in STree’(ababa) as
that of the node for string aba.

87

