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Regularities in strings arise in many areas of science: combinatorics, coding and au-
tomata theory, molecular biology, formal language theory, system theory, etc. — they
thus form the subject of extensive mathematical studies (see e.g. [L83],[P93],[P90]).
Perhaps the most conspicuous regularities in strings are those that manifest them-
selves in the form of repeated subpatterns. A typical regularity, the period u of the
string x, grasps the repetitiveness of x, since x is a prefix of a string constructed by
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concatenations of u. Here we consider regularity problems that arise from having
“don’t care” symbols in the string. In particular we study string problems focused
on finding the repetitive structures in DNA strings z.

In this paper we also consider a kind of generalized period called a cover; that is, a
proper substring u of x (if it exists) such that = can be formed by concatenating and
overlapping occurrences of u. In the computation of covers, two main problems have
been considered in the literature: the shortest-cover problem (computing the shortest
cover of a given string of length n), and the all-covers problem (computing all the cov-
ers of a given string). Apostolico, Farach and Iliopoulos [AFI91] introduced the notion
of covers and gave a linear-time algorithm for the shortest-cover problem. Breslauer
[B92| presented a linear-time on-line algorithm for the same problem. Moore and
Smyth [MS95] presented a linear-time algorithm for the all-covers problem. Finally,
Li and Smyth [LS02] invented the cover array and described an on-line linear-time
algorithm that solves both the shortest-cover and all-covers problems for every prefix
of z. In parallel computation, Breslauer [B94] gave an optimal O(a(n) loglogn)-time
algorithm for the shortest cover, where «(n) is the inverse Ackermann function; Il-
iopoulos and Park [IP94] gave an optimal O(loglogn)-time (thus work-time optimal)
algorithm for the same problem.

The idea of a cover has been extended. Iliopoulos, Moore and Park [IMP96]
introduced the notion of seeds and gave an O(n logn)-time algorithm for computing all
the seeds of a given string of length n. For the same problem Ben-Amram, Berkman,
[liopoulos and Park [BBIP94] presented a parallel algorithm that requires O(logn)
time and O(nlogn) work. Apostolico and Ehrenfeucht [AE93] considered yet another
problem related to covers.

An interesting extension of string-matching problems with practical applications
in the area of DNA sequences results from the introduction of “don’t care” symbols.
A don’t care symbol % has the property of matching with any symbol in the given
alphabet. For example the string p = AC % C'x matches the pattern ¢ = A « DCT.
Exact string matching with “don’t care” symbols was studied by Fischer and Pa-
terson [FP74]. They developed an O(nlogmlog|X|) time algorithm for finding a
pattern of length m in a text of size n over the alphabet ¥ U {x}. Their method
is based on the theoretically fast computation method of convolutions, but it is not
efficient in practice. Pinter developed a linear time algorithm for a special case [P85],
while Abrahamson generalized Fischer and Paterson’s algorithm, using a divide-and-
conquer approach that runs in time O(ny/mlogm) [A87]. See also [LV89].

In this paper we describe two fast, practical algorithms for computing all the
periods of every prefix of a given string z[1..n] that contains “don’t care” symbols.
We prove that the expected running time of these algorithms is linear, though they
have quadratic worst-case time complexity for pathological inputs. Then we show
how our algorithms can be used to efficiently compute covers of strings with don’t
cares, both ordinary and circular. The motivation for the above problems comes from
many applications to the analysis of DNA sequences that reveal naturally occurring
repeated segments within nucleotide sequences. These segments can be concatenated
only (periodic) or both concatenated and overlapping (coverable).
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2 Background

A string is a sequence of zero or more symbols drawn from an alphabet 3. The set
of all nonempty strings over the alphabet X is denoted by X*. A string x of length n
is represented by z[1..n] = x[1]z[2] - - - z[n], where z[i] € ¥ for 1 < i < n, and n = |z
is the length of x. The empty string is the empty sequence (of zero length) and is
denoted by ¢; we write ©* = ¥ U{e} The string xy is a concatenation of two strings
2 and y. The concatenation of k copies of x is denoted by z* and is called the k'
power of x.

A string w is a substring of x if x = uww for u,v € ¥*. A string w is a prefiz of
if x = wu for u € *, a proper prefiz if u € 7. Similarly, w is a suffiz of x if x = uw
for u € ¥*. A string u that is both a proper prefix and a suffix of x is called a border
of x.

If x has a nonempty border, it is called periodic. Otherwise, x is is said to be
primitive. The empty string is a trivial border of x. Let u denote a border of x of
length ¢ where 1 < ¢ < n — 1; then p = n — £ is called a period of x. Clearly, p is
a period of z if z; = z;4, whenever 1 < 4,7+ p < n. Another equivalent definition
may be given as: p is a period of x if and only if z[1..p] = z[n — p+ 1..n]. The latter
definition shows that each word x has a minimum period called the period of x. For
example, the string x = ababab has two borders u; = ab and us; = abab; thus x has
two periods 4 and 2, where 2 is the period of .

A substring u is said to be a cover of a given string z if every position of z lies
within an occurrence of a string v within z. If, in addition, |u| < |z|, we call u a
proper cover of x. For example, x is always a cover of z. and u = aba is a proper
cover of x = abaababa.

An array S[1..n] is called the border array of z[1..n], where for i = 1,2,...,n, B[i]
gives the length of the longest border of z[1..i]. Furthermore, since every border of a
border of x is itself a border of x, § actually describes all the borders of every prefix
of . The border array can be computed in linear time using the classical failure
function algorithm [AHU74].

Recently Li and Smyth [L.S02] discovered the cover array [1..n], where v[i] gives
the length of the longest cover of x[1..7]. The cover array similarly encapsulates all
the covers of every prefix of x and can also be computed in linear time.

This paper deals with strings that can contain occurrences of the don’t care sym-
bol, denoted by “x”. This symbol matches any other symbol of the alphabet. Two
symbols a and b match (a = b) if they are equal, or if one of them is a don’t care
symbol. Notice that the relation =~ is not transitive (a & *,* ~ b % a & b).

3 Computing the Failure Function

A theoretical O(nlognlog |X]) time algorithm for computing the period of a given
string x that contains don’t care symbols can be achieved by using a “convolution”
procedure [FP74] between two strings x and X. Assuming that z is the given string
(of length n), we create a string X by adding n don’t care symbols, thus doubling
the length of z. We compute the convolution of x and X by shifting = to the right
by one character. The product u of the convolution is the period of the string x (for
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further information see [FP74]). This algorithm is impractical as it has a very large
constant hidden in its asymptotic time complexity.

In this section we present two fast and practical algorithms for computing the
border array f[1...n] of a given string = that contains don’t care symbols.

As noted earlier, the standard failure function method, based on the fact that
“a border of a border of a string x is necessarily a border of 2”7, cannot be used to
calculate the border array of a string containing don’t care symbols. This follows
from the nontransitivity of the = relation. For example, if = a * xca, then we have

U = a*x x X U, = *ca,

where u; and u, are respectively the left and right borders of x of length 3; note that
v, = ax & *x is a border of u;, but a*x # ca, which means that v; is not a border of
u,, hence not of z.

Despite the fact that we cannot make use of the standard failure function method,
it is quite easy to notice that there is no nonempty border b of z[1..i + 1] that is not
equal to some 0'z[i + 1], where b’ is a border of z[1...i]. Moreover, let the borders of
x[1..1] be

B, B%la] ... B¥[i]
where 3'[i] is the the length of the border of z[1 . .. ] (the longest border) and 8¥[i] = 0
is the length of the empty border .Then each border of z[1...i+ 1] is equal to either
B7[i] + 1 for some 1 < j < k or 0.

The above states the rule used by algorithm FAILURE-FUNCTION-1() to calcu-
late the value of the border array of a given string x that contains don’t care symbols.

FAILURE-FUNCTION-1(x)
1S« 0 S is a singly-linked list of nonzero border lengths
2 B[1]«+0
3 For i+ 1Ton—-1Do
For each b € S Do
If z[i + 1] ~ z[b + 1] Then
replace_current(S, b + 1)
Else delete_current(S)
If z[i] ~ x[1] Then add_after_current(S,1)
9 If S#( Then B[i + 1] «+top(S)
10 Else f[i+ 1]+ 0
END FAILURE-FUNCTION-1

00 ~1 O Ut =

Figure 1: FAILURE-FUNCTION-1 algorithm.

The algorithm maintains a list S of all possible nonzero border lengths. At the
beginning of iteration ¢, S contains all possible nonzero border lengths of z[...4]. The
algorithm tries to extend each possible border b in S by comparing the value of x[i+1]
and the value of z[b + 1]. If the two values are equal or one of them is a don’t care
symbol, the value b in S is replaced by b + 1. Otherwise, b is deleted from the list.
If z[i + 1] is equal to z[1] or *, a border of length 1 has to be added to S. Finally,
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each iteration i terminates by assigning the value at the top of the list S that is the
length of the longest border of x[1...7+4 1] to B[i + 1]. If the list S is empty, then the
length of the longest border is 0 (5[i + 1] = 0). Note that at this stage , S contains
the lengths of all possible nonzero borders of z[1...i + 1] in descending order.

Each position i such that z[i] = z[1] or % is a candidate to start a new border.
Hence Algorithm FAILURE-FUNCTION-2() tries to speed up the computation of the
failure function by a simple linear preprocessing of the input string x. For each posi-
tion i we count the previous occurrences of z[1]’s and x’s. And we introduce a pointer
that points to the previous occurrence. The algorithm then modifies the standard
failure function method to calculate the border array §. FAILURE-FUNCTION-2
starts by setting the value of 5[0] to -1, a convention which is compatible with the
algorithm. Then n — 1 iterations follow. In each iteration ¢, the algorithm tries to
extend the current border b by comparing the value of z[i+1] and the value of z:[b+1]
where b is the length of the border of x[1...i]. If the two values are equal or one of
them is a don’t care symbol, the value of /3[i] is set to b+ 1. Otherwise, the algorithm
tries to follow the basic failure function method by trying to extend the border of
the current border. More work needs to be done in each attempt to ensure the right
answer:

e The algorithm has to eliminate the possibility of having a border whose length
is greater than that of the border of the border. That is, having

zll..i—j+2]~zfj...i+1]

for some j such that 3[b] < i —j+ 1 < b. The algorithm uses the preprocessed
informations to find each position j such that z[j] = z[1] or *. Clearly, the
number and the positions of the j’s can be calculated in constant time. The
algorithm examines each j in ascending order to find the first j that satisfies
the above condition. If such a j exists, then the iteration ends by assigning
i—j+2to pli+1].

e Recall that the nontransitivity of the & relation means that the statement “the
border of the border is a border” may not be true. Observe that nontransitivity
can occur only if a don’t care symbol was part of the comparison. Then only
in such cases does the algorithm need to recheck the positions that could cause
a nontransitivity. That is, if z[i + 1] ~ x[5[b]], then the algorithm still needs
to check all the solid characters in the right border; that have been compared
with the don’t care symbol during the calculation; against the coresponding
characters in the left border. These positions are marked during the calculations
and stored in a special stack S. Positions are popped from and pushed onto S
depending on the length of the current border.

For example, let x = a * xcabcdabe x abca and the value of the border array be as
follows:

¢ 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

z[i] a ¥ * ¢ a b ¢ d a b ¢ * a b ¢ a

gl 012 3 3 2 3 01 2 3 4 5 6 7 5
At step 7 (i = 7) we had failed to extend the current border after comparing z[4] = ‘¢’
with z[8] = ‘d’. At the same time we could not find any j that satisfies the first
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FAILURE-FUNCTION-2(z)

1 B[0] « —1

2 For ¢ <~ 0 Ton -1 Do

3 b+ pli]

4 Ifz(i+1)=~xz(b+1) Then fli +1]+b+1

5 Else

6 While b > 0 And [z(i 4+ 1) # z(b+ 1) Or check_stack_fail()] Do
7 For each j such that f[b] <i—j+1 < b And z[j] = z[1] Do
8 If 2[j.i + 1] ~ 2[1..i — j + 2] Then

9 b1i—7+2

10 Quit The While Loop

11 b+ B[b]

12 pli+1]«b
END FAILURE-FUNCTION-2

Figure 2: FAILURE-FUNCTION-2 algorithm.

condition. So we tried to extend the border of the border which equals 3 (3[7] = 3).
Since z[8] # x[4], we tried to extend the border of the border of the border which
equals 2 (5[3] = 2). Although z[8] ~ x[3], we still need to check according to the
algorithm the value at position 1 with the corresponding value at position 6. Since
they are not equal, the value of 3[8] can not be 3 and so we have to carry on . Note
that the value 1 had been inserted into the stack after comparing the ‘x’ at position
2 with the ‘a’ at position 1 at step 1.

At step 15, where z[16] # z[8], we had failed again to extend the current border.
According to the algorithm we have to eliminate the possibility of having a longer
border than the border of the border; that is, finding 7 that satisfies the first condition.
In our example, we found 7 = 12. Note that

Bhl=3<i—j+1=15—-12+1=4d<b=7

and z[12] = . After finding j we need to compare z[12...16] with x[1...5]. Since
they are equal the value of 3[16] becomes 5.

4 Expected Running Time Analysis

Here we will show that the expected number of borders of a string is bounded by
a constant. We suppose that the alphabet ¥ consists of ordinary letters 1...0 — 1
together with the don’t care symbol *. First we consider the probability of two
symbols of a string being equal. Equality occurs in the following cases:

Symbol Equal to Number of cases
* oce{l,...,a—1} a—1
oe{x1,...,a—1} * a
ce{l,...,a—1} |oe{l,...,a—1} a—1
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Thus the total number of equality cases is 3a. — 2 and the number of overall cases
is a?. Therefore the probability of two symbols of a string being equal is

30— 2
o2

Now let consider the probability of string x having a border of length k. One can see

3a—2\"
Ply...0p =2y g 1...2,) = Plry =25 g 1] ... Pl =2, = < > )

From this it follows that the expected number of borders is

30— 2\"
z;;:}(o‘ ><3.5

a2

The algorithm, at iteration ¢, performs k; steps, where k; is the number of the borders
of z[1..7]. Thus the overall expected time complexity is

DI

Since the expected value of each k; is bounded by 3.5, therefore the expected time of
the two border algorithms is O(n).

5 Experimental Results

Using random strings over various alphabet sizes (with the x symbol treated as
an additional random letter), we ran FAILURE-FUNCTION-1() and FAILURE-
FUNCTION-2(). The running time was calculated for each execution. We used
a SUN Ultra Enterprise 300MHz running Solaris Unix. The reported times are the
calculation time in seconds, measured by calling the a clock() routine (Figures 3
and 4).

0.001 —<— Alphabet Size =2
—— Alphabet Size = 6

Alphabet Size =10
0.0008 Alphabet Size =14
—k— Alphabet Size =18
—@— Alphabet Size =22
0.0006 —F— Alphabet Size =26
—=— Alphabet Size =30

0.0009

0.0007

Running Time (sec.)

0 100 200 300 400 500 600 700 800 900

Input Size

Figure 3: Timing curves for the FAILURE-FUNCTION-1 Procedure.

In general, it seems that the heuristic employed in FAILURE-FUNCTION-2 is
effective for random strings on small alphabets (therefore containing a high proportion
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—— Alphabet Size =2
—— Alphabet Size = 6
00009 Alphabet Size =10

Alphabet Size =14
—K— Alphabet Size =18
—®— Alphabet Size =22
0.0006 —+— Alphabet Size =26
—=— Alphabet Size =30

0.001

0.0008

0.0007

0.0005

0.0004

Running Time (sec.)

0.0003

0.0002

0.0001

900

Input Size

Figure 4: Timing curves for the FAILURE-FUNCTION-2 Procedure.

FIND-COVERS(x)

1 Compute borders B = {by,...,b;} of x in ascending order of length
2 For each adjacent pair of borders, b; and b;,, Do

3 If b; covers b;y; Then check whether it covers x

4 Elsei<+i+1

END FIND-COVERS

Figure 5: FIND-COVERS algorithm.

of don’t care symbols), but makes little difference for larger alphabets that have a
correspondingly low proportion of don’t cares.

Note that our experiments confirm Section 4’s theoretical result that the expected
case bahaviour of the algorithms is linear in string length.

6 Computing the Covers

In this section we present an algorithm for computing all the covers of a given string
x, bearing in mind that we allow possible overlaps. This means that in the example
p=AC*x ACAx AAx AC A, the pattern ¢ = AC'A is an overlapping cover of the string
p. The algorithm we present consists of 2 stages. The first stage is a preprocessing
phase where we compute the borders of the given string . Suppose we find the
following nonempty borders by, bs, ..., by, listed in ascending order.

In the second stage we perform the following check: for two borders b; and b; i1, if
b; covers b; 1 we check whether b; also covers string x. If not we continue this process
for the rest of the adjacent pairs of borders.

In order to precompute the borders we use Algorithm ALL-BORDERS(). Using
the previously computed borders, the procedure that finds the covers of a given string
x is as follows:
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Theorem 6.1 Given a string x that contains don’t care symbols, we can find a longest
cover u of x in linear expected time.

7 Computing the Covers of Circular DNA Strings

In some computational biology applications (for example, DNA sequencing by hy-
bridization), it is convenient to regard the DNA sequence as a circular string (Fig. 6).
Given a circular DNA string and a window that limits the region of DNA that we are
able to study, the computation of covers in the sequence becomes a difficult task. In
that case the computation of seeds (see [BBIP94]) does not work and we need a new
approach.

Bearing in mind the scheme of a circular DNA string and the algorithms for the
computation of the failure function that we have already described, it is easy to see
that the computation of the covers in a circular DNA sequence can be easily solved
using the failure function technique. More precisely the problem of the computation
of covers can be solved if we compute the failure function two times, once forward
and once backward.

Sl:acag S2:*ta g S3:¢c * *a

Figure 6: A circular string x and three substrings S1, S2, S3, as seen from a window
of four characters length.

Conclusions

We have presented two linear expected-time algorithms for computing all the borders
(hence all the periods) of a given string containing don’t care symbols. We have then
shown how to apply the border calculation to compute the covers of ordinary and
circular strings, also containing don’t care symbols.

An open problem is the calculation of every border of every prefix of x in O(nlogn)
worst-case time.
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