
String Regularities with Don't Cares

Costas S. Iliopoulos

1y

, Manal Mohamed

1z

, Laurent Mouhard

2

,

Katerina G. Perdikuri

3

, W. F. Smyth

4

and

Athanasios K. Tsakalidis

3

1

Department of Computer Siene, King's College London,

London WC2R 2LS, England

fsi,manalg�ds.kl.a.uk

2

Department of Vegetal Physiology - ABISS, Universit�e de Rouen,

76821 Mont Saint Aignan Cedex, Frane

Laurent.Mouhard�univ-rouen.fr

3

Computer Tehnology Institute, Patras, Greee

perdikur�eid.upatras.gr, tsak�ti.gr

4

Algorithms Researh Group, Department of Computing & Software,

MMaster University, Hamilton, Ontario, Canada L8S 4K1 and

Shool of Computing, Curtin University, Perth WA 6845, Australia

smyth�mmaster.a

Abstrat. We desribe algorithms for omputing typial regularities in strings

x = x[1::n℄ that ontain don't are symbols. For suh strings on alphabet �, an

O(n log n log j�j) worst-ase time algorithm for omputing the period is known,

but the algorithm is impratial due to a large onstant of proportionality. We

present instead two simple pratial algorithms that ompute all the periods

of every pre�x of x; our algorithms require quadrati worst-ase time but only

linear time in the average ase. We then show how our algorithms an be used

to ompute other string regularities, spei�ally the overs of both ordinary and

irular strings.

Key words: string algorithm, regularities, don't are, period, border, over.

1 Introdution

Regularities in strings arise in many areas of siene: ombinatoris, oding and au-

tomata theory, moleular biology, formal language theory, system theory, et. | they

thus form the subjet of extensive mathematial studies (see e.g. [L83℄,[P93℄,[P90℄).

Perhaps the most onspiuous regularities in strings are those that manifest them-

selves in the form of repeated subpatterns. A typial regularity, the period u of the

string x, grasps the repetitiveness of x, sine x is a pre�x of a string onstruted by

y

Partially supported by a Marie Curie fellowship, Wellome and Royal Soiety grants.

z

Supported by EPSRC studentship.

65

Proeedings of the Prague Stringology Conferene '02

onatenations of u. Here we onsider regularity problems that arise from having

\don't are" symbols in the string. In partiular we study string problems foused

on �nding the repetitive strutures in DNA strings x.

In this paper we also onsider a kind of generalized period alled a over; that is, a

proper substring u of x (if it exists) suh that x an be formed by onatenating and

overlapping ourrenes of u. In the omputation of overs, two main problems have

been onsidered in the literature: the shortest-over problem (omputing the shortest

over of a given string of length n), and the all-overs problem (omputing all the ov-

ers of a given string). Apostolio, Farah and Iliopoulos [AFI91℄ introdued the notion

of overs and gave a linear-time algorithm for the shortest-over problem. Breslauer

[B92℄ presented a linear-time on-line algorithm for the same problem. Moore and

Smyth [MS95℄ presented a linear-time algorithm for the all-overs problem. Finally,

Li and Smyth [LS02℄ invented the over array and desribed an on-line linear-time

algorithm that solves both the shortest-over and all-overs problems for every pre�x

of x. In parallel omputation, Breslauer [B94℄ gave an optimal O(�(n) log logn)-time

algorithm for the shortest over, where �(n) is the inverse Akermann funtion; Il-

iopoulos and Park [IP94℄ gave an optimal O(log logn)-time (thus work-time optimal)

algorithm for the same problem.

The idea of a over has been extended. Iliopoulos, Moore and Park [IMP96℄

introdued the notion of seeds and gave anO(n logn)-time algorithm for omputing all

the seeds of a given string of length n. For the same problem Ben-Amram, Berkman,

Iliopoulos and Park [BBIP94℄ presented a parallel algorithm that requires O(logn)

time and O(n logn) work. Apostolio and Ehrenfeuht [AE93℄ onsidered yet another

problem related to overs.

An interesting extension of string-mathing problems with pratial appliations

in the area of DNA sequenes results from the introdution of \don't are" symbols.

A don't are symbol � has the property of mathing with any symbol in the given

alphabet. For example the string p = AC � C� mathes the pattern q = A � DCT .

Exat string mathing with \don't are" symbols was studied by Fisher and Pa-

terson [FP74℄. They developed an O(n logm log j�j) time algorithm for �nding a

pattern of length m in a text of size n over the alphabet � [f�g. Their method

is based on the theoretially fast omputation method of onvolutions, but it is not

eÆient in pratie. Pinter developed a linear time algorithm for a speial ase [P85℄,

while Abrahamson generalized Fisher and Paterson's algorithm, using a divide-and-

onquer approah that runs in time O(n

p

m logm) [A87℄. See also [LV89℄.

In this paper we desribe two fast, pratial algorithms for omputing all the

periods of every pre�x of a given string x[1::n℄ that ontains \don't are" symbols.

We prove that the expeted running time of these algorithms is linear, though they

have quadrati worst-ase time omplexity for pathologial inputs. Then we show

how our algorithms an be used to eÆiently ompute overs of strings with don't

ares, both ordinary and irular. The motivation for the above problems omes from

many appliations to the analysis of DNA sequenes that reveal naturally ourring

repeated segments within nuleotide sequenes. These segments an be onatenated

only (periodi) or both onatenated and overlapping (overable).

66

String Regularities with Don't Cares

2 Bakground

A string is a sequene of zero or more symbols drawn from an alphabet �. The set

of all nonempty strings over the alphabet � is denoted by �

+

. A string x of length n

is represented by x[1::n℄ = x[1℄x[2℄ � � �x[n℄, where x[i℄ 2 � for 1 � i � n, and n = jxj

is the length of x. The empty string is the empty sequene (of zero length) and is

denoted by "; we write �

�

= �

+

[f"g The string xy is a onatenation of two strings

x and y. The onatenation of k opies of x is denoted by x

k

and is alled the k

th

power of x.

A string w is a substring of x if x = uwv for u; v 2 �

�

. A string w is a pre�x of x

if x = wu for u 2 �

�

, a proper pre�x if u 2 �

+

. Similarly, w is a suÆx of x if x = uw

for u 2 �

�

. A string u that is both a proper pre�x and a suÆx of x is alled a border

of x.

If x has a nonempty border, it is alled periodi. Otherwise, x is is said to be

primitive. The empty string is a trivial border of x. Let u denote a border of x of

length ` where 1 � ` � n � 1; then p = n � ` is alled a period of x. Clearly, p is

a period of x if x

i

= x

i+p

whenever 1 � i; i + p � n. Another equivalent de�nition

may be given as: p is a period of x if and only if x[1::p℄ = x[n� p+ 1::n℄. The latter

de�nition shows that eah word x has a minimum period alled the period of x. For

example, the string x = ababab has two borders u

1

= ab and u

2

= abab; thus x has

two periods 4 and 2, where 2 is the period of x.

A substring u is said to be a over of a given string x if every position of x lies

within an ourrene of a string u within x. If, in addition, juj < jxj, we all u a

proper over of x. For example, x is always a over of x. and u = aba is a proper

over of x = abaababa.

An array �[1::n℄ is alled the border array of x[1::n℄, where for i = 1; 2; : : : ; n, �[i℄

gives the length of the longest border of x[1::i℄. Furthermore, sine every border of a

border of x is itself a border of x, � atually desribes all the borders of every pre�x

of x. The border array an be omputed in linear time using the lassial failure

funtion algorithm [AHU74℄.

Reently Li and Smyth [LS02℄ disovered the over array [1::n℄, where [i℄ gives

the length of the longest over of x[1::i℄. The over array similarly enapsulates all

the overs of every pre�x of x and an also be omputed in linear time.

This paper deals with strings that an ontain ourrenes of the don't are sym-

bol, denoted by \�". This symbol mathes any other symbol of the alphabet. Two

symbols a and b math (a � b) if they are equal, or if one of them is a don't are

symbol. Notie that the relation � is not transitive (a � �; � � b; a � b).

3 Computing the Failure Funtion

A theoretial O(n logn log j�j) time algorithm for omputing the period of a given

string x that ontains don't are symbols an be ahieved by using a \onvolution"

proedure [FP74℄ between two strings x and X. Assuming that x is the given string

(of length n), we reate a string X by adding n don't are symbols, thus doubling

the length of x. We ompute the onvolution of x and X by shifting x to the right

by one harater. The produt u of the onvolution is the period of the string x (for

67

Proeedings of the Prague Stringology Conferene '02

further information see [FP74℄). This algorithm is impratial as it has a very large

onstant hidden in its asymptoti time omplexity.

In this setion we present two fast and pratial algorithms for omputing the

border array �[1 : : : n℄ of a given string x that ontains don't are symbols.

As noted earlier, the standard failure funtion method, based on the fat that

\a border of a border of a string x is neessarily a border of x", annot be used to

alulate the border array of a string ontaining don't are symbols. This follows

from the nontransitivity of the � relation. For example, if x = a � �a, then we have

u

l

= a � � � u

r

= �a;

where u

l

and u

r

are respetively the left and right borders of x of length 3; note that

v

l

= a� � �� is a border of u

l

, but a� 6= a, whih means that v

l

is not a border of

u

r

, hene not of x.

Despite the fat that we annot make use of the standard failure funtion method,

it is quite easy to notie that there is no nonempty border b of x[1::i+ 1℄ that is not

equal to some b

0

x[i+1℄, where b

0

is a border of x[1 : : : i℄. Moreover, let the borders of

x[1::i℄ be

�

1

[i℄; �

2

[i℄ : : : �

k

[i℄

where �

1

[i℄ is the the length of the border of x[1 : : : i℄ (the longest border) and �

k

[i℄ = 0

is the length of the empty border .Then eah border of x[1 : : : i+1℄ is equal to either

�

j

[i℄ + 1 for some 1 � j � k or 0.

The above states the rule used by algorithm FAILURE-FUNCTION-1() to alu-

late the value of the border array of a given string x that ontains don't are symbols.

FAILURE-FUNCTION-1(x)

1 S ; S is a singly-linked list of nonzero border lengths

2 �[1℄ 0

3 For i 1 To n� 1 Do

4 For eah b 2 S Do

5 If x[i + 1℄ � x[b + 1℄ Then

6 replae urrent(S; b + 1)

7 Else delete urrent(S)

8 If x[i℄ � x[1℄ Then add after urrent(S,1)

9 If S 6= ; Then �[i+ 1℄ top(S)

10 Else �[i+ 1℄ 0

END FAILURE-FUNCTION-1

Figure 1: FAILURE-FUNCTION-1 algorithm.

The algorithm maintains a list S of all possible nonzero border lengths. At the

beginning of iteration i, S ontains all possible nonzero border lengths of x[: : : i℄. The

algorithm tries to extend eah possible border b in S by omparing the value of x[i+1℄

and the value of x[b + 1℄. If the two values are equal or one of them is a don't are

symbol, the value b in S is replaed by b + 1. Otherwise, b is deleted from the list.

If x[i + 1℄ is equal to x[1℄ or �, a border of length 1 has to be added to S. Finally,

68

String Regularities with Don't Cares

eah iteration i terminates by assigning the value at the top of the list S that is the

length of the longest border of x[1 : : : i+1℄ to �[i+1℄. If the list S is empty, then the

length of the longest border is 0 (�[i + 1℄ = 0). Note that at this stage , S ontains

the lengths of all possible nonzero borders of x[1 : : : i + 1℄ in desending order.

Eah position i suh that x[i℄ = x[1℄ or � is a andidate to start a new border.

Hene Algorithm FAILURE-FUNCTION-2() tries to speed up the omputation of the

failure funtion by a simple linear preproessing of the input string x. For eah posi-

tion i we ount the previous ourrenes of x[1℄'s and �'s. And we introdue a pointer

that points to the previous ourrene. The algorithm then modi�es the standard

failure funtion method to alulate the border array �. FAILURE-FUNCTION-2

starts by setting the value of �[0℄ to -1, a onvention whih is ompatible with the

algorithm. Then n � 1 iterations follow. In eah iteration i, the algorithm tries to

extend the urrent border b by omparing the value of x[i+1℄ and the value of x[b+1℄

where b is the length of the border of x[1 : : : i℄. If the two values are equal or one of

them is a don't are symbol, the value of �[i℄ is set to b+1. Otherwise, the algorithm

tries to follow the basi failure funtion method by trying to extend the border of

the urrent border. More work needs to be done in eah attempt to ensure the right

answer:

� The algorithm has to eliminate the possibility of having a border whose length

is greater than that of the border of the border. That is, having

x[1 : : : i� j + 2℄ � x[j : : : i+ 1℄

for some j suh that �[b℄ < i� j + 1 < b. The algorithm uses the preproessed

informations to �nd eah position j suh that x[j℄ = x[1℄ or �. Clearly, the

number and the positions of the j's an be alulated in onstant time. The

algorithm examines eah j in asending order to �nd the �rst j that satis�es

the above ondition. If suh a j exists, then the iteration ends by assigning

i� j + 2 to �[i + 1℄.

� Reall that the nontransitivity of the � relation means that the statement \the

border of the border is a border" may not be true. Observe that nontransitivity

an our only if a don't are symbol was part of the omparison. Then only

in suh ases does the algorithm need to rehek the positions that ould ause

a nontransitivity. That is, if x[i + 1℄ � x[�[b℄℄, then the algorithm still needs

to hek all the solid haraters in the right border; that have been ompared

with the don't are symbol during the alulation; against the oresponding

haraters in the left border. These positions are marked during the alulations

and stored in a speial stak S. Positions are popped from and pushed onto S

depending on the length of the urrent border.

For example, let x = a � �abdab � aba and the value of the border array be as

follows:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x[i℄ a � � a b d a b � a b a

�[i℄ 0 1 2 3 3 2 3 0 1 2 3 4 5 6 7 5

At step 7 (i = 7) we had failed to extend the urrent border after omparing x[4℄ = `'

with x[8℄ = `d'. At the same time we ould not �nd any j that satis�es the �rst

69

Proeedings of the Prague Stringology Conferene '02

FAILURE-FUNCTION-2(x)

1 �[0℄ �1

2 For i 0 To n� 1 Do

3 b �[i℄

4 If x(i + 1) � x(b + 1) Then �[i+ 1℄ b+ 1

5 Else

6 While b � 0 And [x(i + 1) 6= x(b + 1) Or hek stak fail()℄ Do

7 For eah j suh that �[b℄ < i� j + 1 < b And x[j℄ � x[1℄ Do

8 If x[j::i + 1℄ � x[1::i� j + 2℄ Then

9 b i� j + 2

10 Quit The While Loop

11 b �[b℄

12 �[i+ 1℄ b

END FAILURE-FUNCTION-2

Figure 2: FAILURE-FUNCTION-2 algorithm.

ondition. So we tried to extend the border of the border whih equals 3 (�[7℄ = 3).

Sine x[8℄ 6= x[4℄, we tried to extend the border of the border of the border whih

equals 2 (�[3℄ = 2). Although x[8℄ � x[3℄, we still need to hek aording to the

algorithm the value at position 1 with the orresponding value at position 6. Sine

they are not equal, the value of �[8℄ an not be 3 and so we have to arry on . Note

that the value 1 had been inserted into the stak after omparing the `�' at position

2 with the `a' at position 1 at step 1.

At step 15, where x[16℄ 6= x[8℄, we had failed again to extend the urrent border.

Aording to the algorithm we have to eliminate the possibility of having a longer

border than the border of the border; that is, �nding j that satis�es the �rst ondition.

In our example, we found j = 12. Note that

�[b℄ = 3 < i� j + 1 = 15� 12 + 1 = 4 < b = 7

and x[12℄ = �. After �nding j we need to ompare x[12 : : : 16℄ with x[1 : : : 5℄. Sine

they are equal the value of �[16℄ beomes 5.

4 Expeted Running Time Analysis

Here we will show that the expeted number of borders of a string is bounded by

a onstant. We suppose that the alphabet � onsists of ordinary letters 1 : : : � � 1

together with the don't are symbol �. First we onsider the probability of two

symbols of a string being equal. Equality ours in the following ases:

Symbol Equal to Number of ases

� � 2 f1; : : : ; �� 1g �� 1

� 2 f�; 1; : : : ; �� 1g � �

� 2 f1; : : : ; �� 1g � 2 f1; : : : ; �� 1g �� 1

70

String Regularities with Don't Cares

Thus the total number of equality ases is 3�� 2 and the number of overall ases

is �

2

. Therefore the probability of two symbols of a string being equal is

3�� 2

�

2

Now let onsider the probability of string x having a border of length k. One an see

P [x

1

: : : x

k

= x

n�k�1

: : : x

n

℄ = P [x

1

= x

n�k�1

℄ : : : P [x

k

= x

n

℄ =

�

3�� 2

�

2

�

k

From this it follows that the expeted number of borders is

�

n�1

k=1

�

3�� 2

�

2

�

k

< 3:5

The algorithm, at iteration i, performs k

i

steps, where k

i

is the number of the borders

of x[1::i℄. Thus the overall expeted time omplexity is

�

n�1

k=1

k

i

:

Sine the expeted value of eah k

i

is bounded by 3.5, therefore the expeted time of

the two border algorithms is O(n).

5 Experimental Results

Using random strings over various alphabet sizes (with the � symbol treated as

an additional random letter), we ran FAILURE-FUNCTION-1() and FAILURE-

FUNCTION-2(). The running time was alulated for eah exeution. We used

a SUN Ultra Enterprise 300MHz running Solaris Unix. The reported times are the

alulation time in seonds, measured by alling the a lok() routine (Figures 3

and 4).

Figure 3: Timing urves for the FAILURE-FUNCTION-1 Proedure.

In general, it seems that the heuristi employed in FAILURE-FUNCTION-2 is

e�etive for random strings on small alphabets (therefore ontaining a high proportion

71

Proeedings of the Prague Stringology Conferene '02

Figure 4: Timing urves for the FAILURE-FUNCTION-2 Proedure.

FIND-COVERS(x)

1 Compute borders B = fb

1

; : : : ; b

k

g of x in asending order of length

2 For eah adjaent pair of borders, b

i

and b

i+1

, Do

3 If b

i

overs b

i+1

Then hek whether it overs x

4 Else i i + 1

END FIND-COVERS

Figure 5: FIND-COVERS algorithm.

of don't are symbols), but makes little di�erene for larger alphabets that have a

orrespondingly low proportion of don't ares.

Note that our experiments on�rm Setion 4's theoretial result that the expeted

ase bahaviour of the algorithms is linear in string length.

6 Computing the Covers

In this setion we present an algorithm for omputing all the overs of a given string

x, bearing in mind that we allow possible overlaps. This means that in the example

p = AC �ACA�AA�ACA, the pattern q = ACA is an overlapping over of the string

p. The algorithm we present onsists of 2 stages. The �rst stage is a preproessing

phase where we ompute the borders of the given string x. Suppose we �nd the

following nonempty borders b

1

; b

2

; : : : ; b

k

, listed in asending order.

In the seond stage we perform the following hek: for two borders b

i

and b

i+1

, if

b

i

overs b

i+1

we hek whether b

i

also overs string x. If not we ontinue this proess

for the rest of the adjaent pairs of borders.

In order to preompute the borders we use Algorithm ALL-BORDERS(). Using

the previously omputed borders, the proedure that �nds the overs of a given string

x is as follows:

72

String Regularities with Don't Cares

Theorem 6.1 Given a string x that ontains don't are symbols, we an �nd a longest

over u of x in linear expeted time.

7 Computing the Covers of Cirular DNA Strings

In some omputational biology appliations (for example, DNA sequening by hy-

bridization), it is onvenient to regard the DNA sequene as a irular string (Fig. 6).

Given a irular DNA string and a window that limits the region of DNA that we are

able to study, the omputation of overs in the sequene beomes a diÆult task. In

that ase the omputation of seeds (see [BBIP94℄) does not work and we need a new

approah.

Bearing in mind the sheme of a irular DNA string and the algorithms for the

omputation of the failure funtion that we have already desribed, it is easy to see

that the omputation of the overs in a irular DNA sequene an be easily solved

using the failure funtion tehnique. More preisely the problem of the omputation

of overs an be solved if we ompute the failure funtion two times, one forward

and one bakward.

Figure 6: A irular string x and three substrings S1, S2, S3, as seen from a window

of four haraters length.

Conlusions

We have presented two linear expeted-time algorithms for omputing all the borders

(hene all the periods) of a given string ontaining don't are symbols. We have then

shown how to apply the border alulation to ompute the overs of ordinary and

irular strings, also ontaining don't are symbols.

An open problem is the alulation of every border of every pre�x of x inO(n logn)

worst-ase time.

Referenes

[A87℄ Abrahamson, K.: Generalized string mathing, SIAM J.Computing, 16,

1039-1051.

[AE93℄ Apostolio, A., Ehrenfeuht, A.: EÆient detetion of quasiperiodiities in

strings, Theo. Comp. Si, 119, 247-265.

73

Proeedings of the Prague Stringology Conferene '02

[AFI91℄ Apostolio, A., Farah, M., Iliopoulos, C.S.: Optimal superprimitivity test-

ing for strings, Inform. Proess. Lett., 39, 17-20.

[AHU74℄ Aho, Alfred V., Hoproft, John E., Ullman, Je�ey D.: The Design & Anal-

ysis of Computer Algorithms, Addison-Wesley.

[B92℄ Breslauer, D.: An on-line string superprimitivity test, Inform. Proess.

Lett., 44, 345-347.

[B94℄ Breslauer, D.: Testing string superprimitivity in parallel, Inform. Proess.

Lett., 49, 235-241.

[BBIP94℄ Ben-Amram, A.M., Berkman, O.C.S., Iliopoulos, C.S., Park, K.: The sub-

tree max gap problem with appliation to parallel string overing, Pro.

5th ACM-SIAM Symp. Disrete Algorithms, 501-510.

[FP74℄ Fisher, M., Paterson, M. : String mathing and other produts, Com-

plexity of Computation, R.M. Karp (editor), SIAM-AMS Proeedings, 7,

113-125.

[IMP96℄ Iliopoulos, C.S., Moore, D.W.G., Park, K.: Covering a string, Algorith-

mia, 16, 288-297.

[IP94℄ Iliopoulos, C.S., Park, K.: An optimal O(log logn) time algorithm for par-

allel superprimitivity testing, Journal of the Korean Information Siene

Soiety, 21-8, 1400-1404.

[L83℄ Lothaire, M. : Combinatoris on Words, Addison-Wesley, Reading, Mass.

[LS02℄ Yin Li, Smyth, W.F.: Computing the over array in linear time, Algorith-

mia, 32-1, 95-106.

[LV89℄ Landau, G.M., Viskin, U.: Fast parallel and serial approximate string

mathing, Journal of Algorithms, 10, 157-169.

[MS95℄ Moore, D.W.G., Smyth, W.F.: A orretion to \Computing the overs of

a string in linear time", Inform. Proess. Lett., 54,101-103.

[P85℄ Pinter, R.: EÆient string mathing with don't-are patterns, Combinato-

rial Algorithms on Words, NATO ASI Series, F12, Springer-Verlag, 11-29.

[P90℄ Pevzner, P.A.: Statistial analysis of genetis texts, Computer Analysis of

Genetis Texts, Chapter 2, Ed. M.D. Frank-Kamenetzkii, Nauka, Mosow,

36-80 (in Russian).

[P93℄ Pevzner, P.A.: Overlapping word paradox and Conway Equation, Super-

omputing, Bioinformatis, and Complex Genome Analysis, World Sien-

ti�, Ed. C. Cantor, J. Fikett, R. Robbins, and H. Lim, 71-78.

74

