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Abstra
t. We des
ribe algorithms for 
omputing typi
al regularities in strings

x = x[1::n℄ that 
ontain don't 
are symbols. For su
h strings on alphabet �, an

O(n log n log j�j) worst-
ase time algorithm for 
omputing the period is known,

but the algorithm is impra
ti
al due to a large 
onstant of proportionality. We

present instead two simple pra
ti
al algorithms that 
ompute all the periods

of every pre�x of x; our algorithms require quadrati
 worst-
ase time but only

linear time in the average 
ase. We then show how our algorithms 
an be used

to 
ompute other string regularities, spe
i�
ally the 
overs of both ordinary and


ir
ular strings.

Key words: string algorithm, regularities, don't 
are, period, border, 
over.

1 Introdu
tion

Regularities in strings arise in many areas of s
ien
e: 
ombinatori
s, 
oding and au-

tomata theory, mole
ular biology, formal language theory, system theory, et
. | they

thus form the subje
t of extensive mathemati
al studies (see e.g. [L83℄,[P93℄,[P90℄).

Perhaps the most 
onspi
uous regularities in strings are those that manifest them-

selves in the form of repeated subpatterns. A typi
al regularity, the period u of the

string x, grasps the repetitiveness of x, sin
e x is a pre�x of a string 
onstru
ted by
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on
atenations of u. Here we 
onsider regularity problems that arise from having

\don't 
are" symbols in the string. In parti
ular we study string problems fo
used

on �nding the repetitive stru
tures in DNA strings x.

In this paper we also 
onsider a kind of generalized period 
alled a 
over; that is, a

proper substring u of x (if it exists) su
h that x 
an be formed by 
on
atenating and

overlapping o

urren
es of u. In the 
omputation of 
overs, two main problems have

been 
onsidered in the literature: the shortest-
over problem (
omputing the shortest


over of a given string of length n), and the all-
overs problem (
omputing all the 
ov-

ers of a given string). Apostoli
o, Fara
h and Iliopoulos [AFI91℄ introdu
ed the notion

of 
overs and gave a linear-time algorithm for the shortest-
over problem. Breslauer

[B92℄ presented a linear-time on-line algorithm for the same problem. Moore and

Smyth [MS95℄ presented a linear-time algorithm for the all-
overs problem. Finally,

Li and Smyth [LS02℄ invented the 
over array and des
ribed an on-line linear-time

algorithm that solves both the shortest-
over and all-
overs problems for every pre�x

of x. In parallel 
omputation, Breslauer [B94℄ gave an optimal O(�(n) log logn)-time

algorithm for the shortest 
over, where �(n) is the inverse A
kermann fun
tion; Il-

iopoulos and Park [IP94℄ gave an optimal O(log logn)-time (thus work-time optimal)

algorithm for the same problem.

The idea of a 
over has been extended. Iliopoulos, Moore and Park [IMP96℄

introdu
ed the notion of seeds and gave anO(n logn)-time algorithm for 
omputing all

the seeds of a given string of length n. For the same problem Ben-Amram, Berkman,

Iliopoulos and Park [BBIP94℄ presented a parallel algorithm that requires O(logn)

time and O(n logn) work. Apostoli
o and Ehrenfeu
ht [AE93℄ 
onsidered yet another

problem related to 
overs.

An interesting extension of string-mat
hing problems with pra
ti
al appli
ations

in the area of DNA sequen
es results from the introdu
tion of \don't 
are" symbols.

A don't 
are symbol � has the property of mat
hing with any symbol in the given

alphabet. For example the string p = AC � C� mat
hes the pattern q = A � DCT .

Exa
t string mat
hing with \don't 
are" symbols was studied by Fis
her and Pa-

terson [FP74℄. They developed an O(n logm log j�j) time algorithm for �nding a

pattern of length m in a text of size n over the alphabet � [ f�g. Their method

is based on the theoreti
ally fast 
omputation method of 
onvolutions, but it is not

eÆ
ient in pra
ti
e. Pinter developed a linear time algorithm for a spe
ial 
ase [P85℄,

while Abrahamson generalized Fis
her and Paterson's algorithm, using a divide-and-


onquer approa
h that runs in time O(n

p

m logm) [A87℄. See also [LV89℄.

In this paper we des
ribe two fast, pra
ti
al algorithms for 
omputing all the

periods of every pre�x of a given string x[1::n℄ that 
ontains \don't 
are" symbols.

We prove that the expe
ted running time of these algorithms is linear, though they

have quadrati
 worst-
ase time 
omplexity for pathologi
al inputs. Then we show

how our algorithms 
an be used to eÆ
iently 
ompute 
overs of strings with don't


ares, both ordinary and 
ir
ular. The motivation for the above problems 
omes from

many appli
ations to the analysis of DNA sequen
es that reveal naturally o

urring

repeated segments within nu
leotide sequen
es. These segments 
an be 
on
atenated

only (periodi
) or both 
on
atenated and overlapping (
overable).
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2 Ba
kground

A string is a sequen
e of zero or more symbols drawn from an alphabet �. The set

of all nonempty strings over the alphabet � is denoted by �

+

. A string x of length n

is represented by x[1::n℄ = x[1℄x[2℄ � � �x[n℄, where x[i℄ 2 � for 1 � i � n, and n = jxj

is the length of x. The empty string is the empty sequen
e (of zero length) and is

denoted by "; we write �

�

= �

+

[f"g The string xy is a 
on
atenation of two strings

x and y. The 
on
atenation of k 
opies of x is denoted by x

k

and is 
alled the k

th

power of x.

A string w is a substring of x if x = uwv for u; v 2 �

�

. A string w is a pre�x of x

if x = wu for u 2 �

�

, a proper pre�x if u 2 �

+

. Similarly, w is a suÆx of x if x = uw

for u 2 �

�

. A string u that is both a proper pre�x and a suÆx of x is 
alled a border

of x.

If x has a nonempty border, it is 
alled periodi
. Otherwise, x is is said to be

primitive. The empty string is a trivial border of x. Let u denote a border of x of

length ` where 1 � ` � n � 1; then p = n � ` is 
alled a period of x. Clearly, p is

a period of x if x

i

= x

i+p

whenever 1 � i; i + p � n. Another equivalent de�nition

may be given as: p is a period of x if and only if x[1::p℄ = x[n� p+ 1::n℄. The latter

de�nition shows that ea
h word x has a minimum period 
alled the period of x. For

example, the string x = ababab has two borders u

1

= ab and u

2

= abab; thus x has

two periods 4 and 2, where 2 is the period of x.

A substring u is said to be a 
over of a given string x if every position of x lies

within an o

urren
e of a string u within x. If, in addition, juj < jxj, we 
all u a

proper 
over of x. For example, x is always a 
over of x. and u = aba is a proper


over of x = abaababa.

An array �[1::n℄ is 
alled the border array of x[1::n℄, where for i = 1; 2; : : : ; n, �[i℄

gives the length of the longest border of x[1::i℄. Furthermore, sin
e every border of a

border of x is itself a border of x, � a
tually des
ribes all the borders of every pre�x

of x. The border array 
an be 
omputed in linear time using the 
lassi
al failure

fun
tion algorithm [AHU74℄.

Re
ently Li and Smyth [LS02℄ dis
overed the 
over array 
[1::n℄, where 
[i℄ gives

the length of the longest 
over of x[1::i℄. The 
over array similarly en
apsulates all

the 
overs of every pre�x of x and 
an also be 
omputed in linear time.

This paper deals with strings that 
an 
ontain o

urren
es of the don't 
are sym-

bol, denoted by \�". This symbol mat
hes any other symbol of the alphabet. Two

symbols a and b mat
h (a � b) if they are equal, or if one of them is a don't 
are

symbol. Noti
e that the relation � is not transitive (a � �; � � b; a � b).

3 Computing the Failure Fun
tion

A theoreti
al O(n logn log j�j) time algorithm for 
omputing the period of a given

string x that 
ontains don't 
are symbols 
an be a
hieved by using a \
onvolution"

pro
edure [FP74℄ between two strings x and X. Assuming that x is the given string

(of length n), we 
reate a string X by adding n don't 
are symbols, thus doubling

the length of x. We 
ompute the 
onvolution of x and X by shifting x to the right

by one 
hara
ter. The produ
t u of the 
onvolution is the period of the string x (for
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further information see [FP74℄). This algorithm is impra
ti
al as it has a very large


onstant hidden in its asymptoti
 time 
omplexity.

In this se
tion we present two fast and pra
ti
al algorithms for 
omputing the

border array �[1 : : : n℄ of a given string x that 
ontains don't 
are symbols.

As noted earlier, the standard failure fun
tion method, based on the fa
t that

\a border of a border of a string x is ne
essarily a border of x", 
annot be used to


al
ulate the border array of a string 
ontaining don't 
are symbols. This follows

from the nontransitivity of the � relation. For example, if x = a � �
a, then we have

u

l

= a � � � u

r

= �
a;

where u

l

and u

r

are respe
tively the left and right borders of x of length 3; note that

v

l

= a� � �� is a border of u

l

, but a� 6= 
a, whi
h means that v

l

is not a border of

u

r

, hen
e not of x.

Despite the fa
t that we 
annot make use of the standard failure fun
tion method,

it is quite easy to noti
e that there is no nonempty border b of x[1::i+ 1℄ that is not

equal to some b

0

x[i+1℄, where b

0

is a border of x[1 : : : i℄. Moreover, let the borders of

x[1::i℄ be

�

1

[i℄; �

2

[i℄ : : : �

k

[i℄

where �

1

[i℄ is the the length of the border of x[1 : : : i℄ (the longest border) and �

k

[i℄ = 0

is the length of the empty border .Then ea
h border of x[1 : : : i+1℄ is equal to either

�

j

[i℄ + 1 for some 1 � j � k or 0.

The above states the rule used by algorithm FAILURE-FUNCTION-1() to 
al
u-

late the value of the border array of a given string x that 
ontains don't 
are symbols.

FAILURE-FUNCTION-1(x)

1 S  ; S is a singly-linked list of nonzero border lengths

2 �[1℄ 0

3 For i 1 To n� 1 Do

4 For ea
h b 2 S Do

5 If x[i + 1℄ � x[b + 1℄ Then

6 repla
e 
urrent(S; b + 1)

7 Else delete 
urrent(S)

8 If x[i℄ � x[1℄ Then add after 
urrent(S,1)

9 If S 6= ; Then �[i+ 1℄ top(S)

10 Else �[i+ 1℄ 0

END FAILURE-FUNCTION-1

Figure 1: FAILURE-FUNCTION-1 algorithm.

The algorithm maintains a list S of all possible nonzero border lengths. At the

beginning of iteration i, S 
ontains all possible nonzero border lengths of x[: : : i℄. The

algorithm tries to extend ea
h possible border b in S by 
omparing the value of x[i+1℄

and the value of x[b + 1℄. If the two values are equal or one of them is a don't 
are

symbol, the value b in S is repla
ed by b + 1. Otherwise, b is deleted from the list.

If x[i + 1℄ is equal to x[1℄ or �, a border of length 1 has to be added to S. Finally,
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ea
h iteration i terminates by assigning the value at the top of the list S that is the

length of the longest border of x[1 : : : i+1℄ to �[i+1℄. If the list S is empty, then the

length of the longest border is 0 (�[i + 1℄ = 0). Note that at this stage , S 
ontains

the lengths of all possible nonzero borders of x[1 : : : i + 1℄ in des
ending order.

Ea
h position i su
h that x[i℄ = x[1℄ or � is a 
andidate to start a new border.

Hen
e Algorithm FAILURE-FUNCTION-2() tries to speed up the 
omputation of the

failure fun
tion by a simple linear prepro
essing of the input string x. For ea
h posi-

tion i we 
ount the previous o

urren
es of x[1℄'s and �'s. And we introdu
e a pointer

that points to the previous o

urren
e. The algorithm then modi�es the standard

failure fun
tion method to 
al
ulate the border array �. FAILURE-FUNCTION-2

starts by setting the value of �[0℄ to -1, a 
onvention whi
h is 
ompatible with the

algorithm. Then n � 1 iterations follow. In ea
h iteration i, the algorithm tries to

extend the 
urrent border b by 
omparing the value of x[i+1℄ and the value of x[b+1℄

where b is the length of the border of x[1 : : : i℄. If the two values are equal or one of

them is a don't 
are symbol, the value of �[i℄ is set to b+1. Otherwise, the algorithm

tries to follow the basi
 failure fun
tion method by trying to extend the border of

the 
urrent border. More work needs to be done in ea
h attempt to ensure the right

answer:

� The algorithm has to eliminate the possibility of having a border whose length

is greater than that of the border of the border. That is, having

x[1 : : : i� j + 2℄ � x[j : : : i+ 1℄

for some j su
h that �[b℄ < i� j + 1 < b. The algorithm uses the prepro
essed

informations to �nd ea
h position j su
h that x[j℄ = x[1℄ or �. Clearly, the

number and the positions of the j's 
an be 
al
ulated in 
onstant time. The

algorithm examines ea
h j in as
ending order to �nd the �rst j that satis�es

the above 
ondition. If su
h a j exists, then the iteration ends by assigning

i� j + 2 to �[i + 1℄.

� Re
all that the nontransitivity of the � relation means that the statement \the

border of the border is a border" may not be true. Observe that nontransitivity


an o

ur only if a don't 
are symbol was part of the 
omparison. Then only

in su
h 
ases does the algorithm need to re
he
k the positions that 
ould 
ause

a nontransitivity. That is, if x[i + 1℄ � x[�[b℄℄, then the algorithm still needs

to 
he
k all the solid 
hara
ters in the right border; that have been 
ompared

with the don't 
are symbol during the 
al
ulation; against the 
oresponding


hara
ters in the left border. These positions are marked during the 
al
ulations

and stored in a spe
ial sta
k S. Positions are popped from and pushed onto S

depending on the length of the 
urrent border.

For example, let x = a � �
ab
dab
 � ab
a and the value of the border array be as

follows:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x[i℄ a � � 
 a b 
 d a b 
 � a b 
 a

�[i℄ 0 1 2 3 3 2 3 0 1 2 3 4 5 6 7 5

At step 7 (i = 7) we had failed to extend the 
urrent border after 
omparing x[4℄ = `
'

with x[8℄ = `d'. At the same time we 
ould not �nd any j that satis�es the �rst
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FAILURE-FUNCTION-2(x)

1 �[0℄ �1

2 For i 0 To n� 1 Do

3 b �[i℄

4 If x(i + 1) � x(b + 1) Then �[i+ 1℄ b+ 1

5 Else

6 While b � 0 And [x(i + 1) 6= x(b + 1) Or 
he
k sta
k fail()℄ Do

7 For ea
h j su
h that �[b℄ < i� j + 1 < b And x[j℄ � x[1℄ Do

8 If x[j::i + 1℄ � x[1::i� j + 2℄ Then

9 b i� j + 2

10 Quit The While Loop

11 b �[b℄

12 �[i+ 1℄ b

END FAILURE-FUNCTION-2

Figure 2: FAILURE-FUNCTION-2 algorithm.


ondition. So we tried to extend the border of the border whi
h equals 3 (�[7℄ = 3).

Sin
e x[8℄ 6= x[4℄, we tried to extend the border of the border of the border whi
h

equals 2 (�[3℄ = 2). Although x[8℄ � x[3℄, we still need to 
he
k a

ording to the

algorithm the value at position 1 with the 
orresponding value at position 6. Sin
e

they are not equal, the value of �[8℄ 
an not be 3 and so we have to 
arry on . Note

that the value 1 had been inserted into the sta
k after 
omparing the `�' at position

2 with the `a' at position 1 at step 1.

At step 15, where x[16℄ 6= x[8℄, we had failed again to extend the 
urrent border.

A

ording to the algorithm we have to eliminate the possibility of having a longer

border than the border of the border; that is, �nding j that satis�es the �rst 
ondition.

In our example, we found j = 12. Note that

�[b℄ = 3 < i� j + 1 = 15� 12 + 1 = 4 < b = 7

and x[12℄ = �. After �nding j we need to 
ompare x[12 : : : 16℄ with x[1 : : : 5℄. Sin
e

they are equal the value of �[16℄ be
omes 5.

4 Expe
ted Running Time Analysis

Here we will show that the expe
ted number of borders of a string is bounded by

a 
onstant. We suppose that the alphabet � 
onsists of ordinary letters 1 : : : � � 1

together with the don't 
are symbol �. First we 
onsider the probability of two

symbols of a string being equal. Equality o

urs in the following 
ases:

Symbol Equal to Number of 
ases

� � 2 f1; : : : ; �� 1g �� 1

� 2 f�; 1; : : : ; �� 1g � �

� 2 f1; : : : ; �� 1g � 2 f1; : : : ; �� 1g �� 1
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Thus the total number of equality 
ases is 3�� 2 and the number of overall 
ases

is �

2

. Therefore the probability of two symbols of a string being equal is

3�� 2

�

2

Now let 
onsider the probability of string x having a border of length k. One 
an see

P [x

1

: : : x

k

= x

n�k�1

: : : x

n

℄ = P [x

1

= x

n�k�1

℄ : : : P [x

k

= x

n

℄ =

�

3�� 2

�

2

�

k

From this it follows that the expe
ted number of borders is

�

n�1

k=1

�

3�� 2

�

2

�

k

< 3:5

The algorithm, at iteration i, performs k

i

steps, where k

i

is the number of the borders

of x[1::i℄. Thus the overall expe
ted time 
omplexity is

�

n�1

k=1

k

i

:

Sin
e the expe
ted value of ea
h k

i

is bounded by 3.5, therefore the expe
ted time of

the two border algorithms is O(n).

5 Experimental Results

Using random strings over various alphabet sizes (with the � symbol treated as

an additional random letter), we ran FAILURE-FUNCTION-1() and FAILURE-

FUNCTION-2(). The running time was 
al
ulated for ea
h exe
ution. We used

a SUN Ultra Enterprise 300MHz running Solaris Unix. The reported times are the


al
ulation time in se
onds, measured by 
alling the a 
lo
k() routine (Figures 3

and 4).

Figure 3: Timing 
urves for the FAILURE-FUNCTION-1 Pro
edure.

In general, it seems that the heuristi
 employed in FAILURE-FUNCTION-2 is

e�e
tive for random strings on small alphabets (therefore 
ontaining a high proportion
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Figure 4: Timing 
urves for the FAILURE-FUNCTION-2 Pro
edure.

FIND-COVERS(x)

1 Compute borders B = fb

1

; : : : ; b

k

g of x in as
ending order of length

2 For ea
h adja
ent pair of borders, b

i

and b

i+1

, Do

3 If b

i


overs b

i+1

Then 
he
k whether it 
overs x

4 Else i i + 1

END FIND-COVERS

Figure 5: FIND-COVERS algorithm.

of don't 
are symbols), but makes little di�eren
e for larger alphabets that have a


orrespondingly low proportion of don't 
ares.

Note that our experiments 
on�rm Se
tion 4's theoreti
al result that the expe
ted


ase bahaviour of the algorithms is linear in string length.

6 Computing the Covers

In this se
tion we present an algorithm for 
omputing all the 
overs of a given string

x, bearing in mind that we allow possible overlaps. This means that in the example

p = AC �ACA�AA�ACA, the pattern q = ACA is an overlapping 
over of the string

p. The algorithm we present 
onsists of 2 stages. The �rst stage is a prepro
essing

phase where we 
ompute the borders of the given string x. Suppose we �nd the

following nonempty borders b

1

; b

2

; : : : ; b

k

, listed in as
ending order.

In the se
ond stage we perform the following 
he
k: for two borders b

i

and b

i+1

, if

b

i


overs b

i+1

we 
he
k whether b

i

also 
overs string x. If not we 
ontinue this pro
ess

for the rest of the adja
ent pairs of borders.

In order to pre
ompute the borders we use Algorithm ALL-BORDERS(). Using

the previously 
omputed borders, the pro
edure that �nds the 
overs of a given string

x is as follows:
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Theorem 6.1 Given a string x that 
ontains don't 
are symbols, we 
an �nd a longest


over u of x in linear expe
ted time.

7 Computing the Covers of Cir
ular DNA Strings

In some 
omputational biology appli
ations (for example, DNA sequen
ing by hy-

bridization), it is 
onvenient to regard the DNA sequen
e as a 
ir
ular string (Fig. 6).

Given a 
ir
ular DNA string and a window that limits the region of DNA that we are

able to study, the 
omputation of 
overs in the sequen
e be
omes a diÆ
ult task. In

that 
ase the 
omputation of seeds (see [BBIP94℄) does not work and we need a new

approa
h.

Bearing in mind the s
heme of a 
ir
ular DNA string and the algorithms for the


omputation of the failure fun
tion that we have already des
ribed, it is easy to see

that the 
omputation of the 
overs in a 
ir
ular DNA sequen
e 
an be easily solved

using the failure fun
tion te
hnique. More pre
isely the problem of the 
omputation

of 
overs 
an be solved if we 
ompute the failure fun
tion two times, on
e forward

and on
e ba
kward.

Figure 6: A 
ir
ular string x and three substrings S1, S2, S3, as seen from a window

of four 
hara
ters length.

Con
lusions

We have presented two linear expe
ted-time algorithms for 
omputing all the borders

(hen
e all the periods) of a given string 
ontaining don't 
are symbols. We have then

shown how to apply the border 
al
ulation to 
ompute the 
overs of ordinary and


ir
ular strings, also 
ontaining don't 
are symbols.

An open problem is the 
al
ulation of every border of every pre�x of x inO(n logn)

worst-
ase time.
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