
String Regularities with Don't Cares

Costas S. Iliopoulos

1y

, Manal Mohamed

1z

, Laurent Mou
hard

2

,

Katerina G. Perdikuri

3

, W. F. Smyth

4

and

Athanasios K. Tsakalidis

3

1

Department of Computer S
ien
e, King's College London,

London WC2R 2LS, England

f
si,manalg�d
s.k
l.a
.uk

2

Department of Vegetal Physiology - ABISS, Universit�e de Rouen,

76821 Mont Saint Aignan Cedex, Fran
e

Laurent.Mou
hard�univ-rouen.fr

3

Computer Te
hnology Institute, Patras, Gree
e

perdikur�
eid.upatras.gr, tsak�
ti.gr

4

Algorithms Resear
h Group, Department of Computing & Software,

M
Master University, Hamilton, Ontario, Canada L8S 4K1 and

S
hool of Computing, Curtin University, Perth WA 6845, Australia

smyth�m
master.
a

Abstra
t. We des
ribe algorithms for
omputing typi
al regularities in strings

x = x[1::n℄ that
ontain don't
are symbols. For su
h strings on alphabet �, an

O(n log n log j�j) worst-
ase time algorithm for
omputing the period is known,

but the algorithm is impra
ti
al due to a large
onstant of proportionality. We

present instead two simple pra
ti
al algorithms that
ompute all the periods

of every pre�x of x; our algorithms require quadrati
 worst-
ase time but only

linear time in the average
ase. We then show how our algorithms
an be used

to
ompute other string regularities, spe
i�
ally the
overs of both ordinary and

ir
ular strings.

Key words: string algorithm, regularities, don't
are, period, border,
over.

1 Introdu
tion

Regularities in strings arise in many areas of s
ien
e:
ombinatori
s,
oding and au-

tomata theory, mole
ular biology, formal language theory, system theory, et
. | they

thus form the subje
t of extensive mathemati
al studies (see e.g. [L83℄,[P93℄,[P90℄).

Perhaps the most
onspi
uous regularities in strings are those that manifest them-

selves in the form of repeated subpatterns. A typi
al regularity, the period u of the

string x, grasps the repetitiveness of x, sin
e x is a pre�x of a string
onstru
ted by

y

Partially supported by a Marie Curie fellowship, Well
ome and Royal So
iety grants.

z

Supported by EPSRC studentship.

65

Pro
eedings of the Prague Stringology Conferen
e '02

on
atenations of u. Here we
onsider regularity problems that arise from having

\don't
are" symbols in the string. In parti
ular we study string problems fo
used

on �nding the repetitive stru
tures in DNA strings x.

In this paper we also
onsider a kind of generalized period
alled a
over; that is, a

proper substring u of x (if it exists) su
h that x
an be formed by
on
atenating and

overlapping o

urren
es of u. In the
omputation of
overs, two main problems have

been
onsidered in the literature: the shortest-
over problem (
omputing the shortest

over of a given string of length n), and the all-
overs problem (
omputing all the
ov-

ers of a given string). Apostoli
o, Fara
h and Iliopoulos [AFI91℄ introdu
ed the notion

of
overs and gave a linear-time algorithm for the shortest-
over problem. Breslauer

[B92℄ presented a linear-time on-line algorithm for the same problem. Moore and

Smyth [MS95℄ presented a linear-time algorithm for the all-
overs problem. Finally,

Li and Smyth [LS02℄ invented the
over array and des
ribed an on-line linear-time

algorithm that solves both the shortest-
over and all-
overs problems for every pre�x

of x. In parallel
omputation, Breslauer [B94℄ gave an optimal O(�(n) log logn)-time

algorithm for the shortest
over, where �(n) is the inverse A
kermann fun
tion; Il-

iopoulos and Park [IP94℄ gave an optimal O(log logn)-time (thus work-time optimal)

algorithm for the same problem.

The idea of a
over has been extended. Iliopoulos, Moore and Park [IMP96℄

introdu
ed the notion of seeds and gave anO(n logn)-time algorithm for
omputing all

the seeds of a given string of length n. For the same problem Ben-Amram, Berkman,

Iliopoulos and Park [BBIP94℄ presented a parallel algorithm that requires O(logn)

time and O(n logn) work. Apostoli
o and Ehrenfeu
ht [AE93℄
onsidered yet another

problem related to
overs.

An interesting extension of string-mat
hing problems with pra
ti
al appli
ations

in the area of DNA sequen
es results from the introdu
tion of \don't
are" symbols.

A don't
are symbol � has the property of mat
hing with any symbol in the given

alphabet. For example the string p = AC � C� mat
hes the pattern q = A � DCT .

Exa
t string mat
hing with \don't
are" symbols was studied by Fis
her and Pa-

terson [FP74℄. They developed an O(n logm log j�j) time algorithm for �nding a

pattern of length m in a text of size n over the alphabet � [f�g. Their method

is based on the theoreti
ally fast
omputation method of
onvolutions, but it is not

eÆ
ient in pra
ti
e. Pinter developed a linear time algorithm for a spe
ial
ase [P85℄,

while Abrahamson generalized Fis
her and Paterson's algorithm, using a divide-and-

onquer approa
h that runs in time O(n

p

m logm) [A87℄. See also [LV89℄.

In this paper we des
ribe two fast, pra
ti
al algorithms for
omputing all the

periods of every pre�x of a given string x[1::n℄ that
ontains \don't
are" symbols.

We prove that the expe
ted running time of these algorithms is linear, though they

have quadrati
 worst-
ase time
omplexity for pathologi
al inputs. Then we show

how our algorithms
an be used to eÆ
iently
ompute
overs of strings with don't

ares, both ordinary and
ir
ular. The motivation for the above problems
omes from

many appli
ations to the analysis of DNA sequen
es that reveal naturally o

urring

repeated segments within nu
leotide sequen
es. These segments
an be
on
atenated

only (periodi
) or both
on
atenated and overlapping (
overable).

66

String Regularities with Don't Cares

2 Ba
kground

A string is a sequen
e of zero or more symbols drawn from an alphabet �. The set

of all nonempty strings over the alphabet � is denoted by �

+

. A string x of length n

is represented by x[1::n℄ = x[1℄x[2℄ � � �x[n℄, where x[i℄ 2 � for 1 � i � n, and n = jxj

is the length of x. The empty string is the empty sequen
e (of zero length) and is

denoted by "; we write �

�

= �

+

[f"g The string xy is a
on
atenation of two strings

x and y. The
on
atenation of k
opies of x is denoted by x

k

and is
alled the k

th

power of x.

A string w is a substring of x if x = uwv for u; v 2 �

�

. A string w is a pre�x of x

if x = wu for u 2 �

�

, a proper pre�x if u 2 �

+

. Similarly, w is a suÆx of x if x = uw

for u 2 �

�

. A string u that is both a proper pre�x and a suÆx of x is
alled a border

of x.

If x has a nonempty border, it is
alled periodi
. Otherwise, x is is said to be

primitive. The empty string is a trivial border of x. Let u denote a border of x of

length ` where 1 � ` � n � 1; then p = n � ` is
alled a period of x. Clearly, p is

a period of x if x

i

= x

i+p

whenever 1 � i; i + p � n. Another equivalent de�nition

may be given as: p is a period of x if and only if x[1::p℄ = x[n� p+ 1::n℄. The latter

de�nition shows that ea
h word x has a minimum period
alled the period of x. For

example, the string x = ababab has two borders u

1

= ab and u

2

= abab; thus x has

two periods 4 and 2, where 2 is the period of x.

A substring u is said to be a
over of a given string x if every position of x lies

within an o

urren
e of a string u within x. If, in addition, juj < jxj, we
all u a

proper
over of x. For example, x is always a
over of x. and u = aba is a proper

over of x = abaababa.

An array �[1::n℄ is
alled the border array of x[1::n℄, where for i = 1; 2; : : : ; n, �[i℄

gives the length of the longest border of x[1::i℄. Furthermore, sin
e every border of a

border of x is itself a border of x, � a
tually des
ribes all the borders of every pre�x

of x. The border array
an be
omputed in linear time using the
lassi
al failure

fun
tion algorithm [AHU74℄.

Re
ently Li and Smyth [LS02℄ dis
overed the
over array
[1::n℄, where
[i℄ gives

the length of the longest
over of x[1::i℄. The
over array similarly en
apsulates all

the
overs of every pre�x of x and
an also be
omputed in linear time.

This paper deals with strings that
an
ontain o

urren
es of the don't
are sym-

bol, denoted by \�". This symbol mat
hes any other symbol of the alphabet. Two

symbols a and b mat
h (a � b) if they are equal, or if one of them is a don't
are

symbol. Noti
e that the relation � is not transitive (a � �; � � b; a � b).

3 Computing the Failure Fun
tion

A theoreti
al O(n logn log j�j) time algorithm for
omputing the period of a given

string x that
ontains don't
are symbols
an be a
hieved by using a \
onvolution"

pro
edure [FP74℄ between two strings x and X. Assuming that x is the given string

(of length n), we
reate a string X by adding n don't
are symbols, thus doubling

the length of x. We
ompute the
onvolution of x and X by shifting x to the right

by one
hara
ter. The produ
t u of the
onvolution is the period of the string x (for

67

Pro
eedings of the Prague Stringology Conferen
e '02

further information see [FP74℄). This algorithm is impra
ti
al as it has a very large

onstant hidden in its asymptoti
 time
omplexity.

In this se
tion we present two fast and pra
ti
al algorithms for
omputing the

border array �[1 : : : n℄ of a given string x that
ontains don't
are symbols.

As noted earlier, the standard failure fun
tion method, based on the fa
t that

\a border of a border of a string x is ne
essarily a border of x",
annot be used to

al
ulate the border array of a string
ontaining don't
are symbols. This follows

from the nontransitivity of the � relation. For example, if x = a � �
a, then we have

u

l

= a � � � u

r

= �
a;

where u

l

and u

r

are respe
tively the left and right borders of x of length 3; note that

v

l

= a� � �� is a border of u

l

, but a� 6=
a, whi
h means that v

l

is not a border of

u

r

, hen
e not of x.

Despite the fa
t that we
annot make use of the standard failure fun
tion method,

it is quite easy to noti
e that there is no nonempty border b of x[1::i+ 1℄ that is not

equal to some b

0

x[i+1℄, where b

0

is a border of x[1 : : : i℄. Moreover, let the borders of

x[1::i℄ be

�

1

[i℄; �

2

[i℄ : : : �

k

[i℄

where �

1

[i℄ is the the length of the border of x[1 : : : i℄ (the longest border) and �

k

[i℄ = 0

is the length of the empty border .Then ea
h border of x[1 : : : i+1℄ is equal to either

�

j

[i℄ + 1 for some 1 � j � k or 0.

The above states the rule used by algorithm FAILURE-FUNCTION-1() to
al
u-

late the value of the border array of a given string x that
ontains don't
are symbols.

FAILURE-FUNCTION-1(x)

1 S ; S is a singly-linked list of nonzero border lengths

2 �[1℄ 0

3 For i 1 To n� 1 Do

4 For ea
h b 2 S Do

5 If x[i + 1℄ � x[b + 1℄ Then

6 repla
e
urrent(S; b + 1)

7 Else delete
urrent(S)

8 If x[i℄ � x[1℄ Then add after
urrent(S,1)

9 If S 6= ; Then �[i+ 1℄ top(S)

10 Else �[i+ 1℄ 0

END FAILURE-FUNCTION-1

Figure 1: FAILURE-FUNCTION-1 algorithm.

The algorithm maintains a list S of all possible nonzero border lengths. At the

beginning of iteration i, S
ontains all possible nonzero border lengths of x[: : : i℄. The

algorithm tries to extend ea
h possible border b in S by
omparing the value of x[i+1℄

and the value of x[b + 1℄. If the two values are equal or one of them is a don't
are

symbol, the value b in S is repla
ed by b + 1. Otherwise, b is deleted from the list.

If x[i + 1℄ is equal to x[1℄ or �, a border of length 1 has to be added to S. Finally,

68

String Regularities with Don't Cares

ea
h iteration i terminates by assigning the value at the top of the list S that is the

length of the longest border of x[1 : : : i+1℄ to �[i+1℄. If the list S is empty, then the

length of the longest border is 0 (�[i + 1℄ = 0). Note that at this stage , S
ontains

the lengths of all possible nonzero borders of x[1 : : : i + 1℄ in des
ending order.

Ea
h position i su
h that x[i℄ = x[1℄ or � is a
andidate to start a new border.

Hen
e Algorithm FAILURE-FUNCTION-2() tries to speed up the
omputation of the

failure fun
tion by a simple linear prepro
essing of the input string x. For ea
h posi-

tion i we
ount the previous o

urren
es of x[1℄'s and �'s. And we introdu
e a pointer

that points to the previous o

urren
e. The algorithm then modi�es the standard

failure fun
tion method to
al
ulate the border array �. FAILURE-FUNCTION-2

starts by setting the value of �[0℄ to -1, a
onvention whi
h is
ompatible with the

algorithm. Then n � 1 iterations follow. In ea
h iteration i, the algorithm tries to

extend the
urrent border b by
omparing the value of x[i+1℄ and the value of x[b+1℄

where b is the length of the border of x[1 : : : i℄. If the two values are equal or one of

them is a don't
are symbol, the value of �[i℄ is set to b+1. Otherwise, the algorithm

tries to follow the basi
 failure fun
tion method by trying to extend the border of

the
urrent border. More work needs to be done in ea
h attempt to ensure the right

answer:

� The algorithm has to eliminate the possibility of having a border whose length

is greater than that of the border of the border. That is, having

x[1 : : : i� j + 2℄ � x[j : : : i+ 1℄

for some j su
h that �[b℄ < i� j + 1 < b. The algorithm uses the prepro
essed

informations to �nd ea
h position j su
h that x[j℄ = x[1℄ or �. Clearly, the

number and the positions of the j's
an be
al
ulated in
onstant time. The

algorithm examines ea
h j in as
ending order to �nd the �rst j that satis�es

the above
ondition. If su
h a j exists, then the iteration ends by assigning

i� j + 2 to �[i + 1℄.

� Re
all that the nontransitivity of the � relation means that the statement \the

border of the border is a border" may not be true. Observe that nontransitivity

an o

ur only if a don't
are symbol was part of the
omparison. Then only

in su
h
ases does the algorithm need to re
he
k the positions that
ould
ause

a nontransitivity. That is, if x[i + 1℄ � x[�[b℄℄, then the algorithm still needs

to
he
k all the solid
hara
ters in the right border; that have been
ompared

with the don't
are symbol during the
al
ulation; against the
oresponding

hara
ters in the left border. These positions are marked during the
al
ulations

and stored in a spe
ial sta
k S. Positions are popped from and pushed onto S

depending on the length of the
urrent border.

For example, let x = a � �
ab
dab
 � ab
a and the value of the border array be as

follows:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x[i℄ a � �
 a b
 d a b
 � a b
 a

�[i℄ 0 1 2 3 3 2 3 0 1 2 3 4 5 6 7 5

At step 7 (i = 7) we had failed to extend the
urrent border after
omparing x[4℄ = `
'

with x[8℄ = `d'. At the same time we
ould not �nd any j that satis�es the �rst

69

Pro
eedings of the Prague Stringology Conferen
e '02

FAILURE-FUNCTION-2(x)

1 �[0℄ �1

2 For i 0 To n� 1 Do

3 b �[i℄

4 If x(i + 1) � x(b + 1) Then �[i+ 1℄ b+ 1

5 Else

6 While b � 0 And [x(i + 1) 6= x(b + 1) Or
he
k sta
k fail()℄ Do

7 For ea
h j su
h that �[b℄ < i� j + 1 < b And x[j℄ � x[1℄ Do

8 If x[j::i + 1℄ � x[1::i� j + 2℄ Then

9 b i� j + 2

10 Quit The While Loop

11 b �[b℄

12 �[i+ 1℄ b

END FAILURE-FUNCTION-2

Figure 2: FAILURE-FUNCTION-2 algorithm.

ondition. So we tried to extend the border of the border whi
h equals 3 (�[7℄ = 3).

Sin
e x[8℄ 6= x[4℄, we tried to extend the border of the border of the border whi
h

equals 2 (�[3℄ = 2). Although x[8℄ � x[3℄, we still need to
he
k a

ording to the

algorithm the value at position 1 with the
orresponding value at position 6. Sin
e

they are not equal, the value of �[8℄
an not be 3 and so we have to
arry on . Note

that the value 1 had been inserted into the sta
k after
omparing the `�' at position

2 with the `a' at position 1 at step 1.

At step 15, where x[16℄ 6= x[8℄, we had failed again to extend the
urrent border.

A

ording to the algorithm we have to eliminate the possibility of having a longer

border than the border of the border; that is, �nding j that satis�es the �rst
ondition.

In our example, we found j = 12. Note that

�[b℄ = 3 < i� j + 1 = 15� 12 + 1 = 4 < b = 7

and x[12℄ = �. After �nding j we need to
ompare x[12 : : : 16℄ with x[1 : : : 5℄. Sin
e

they are equal the value of �[16℄ be
omes 5.

4 Expe
ted Running Time Analysis

Here we will show that the expe
ted number of borders of a string is bounded by

a
onstant. We suppose that the alphabet �
onsists of ordinary letters 1 : : : � � 1

together with the don't
are symbol �. First we
onsider the probability of two

symbols of a string being equal. Equality o

urs in the following
ases:

Symbol Equal to Number of
ases

� � 2 f1; : : : ; �� 1g �� 1

� 2 f�; 1; : : : ; �� 1g � �

� 2 f1; : : : ; �� 1g � 2 f1; : : : ; �� 1g �� 1

70

String Regularities with Don't Cares

Thus the total number of equality
ases is 3�� 2 and the number of overall
ases

is �

2

. Therefore the probability of two symbols of a string being equal is

3�� 2

�

2

Now let
onsider the probability of string x having a border of length k. One
an see

P [x

1

: : : x

k

= x

n�k�1

: : : x

n

℄ = P [x

1

= x

n�k�1

℄ : : : P [x

k

= x

n

℄ =

�

3�� 2

�

2

�

k

From this it follows that the expe
ted number of borders is

�

n�1

k=1

�

3�� 2

�

2

�

k

< 3:5

The algorithm, at iteration i, performs k

i

steps, where k

i

is the number of the borders

of x[1::i℄. Thus the overall expe
ted time
omplexity is

�

n�1

k=1

k

i

:

Sin
e the expe
ted value of ea
h k

i

is bounded by 3.5, therefore the expe
ted time of

the two border algorithms is O(n).

5 Experimental Results

Using random strings over various alphabet sizes (with the � symbol treated as

an additional random letter), we ran FAILURE-FUNCTION-1() and FAILURE-

FUNCTION-2(). The running time was
al
ulated for ea
h exe
ution. We used

a SUN Ultra Enterprise 300MHz running Solaris Unix. The reported times are the

al
ulation time in se
onds, measured by
alling the a
lo
k() routine (Figures 3

and 4).

Figure 3: Timing
urves for the FAILURE-FUNCTION-1 Pro
edure.

In general, it seems that the heuristi
 employed in FAILURE-FUNCTION-2 is

e�e
tive for random strings on small alphabets (therefore
ontaining a high proportion

71

Pro
eedings of the Prague Stringology Conferen
e '02

Figure 4: Timing
urves for the FAILURE-FUNCTION-2 Pro
edure.

FIND-COVERS(x)

1 Compute borders B = fb

1

; : : : ; b

k

g of x in as
ending order of length

2 For ea
h adja
ent pair of borders, b

i

and b

i+1

, Do

3 If b

i

overs b

i+1

Then
he
k whether it
overs x

4 Else i i + 1

END FIND-COVERS

Figure 5: FIND-COVERS algorithm.

of don't
are symbols), but makes little di�eren
e for larger alphabets that have a

orrespondingly low proportion of don't
ares.

Note that our experiments
on�rm Se
tion 4's theoreti
al result that the expe
ted

ase bahaviour of the algorithms is linear in string length.

6 Computing the Covers

In this se
tion we present an algorithm for
omputing all the
overs of a given string

x, bearing in mind that we allow possible overlaps. This means that in the example

p = AC �ACA�AA�ACA, the pattern q = ACA is an overlapping
over of the string

p. The algorithm we present
onsists of 2 stages. The �rst stage is a prepro
essing

phase where we
ompute the borders of the given string x. Suppose we �nd the

following nonempty borders b

1

; b

2

; : : : ; b

k

, listed in as
ending order.

In the se
ond stage we perform the following
he
k: for two borders b

i

and b

i+1

, if

b

i

overs b

i+1

we
he
k whether b

i

also
overs string x. If not we
ontinue this pro
ess

for the rest of the adja
ent pairs of borders.

In order to pre
ompute the borders we use Algorithm ALL-BORDERS(). Using

the previously
omputed borders, the pro
edure that �nds the
overs of a given string

x is as follows:

72

String Regularities with Don't Cares

Theorem 6.1 Given a string x that
ontains don't
are symbols, we
an �nd a longest

over u of x in linear expe
ted time.

7 Computing the Covers of Cir
ular DNA Strings

In some
omputational biology appli
ations (for example, DNA sequen
ing by hy-

bridization), it is
onvenient to regard the DNA sequen
e as a
ir
ular string (Fig. 6).

Given a
ir
ular DNA string and a window that limits the region of DNA that we are

able to study, the
omputation of
overs in the sequen
e be
omes a diÆ
ult task. In

that
ase the
omputation of seeds (see [BBIP94℄) does not work and we need a new

approa
h.

Bearing in mind the s
heme of a
ir
ular DNA string and the algorithms for the

omputation of the failure fun
tion that we have already des
ribed, it is easy to see

that the
omputation of the
overs in a
ir
ular DNA sequen
e
an be easily solved

using the failure fun
tion te
hnique. More pre
isely the problem of the
omputation

of
overs
an be solved if we
ompute the failure fun
tion two times, on
e forward

and on
e ba
kward.

Figure 6: A
ir
ular string x and three substrings S1, S2, S3, as seen from a window

of four
hara
ters length.

Con
lusions

We have presented two linear expe
ted-time algorithms for
omputing all the borders

(hen
e all the periods) of a given string
ontaining don't
are symbols. We have then

shown how to apply the border
al
ulation to
ompute the
overs of ordinary and

ir
ular strings, also
ontaining don't
are symbols.

An open problem is the
al
ulation of every border of every pre�x of x inO(n logn)

worst-
ase time.

Referen
es

[A87℄ Abrahamson, K.: Generalized string mat
hing, SIAM J.Computing, 16,

1039-1051.

[AE93℄ Apostoli
o, A., Ehrenfeu
ht, A.: EÆ
ient dete
tion of quasiperiodi
ities in

strings, Theo. Comp. S
i, 119, 247-265.

73

Pro
eedings of the Prague Stringology Conferen
e '02

[AFI91℄ Apostoli
o, A., Fara
h, M., Iliopoulos, C.S.: Optimal superprimitivity test-

ing for strings, Inform. Pro
ess. Lett., 39, 17-20.

[AHU74℄ Aho, Alfred V., Hop
roft, John E., Ullman, Je�ey D.: The Design & Anal-

ysis of Computer Algorithms, Addison-Wesley.

[B92℄ Breslauer, D.: An on-line string superprimitivity test, Inform. Pro
ess.

Lett., 44, 345-347.

[B94℄ Breslauer, D.: Testing string superprimitivity in parallel, Inform. Pro
ess.

Lett., 49, 235-241.

[BBIP94℄ Ben-Amram, A.M., Berkman, O.C.S., Iliopoulos, C.S., Park, K.: The sub-

tree max gap problem with appli
ation to parallel string
overing, Pro
.

5th ACM-SIAM Symp. Dis
rete Algorithms, 501-510.

[FP74℄ Fis
her, M., Paterson, M. : String mat
hing and other produ
ts, Com-

plexity of Computation, R.M. Karp (editor), SIAM-AMS Pro
eedings, 7,

113-125.

[IMP96℄ Iliopoulos, C.S., Moore, D.W.G., Park, K.: Covering a string, Algorith-

mi
a, 16, 288-297.

[IP94℄ Iliopoulos, C.S., Park, K.: An optimal O(log logn) time algorithm for par-

allel superprimitivity testing, Journal of the Korean Information S
ien
e

So
iety, 21-8, 1400-1404.

[L83℄ Lothaire, M. : Combinatori
s on Words, Addison-Wesley, Reading, Mass.

[LS02℄ Yin Li, Smyth, W.F.: Computing the
over array in linear time, Algorith-

mi
a, 32-1, 95-106.

[LV89℄ Landau, G.M., Viskin, U.: Fast parallel and serial approximate string

mat
hing, Journal of Algorithms, 10, 157-169.

[MS95℄ Moore, D.W.G., Smyth, W.F.: A
orre
tion to \Computing the
overs of

a string in linear time", Inform. Pro
ess. Lett., 54,101-103.

[P85℄ Pinter, R.: EÆ
ient string mat
hing with don't-
are patterns, Combinato-

rial Algorithms on Words, NATO ASI Series, F12, Springer-Verlag, 11-29.

[P90℄ Pevzner, P.A.: Statisti
al analysis of geneti
s texts, Computer Analysis of

Geneti
s Texts, Chapter 2, Ed. M.D. Frank-Kamenetzkii, Nauka, Mos
ow,

36-80 (in Russian).

[P93℄ Pevzner, P.A.: Overlapping word paradox and Conway Equation, Super-

omputing, Bioinformati
s, and Complex Genome Analysis, World S
ien-

ti�
, Ed. C. Cantor, J. Fi
kett, R. Robbins, and H. Lim, 71-78.

74

