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Abstrat. The spae requirement of Crohemore's repetitions algorithm is

generally estimated to be about 20MN bytes of memory, where N is the length

of the input string and M the number of bytes required to store the integer

N . The same algorithm an also be used in other ontexts, for instane to

ompute the suÆx tree of the input string in O(N logN) time for the purpose

of data ompression. In suh ontexts the large spae requirement of the algo-

rithm is a signi�ant drawbak. There are of ourse several newer spae-eÆient

algorithms with the same time omplexity that an ompute suÆx trees or ar-

rays. However, in atual implementations, these algorithms may not be faster

than Crohemore's. Therefore, we onsider it interesting enough to desribe a

new approah based on the same mathematial priniples and observations that

were put forth in Crohemore's original paper, but whose spae requirement is

10MN bytes. Additional advantages of the approah are the ease with whih

it an be implemented in C/C++ (as we have done) and the apparent speed of

suh an implementation in omparison to other implementations of the original

algorithm.

1 Introdution

Crohemore's algorithm [C81℄ omputes all the repetitions in a �nite string x of length

N in O(N logN) time. The algorithm in fat omputes rather more and an be used,

for instane, to ompute the suÆx tree of x, hene possibly as a tool for expressing x

in a ompressed form. In suh ontexts the spae requirement beomes as important

as the time omplexity. It appears that known implementations of Crohemore's algo-

rithm require at least 20MN bytes of memory for the task of re�ning the equivalene

lasses alone, where M is the number of bytes required to store the integer N .

Here we present a di�erent implementation based on the mathematial properties

and observations of [C81℄ and thus having the same time omplexity O(N logN) as

the original algorithm. However, the new data strutures used for the representation
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of lasses and for the exeution of the re�nement proess allow the spae requirement

to be substantially redued.

There are several newer spae-eÆient algorithms to ompute suÆx trees or arrays

(notably [U92℄, [MM93℄) of the same worst-ase omplexity as Crohemore's. The

motivation for our investigation of a spae-eÆient implementation of the lassial

Crohemore's algorithm that may be ompetetive with these newer algorithms stems

from the fat that the atual implementations of these algorithms may not in fat be

any faster.

A large memory saving omes from the fat that our algorithm requires storage

for only N lasses at any given time, rather than 2N as in the original algorithm.

This alone brings the spae requirement down to 15MN . Of ourse there is some

extra proessing related to this redution in spae, but it does not a�et the time

omplexity, and in fat it appears that in pratie our implementation runs a good

deal faster than the standard implementation proposed in [C81℄. A further 5MN

spae redution is ahieved by smart utilization of the spae:

� allowing spae to be shared by data strutures, as in memory multiplexing |

for example, if a queue empties faster than a stak grows, then they an share

the same memory segment;

� spreading one data struture aross several others, as in memory virtualization.

Taken together, these \triks" bring the spae requirement down to 10MN .

Additional advantages of this approah are the ease with whih it an be imple-

mented in C/C++ (as we have done) and, as remarked above, its apparent speed in

omparison to other implementations of the original algorithm.

In this paper we do not due to spae limitations provide any detailed omputer

instrutions, but we try to give a high-level desription of our approah, so that the

reader an understand how the spae savings are ahieved.

In our disussion below we assume that the reader is familiar with both

Crohemore's algorithm and its mathematial foundation. We make the usual as-

sumption required for Crohemore's algorithm that the alphabet is ordered; therefore

we are able to assume further that the lasses orresponding to the �rst level (p = 1)

an be omputed in O(N logN) time.

For better omprehension, we present the algorithm in two stages. The �rst stage,

FSX15 (with spae requirement 15MN bytes), exhibits all important proedural and

ontrol aspets of our algorithm without the ompliations of memory multiplex-

ing and virtualization. Then the seond stage, FSX10, inorporates the hanges

required by memory multiplexing and virtualization to redue the spae requirement

to 10MN . Finally, we present some rough results of omputer runs that ompare the

time and spae requirements of our approah with those of a standard implementation

of Crohemore's algorithm.

2 Data Strutures for FSX15

Reall that for eah p = 1; 2; : : :, Crohemore's algorithm ats on a given string x =

x[1::N ℄ to ompute equivalene lasses fi

1

; i

2

; : : : ; i

r

g, where for every 1 � j < h � r,

x[i

j

::i

j

+p�1℄ = x[i

h

::i

h

+p�1℄:
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The positions i

j

in eah lass are maintained in inreasing sequene: i

j

< i

j+1

,

1 � j < r. At eah step of the algorithm, eah lass C

p

that is not a singleton

is deomposed into a family of sublasses C

p+1;s

; of these sublasses, the one of

largest ardinality is alled big, the others are small. A straightforward approah to

this deomposition would require order N

2

time in the worst ase, but Crohemore's

algorithm redues this time requirement by arrying out the deomposition from p

to p+1 only with respet to the small lasses identi�ed at step p. Sine eah posi-

tion an belong to a small lass only O(logN) times, it follows that the total time

requirement is O(N logN). As remarked in the introdution, we may assume that

the lasses orresponding to p = 1 have initially been omputed in O(N logN) time.

Note that the version of Crohemore's algorithm disussed here does not expliitly

ompute repetitions; we will be interested only in reduing eah of the equivalene

lasses to a singleton.

We will use an integer array of size N to represent the lasses omputed at step

p. We have several requirements:

� we need to keep the elements of the lasses in asending order;

� we need an eÆient way to delete any element (so that we need to represent

eah lass as a doubly-linked list);

� we need an eÆient way to insert a new element at the end of a lass (and hene

we need a link to the last element of the lass);

� we need eÆient aess to the size of a lass;

� we need eÆient aess to a lass (and hene we need a link to the �rst element

of the lass);

� last but not least, we need an eÆient way to determine to whih lass a given

element belongs.

To satisfy all these requirements, we use six integer arrays of size N :

� CNext[1..N℄ emulates forward links in the doubly-linked list. Thus CNext[i℄ =

j > i means that j is the next element (position) in the lass that i belongs to.

If there is no position j > i in the lass, then CNext[i℄ = null.

� CPrev[1..N℄ emulates bakward links in the doubly-linked list. Thus CPrev[i℄=

j < i means that j is the previous element (position) in the lass that i belongs

to. If there is no position j < i in the lass, then CPrev[i℄ = null.

� CMember[1..N℄ keeps trak of membership. Thus CMember[i℄ = k means that

element i belongs to the lass with index k (i 2 

k

), while CMember[i℄ = null

means that at this moment i is not member of any lass.

� CStart[1..N℄ keeps links to the starting (smallest) element in eah lass.

Thus CStart[k℄ = i means that the lass 

k

starts with the element i, while

CStart[k℄ = null means that at this moment the lass 

k

is empty.
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� CEnd[1..N℄ keeps links to the �nal (largest) element in eah lass. Thus

CEnd[k℄ = i means that the lass 

k

ends with the element i; the value of

CEnd[k℄ is meaningful only when CStart[k℄ 6= null.

� CSize[1..N℄ reords the size of eah lass. Thus CSize[k℄ = r means that

the lass 

k

ontains r elements; the value of CSize[k℄ is meaningful only when

CStart[k℄ 6= null.

Suppose that there exists a lass 

3

= f4; 5; 8; 12g, indiating that the substrings

of length 3 beginning at positions 4; 5; 8; 12 of x are all equal. Then 

3

would be

represented as follows:

CNext[4℄ = 5; CNext[5℄ = 8; CNext[8℄ = 12; CNext[12℄ = null;

CPrev[12℄ = 8; CPrev[8℄ = 5; CPrev[5℄ = 4; CPrev[4℄ = null;

CMember[4℄ = CMember[5℄ = CMember[8℄ = CMember[12℄ = 3;

CStart[3℄ = 4; CEnd[3℄ = 12; CSize[3℄ = 4:

We need to trak the empty lasses, and for that we need a simple integer stak

of size N , CEmptyStak, that holds the indexes of the empty (and hene available)

lasses. This stak, as well as all other list strutures used by Crohemore's algorithm,

is implemented as an array that requires MN bytes of storage. Suh an approah

saves time by allowing all spae alloation to take plae only one, as part of program

initialization. We introdue two operations on the stak, CEmptyStakPop() that

removes the top element from the stak and returns it, andCEmptyStakPush(i)

that inserts the element i at the top of the stak.

We shall proess lasses from one re�nement level p to the next level p+1 by

moving the elements from one lass to another, one element at a time. We view the

lasses as permanent ontainers and distribute the elements among them, so that at

any given moment we need at most N lasses. This means that the on�guration

of lasses at level p is destroyed the moment we move a single element. But, as we

shall see, we do not really need to keep the old level intat if we preserve an essential

\snapshot" of it before we start tinkering with it.

What we need to know about level p will be preserved in two queues, SElQueue

and SCQueue. SElQueue ontains all the elements in small lasses in level p, organized

so that the elements from the same small lass are grouped together in the queue and

stored in asending order. SCQueue ontains the �rst element from eah small lass,

thus enabling us to identify in SElQueue the start of eah new lass. Therefore, when

these queues are reated, we must be areful to proess the small lasses of level p in

the same order for both of them. For instane, if level p had three small lasses,



3

= f2; 4; 5; 8g; 

0

= f3; 6; 7; 11g; 

5

= f12; 15g;

SElQueue ould ontain 2; 4; 5; 8; 3; 6; 7; 11; 12; 15 in that order, while the orrespond-

ing SCQueue would ontain 2; 3; 12. The order of the lasses (

3

followed by 

0

followed

by 

5

) is not important; what is important that the same order is used in order to

reate SElQueue and SCQueue. After the two queues have been reated, we do not

need level p any more and we an start modifying it. Of ourse we suppose that we

have available the usual queue operations:
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� SElQueueHead() (remove the �rst element from the queue and return it);

� SElQueueInsert(i) (insert the element i at the end of the queue);

� SElQueueInit() (initialize the queue to empty).

Analogous operations are available also for SCQueue.

When re�ning lass 

k

in level p using an element i from lass 

k

0

, we might need

to move element i�1 from 

k

to a new or an existing lass. To manage this proessing,

we keep an auxiliary array of size N , Refine[1..N℄. Initially, when we start using the

lass 

k

0

for re�nement, all entries in Refine[ ℄ are null. If a new lass 

h

is reated

in level p+1 by moving i�1 out of lass 

k

and into 

h

as its �rst element, we set

Refine[k℄ h. If later on we move another element from 

k

as a result of re�nement

by the same lass 

k

0

, we use the value Refine[k℄ to tell us where to move it to. This

requires that when we start re�ning by a new lass, we have to restore Refine[ ℄ to

its original null state. Sine we annot a�ord to traverse the whole array Refine[ ℄

without destroying the O(N logN) time omplexity, we need to store a reord of

whih positions in Refine[ ℄ were previously given a non-null value. For this we

make use of a simple stak, RefStak: every assignment to Refine[k℄ auses the

index k to be pushed onto the stak RefStak. As before, we assume that we have

available the usual stak operations RefStakPop() and RefStakPush(i).

Sine after ompleting the re�nement of the lasses in level p, we must determine

the small lasses in level p+1, we therefore need to maintain throughout the re�nement

proess ertain families of lasses (to be more preise, families of lass indexes). As

noted above, a family onsists of the lasses in level p + 1 that were formed by

re�nement of the same lass in level p. A family may or may not inlude the original

lass from level p itself (it may ompletely disappear if we remove all its elements

during the re�nement). We need an eÆient way to insert a new lass in a family

(the order is not important), an eÆient way to delete a lass from a family, and

�nally an eÆient way to determine to what family (if any) a lass belongs. These

failities an be made available by representing the families as doubly-linked lists

implemented using arrays, just as we did previously with the lasses themselves. In

this ase, however, the Size[ ℄ and End[ ℄ arrays are not required, so we an get

by with only four arrays, as follows:

� FNext[1..N℄ emulates the forward links (as in CNext[ ℄).

� FPrev[1..N℄ emulates the bakward links (as in CPrev[ ℄).

� FMember[1..N℄ keeps trak of membership (as in CMember[ ℄). Whenever

FMember[i℄ = null, it means that 

i

is not a member of any family.

� FStart[1..N℄ gives the �rst lass in eah family (as in CStart[ ℄).

Note that lasses in families do not need to be maintained in numerial order, as was

true earlier of positions in lasses.

To summarize, in order to implement Crohemore's algorithm, it is suÆient to

alloate 15 arrays, eah of whih provides storage spae for exatly N integers of

length M , thus altogether 15MN bytes of storage: CNext, CPrev, CMember, CStart,

CEnd, CSize, CEmptyStak, SElQueue, SCQueue, RefStak, Refine, FStart, FNext,

FPrev, and FMember.
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3 Data Strutures for FSX10

As the �rst step in reduing the spae omplexity further, we are going to eliminate

the CSize[ ℄ and CEnd[ ℄ arrays. For the very �rst element, say s, in a lass,

CPrev[s℄= null, while for the very last element, say e, CNext[e℄= null. But we

have another way to disern the beginning of the lass (CStart[ ℄), so that CPrev[ ℄

beomes superuous. Thus we an store CPrev[s℄ e, a diret link to the end of the

lass. This yields an eÆient means to disern the end of the lass, and so we an

store in CNext[e℄ the size of the lass. Hene CPrev[CStart[j℄℄ takes on the role

of CEnd[j℄, while CNext[CPrev[CStart[j℄℄℄ takes on the role of CSize[j℄. This is

straightforward and the ode need only be slightly modi�ed to aommodate it. All

we have to do is make sure that when inserting or deleting an element in or from a

lass, we update properly the end link and the size. When traversing a lass, we have

to make sure that we properly reognize the end (we annot rely on the null value

to stop us as in FSX15). We have in fat \virtualized" the memory for CEnd[ ℄ and

CSize[ ℄, and so redued the spae omplexity to 13MN .

When we take an element from SElQueue and use it for the purpose of re�nement,

at most one new lass is reated and thus at most one loation of Refine[ ℄ is

updated. This simple observation allows RefStak and SElQueue to share the same

memory segment, as long as we make sure that RefStak grows from left to right,

while the queue is always right justi�ed in the memory segment. The hanges in

the ode required to aommodate this are not very great | all we have to do is to

determine before �lling SElQueue what position we have to start with. In essene,

we have \multiplexed" the same memory segment and brought the spae omplexity

down to 12MN .

The number of elements in SCQueue is the same as the number of small lasses,

whih is less than or equal to the number of non-empty lasses; thus the size of

SCQueue plus the size of CEmptyStak at any given moment is at most N . This simple

observation allows CEmptyStak and SCQueue to share the same memory segment, as

long as we make sure that CEmptyStak is growing from left to right, while the queue

is always right justi�ed in the memory segment. Again, as above, the hanges in the

ode required to aommodate this are not major. We again have \multiplexed" the

same memory segment and brought the spae omplexity down to 11MN .

The �nal memory saving omes from the fat that FPrev[ ℄ for the very �rst

lass in a family and FNext[ ℄ for the very last lass in the same family are set to

null and hene redundant for the same reasons as desribed above for CPrev[ ℄ and

CNext[ ℄. We an thus \virtualize" the memory for the array Refine[ ℄. We will

have to index it in reverse and we will use all the unused slots in FStart[ ℄ (i.e. slots

with indexes > FStartTop) as well as the unneessary FNext[ ℄ slots. The formula

is rather simple. Instead of storing r in Refine[i℄, we will use

SetRe�ne(i,r)

j N-(i+1)

if FStartTop = null OR j > FStartTop then

FStart[j℄ r

else

FNext[FPrev[FStart[j℄℄℄ r

end SetRe�ne

and instead of fething a value from Refine[i℄ we will use
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integer GetRe�ne(i)

j N-(i+1)

if FStartTop = null OR j > FStartTop then

return FStart[j℄

else

return FNext[FPrev[FStart[j℄℄℄

end GetRe�ne

The modi�ation of the ode is more omplex in this ase, sine we have to trak the

ends of the family lists as we do for lass lists; more importantly, when a new family

is reated, we have to save the Refine[ ℄ value stored in that so-far-unused slot k

that now is going to be oupied by the start link of the family list, and store k at

the end of the list instead. This \virtualization" of the memory for Refine[ ℄ brings

the spae omplexity down to the �nal value of 10MN .

4 Informative Experimental Results

To estimate the e�et of our spae redution on time requirement, we have imple-

mented two versions of Crohemore's algorithm:

� a na��ve array-based version, FSX20, that exeutes Crohemore's algorithm using

20 arrays eah of length N words:

� a version of FSX10 that requires 10 arrays eah of length N words.

Thus both of these implementations are word-based: assuming a word-length of 32

bits, the value of M is atually �xed at 4.

We expet that FSX20 will exeute Crohemore's algorithm about as fast as it

an be exeuted, but at the ost of requiring exatly 20N words of storage. A version

that implemented standard list-proessing tehniques rather than arrays to handle the

queues, staks and lists required by Crohemore's algorithm would generally require

less storage: 11N words for arrays plus a variable amount up to 13N for the list

strutures. However, as a result of the time required for dynami spae alloation,

suh a version would ertainly run several times slower than FSX20.

We must remark at this point that the experiments performed have only an in-

formative value, for we onduted them without ontrolling many aspets depending

on the platform (as memory ahing, virtual memory system paging et.), nor did we

perform a proper statistial evaluation to ontrol for other fators not depending on

the platform (load on the mahine, implementation biases et.) Thus, we really do

not laim any signi�ant onlusions for the atual algorithms whose implementations

were tested.

We have run FSX20 and FSX10 against a variety of long strings (up to 3.8 million

bytes): long Fibonai strings, �les from the Calgary orpus, and others. The results

indiate that FSX10 seems to require 20-30% more time than FSX20, in most ases

a small prie to pay for a 52% redution in spae.
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