
Border Array on Bounded Alphabet

1

Jean-Pierre Duval

2

, Thierry Le
roq

2

, Arnaud Lefebvre

3

2

LIFAR { ABISS, Universit�e de Rouen, 76821 Mont-Saint-Aignan Cedex, Fran
e

3

UMR 6037 { ABISS, Universit�e de Rouen, 76821 Mont-Saint-Aignan Cedex, Fran
e

e-mail:

Jean-Pierre.Duval

Thierry.Le
roq

Arnaud.Lefebvre

9

=

;

�univ-rouen.fr

Abstra
t. In this arti
le we present an on-line linear time algorithm, to
he
k

if an integer array f is a border array of some string x built on a bounded size

alphabet, whi
h is simplest that the one given in [2℄. Furthermore if f is a

border array we are able to build, on-line and in linear time, a string x on a

minimal size alphabet for whi
h f is the border array.

Key words: String algorithms, border array

1 Introdu
tion

A border u of a string x is a pre�x and a suÆx of x su
h that u 6= x. The
omputation

of the borders of ea
h pre�x of a string x is strongly related to the string mat
hing

problem: given a string x, �nd the �rst or, more generally, all its o

urren
es in a

longest string y. The border array of x is better known as the \failure fun
tion"

introdu
ed in [4℄ (see also [1℄). Re
ently, in [2℄ a method is presented to
he
k if an

integer array f is a border array for some string x. The authors �rst give an on-line

linear time algorithm to verify if f is a border array on an unbounded size alphabet.

Then they give a more
omplex algorithm that works on a bounded size alphabet.

Here we present a more simple algorithm for this
ase. Furthermore if f is a border

array we are able to build, on-line and in linear time, a string x on a minimal size

alphabet for whi
h f is the border array. The resulting algorithm is elegant and

integrates three parts: the
he
king on an unbounded alphabet, the
he
king on a

bounded size alphabet and the design of the
orresponding string if f is a border

array. The �rst two parts
an work independently.

The remaining of this arti
le is organized as follows. The next se
tion introdu
es

basi
 notions and notations on strings and results from [2℄. Se
tion 3 presents our

new algorithm together with its
orre
tness proof. Finally we give our
on
lusions in

Se
t. 4.

2 Ba
kground and basi
 string de�nitions

A string is a sequen
e of zero or more symbols from an alphabet �; the string with

zero symbols is denoted by ". The set of all strings over the alphabet � is denoted

1

This work was partially supported by a NATO grant PST.CLG.977017.

28

Border Array on Bounded Alphabet

by �

�

. We
onsider an alphabet of size s; for 1 � i � s, �[i℄ denotes the i-th symbol

of �. A string x of length n is represented by x[1::n℄, where x[i℄ 2 � for 1 � i � n.

A string u is a pre�x of x if x = uw for w 2 �

�

. Similarly, u is a suÆx of x if x = wu

for w 2 �

�

. A string u is a border of x if u is a pre�x and a suÆx of x and u 6= x.

Let f [1::n℄ be an integer array su
h that f [i℄ < i for 1 � i � n. For 1 � i � n, we

de�ne f

1

[i℄ = f [i℄ and for f [i℄ > 0, f

`

[i℄ = f [f

`�1

[i℄℄. We use the following notations:

� L(f; i� 1) = (f [i� 1℄; f

2

[i� 1℄; : : : ; f

m

[i� 1℄ = 0);

� C(f; i) = (1 + f [i� 1℄; 1 + f

2

[i� 1℄; : : : ; 1 + f

m

[i� 1℄) where f

m

[i� 1℄ = 0.

Note that L(f; 1) = (0) and that C(f; 1) is not de�ned.

A border u of x[1::i℄ with i > 0 has one of the two following forms:

� u = ";

� u = x[1::j℄x[j +1℄ with j +1 < i and where x[1::j℄ is a border of x[1::i� 1℄ and

x[i℄ = x[j + 1℄.

For 1 � i � n we denote by �

x

[i℄ the length of the longest border of x[1::i℄. The

array �

x

[1::n℄ is said to be the border array of the string x.

The lengths of the di�erent borders of x[1::i � 1℄ are given by the de
reasing

sequen
e

L(�

x

; i� 1) = (�

x

[i� 1℄; �

2

x

[i� 1℄; : : : ; �

m

x

[i� 1℄)

where �

m

x

[i� 1℄ = 0 i.e. it is the length of the longest border �

x

[i� 1℄ followed by the

lengths of the borders of this longest border L(�

x

; �

x

[i� 1℄).

For i � 2, we say that an integer j+1 is
andidate to be the length of the longest

border of x[1::i℄ if x[1::j℄ is a border of x[1::i � 1℄. In other words, for i � 2, saying

that j + 1 is
andidate means that j 2 L(�

x

; i � 1). The de
reasing sequen
e of

andidates for the length of the longest border of x[1::i℄ is

C(�

x

; i) = (1 + �

x

[i� 1℄; 1 + �

2

x

[i� 1℄; : : : ; 1 + �

m

x

[i� 1℄)

where �

m

x

[i� 1℄ = 0.

We say that an array f [1::n℄ is a valid border array, or simply that it is valid if

and only if it is the border array of at least one string x of length n.

The longest border of x[1℄ is ne
essarily the empty word, thus �

x

[1℄ = 0. The

length �

x

[i℄ of the longest border of x[1::i℄, if it is not empty, is taken among the

andidates C(�

x

; i). Thus we have a �rst ne
essary
ondition for an array f [1::n℄ to

be valid:

NC

1

: f [1℄ = 0 and for 2 � i � n; f [i℄ 2 f0g+ C(f; i) :

If x[1::i℄ has the empty word for only border then we have �

x

[i℄ = 0.

If x[1::i℄ has a non-empty border, the length of the longest border veri�es

� �

x

[i℄ = maxfj + 1 j j 2 L(�

x

; i� 1) and x[i℄ = x[j + 1℄g, or equivalently

� �

x

[i℄ = maxfj + 1 j j + 1 2 C(�

x

; i) and x[i℄ = x[j + 1℄g.

29

Pro
eedings of the Prague Stringology Conferen
e '02

The length j + 1 of the longest border of x[1::i℄ is the �rst
andidate in the list

C(�

x

; i) for whi
h x[j+1℄ = x[i℄ if it exists, otherwise the longest border has length 0.

This is the basis of the
omputation of the fun
tion �

x

known as a \failure fun
tion"

given in [4℄.

Saying that j+1 is the largest
andidate for whi
h x[j+1℄ = x[i℄ implies that this

is not true for any
andidate j

0

+ 1 larger than j + 1, whi
h imposes that x[1::j + 1℄

annot be a border of x[1::j

0

+ 1℄ for a
andidate j

0

+ 1 larger than j + 1. In other

words, �

x

[j

0

+ 1℄ is di�erent from j + 1 for any
andidate j

0

+ 1 larger than j + 1.

This is thus a se
ond ne
essary
ondition for an array f to be valid:

NC

2

: for i � 2 and for every j

0

+ 1 2 C(f; i) with j

0

+ 1 > f [i℄

we have f [j

0

+ 1℄ 6= f [i℄ :

Theorem 2.2 in [2℄ states that
onditions NC

1

and NC

2

form a suÆ
ient
ondition for

f to be a valid border array. The authors give, for any valid array f , thus satisfying

onditions NC

1

and NC

2

, the
omputation of a string x su
h that f = �

x

, without any

restri
tion on the alphabet size. They give a simple linear time algorithm (Theorem

2.3) to test if an array f satis�es
onditions NC

1

and NC

2

, on a unbounded size

alphabet. They give a more
omplex algorithm in the
ase of a bounded size alphabet.

Here we present a more simple algorithm whi
h determines in linear time, for a given

array f [1::n℄, for i from 1 to n, the minimum size of an alphabet ne
essary to build

a string x[1::i℄ whi
h border array is f [1::i℄.

3 New algorithm

We propose, in this se
tion, a linear time algorithm, whi
h determines, for an array

f [1::n℄ and an alphabet size s given as input:

1 { validity: if f [1::n℄ is a valid border array for at least one string z[1::n℄. This

point is essentially the same as in [2℄;

2 { alphabet: up to whi
h index it is possible to build a string whi
h border array

is f using an alphabet of size s;

3 { string: a string x, on a minimal size alphabet, whi
h border array is f .

Point 1 is independent from the other two points. Point 2
an work without the

other two points, in parti
ular when one assumes that the array f is valid and does

not want to build a
orresponding string. Point 3 uses point 2.

The algorithm BABA (for Border Array on Bounded Alphabet) is given �gure 1.

We now state our main result.

Theorem 1 When applied to an integer array f [1::n℄ and an alphabet size s:

� The algorithm BABA runs in time �(n).

� If the array f given as input of the algorithm BABA is a valid border array at

index i � 1 but not at index i, the algorithm stops and returns \f invalid at

index i". The lines falphabetg and fstringg
an be deleted without
hanging

this result.

30

Border Array on Bounded Alphabet

Figure 1: Algorithm BABA

� If there exists a string for whi
h f [1::i� 1℄ is the border array and there is none

at index i with an alphabet of size s, the algorithm BABA stops and returns \s

ex
eeded at index i". Lines fstringg
an be deleted without
hanging this result.

If the array f is valid, lines fvalidityg
an also be deleted.

� As long as f [i::1℄ is valid, the algorithm BABA builds a string x[1::i℄ on a

minimal size alphabet for the border array f [1::i℄. Lines fvalidityg
an be

deleted without
hanging the
onstru
tion of the string. It is
lear that if f is

invalid, it is not the border array of the string whi
h is built by the algorithm.

Before giving the proof of the previous theorem we �rst give a de�nition and

establish some intermediate results.

De�nition 1 Given a string x[1::n℄ and its border array �

x

, we denote by A(x; i)

the set of symbols that extend the pre�x x[1::i � 1℄ and its borders, in x: A(x; i) =

fx[i℄g [fx[j + 1℄ j j + 1 2 C(�

x

; i)g.

Figure 2 gives a des
ription of L(�

x

; i� 1), C(�

x

; i) and A(x; i).

Lemma 1 For every string x[1::i℄ we have

1. fx[j + 1℄ j j + 1 2 C(�

x

; i)g = A(x; �

x

[i℄ + 1) ;

2. If �

x

[i℄ 6= 0 then x[i℄ = x[�

x

[i℄℄, �

x

[i℄ 2 C(�

x

; i) and A(x; i) = A(x; �

x

[i�1℄+1).

3. If �

x

[i℄ = 0 then �

x

[i℄ 62 C(�

x

; i) and A(x; i) = fx[i℄g [A(x; �

x

[i� 1℄ + 1).

Proof:

1. Immediate;

31

Pro
eedings of the Prague Stringology Conferen
e '02

Figure 2: If for 1 � ` � 4, j

`

= �

`

x

[i � 1℄, j

4

= �

4

x

[i � 1℄ = 0, i

`

= 1 + �

`

[i � 1℄, then

L(�

x

; i � 1) = (j

1

; j

2

; j

3

; j

4

= 0), C(�

x

; i) = (i

1

; i

2

; i

3

; i

4

= 1) and A(x; i) is the set

whi
h is
omposed of the gray symbols.

2. If �

x

[i℄ 6= 0 then �

x

[i℄ is a
andidate of C(�

x

; i). Con
erning the index of the

longest border we have x[i℄ = x[�

x

[i℄℄, �

x

[i℄ is a
andidate in C(�

x

; i), x[i℄ is in

A(x; �

x

[i� 1℄ + 1);

3. �

x

[i℄ = 0 implies that there exists no
andidate j + 1 2 C(�

x

; i) su
h that

x[i℄ = x[j + 1℄.

2

Corollary 1 Let x[1::n℄ be a string and k[1::n℄ the array
omputed by the algorithm

BABA with the input f = �

x

ignoring the fvalidityg and fstringg lines. Then, for

1 � i � n we have k[i℄ =
ardA(x; i).

Proof: The proof of the
orollary immediately follows from the algorithm BABA and

properties 2 and 3 of lemma 1. 2

Corollary 2 For every string x whi
h border array is f , the minimal
ardinality of an

alphabet ne
essary to build ea
h pre�x x[1::i℄ is greater or equal to maxfk[1℄; k[2℄; : : :,

k[i℄g where k[1::n℄ is the array
omputed by the algorithm BABA with the input f =

�

x

, ignoring lines fvalidityg and fstringg.

Proof: All the symbols of A(x; j) for 1 � j � i are symbols of the string x[1::i℄. Thus

the
ardinality is greater or equal to the
ardinality of ea
h A(x; j). 2

Proposition 1 Assume that array f [1::n℄ is valid. The string x build by the algo-

rithm BABA satis�es the following properties:

1. For 1 � i � n, �

x[1::i℄

= f [1::i℄ and A(x; i) = f�[1℄; �[2℄; : : : ; �[k[i℄℄g;

2. The
ardinality of the alphabet for ea
h pre�x x[1::i℄ is equal to

maxfk[1℄; k[2℄; : : : ; k[i℄g;

32

Border Array on Bounded Alphabet

3. The border array �

x

of the string x is equal to f .

Proof:

� We show the point 1 by indu
tion on i. For i = 1: f [1℄ = 0, �

x[1::1℄

= f [1::1℄

and A(x; 1) = fx[1℄g = f�[1℄g. The property holds at index 1.

Assume that the property holds up to index i�1, then we have A(x; f [i�1℄+1) =

f�[1℄; �[2℄; : : : ; �[k[f [i� 1℄+ 1℄℄g (sin
e f [i� 1℄ < i� 1 thus f [i� 1℄+ 1 � i� 1)

and �

x[1::i�1℄

= f [1::i� 1℄.

If f [i℄ 6= 0 then sin
e f [1::i� 1℄ = �

x[1::i�1℄

and f satis�es
onditions NC

1

and

NC

2

at index i, f [i℄ is the largest
andidate j of C(f; i) su
h that x[j℄ = x[f [i℄℄.

Thus, by setting x[i℄ x[f [i℄℄ we get �

x

[i℄ = f [i℄, k[i℄ = k[f [i � 1℄ + 1℄ and

A(x; i) = A(x; f [i� 1℄ + 1) = f�[1℄; �[2℄; : : : ; �[k[i℄℄g.

If f [i℄ = 0 then k[i℄ = 1 + k[f [i � 1℄ + 1℄ and x[i℄ �[k[i℄℄ does not belong to

A(x; f [i� 1℄ + 1) thus �

x

[i℄ = 0, A(x; �

x

[i� 1℄ + 1) = f�[1℄; �[2℄; : : : ; �[k[f [i�

1℄ + 1℄℄g, A(x; i) = f�[k[i℄℄g [A(x; �

x

[i� 1℄ + 1) = f�[1℄; �[2℄; : : : ; �[k[i℄℄g.

The property holds for i in both
ases.

� Properties 2 and 3 are immediate
onsequen
es of property 1.

2

Proposition 2 Let f [1::n℄ be an integer array.

1. The algorithm BABA returns \f invalid at index i" if and only if f [1::i� 1℄ is

valid and f [1::i℄ is not;

2. The array f [1::i � 1℄ is the border array of the string x[1::i � 1℄ whi
h is built

by the algorithm BABA.

Proof: From proposition 1, as long as f [1::i℄ is valid, it is the border array of the

string x[1::i℄ whi
h is built by the algorithm BABA whi
h establishes the point 2.

If the algorithm BABA stops at index i = 1 and returns \f invalid at index 1", it

means that f [1℄ 6= 0 thus f [1::i℄ is invalid (note that this
ase
annot happen if the

ondition f [i℄ < i is ful�lled).

Now assume that at the beginning of iteration i we have: z[1::i � 1℄ is a string

whi
h border array is f [1::i� 1℄ and z
an be extended with a symbol z[i℄ for whi
h

�

z

[i℄ = f [i℄.

We have z[i℄ = z[f [i℄℄, and �

z

[i℄ = f [i℄ is the largest
andidate j

0

+ 1 2 C(�

z

; i) =

(1 + �

z

[i� 1℄; 1 + �

2

z

[i� 1℄; : : : ; 1 + �

m

z

[i� 1℄), su
h that z[j

0

+ 1℄ = z[i℄ thus it is the

largest for whi
h z[j

0

+ 1℄ = z[f [j℄℄.

The three lines fvalidityg of the algorithm BABA reviews in de
reasing order

the
andidates j + 1 of C(�

z

; i).

� If the algorithm exits the while loop with j + 1 > f [i℄ and f [j + 1℄ = f [i℄, it

means that j + 1 is a
andidate larger that f [i℄ for whi
h �

z

[j + 1℄ = f [i℄ thus

z[j + 1℄ = z[f [i℄℄ whi
h
ontradi
ts the fa
t that j

0

+ 1 is the largest
andidate

su
h that z[j

0

+ 1℄ = z[f [i℄℄. This
ontradi
ts the assumption that the string

z[1::i� 1℄
an be extended and that f [1::i℄ is valid.

33

Pro
eedings of the Prague Stringology Conferen
e '02

� If the algorithm exits the while loop with j+1 < f [i℄, it means that no
andidate

j

0

+ 1 equal to f [i℄ were found. This
ontradi
ts the fa
t that f [i℄ = �

z

[i℄ and

that f [1::i℄ is valid.

In both
ases, no string z[1::i� 1℄, whi
h border array is f [1::i� 1℄,
an be extended,

then the algorithm returns \f invalid at index i".

If f [1::i℄ is valid then the algorithm does not stop at this index.

Assume now that at the beginning of iteration i we have: z[1::i � 1℄ is a string

whi
h border array is f [1::i� 1℄ and the while loop exits at index i with j +1 = f [i℄.

Let us set z[i℄ = z[f [i℄℄. Then f [i℄ = j + 1 is a
andidate of C(�

z

; i) for whi
h

z[j + 1℄ = z[i℄ thus z[1::j + 1℄ is a border of z[1::i℄. Assume that z[1::j + 1℄ is not

the longest border of z[1::i℄. Let j

0

+1 be the smallest
andidate whi
h is larger than

j + 1 and su
h that z[1::j

0

+ 1℄ is a border of z[1::i℄. Then z[1::j + 1℄ is the longest

border of z[1::j

0

+ 1℄ and we have f [j

0

+ 1℄ = f [i℄ whi
h means that the loop should

have stop with this test and with j + 1 > f [i℄. This is a
ontradi
tion.

Thus the algorithm BABA runs as long as f [1::i℄ is valid, it stops at index i and

returns \f invalid at index i" if and only if f is valid up to index i� 1 and is not at

index i. 2

The proof of Theorem 1 be
omes then immediate.

Proof:[of Theorem 1℄ The point 1 (linearity of the algorithm BABA)
omes from [4℄.

The other two points follow from propositions 1 and 2. 2

Figures 3 and 4 show two examples.

i 1 2 3 4 5 6 7 8 9 10 11 12 symbols
andidates valid

x[i℄ a b a a b a b a a b a

f [i℄ 0 0 1 1 2 3 2 3 4 5 6 ?

k[i℄ 1 2 1 2 2 1 2 1 2 2 1

a b a a b a b 7 yes

a b a a 4 yes

a b 2 no

" a 1 no

 0 yes if s > 2

Figure 3: The array f [1::11℄ is a valid border array. The string x[1::11℄ is the smallest

string for whi
h f [1::11℄ is a valid border array. Then x[1::11℄ = abaababaaba has

borders abaaba, aba, a and " of respe
tive lengths 6, 3, 1 and 0 (L(f; 11) = (6; 3; 1; 0)).

Thus the
andidates for f [12℄ are 7, 4, 2 and 1 (C(f; 12) = (7; 4; 2; 1)) together with 0

whi
h is always a potential
andidate. The values 7 and 4 are valid
andidates. The

value 2 is not valid sin
e f [7℄ = 2 and 1 is not valid be
ause f [4℄ = 1. The value 0 is a

valid
andidate if s > 2 be
ause then k[12℄ would be equal to 1+k[f [12� 1℄+1℄ = 3.

4 Con
lusions

We presented in this arti
le an elegant algorithm that verify, on-line and in linear time,

if an integer array f is a border array of some string on a bounded size alphabet.

34

Border Array on Bounded Alphabet

i 1 2 3 4 5 6 7 8 9 10 11 12 symbols
andidates valid

x[i℄ a a b a a
 a a b a a

f [i℄ 0 1 0 1 2 0 1 2 3 4 5 ?

k[i℄ 1 1 2 1 1 3 1 1 2 1 1

a a b a a
 6 yes

a a b 3 yes

a a 2 yes

" a 1 no

d 0 yes if s > 3

Figure 4: The array f [1::11℄ is a valid border array. The string x[1::11℄ is the smallest

string for whi
h f [1::11℄ is a valid border array. Then x[1::11℄ = aabaa
aabaa has

borders aabaa, aa, a and " of respe
tive lengths 5, 2, 1 and 0 (L(f; 11) = (5; 2; 1; 0)).

Thus the
andidates for f [12℄ are 6, 3, 2 and 1 (C(f; 12) = (6; 3; 2; 1)) together with

0 whi
h is always a potential
andidate. The values 6, 3 and 2 are valid
andidates.

The value 1 is not valid sin
e f [2℄ = 1. The value 0 is a valid
andidate if s > 3

be
ause then k[12℄ would be equal to 1 + k[f [12� 1℄ + 1℄ = 4.

In the
ase where f is a border array, we are also
apable to build a string x, on a

minimal size alphabet for whi
h f is the border array.

After studying the
ase of the \failure fun
tion" of the Morris and Pratt string

mat
hing algorithm, it is natural to ask the question if this work
an be extended to

the \failure fun
tion" of the Knuth, Morris and Pratt string mat
hing algorithm [3℄.

Referen
es

[1℄ A. V. Aho, J. E. Hop
roft and J. D. Ullman, The design and analysis of
om-

puter algorithms, Addison-Wesley, 1974.

[2℄ F. Fran�ek, S. Gao, W. Lu, P. J. Ryan, W. F. Smyth, Y. Sun and L. Yang,

Verifying a border array in linear time, J. Comb. Math. Comb. Comput. 42

(2002) to appear.

[3℄ D. E. Knuth, J. H. Morris, Jr and V. R. Pratt, Fast pattern mat
hing in strings

SIAM J. Comput. 6(1) (1977) 323{350.

[4℄ J. H. Morris, Jr and V. R. Pratt, A linear pattern-mat
hing algorithm, Report

40, University of California, Berkeley, 1970.

35

