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Abstract. In this article we present an on-line linear time algorithm, to check
if an integer array f is a border array of some string x built on a bounded size
alphabet, which is simplest that the one given in [2]. Furthermore if f is a
border array we are able to build, on-line and in linear time, a string z on a
minimal size alphabet for which f is the border array.
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1 Introduction

A border u of a string « is a prefix and a suffix of x such that u # x. The computation
of the borders of each prefix of a string x is strongly related to the string matching
problem: given a string x, find the first or, more generally, all its occurrences in a
longest string y. The border array of x is better known as the “failure function”
introduced in [4] (see also [1]). Recently, in [2] a method is presented to check if an
integer array f is a border array for some string . The authors first give an on-line
linear time algorithm to verify if f is a border array on an unbounded size alphabet.
Then they give a more complex algorithm that works on a bounded size alphabet.
Here we present a more simple algorithm for this case. Furthermore if f is a border
array we are able to build, on-line and in linear time, a string x on a minimal size
alphabet for which f is the border array. The resulting algorithm is elegant and
integrates three parts: the checking on an unbounded alphabet, the checking on a
bounded size alphabet and the design of the corresponding string if f is a border
array. The first two parts can work independently.

The remaining of this article is organized as follows. The next section introduces
basic notions and notations on strings and results from [2]. Section 3 presents our

new algorithm together with its correctness proof. Finally we give our conclusions in
Sect. 4.

2 Background and basic string definitions

A string is a sequence of zero or more symbols from an alphabet ¥; the string with
zero symbols is denoted by €. The set of all strings over the alphabet ¥ is denoted
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by ¥*. We consider an alphabet of size s; for 1 <i < s, o[i] denotes the i-th symbol
of 3. A string = of length n is represented by z[1..n], where z[i] € ¥ for 1 < i < n.
A string u is a prefiz of x if x = uw for w € ¥*. Similarly, u is a suffiz of x if x = wu
for w € X*. A string u is a border of z if u is a prefix and a suffix of = and u # =.
Let f[1..n] be an integer array such that f[i] <ifor 1 <i<n. For 1 <i<n, we
define f'[i] = f[i] and for f[i] > 0, f*[i] = f[f*~'[i]]. We use the following notations:

o L(f,i—1)=(fli 1], f[i —1],..., f"[i = 1] = 0);
o C(f,i)=(1+ fli— 1,1+ f2[i —1],...,1+ f™[i — 1]) where f™[i — 1] = 0.

Note that L(f,1) = (0) and that C'(f,1) is not defined.
A border u of z[1..7] with ¢ > 0 has one of the two following forms:

® U =c¢g,

e u=x[l..j|z[j + 1] with j + 1 < i and where z[1..j] is a border of z[1..i — 1] and
x[i] = z[j + 1].

For 1 <i < n we denote by 3,[i] the length of the longest border of z[1..7]. The
array [;[1..n] is said to be the border array of the string z.

The lengths of the different borders of z[1..i — 1] are given by the decreasing
sequence

L(ﬁzaz - 1) = (ﬁz[z - 1]163[2 - 1]7 s JB;R[Z - 1])

where S'[i — 1] = 0 i.e. it is the length of the longest border (3,[i — 1] followed by the
lengths of the borders of this longest border L(3,, 8.[i — 1]).

For ¢ > 2, we say that an integer j + 1 is candidate to be the length of the longest
border of x[1..7] if z[1..j] is a border of z[1..i — 1]. In other words, for i > 2, saying
that 7 + 1 is candidate means that j € L(8;,i — 1). The decreasing sequence of
candidates for the length of the longest border of z[1..7] is

C(ﬁxai):(1+5x[i_1]71+5§[i_1]7"'71+ﬂ?[i_1])

where 7'[i — 1] = 0.

We say that an array f[1..n] is a valid border array, or simply that it is valid if
and only if it is the border array of at least one string = of length n.

The longest border of z[1] is necessarily the empty word, thus 3,[1] = 0. The
length f,[i] of the longest border of x[1..i], if it is not empty, is taken among the
candidates C'(f;,4). Thus we have a first necessary condition for an array f[1..n] to
be valid:

NCy: f[1] =0 and for 2 <i < n, f[i] € {0} + C(f,7).

If 2[1..7] has the empty word for only border then we have j3,[i] = 0.
If x[1..i] has a non-empty border, the length of the longest border verifies

o f.lil =max{j+1|j€ L(B:,i—1) and z[i] = z[j + 1]}, or equivalently
o fylil =max{j+1]|j+1¢€C(By i) and z[i] = z[j + 1]}.
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The length j + 1 of the longest border of x[1..7] is the first candidate in the list
C(By, ) for which z[j+ 1] = z[i] if it exists, otherwise the longest border has length 0.
This is the basis of the computation of the function 5, known as a “failure function”
given in [4].

Saying that j+1 is the largest candidate for which x[j + 1] = z[i] implies that this
is not true for any candidate j' + 1 larger than j + 1, which imposes that x[1..5 4 1]
cannot be a border of z[1..j" + 1] for a candidate j' + 1 larger than j + 1. In other
words, (,[j + 1] is different from j + 1 for any candidate j' + 1 larger than j + 1.

This is thus a second necessary condition for an array f to be valid:

NCy: fori > 2 and for every j' + 1 € C(f,i) with j' +1 > f[i]
we have f[j' + 1] # f[i].

Theorem 2.2 in [2] states that conditions NC| and NCy form a sufficient condition for
f to be a valid border array. The authors give, for any valid array f, thus satisfying
conditions NC'{ and NC, the computation of a string x such that f = (., without any
restriction on the alphabet size. They give a simple linear time algorithm (Theorem
2.3) to test if an array f satisfies conditions NC; and NCy, on a unbounded size
alphabet. They give a more complex algorithm in the case of a bounded size alphabet.
Here we present a more simple algorithm which determines in linear time, for a given
array f[l..n], for i from 1 to n, the minimum size of an alphabet necessary to build
a string x[1..i] which border array is f[1..i].

3 New algorithm

We propose, in this section, a linear time algorithm, which determines, for an array
f[1..n] and an alphabet size s given as input:

1 — validity: if f[1..n] is a valid border array for at least one string z[1..n]. This
point is essentially the same as in [2];

2 — alphabet: up to which index it is possible to build a string which border array
is f using an alphabet of size s;

3 — string: a string =, on a minimal size alphabet, which border array is f.

Point 1 is independent from the other two points. Point 2 can work without the
other two points, in particular when one assumes that the array f is valid and does
not want to build a corresponding string. Point 3 uses point 2.

The algorithm BABA (for Border Array on Bounded Alphabet) is given figure 1.

We now state our main result.

Theorem 1 When applied to an integer array f[1..n] and an alphabet size s:
e The algorithm BABA runs in time ©(n).

e If the array [ given as input of the algorithm BABA is a valid border array at
index © — 1 but not at index i, the algorithm stops and returns “f invalid at
index i”. The lines {alphabet} and {string} can be deleted without changing
this result.
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BABA(f,n,s)
1 if fl1]#0 & validity
2 then return [ invalid at index 1 & validity
3 K1) +1 i alphabet
4 z[1] + o[1] o string
5 fori+ 2ton
6 do if f[i]=0
7 then k[i] « 14+ k[f[i — 1]+ 1] & alphabet
8 if kfi] > = v alphabet
9 then return ¢ exceeded at index ¢ © alphabet
10 z[i] + o[k[i]] & string
11 else j+ f[i—1] & validity
12 while j + 1> f[i] and f[j+ 1] # f[i] v validity
13 do j + f[i] & validity
14 if j+1+# f[i] e validity
15 then return f invalid at index { & validity
16 ki) « k[fli—1]+1] v alphabet
17 x[i] « z[f[]] o string

18 return z
Figure 1: Algorithm BABA

e [f there exists a string for which f[1..i — 1] is the border array and there is none
at index i with an alphabet of size s, the algorithm BABA stops and returns “s
exceeded at indexi”. Lines {string} can be deleted without changing this result.
If the array f is valid, lines {validity} can also be deleted.

o As long as f[i..1] is wvalid, the algorithm BABA builds a string xz[1..i] on a
minimal size alphabet for the border array f[1..i]. Lines {validity} can be
deleted without changing the construction of the string. It is clear that if [ is
invalid, it is not the border array of the string which is built by the algorithm.

Before giving the proof of the previous theorem we first give a definition and
establish some intermediate results.

Definition 1 Given a string x[1..n] and its border array 5., we denote by A(zx,1)
the set of symbols that extend the prefirx x[1..i — 1] and its borders, in x: A(x,i) =

{z]} U{zlj +1] | j +1 € C(Bs, )}
Figure 2 gives a description of L(83,,i — 1), C(8,,1) and A(z,1).
Lemma 1 For every string x[1..i] we have
1 A{z[j+1]|j+1€ C(Bsi)} = Az, Be[i] + 1) ;
2. If Ba[1] # 0 then x[1] = =[B,i]], Bali] € C(Ba, 1) and A(z,i) = A(z, B-[i—1]+1).
3. If Bu[i] = 0 then B,[i] & C(By,i) and A(x,i) = {z[i]} U A(z, Buli — 1] + 1).
Proof:

1. Immediate;
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Figure 2: If for 1 < ¢ < 4, j, = BLli — 1], ja = Bi — 1] = 0, iy = 1 + B[i — 1], then
L(Beyi — 1) = (j1,J2,J3,Ja = 0), C(B,i) = (i1,i2,43,74 = 1) and A(z,i) is the set
which is composed of the gray symbols.

2. If B,[i] # 0 then f,[7] is a candidate of C'(f;,7). Concerning the index of the
longest border we have z[i] = z[8,[i]], 5.]7] is a candidate in C'(f,,1), x[i] is in
A(x, Beli — 1] + 1);

3. B.[i] = 0 implies that there exists no candidate j + 1 € C(f,,i) such that
x[i] = z[j + 1].

O

Corollary 1 Let z[1..n] be a string and k[1..n] the array computed by the algorithm
BABA with the input f = B, ignoring the {validity} and {string} lines. Then, for
1 <1 < n we have k[i| = card A(x,1).

Proof: The proof of the corollary immediately follows from the algorithm BABA and
properties 2 and 3 of lemma 1. O

Corollary 2 For every string x which border array is f, the minimal cardinality of an
alphabet necessary to build each prefiz x[1..i] is greater or equal to max{k[1], k[2],...,
k[i]} where k[1..n] is the array computed by the algorithm BABA with the input f =
Bz, ignoring lines {validity} and {string}.

Proof: All the symbols of A(z,j) for 1 < j < i are symbols of the string x[1..7]. Thus
the cardinality is greater or equal to the cardinality of each A(x, 7). O

Proposition 1 Assume that array f[1..n] is valid. The string x build by the algo-
rithm BABA satisfies the following properties:

1. For1 <i<mn, fBuu.q = f[1..4] and A(z,i) = {o[1],0[2],...,0lk[i]]};
2. The cardinality of the alphabet for each prefix z[1..i] is equal to
max{k[1), k2], . .. k[i]}:
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3. The border array [, of the string x is equal to f.
Proof:

e We show the point 1 by induction on . For i = 1: f[1] =0, fypn.1) = f[1..1]
and A(z,1) = {z[1]} = {o[1]}. The property holds at index 1.

Assume that the property holds up to index i—1, then we have A(z, f[i—1]+1) =
{o[1],02],...,0[k[f[i —1] +1]]} (since f[i—1] <i—1thus fli—1]+1<i—1)
and ﬁ:r[l..ifl] = f[ll — 1].

If f[i] # 0 then since f[l1..i — 1] = Byn1.,-1) and f satisfies conditions NC'; and
NCs at index i, f[i] is the largest candidate j of C'(f, i) such that z[j] = z[f[i]].
Thus, by setting z[i] « x[f[i]] we get B.[i]] = f[i], k[i] = k[f[i — 1] + 1] and
A(x,i) = Az, fli — 1]+ 1) = {o[1],0]2], ..., o[k[i]]}.

If f[{] = 0 then k[:] = 1+ k[f[i — 1] + 1] and z[i] < o[k[i]] does not belong to
Az, fli — 1] + 1) thus 8,[i] = 0, A(z, B,[i — 1] + 1) = {o][1],0[2 ] o olk[fli —
1+ 101}, A, 1) = {olk{l} U A, Boli — 1]+ 1) = {o[1],0[2], ..., o[k []}-

The property holds for 7 in both cases.

e Properties 2 and 3 are immediate consequences of property 1.

Proposition 2 Let f[1..n] be an integer array.

1. The algorithm BABA returns “f invalid at index i” if and only if f[1..i — 1] is
valid and f[1..i] is not;

2. The array f[1..i — 1] is the border array of the string x[1..i — 1] which is built
by the algorithm BABA.

Proof: From proposition 1, as long as f[1..i] is valid, it is the border array of the
string x[1..i] which is built by the algorithm BABA which establishes the point 2.

If the algorithm BABA stops at index ¢ = 1 and returns “f invalid at index 17, it
means that f[1] # 0 thus f[1..7] is invalid (note that this case cannot happen if the
condition f[i] < i is fulfilled).

Now assume that at the beginning of iteration i we have: z[1..i — 1] is a string
which border array is f[1..i — 1] and z can be extended with a symbol z[i] for which
B:li] = flil-

We have z[i] = z[f[i]], and f,[i] = f[i] is the largest candidate j'+1 € C(f,,i) =
(I+B.[i—1], 14+ B2[i = 1],..., 1+ p[i — 1]), such that z[j" + 1] = z[s] thus it is the
largest for which z[j’ + 1] = z[f[j]].

The three lines {validity} of the algorithm BABA reviews in decreasing order
the candidates j + 1 of C(/3,,1).

e If the algorithm exits the while loop with j +1 > f[i] and f[j + 1] = f[i], it
means that j + 1 is a candidate larger that f[i] for which 5,7 + 1] = f[i] thus
z[j + 1] = z[f]i]] which contradicts the fact that j' + 1 is the largest candidate
such that z[j" + 1] = z[f[{]]. This contradicts the assumption that the string
z[1..i — 1] can be extended and that f[1..7] is valid.
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e If the algorithm exits the while loop with j+1 < f[i], it means that no candidate
7'+ 1 equal to f[i] were found. This contradicts the fact that f[i] = /,[i] and
that f[1..7] is valid.

In both cases, no string z[1..i — 1], which border array is f[1..i — 1], can be extended,
then the algorithm returns “f invalid at index 7”.

If f[1..7] is valid then the algorithm does not stop at this index.

Assume now that at the beginning of iteration i we have: z[1..; — 1] is a string
which border array is f[1..i — 1] and the while loop exits at index i with j +1 = f[i].

Let us set z[i] = z[f[i]]. Then f[i] = j + 1 is a candidate of C(,,i) for which
z[j + 1] = z[i] thus 2[1..j + 1] is a border of z[1..7]. Assume that z[1..j + 1] is not
the longest border of z[1..i]. Let j'+ 1 be the smallest candidate which is larger than
J + 1 and such that z[1..; 4+ 1] is a border of z[1..i]. Then z[1..j + 1] is the longest
border of z[1..;" + 1] and we have f[j' + 1] = f[i] which means that the loop should
have stop with this test and with j + 1 > f[7]. This is a contradiction.

Thus the algorithm BABA runs as long as f[1..i] is valid, it stops at index i and
returns “f invalid at index ¢” if and only if f is valid up to index ¢ — 1 and is not at
index 7. a

The proof of Theorem 1 becomes then immediate.

Proof:[of Theorem 1] The point 1 (linearity of the algorithm BABA) comes from [4].
The other two points follow from propositions 1 and 2. O
Figures 3 and 4 show two examples.

t 1234567891011 12 symbols candidates valid
z[ilabaababaab a

fl]0011232345 6 7
kli)] 121221212 2 1
abaab a b 7 YES
ab a a 4 YES
a b 2 NO
€ a 1 NO
C 0 YES IF s > 2

Figure 3: The array f[1..11] is a valid border array. The string z[1..11] is the smallest
string for which f[1..11] is a valid border array. Then x[1..11] = abaababaaba has
borders abaaba, aba, a and £ of respective lengths 6, 3, 1 and 0 (L(f,11) = (6,3,1,0)).
Thus the candidates for f[12] are 7, 4, 2 and 1 (C(f,12) = (7,4,2,1)) together with 0
which is always a potential candidate. The values 7 and 4 are valid candidates. The
value 2 is not valid since f[7] = 2 and 1 is not valid because f[4] = 1. The value 0 is a
valid candidate if s > 2 because then k[12] would be equal to 1+ k[f[12—1]+1] = 3.

4 Conclusions

We presented in this article an elegant algorithm that verify, on-line and in linear time,
if an integer array f is a border array of some string on a bounded size alphabet.
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t 12345678910 11 12 symbols candidates valid
z[ilaabaacaaba a

flijo10120123 4 5 7
kli)] 1121131121 1
aab a a C 6 YES
a a b 3 YES
a a 2 YES
€ a 1 NO
d 0 YES IF s > 3

Figure 4: The array f[1..11] is a valid border array. The string z[1..11] is the smallest
string for which f[1..11] is a valid border array. Then z[1..11] = aabaacaabaa has
borders aabaa, aa, a and ¢ of respective lengths 5, 2, 1 and 0 (L(f,11) = (5,2,1,0)).
Thus the candidates for f[12] are 6, 3, 2 and 1 (C'(f,12) = (6, 3,2,1)) together with
0 which is always a potential candidate. The values 6, 3 and 2 are valid candidates.
The value 1 is not valid since f[2] = 1. The value 0 is a valid candidate if s > 3
because then k[12] would be equal to 1 + k[f[12 — 1] + 1] = 4.

In the case where f is a border array, we are also capable to build a string =, on a
minimal size alphabet for which f is the border array.

After studying the case of the “failure function” of the Morris and Pratt string
matching algorithm, it is natural to ask the question if this work can be extended to
the “failure function” of the Knuth, Morris and Pratt string matching algorithm [3].
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