A Recursive Function for Calculating the Number
of Legal Strings of Parentheses and for Calculating
Catalan Numbers

Kirke Bent

Parallel Business Software
29 Pine Street
Chatham, NJ 07928, USA

e-mail: parbzsft@bellatlantic.net

Abstract. This paper discusses the number of legal strings of n pairs of paren-
theses as well as a structure of the set of these strings. As the number of such
strings is known to be the Catalan number, a structure of Catalan numbers is
thereby developed. A recursive function is developed that counts the set and
calculates the Catalan number. The function uses two parameters and is thus
a generalization of Catalan numbers.

Key words: Parenthetical strings, recursive functions, stringology, combina-
torics, generalized Catalan numbers.

1 Introduction

This paper concerns the problem of calculating the number of legal strings of paren-
theses that can be constructed from n pairs of parentheses. This number is known to
be the Catalan number. There is a large literature of Catalan number interpretations
and connections [2, 3, 4, 5, 6, 7]. Stanton and White have a proof of the corre-
spondence between Catalan numbers and legal parenthetical strings[7]. The Catalan

number is defined as
2
C, = < n) + (n+1).

n

The ordinary meaning of “legal strings” of parentheses is intended here: 1) The
strings are conventionally constructed from left to right. 2) At any point in the
string, the number of left parentheses is equal to or greater than the number of right
parentheses. 3) all of the 2n parentheses are used.

For example, C3 = 5; the legal strings of 3 pairs of parentheses are

CCO)) COO) (OO O CO)) aa ()) ().

The paper offers a way to calculate Catalan numbers with a recursive function
and a structure of the strings and the number.

18

A Recursive Function for Calculating the Number of Legal Strings of Parentheses ...

2 Outline

Four areas emerge from consideration of this function:

2.1 A Chart

This is a chart of the construction of the C), legal parenthetical strings composed of
n pairs of parentheses. The number of such strings is an interpretation of Catalan
numbers. The chart can be interpreted as a rooted tree. Evaluation of the function
counts the leaves of the tree.

2.2 A Function

The function, denoted here by B, ,, uses two parameters. The n'" Catalan number,
Ch, is produced by By, 5. The domain of both parameters of B, ,, is the non-negative
integers. In the recursive descent, m takes on values both higher and lower than n.

2.3 A Generalization

This generalization of Catalan numbers is based on the two parameters. It includes
Ch.

2.4 A Structure

This structure of Catalan numbers is suggested by the chart but can be expressed
algebraically.

3 Elaboration

3.1 The Chart

The idea behind the chart is simply writing the legal parenthetical expressions ac-
cording to the definition above.

E.g. (00)

Figure 1: Forming all legal arrangements of 3 pairs of parentheses

19

Proceedings of the Prague Stringology Conference 02

Consider this as a rooted tree. Each edge represents adding a parenthesis. If there
are two edges descending from a vertex, then there is a choice of adding a left or right
parenthesis at that point. By following all paths from the root to a leaf, all legal
expressions have been written. Note that final right parentheses are not needed to
count leaves.

The steps in drawing the chart are:

1. Start at the top with n pairs of parentheses.
2. Stop if there are no more left parentheses.

3. Draw a vertical line downwards. This represents a left parenthesis and “uses”
one. If the number of left parentheses used (before this one was drawn) exceeds
the number of right ones used, draw another line from the same starting point
but to the right and then curving downwards. This represents a right parenthesis
and uses one.

4. Repeat steps 2, 3, and 4 for each end point.

The vertex at the botton of each line drawn represents the parenthetical string as
constructed so far.

These conventions are somewhat arbitrary, as conventions must be, but they result
in a picture that is regular and easy to understand. The chart was helpful in defining
the function and discovering the structure.

3.2 The Function

anl,m+1 + Bn,mfl Zf (n > 0) VAN (m > 0)
Bn,m = Bn—l,m+1 Zf (TL > 0) VAN (m = 0)
1 if (n=0)

Each part of the chart corresponds to a case of the function. Figure 2 relates the
parts of the chart to the cases of the function.

Where two lines descend from a ver
B(n,m)=B(n-1,m+1)+B(n,m-1)
o

Where one line descends from a vel
B(n,m)=B(n-1,m+1)

Where no lines descend from a vere
B(n,m)=1

Figure 2: Relationship between the chart and cases of the function

20

A Recursive Function for Calculating the Number of Legal Strings of Parentheses ...

30

(.21

(1,2)
©20

Figure 3: Parameters of B3, at each vertex

The parameters of the function B, ,, take on different values at different points in
the recursive descent. Figure 3 shows the parameters at each stage for Bs.

Parameter n represents the number of left parentheses that can be used from that
point onward. Parameter m represents the number of additional right parentheses
needed to balance the number of left parentheses already used. Considered construc-
tively, m represents the number of right parentheses that may be written at that
point. When a left parenthesis is written, n is reduced and m is increased. When a
right parenthesis is written, m is reduced.

Of course, once the function is defined, it is freed of any necessary tie to paren-
theses.

If we say it is possible for any recursive function to be simple, then this function
is simple and perhaps more fundamental than the closed form. The closed form is
simpler to write. However, while the notation for “2n choose n” is simple, it implies
more complex ideas. The closed form has multiplication and division operations.
While the comparisons in the recursive functions are obvious and explicitly shown,
there are also comparisons implied in any evaluation of the closed form.

Assuming that it is not possible to do algebra with the recursive function, it
seems less useful than the closed form. However, it is possible to do substitutions.
For example, B,; can be restated as Bss + By, and vice versa. Substitution could
be used to define the function differently, but the way the function was defined above
seems simple and it fits well with the parentheses chart.

B, is far less efficient computationally than the closed form. This will be devel-
oped in the Appendix.

3.3 The Generalization

This function is a generalization of Catalan numbers. The standard Catalan number
Cy, = B, . Table 1 also includes some of the others:

21

Proceedings of the Prague Stringology Conference 02

[M=0] 1] 2] 3] 4[5]

N= 1] 1 1 1 1 1
e 351 14 5 6

S E o[14| 20| 27

5 14 28 48 75 110
14 42 90 165 275 429
42 | 132 297 572 | 1001 | 1638
132 | 429 | 1001 | 2002 | 3640 | 6188
429 | 1430 | 3432 | 7072 | 13260 | 23256
1430 | 4862 | 11934 | 25194 | 48450 | 87210

NSO |WN=O

Table 1: Generalized Catalan Numbers By, ,, for n € [0, 8], m € [0, 5].

3.4 The Structure

The structure can be expressed as:
C1n = Bn—3,3 + 2Cn—1

or as
Cn=DB,_33+2B, 19

The chart for C), can be characterized as having a left lobe and two equal right
lobes. The right lobes are equal both in structure and value. They are also each equal
to C,,_1 in structure and value. Figures 4, 5, and 6 show the structure.

° 3,0
(
o 21
(12)
: 2,0
0,2)1,2
Left lobe (0,3 (0,3
~ ~
Right lobe Right lobe

Figure 4: Structure of C,

In Figure 5, the numeric parameters are replaced by symbolic parameters in terms
of n and m. The chart “grows” from the bottom as n increases. The three lobes will
always have the values B, _33, B, 21, and B,,_2;. These can be put in correspondence
to the ways legal strings of parentheses may start: (((, ((), () (.- This is a basis
of a partition of any set of legal strings.

22

A Recursive Function for Calculating the Number of Legal Strings of Parentheses ...

*n0
(o n-1,1
(| n-2,2 I)n—l .
(n-2,1
()

~—
Right lobe Right lob

Figure 5: Structure of C), contd.

Ics
-~ N

\Hr—/ -
Left lobe Right lobe Right lobe

Figure 6: Structure of Cy or By

Figure 6 emphasizes the nested repetitions of structure. Note that C3 (or Cy_1)
is found twice and Cy (or Cy,_2) is found four times.

The left lobe is different. It starts out smaller than either right lobe and then
becomes larger, perhaps approaching the sum of the two right lobes as n gets large.
The value of the left lobe is B,,_3 3. Here’s a table of the first few values:

n 314 5| 6 7 8
Bhoss| 1| 4|14]48] 165 | 572

Table 2: Values of the left lobe B,_33 for n € [3,8].

These values were recognized by the On-Line Encyclopedia of Integer Sequences
as Sequence A002057, named the Fourth Convolution of Catalan Numbers [5]. This
sequence is not pursued here.

23

Proceedings of the Prague Stringology Conference 02

4 Further Work

1. What are applications or interpretations of the generalized Catalan numbers?

2. There is doubtless something inherent in the problem that is reflected in the
structure, but it is not obvious what. The structure looks natural in terms of
the chart, but the chart is just one picture of one interpretation. Why not two
lobes? Four? Why any?

3. What is the precise behavior of the size of the left lobe?

4. Is B,,_33 the Fourth Convolution of Catalan numbers?

5 Conclusion

Consideration of the set of legal strings of n pairs of parentheses exposes a structure
of this set and of Catalan numbers. The rules for construction of legal strings of
parentheses can be recast from a general statement of principles to particular state-
ments of all the cases. This restatement can be expressed as a chart showing all of
the cases.

Examination of the chart shows the structure of the sets of strings. Given that
the count of legal strings is known to be the Catalan number, the chart exposes a
simple and easily understood structure of Catalan numbers. Interpreting the chart
as a graph, a recursive function B, ,, counts the leaves of the graph (a tree) and
therefore calculates the Catalan number.

Taken together, the chart and the function provide a useful tool for gaining an
intuitive understanding of an important combinatorial number. Developing the func-
tion would be a good problem for students studying recursive functions.

The function B, ,, is interesting in its own right. First, it is remarkably sim-
ple, using only addition, subtraction, and comparison. It should probably should be
considered more fundamental than the closed form which additionally uses multipli-
cation, division, and factorials. Second, the function B, ,, has two parameters and is
thus a generalization of Catalan numbers.

6 Appendix. Computational Complexity and Ef-
ficiency.

The closed form for calculating C), is clearly more efficient than the recursive B, .
However, examining complexity and efficiency can further illuminate the structure
of parenthetical strings and Catalan numbers. The complexity of the closed form is
linear in n while that of B, is exponential.

This section will only treat B, to facilitate comparison with the closed form.
The term “C},” is used here to denote the number, not the method of calculating it.

24

A Recursive Function for Calculating the Number of Legal Strings of Parentheses ...

6.1 Comparison with the closed form.

Even without a precise expression for the complexity of B,, ,,, it is possible to reason
about complexity and do some measurements of it. The reasoning goes like this: 1)
The complexity of B, is greater than the number C,. 2) C, is greater than the
complexity of the closed form. 3) Therefore the complexity of B, is greater than
that of the closed form. (It is much greater.)

The unit counted for the closed form is the number of multiplications. After
canceling common factors in the numerator and the denominator, the closed form
can be expressed as (2n)(2n — 1)...(2n — (n + 2)), calling for n — 2 multiplications,
here called f(n).

The unit counted for B, is the number of executions of the function. In many
architectures these two measures would not be commensurate. However, the sizes of
the complexity numbers dominate any difference. Using C), as a complexity number,
the expression (2n)(2n — 1)...(2n — (n + 2)) expands to a degree n — 1 polynomial in
n, here called g(n).

It can be seen that f(n) is little-oh of g(n) since lim,,_,», f(n)/g(n) = 0. In other
words, f(n) grows more slowly than g(n). In this case it grows much more slowly [8].

The fact that the complexity of B, is greater than the number C), is clear from
the chart. The chart has C), leaves, each contributing 1 to the number of executions.
In addition there are many intermediate nodes above the leaves, so that the sum
of all executions is greater than C,. All this demonstrates that the computational
complexity of the closed form is little-oh of the complexity of B,, .

A numeric measurement of B, is shown in Table 3. (The algorithm based on
B, ;» can be instrumented to count executions by the appropriate placement of “+1”
in the cases of the function.)

n 31 4 5 6 7 8
n—2| 1| 2 3 4 5 6
Bno || 13|36 | 106 | 328 | 1034 | 3485

Table 3: Complexity of the closed form vs. B,, .

6.2 Complexity of different implementations of B, ,,.
6.2.1 “Bottom-up” implementation of a recursive function.

Due to the highly repetitive structure of B, ,,,, results toward the bottom of the chart
are recalculated many times over. To justify this, consider that the tree gets much
wider than it is high. For example, at n = 8 the number of leaves is C),, = 1430.
The longest path from the root to a leaf is 2n — 1. This shows that many of the
computations are towards the bottom.

Blass and Gurevich use the term “bottom-up” to describe the use of precalculated
results to avoid many recalculations [1]. As an example, the following fragment of
pseudo-code expresses the B, ,,, as an algorithm. It avoids recalculation of B, ,, for
m,n € [0, 3].

25

Proceedings of the Prague Stringology Conference 02

The values of T are from Table 1. Note that the cases are not disjoint. The order
of execution resolves ambiguity.
var T = new Array ([1,1,1,1], [1,2,3,4], [2,5,9,14], [5,14,28,48]);
function B(n,m) {

if ((n<4)&&(m<4)) return (T[n][m]);
if (n>0)&&(m>0)) return (B(n-1, m+1) + B(n, m-1));
if (n>0)&&(m==0)) return (B(n-1, m+1));
if (n==0) return (1);

}

Table 4 shows measured complexity for this version.

n 3 4 5 6 7 8
top-down 131 36| 106 | 328 | 1054 | 3485
bottom-up 1 2 5| 13 02 | 212

Table 4: Complexity of top-down vs. bottom up evaluation of By, .

6.2.2 Parallel Processing.

The structure of B, ,, presents both obstacles and opportunities for parallelization.
The word “executions” will be used here the way “processes” and “threads” are often
used.

Dividing the work.

It is easy to divide the function into parts to run on separate processors. Consider
placing a horizontal line on a drawing of the chart such as Figure 4. Horizontal lines
can be drawn at various levels. The point at which the new line intersects a vertical
line marks a place where a separate process can consist of all the executions below the
intersection. The level of the horizontal line would determine the number of parts.
This method would be suitable for a multi-processor with few processors.

Another approach uses the fact that the second case calls for two child evaluations
of the function. One of these could be sent to another processor. This would lead to
many requests for processors at large n.

Latency.

Latency is another important factor in parallelization. “Latency” is used here to
mean the time to initiate and terminate an execution, including passing parameters
and returning results. Since the amount of processing in the function is small, latency
would be very important if the function were distributed over many processors.

A Single Instruction Multiple Data (SIMD) machine with many processors and
low latency would be good here. It would also take advantage of the fact that each
execution of the algorithm would use the same small program. However, in general
the structure of the function would limit its use on machines with large numbers of
processors unless latency was very small.

26

A Recursive Function for Calculating the Number of Legal Strings of Parentheses ...

Inter-process communication.

Since there would be no peer-to-peer communication among executions, an execution
would never be interrupted and suspended in the middle of processing. Network
contention and overhead would both benefit from this characteristic of B, ,. Of
course, there is much passing of parameters and results. This contributes to latency,
as developed above, and would be a significant use of resources.

References

[1]

2]

A. Blass and Y. Gurevich, Algorithms vs. Machines, Bulletin of the European As-
sociation for Theoretical Computer Sciences, Number 77, pp.96-118, June 2002.

R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics: A foundation
for Computer Science, 1 ed., Reading, Mass.: Addison-Wesley, 1988.

P. Hilton and J. Pedersen, Catalan Numbers, Their Generalization, and Their
Uses, The Mathematical Intellegencer, Volume 13, Number 2, pp.64-75, 1991.

P. Hilton, D. Holton, and J. Pedersen, Mathematical Vistas: From a Room with
Many Windows, New York, Springer-Verlag, 2002.

N. Sloane, On-Line Encyclopedia of Integer Sequences, published electronically
at http://www.research.att.com/"njas/sequences/Seis.html, 2002.

R. Stanley, Enumerative Combinatorics Volume 2, New York, Cambridge Uni-
versity Press, 1999.

D. Stanton and D. White, Constructive Combinatorics, New York, Springer-
Verlag, 1986.

G. Thomas and R. Finney, Calculus and Analytic Geometry, 8 ed., Reading,
Mass., Addison-Wesley, 1992, Reprinted with corrections, April 1993.

27

