
A Note on Randomized Algorithm for String

Mathing with Mismathes

Kensuke Baba, Ayumi Shinohara,

Masayuki Takeda, Shunsuke Inenaga, and Setsuo Arikawa

Department of Informatis, Kyushu University 33, Fukuoka 812-8581, Japan

e-mail: fbaba, ayumi, takeda, s-ine, arikawag�i.kyushu-u.a.jp

Abstrat. Atallah et al. [ACD01℄ introdued a randomized algorithm for string

mathing with mismathes, whih utilized fast Fourier transformation (FFT)

to ompute onvolution. It estimates the sore vetor of mathes between text

string and a pattern string, i.e. the vetor obtained when the pattern is slid

along the text, and the number of mathes is ounted for eah position. In this

paper, we simplify the algorithm and give an exat analysis of the variane of

the estimator.
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1 Introdution

Let T = t

1

; : : : ; t

n

be a text string and P = p

1

; : : : ; p

m

be a pattern string over

an alphabet �. String mathing problem is to �nd all ourrenes of the pattern

P in the text T . Approximate string mathing problem is to �nd all ourrenes

of small variations of the original pattern P in the text T . Substitution, inser-

tion, and deletion operations are often allowed to introdue the variations. In this

paper, we allow the substitution operation only. The derived problem is usually

alled string mathing with mismathes. It is essentially to ompute the sore ve-

tor C(T; P ) = (

1

; : : : ; 

n�m+1

) between T and P , where eah 

i

ounts the number

of mathes between the substring t

i

; : : : ; t

i+m�1

of the text T and the pattern P .

If 

i

= m, the pattern exatly ours at position i in the text. Fig. 1 shows an

example of the sore vetor. A reasonable amount of e�ort has been paid for this

problem [Abr87, BYG92, BYP96, FP74, Kar93℄. Refer the textbooks [CR94, Gus97℄

to know the history and various results.

Reently, Atallah et al. [ACD01℄ introdued a randomized algorithm of Monte-

Carlo type whih returns an estimation of the sore vetor C(T; P ). The estimation

is performed by averaging independent equally distributed estimates. Let k be the

number of ramdomly sampled estimations, then the time omplexity is O(kn logm)

by utilizing a fast Fourier transformation (FFT). They showed that the expeted

value of the estimation is equal to the sore vetor, and that the variane is bounded

by (m� 

i

)

2

=k.

In this paper, we give a slight simpli�ation of their algorithm. Moreover, we

analyze the variane of the estimator exatly.
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Figure 1: Sore vetor between the text ababbab and the pattern abba.

2 Preliminaries

Let N be the set of non-negative integers. Let � be a �nite alphabet. An element of

�

�

is alled a string. The length of a string w is denoted by jwj. The empty string is

denoted by ", that is, j"j = 0. We denote the ardinality of a set S by jSj or #S.

We de�ne a funtion Æ from �� � to f0; 1g by

Æ(a; b) =

�

1 if a = b,

0 if a 6= b.

For a text string T = t

1

t

2

: : : t

n

and a pattern string P = p

1

p

2

: : : p

m

, the sore

vetor of mathes between T and P is de�ned as C(T; P ) = (

1

; 

2

; : : : ; 

n�m+1

), where



i

=

P

m

j=1

Æ(t

i+j�1

; p

j

). That is, 

i

is the number of mathes between the text and

the pattern when the �rst letter of the pattern in positioned in front of the ith letter

of the string.

3 Deterministi Algorithm

In this setion, we introdue a deterministi algorithm to ompute the sore vetor

for given text T and pattern P . Although it might not be pratial for large alphabet,

it will be a base for the randomized algorithm explored in the next setion.

3.1 Binary Alphabet Case

We �rst onsider a binary alphabet � = fa; bg. We de�ne a funtion  : �! f�1; 1g

by  (a) = 1 and  (b) = �1. By using  , we onvert the strings T and P into the

sequenes of integers as follows.

 (T ) =  (t

1

);  (t

2

); : : : : : : : : : ;  (t

n

);

 (P ) =  (p

1

);  (p

2

); : : : ;  (p

m

):

Let A

 

(T; P ) = (a

 

1

; a

 

2

; : : : ; a

 

n�m+1

) where a

 

i

=

m

X

j=1

 (t

i+j�1

) �  (p

j

).
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Lemma 1 For any 1 � i � n�m + 1, 

i

= (a

 

i

+m)=2.

Proof. Sine 

i

= #fj j t

i+j�1

= p

j

; 1 � j � mg, we have a

 

i

= #fj j t

i+j�1

=

p

j

; 1 � j � mg �#fj j t

i+j�1

6= p

j

; 1 � j � mg = 

i

� (m � 

i

) = 2

i

�m. Thus



i

= (a

 

i

+m)=2. 2

The above lemma implies that we have only to ompute A

 

(T; P ) to get the sore

vetor C(T; P ). Sine the sequene A

 

(T; P ) is the onvolution of  (T ) with the

reverse of  (P ), we an alulate all the a

i

's simultaneously by the use of fast Fourier

transform (FFT) in O(n logm) time as follows. As is stated in [ACD01℄, we addition-

ally apply the standard tehnique [CR94℄ of partitioning the text into overlapping

hunks of size (1 + �)m eah, and then proessing eah hunk separately. Proessing

one hunk gives us �m omponents of C. Sine we have n=(�m) hunks and eah

hunk an be omputed in O((1 + �)m log((1 + �)m)) by FFT, the total time om-

plexity is

n

�m

�O((1 + �)m log((1 + �)m)) = O

�

(1+�)

�

n log((1 + �)m)

�

= O(n logm)

by hoosing � = O(m).

Theorem 1 For a binary alphabet, the sore vetor C an be exatly omputed in

O(n logm) time.

3.2 General Case

We now onsider general ase j�j > 2. Let 	

�

be the set of all mappings from � to

f�1; 1g. Remark that j	

�

j = 2

j�j

. We abbreviate 	

�

with 	 when � is lear from

the ontext. The next lemma is obvious.

Lemma 2 For any  2 	

�

and any a; b 2 �,

 (a) �  (b) =

�

1 if  (a) =  (b),

-1 if  (a) 6=  (b).

Lemma 3 For any a; b 2 �,

1

j	j

X

 2	

 (a) �  (b) = Æ(a; b):

Proof. In ase of a = b, then  (a) =  (b) for any  2 	. Therefore  (a) �  (b) = 1

for any  by Lemma 2, and the sum

P

 2	

 (a) �  (b) equals to the ardinality of 	.

Thus, the left side of the equation is unity.

To prove the lemma in ase of a 6= b, we show a more general proposition:

X

 2	

 (d

1

) � � � � �  (d

n

) �  (b) = 0 if d

1

6= b; � � � ; d

n

6= b (n � 0):

By the assumption that b is distint from d

1

; � � � ; d

n

,

X

 2	

 (d

1

) � � � � �  (d

n

) �  (b)

=

X

 (b)=1; 2	

 (d

1

) � � � � �  (d

n

) � 1 +

X

 (b)=�1; 2	

 (d

1

) � � � � �  (d

n

) � (�1)

= 0:

Thus, by the proposition for n = 1, the left side of the equation is zero. 2
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Theorem 2 For any 1 � i � m� n+ 1,



i

=

1

j	j

X

 2	

a

 

i

: (1)

Proof. By the de�nition of a

 

i

and Lemma 3, the right side of the equation an be

hanged as follows.

1

j	j

X

 2	

a

 

i

=

1

j	j

X

 2	

m

X

j=1

 (t

i+j�1

) �  (p

j

)

=

m

X

j=1

1

j	j

X

 2	

 (t

i+j�1

) �  (p

j

)

=

m

X

j=1

Æ(t

i+j�1

; p

j

):

Sine the last formula is the de�nition of 

i

, the theorem is proved. 2

Theorem 3 C(T; P ) an be exatly omputed in O(2

j�j

n logm) time.

Proof. By Theorem 2 

i

is the mean of a

 

i

for every  2 	

�

, therefore C(T; P )

is obtained by omputing all A

 

(T; P ). Sine eah A

 

(T; P ) an be omputed in

O(n logm) time, we an alulate C(T; P ) in O(2

j�j

n logm) time. 2

We note that if the alphabet � is in�nite, by splitting the text in hunks of length

O(m) to be dealt with independently ensures it will work with an alphabet size O(m),

so that C(T; P ) an be exatly omputed in O(2

O(m)

n logm).

4 Randomized Algorithm

A shortoming of the deterministi algorithm in the last setion is that the running

time is exponential with respet to the size of alphabet. It is not pratial for large

alphabet. In this setion, we propose a randomized algorithm whih was inspired by

Atallah et al. [ACD01℄.

Let us notied that Theorem 2 an be interpreted as follows. Eah 

i

is the

mean of random variable X

i

=

P

m

j=1

 (t

i+j�1

) �  (p

j

), assuming that  is drawn

uniformly randomly from 	. The observation leads us to the following randomized

algorithm. Instead of omputing all vetors A

 

(T; P ) = (a

 

1

; a

 

2

; : : : ; a

 

n�m+1

) where

a

 

i

=

P

m

j=1

 (t

i+j�1

) �  (p

j

) to average them, we ompute only k samples of them

for randomly hosen  

1

; : : : ;  

k

2 	. Sine the expeted value of X

i

equals to 

i

, it

will give a good estimation for large enough k. We will give a formal proof of it, and

exatly analyze the variane of X

i

in the sequel. Fig. 2 illustrates the ore part of the

algorithm for the basi ase n = (1 + �)m.

We now analyze the mean and the variane of the estimator ̂

i

. Sine all the

random variable ̂

i

are de�ned in a similar way, we generially onsider the random

variable

ŝ =

1

k

k

X

`=1

m

X

j=1

 (t

j

) �  (p

j

)
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Proedure EstimateSore

Input: a text T = t

1

: : : t

(1+�)m

and a pattern P = p

1

: : : p

m

in �

�

.

Output: an estimate for the sore vetor C(T; P ).

for ` := 1 to k do begin

randomly and uniformly selet a  

`

from 	

�

.

Let T

`

=  

`

(T ). Note that T

`

is a sequene over f�1; 1g of length (1 + �)m.

Let P

`

be the onatenation of  

`

(P ) with trailing �m zeros.

ompute the vetor C

`

as the onvolution of T

`

with the reverse of P

`

by FFT.

end

ompute the vetor

^

C =

1

k

k

X

`=1

C

`

and output it as an estimate of C(T; P ).

Figure 2: Randomized Algorithm

where the t

j

's and the p

j

's are �xed and mapping  's are independently and uniformly

seleted from 	

�

. The de�nition implies that ŝ is the mean of k random variables

whih are drawn from independent and idential distribution. The random variable

an be de�ned by

s =

m

X

j=1

 (t

j

) �  (p

j

);

and the mean E(ŝ) and variane V (ŝ) are

E(ŝ) = E(s) and V (ŝ) =

V (s)

k

:

The number  of mathes between T = t

1

: : : t

m

and P = p

1

: : : p

m

is

 =

m

X

j=1

Æ(t

j

; p

j

):

Lemma 4 The mean of ŝ is equal to .

Proof. By Lemma 3,

E(ŝ) = E(s) =

1

j	j

X

 2	

s

=

1

j	j

X

 2	

m

X

j=1

 (t

j

) �  (p

j

)

=

m

X

j=1

1

j	j

X

 2	

 (t

j

) �  (p

j

)

=

m

X

j=1

Æ(t

j

; p

j

):

Thus, the mean of ŝ is . 2

13



Proeedings of the Prague Stringology Conferene '02

In order to analyze the variane of s aurately, we introdue the following funtion

�

T;P

: � � � ! N depending on text T = t

1

: : : t

m

and pattern P = p

1

: : : p

m

, whih

give a statistis of T and P .

�

T;P

(a; b) = #fj j t

j

= a and p

j

= b; 1 � j � mg

For example, let T = aaba and P = abbba. Then �

T;P

(a; b) = 2, �

T;P

(a; a) =

�

T;P

(b; b) = �

T;P

(; a) = 1, and the others are zero. We omit the subsription T; P of

�

T;P

in the sequel. In addition, we use the following expression.

�(a; b) = �(a; b) + �(b; a):

The next lemma is obvious from the de�nition.

Lemma 5

X

(a;b)2���

�(a; b) =

1

2

X

(a;b)2���

�(a; b) = m.

The next lemma gives the exat variane of ŝ, in terms of �.

Lemma 6 The variane of ŝ is

V (ŝ) =

1

k

X

a6=b

�

�(a; b)

2

+ �(a; b) � �(b; a)

�

:

Proof. Sine the mean of s equals to  by Lemma 4,

V (ŝ) =

1

k

V (s) =

1

k

1

j	j

X

 2	

(s� )

2

:

By the de�nition of �,

s =

X

(a;b)2���

 (a) �  (b) � �(a; b)

=

X

a=b

�(a; b) +

X

a6=b

 (a) �  (b) � �(a; b); and

 =

X

a=b

�(a; b):

Therefore,

1

j	j

X

 2	

(s� )

2

=

1

j	j

X

 2	

  

X

a=b

�(a; b) +

X

a6=b

 (a) �  (b) � �(a; b)

!

�

X

a=b

�(a; b)

!

2

=

1

j	j

X

 2	

 

X

a6=b

 (a) �  (b) � �(a; b)

!

2

=

1

j	j

X

 2	

 

X

a6=b

 (a) �  (b) � �(a; b)

! 

X

a

0

6=b

0

 (a

0

) �  (b

0

) � �(a

0

; b

0

)

!

=

1

j	j

X

 2	

X

a6=b

X

a

0

6=b

0

 (a) �  (b) � �(a; b) �  (a

0

) �  (b

0

) � �(a

0

; b

0

)

=

X

a6=b

 

�(a; b) �

X

a

0

6=b

0

�(a

0

; b

0

)

1

j	j

X

 2	

 (a) �  (b) �  (a

0

) �  (b

0

)

!

:

14
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Let us take �(a; b; a

0

; b

0

) =

1

j	j

X

 2	

 (a) �  (b) �  (a

0

) �  (b

0

), and show that

�(a; b; a

0

; b

0

) =

�

1 if either a = a

0

and b = b

0

, or a = b

0

and a

0

= b,

0 otherwise,

by the ase analysis whether there exists a distint harater from the others in

a; b; a

0

; b

0

. If there exists suh a harater, then �(a; b; a

0

; b

0

) = 0 by the proof of

Lemma 3. If there does not exist suh a harater, then we have either a = a

0

and

b = b

0

, or a = b

0

and b = a

0

by the assumption that both a 6= b and a

0

6= b

0

. Then,

by Lemma 3 and the fat that  (a)

2

= 1 for any  2 	 and any a 2 � sine

 (a) 2 f�1; 1g,

�(a; b; a

0

; b

0

) =

1

j	j

X

 2	

 (a)

2

�  (b)

2

= 1:

Thus,

V (ŝ) =

1

k

X

a6=b

�(a; b) (�(a; b) + �(b; a))

=

1

k

X

a6=b

�

�(a; b)

2

+ �(a; b) � �(b; a)

�

:

2

Moreover, by the de�nition of � , we have

X

a6=b

�

�(a; b)

2

+ �(a; b) � �(b; a)

�

=

1

2

X

a6=b

�

�(a; b)

2

+ 2�(a; b) � �(b; a) + �(b; a)

2

�

=

1

2

X

a6=b

(�(a; b) + �(b; a))

2

=

1

2

X

a6=b

�(a; b)

2

=

X

a<b

�(a; b)

2

:

Therefore, the variane an be exatly restated in term of � as follows, whih might

be more intuitive.

Theorem 4 The variane of ŝ is

V (ŝ) =

1

k

X

a<b

�(a; b)

2

:

Remind that �(a; b) represented the number of positions j = 1; : : : ; m in T and

P , suh that (t

j

; p

j

) is either (a; b) or (b; a). If T exatly mathes P , then V (ŝ) = 0,

whih implies that the estimation is always m, without any error. On the other hand,

sine

P

a<b

�(a; b) = m � , the variane V (ŝ) is maximized for inputs whih have

no math and are onstruted by only two haraters, for example, T = aaaaaa,

P = bbbbbb, and T = aaabba, P = bbbaab.

We now state the bound of the variane of ŝ in terms of m and , that exatly �ts

to the one proved by Atallah et al. [ACD01℄.
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Lemma 7 The variane of ŝ is bounded as follows.

V (ŝ) �

(m� )

2

k

:

Proof. By Lemma 5,

m�  =

X

(a;b)2���

�(a; b)�

X

a=b

�(a; b)

=

X

a6=b

�(a; b)

=

1

2

X

a6=b

�(a; b)

=

X

a<b

�(a; b):

Therefore, by Theorem 4,

(m� )

2

k

� V (ŝ) =

1

k

 

X

a<b

�(a; b)

!

2

�

1

k

X

a<b

�(a; b)

2

=

1

k

X

a<b

 

�(a; b) �

X

a

0

<b

0

�

�(a

0

; b

0

)

!

;

where

X

a

0

<b

0

�

�(a

0

; b

0

) expresses the sum of �(a

0

; b

0

) exept for the two ases a

0

= a; b

0

= b

and a

0

= b; b

0

= a. Sine �(a; b) � 0 for any a and b, the last formula is not less than

zero. 2

We now have the main theorem.

Theorem 5 Algorithm EstimateSore runs in O(kn logm) time. The mean of

the estimation equals to the sore vetor C, and the variane of eah entry is bounded

by (m� 

i

)

2

=k.

5 Conlusion

We gave a randomized algorithm for string mathing with mismathes, whih an

be regarded as a slight simpli�ation of the one due to Atallah et al. [ACD01℄. For

omparison, we give a brief desription of their algorithm. It treats the set 	

0

of all

mappings from � to f0; 1; : : : ; j�j � 1g, and the basi equation is



i

=

1

j	

0

j

X

 2	

0

m

X

j=1

!

 (t

i+j�1

)� (p

j

)

; (2)

where ! is a primitive j�jth root of unity. When j�j = 2, we know ! = �1, and that

the equation (2) diretly orresponds to the equation (1) in ours. The di�erene is

how to treat general alphabet j�j > 2. In our algorithm, the onverted sequene  (T )

16
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is simply over f�1; 1g, while in their algorithm  (T ) is over f1; !; !

2

; : : : ; !

j�j�1

g that

are omplex numbers. When omputing the onvolution by FFT, the omputation of

the former will be muh simpler (and possibly faster) than the latter. From the view

point of the preision of the numerial alulations, the former might be preferable to

the latter, although we have not yet studied expliitly. Moreover, this simpli�ation

enabled us to reah the exat estimation of the variane (Theorem 4), by fairly prim-

itive disussion. An interesting point is that the variane is still independent from

the size of alphabet, although we map � into f�1; 1g, instead of f0; 1; : : : ; j�j � 1g.

In their paper [ACD01℄, they onsidered various extensions, suh as string math-

ing with lasses, lass omponents, \never math" and \always math" symbols,

weighted ase, and higher dimension arrays. We think our simpli�ation will be

valid without any diÆulty for all those extensions, although we have not ompletely

veri�ed them yet.
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