Image Recognition Using Finite Automata

Tomas Skopal, Vaclav Snasel, Michal Kratky

Department of Computer Science
VSB-Technical University Ostrava
17. listopadu 15, 708 33 Ostrava
Czech Republic

e-mail: {tomas.skopal, vaclav.snasel, michal.kratky}@vsb.cz

Abstract. In this paper we introduce an idea of image recognition using con-
ventional (single-dimensional) finite automata. This approach could be an el-
egant alternative to complicated solutions based on two-dimensional languages
and two-dimensional automata. In consequence, this method could be generally
extended to the context of higher-dimensional languages beyond the scope of
image recognition.

1 Introduction

Image recognition recently became an object of interest for theory of automata. The
picture, a rectangular raster, can be considered as a sentence of a two-dimensional
language where the pixels of picture are characters of a finite alphabet.

It is obvious that sentences of two or more-dimensional language cannot be rec-
ognized by “conventional” automata. Conventional automaton takes the characters
from the input one by one as they appear in a single-dimension sentence. On the
other side, two-dimensional sentence processing (e.g. picture) is not so unambiguous,
there exist four directions in which the sentence can be processed in each step — left,
right, upwards, downwards. There were several two-dimensional automata designed,
e.g. 4-way finite-state automata [BHG7].

Our solution tries to exploit the existing well-established area of “conventional”
automata together with the transformation of the two-dimensional language into a
single-dimensional one. The transformation of a picture (or two-dimensional sen-
tence) consists of space linearization. This means that the pixels of a picture are
linearly ordered and the resultant ordering along with the original picture define the
appropriate single-dimensional sentence. The linear order is performed using a space
filling curve. In this paper we propose certain curves which were proved to be the
good space-describing curves in many applications (especially in data storage and
retrieval). However, the quality of the curves may differ in our case and therefore we
refer to [SKS02] where we discuss some general properties of space filling curves.

Once we have chosen the curve for language description we must construct an
automaton that recognizes a given picture in its “flat shape”. However, none of the
space filling curves describe the space (and picture) perfectly, some distortion of the
picture recognition must be taken into account. This seeming drawback can turn over

88



Image Recognition Using Finite Automata

to an advantage if we realize that the measure of recognition distortion may represent
stmilarity of the recognized picture to the prospective pattern.

Automaton construction for recognition of the linearized picture is based on the
Levenshtein DFA where the Levenshtein metric (edit distance) serves as the measure
for the allowed picture distortion.

2 Two-dimensional Languages

Informally, a two-dimensional string is called a picture and is defined as a rectangular
array of symbols taken from finite alphabet ¥. A two-dimensional language (e.g.
picture language) is then a set of pictures.

A generalization of formal languages to two dimensions is possible in different
ways, and several formal models to recognize or generate two-dimensional objects
have been proposed in the literature (see [KM1, KM2, LMNO98]). These approaches
were initially motivated by problems arising in the framework of pattern recognition
and image processing.

Definition [RS97] A two-dimensional string (e.g. picture) over ¥ is a two-
dimensional rectangular array of elements from . The set of all two-dimensional
strings over ¥ is denoted as ¥X**. A two-dimensional language over ¥ is a subset of
YR,

Given a picture p € ¥** [1(p) denotes the number of rows and l5(p) denotes the
number of columns of p.

The pair (I;(p), [2(p)) is called the size of the picture p. The set of all pictures over ¥
of size (m,n), with m,n > 0 will be indicated as ¥™*". Furthermore, if 1 < i < [;(p)
and 1 < j < ly(p), then p(i, j) (or equivalently p; ;) denotes the symbol in picture p
on coordinates (i, j).

Two-dimensional languages, or picture languages, are an interesting generalization
of the standard languages of computer science. Rather than one-dimensional strings,
we consider two-dimensional arrays of symbols over a finite alphabet. These arrays
can then be accepted or rejected by various types of automata. The introduction of
two-dimensional automata brought a new sort of automata on the stage, with its own
huge theoretical background.

3 Another Approach

Our approach is to reuse the existing traditional (single-dimensional) automata (lan-
guages respectively) and simplify the automaton construction problem. The most
important thing is to transform the two-dimensional language (pictures) into one-
dimensional strings. This can be done using space filling curves. The consecutive
automaton construction depends on the properties of space filling curve we have cho-
sen.

89



Proceedings of the Prague Stringology Conference 02

3.1 Space Filling Curves

We want to transform the two-dimensional string over ¥ into the one-dimensional
string over ¥. The two-dimensional string over ¥ is a two-dimensional rectangle array
of elements of 3. We can look at the array as a two dimensional space Q2 = D; x D,
where the cardinality of domain D; (| Dy|) is equal to the rows count of the array and
| Dy| is equal to the columns count. The tuple (point) with coordinates (column, row)
within the space will have a value in X.

Many space filling curves have been developed, for example C-curve, Z-curve or
Hilbert curve ([Ma99]). For deeper acquaintance with the topic of general space filling
curves we refer to the comprehensive monography by Hans Sagan [Sa94].

The usage of the curves isn’t in two-dimensional space only, but the curves fill any
vector space with arbitrary dimension. It is possible to use the curves for transforma-
tion of the n-dimensional string over ¥ into the one-dimensional string over . We
can see C-curve, Hilbert curve, and Z-curve filling the two dimensional space 8 x 8 in
Figure 1.

L e 2z,
IEIRIR NN — '
“f “
| = 7 [

———
—
I
—~——
I
——

a) b) C)

Figure 1: The space filling curves. a) C-curve, b) Hilbert curve, and c) Z-curve.

We can consider several curves, but it is convenient to choose the curve that
is highly self-similar ([Ma99], [SKS02]) — informally, it means that points that are
geometrically close, would have to lie close on the curve. For example, the Z-curve is
used for indexing of multidimensional data with UB-trees ([Ba97]). In the following
section we will describe the Z-curve as an example of space filling curve.

3.2 Z-address

Definition 1 (Z-address)
Let 2 be an n-dimensional space. For tuple O €  with n attributes and binary
representation attribute value A; = A; s_1A4;5-2...A;p, where 1 <7 <n. Then

s—1 n
Z(O) - Z ZAi,ijn-H_l

j=0 i=1

is the Z-address function for space €.

90



Image Recognition Using Finite Automata

The attributes of tuple define the coordinates of point representing tuple in the
space (2. If we are calculating the Z-address for all points of n-dimensional space €2
and order the points according their Z-address value, we get the Z-curve filling the
entire space ) (see Figure 2a). For calculation of tuple Z-address exists algorithm
with linear complexity - so called bit interleaving algorithm (see bellow).

Figure 2: a) The two-dimensional space (image) 8 x 8 filled by Z-curve. b) Picture
in image interleaved by the Z-curve.

Z-address calculation example

We see the calculation of Z-address according bit interleaving algorithm for point
(6,13) in two-dimensional space in Figure 3. Numbers 6 and 13 have the binary
form 0110 and 1101 respectively. We obtain the coordinate values as four places bit
strings. Maximal values for four places binary number is 16. The domains D; of both
attribute are sets {0,1, ..., 14,15}, point lies in two-dimensional space 16 x 16. The
result point Z-address is then 10110110 (182 decimal).

L0101/ 1,04 {1/ 0/1f)O)1) 1 0f }1/1 01|01/ 1 |Of }1/1 0)21})0O|1/10

1110 1//0//1 1/0/1]/1]
a) b) c) d)

17170101100 {11010 110} {110 1}JO/1/1/O}f {11 0/1]j0/1/10
0

1/0/l1//1//0//1]71 1/0/1/1/0/1]1] 0
e) f) g) h)

Figure 3: The Z-address calculation according to bit interleaving algorithm for point
(6,13) in two-dimensional space 16 x 16.

91



Proceedings of the Prague Stringology Conference 02

It is possible to go through the entire space passing upon Z-curve. We interleave a
picture (the two-dimensional string) over X by Z-curve and we recognize the picture
by the “classical” one-dimensional finite automata (e.g. see Figure 2b). The automata
construction of the picture recognition is outlined in the next section.

3.3 Automaton Construction

The automaton will recognize a square picture of size  x y within an image of a
greater size (see Figure 2b).

Construction
The automaton type is well-known NDFA for matching patterns with %k differences
— in other words, it is an automaton for approximate string matching using Leven-
shtein metric. The construction takes as a parameter the pattern sentence (picture
to be recognized) and a Levenshtein distance threshold which defines the maximal
tolerance value of the above mentioned picture distortion. For detailed information
on construction of the Levenshtein automata see [Ho96].

The Levenshtein distance threshold is computed as the minimal distance of the
pattern picture to an input picture when the correct input is still recognizable. More
clearly, the correct input picture may appear on any position in the image and the
automaton must recognize the picture on this position. However, the threshold value
may cause that they can be recognized also incorrect pictures. This imprecise be-
haviour could serve as a similarity recognition because the recognized picture is always
within the Levenshtein distance threshold which guarantees only a limited number of
differences between the pattern picture and the input picture. Pictures that are close
(in terms of Levenshtein distance) could be considered as similar to each other.

In following we will focus on measuring of the pattern picture and input picture
using Levenshtein metric.

3.3.1 What is the Levenshtein Distance?

Levenshtein distance (LD) is a measure of the similarity between two strings, which
we will refer to as the source string (s) and the target string (¢). The distance is the
number of deletions, insertions, or substitutions required to transform s into ¢. For
example,

If s is "test" and ¢ is "test", then LD(s,t) = 0, because no transformations are
needed. The strings are already identical.

If sis "test" and ¢ is "tent", then LD(s,t) = 1, because one substitution (change
“s” to “n”) is sufficient to transform s into t. The greater the Levenshtein distance,
the more different the strings are.

Levenshtein distance is named after the Russian scientist Vladimir Levenshtein,
who devised the algorithm in 1965 [Le66]. If you can’t spell or pronounce Levenshtein,
the metric is also sometimes called edit distance.

The Levenshtein distance algorithm (based on dynamic programming) has been
used in:

e Spell checking

e Speech recognition

92



Image Recognition Using Finite Automata

e DNA analysis
e Plagiarism detection

The Algorithm — step description

1. Set n to be the length of s.
Set m to be the length of t.
If n = 0, return m and exit.
If m = 0, return n and exit.
Construct a matrix containing 0...m rows and 0...n columns.

2. Initialize the first row to 0...n.
Initialize the first column to 0...m.

3. Examine each character of s (i from 1 to n).
4. Examine each character of ¢ (j from 1 to m).

5. If s[i] equals t[j], the cost is 0.
If s[i] doesn’t equal ¢[j], the cost is 1.

6. Set cell d[i,j] of the matrix equal to the minimum of: a. The cell immediately
above plus 1: d[i — 1, j] + 1.
b. The cell immediately to the left plus 1: d[i,j — 1] + 1.
c. The cell diagonally above and to the left plus the cost: d[i — 1,5 — 1] + cost.

7. After the iteration steps (3, 4, 5, 6) are complete, the distance is found in cell
d[n, m].

3.4 Examples

As we have said earlier, the Levenshtein threshold value is computed as a maximum
distance of the pattern picture and the correct input picture on any position in the
image being recognized. In Figure 4 are depicted three examples of pictures (sized
3 x 3) in images (sized 8 x 8) and its distances to pattern pictures.

Note that the pixel values are characters from a finite alphabet. The numbers
next to the pixels are the character identifiers. The gaps denoting those pixels of
image that are not pixels of the picture are represented with appropriate characters
but in our examples, for simplicity and clarity, the gap is represented with a special
character that is not contained in the alphabet ¥. This special character ensures the
worst matching case, thus the real distance computations will be always smaller or
equal.

3.5 Extension to Multidimensional Languages

Because the space filling curve remains single-dimensional even for multidimensional
spaces, we can extend the scope of two-dimensional languages to the multidimen-
sional languages without the need of changing the automaton construction. Then,
multidimensional sentences can be constructed simply by extending the language with
additional coordinates.

93



Proceedings of the Prague Stringology Conference 02

—
e
=
-9

——

q‘
99 —
L

&
\
|

—<\

——

(a) (b) (c)

( a) Pattern picture
0,0,0,0,0,0,0,0,0,

Recognized picture
o, 0,0, 5 gaps e,0,0, 5 gaps 0,0,0,

Levenshtein distance: 10

(b) Pattern picture
0,0,0,0,0,0.0.0.0,

Recognized picture
e, 0 16 gaps 0,0,0,0,0,27::0, 17 gaps o,

Levenshtein distance: 38

(C Pattern picture
0,0,0.0,0.0.0.0,0,

Recognized picture
o, 5 gaps ®, 192p®; 2gaps @, @, 4gaps ©@;0,0; 0,

Levenshtein distance: 15

Figure 4: Measuring the Levenshtein distance on pictures.

In general, we can say that the imprecision caused by the Levenshtein distance
threshold will increase with increasing dimension. This fact arises from the behaviour
of the space filling curves in high-dimensional vector spaces. The other factor is the
relation of sentence size to space size. The longer sentences and smaller sentence/space
size ratio, the lower imprecision.

4 Conclusions

In this paper we have proposed an alternative solution of image recognition and even
multidimensional language recognition. This method is based on space filling curves
and Levenshtein automaton construction. The interesting property of this approach
is an ability of similarity recognition.

94



Image Recognition Using Finite Automata

References

[Ba97]

[BH67]

[Ho96]

[KM1]

[KM?2]

[LMNOS]

[RS97]

[Le66]

[Ma99]

[Sa94]
[SKS02]

Bayer R. The Universal B-Tree for multidimensional indexing: General
Concepts. In: Proc. Of World-Wide Computing and its Applications 97
(WWCA 97). Tsukuba, Japan, 1997.

M.Blum, C.Hewitt. Automata on a 2-dimensional tape, 8th IEEE Symp.
on Switching and Automata Theory, 1967, pp. 155-160

J.Holub. Reduced Nondeterministic Finite Automata for Approximate
String Matching, Proceedings of the Prague Stringologic Club Workshop,
1996

J.Kari, C.Moore. Rectangles and Squares Recognized by Two-dimensio-
nal Automata, submitted, 2002

J.Kari, C.Moore. New results on alternating and non-deterministic two-
dimensional finite-state automata, In: Proc. of the Symposium on Theo-
retical Aspects of Computer Science (STACS), LNCS, 2001.

K.Lindgren, C.Moore, M.Nordahl. Complexity of Two-dimensional Pat-
terns, In: Journal of Statistical Physics 91(5-6) (1998) 909-951.

D. Giammarresi, A. Restivo. Two-Dimensional Languages, In: Hand-
book of Formal Languages, vol 3, G. Rowzenberg and A. Salomaa eds,
Springer-Verlag, 1997, chapter 4, 215-267.

V.I.Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals, Soviet Physics-Doklady 10 (1966), 707-710.

Markl, V.: Mistral: Processing Relational Queries using a Multidimen-
stonal Access Technique, Ph.D. thesis, Technical University Munchen,
http://mistral.in.tum.de/results/publications/Mar99.pdf, 1999

Sagan H. Space-Filling Curves, Springer-Verlag, 1994

Skopal T., Kratky M., Snasel V.: Properties of Space Filling Curves And
Usage With UB-trees. Submitted to MIS 2002.

95



