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Abstrat. In this paper we introdue an idea of image reognition using on-

ventional (single-dimensional) �nite automata. This approah ould be an el-

egant alternative to ompliated solutions based on two-dimensional languages

and two-dimensional automata. In onsequene, this method ould be generally

extended to the ontext of higher-dimensional languages beyond the sope of

image reognition.

1 Introdution

Image reognition reently beame an objet of interest for theory of automata. The

piture, a retangular raster, an be onsidered as a sentene of a two-dimensional

language where the pixels of piture are haraters of a �nite alphabet.

It is obvious that sentenes of two or more-dimensional language annot be re-

ognized by \onventional" automata. Conventional automaton takes the haraters

from the input one by one as they appear in a single-dimension sentene. On the

other side, two-dimensional sentene proessing (e.g. piture) is not so unambiguous,

there exist four diretions in whih the sentene an be proessed in eah step { left,

right, upwards, downwards. There were several two-dimensional automata designed,

e.g. 4-way �nite-state automata [BH67℄.

Our solution tries to exploit the existing well-established area of \onventional"

automata together with the transformation of the two-dimensional language into a

single-dimensional one. The transformation of a piture (or two-dimensional sen-

tene) onsists of spae linearization. This means that the pixels of a piture are

linearly ordered and the resultant ordering along with the original piture de�ne the

appropriate single-dimensional sentene. The linear order is performed using a spae

�lling urve. In this paper we propose ertain urves whih were proved to be the

good spae-desribing urves in many appliations (espeially in data storage and

retrieval). However, the quality of the urves may di�er in our ase and therefore we

refer to [SKS02℄ where we disuss some general properties of spae �lling urves.

One we have hosen the urve for language desription we must onstrut an

automaton that reognizes a given piture in its \at shape". However, none of the

spae �lling urves desribe the spae (and piture) perfetly, some distortion of the

piture reognition must be taken into aount. This seeming drawbak an turn over
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to an advantage if we realize that the measure of reognition distortion may represent

similarity of the reognized piture to the prospetive pattern.

Automaton onstrution for reognition of the linearized piture is based on the

Levenshtein DFA where the Levenshtein metri (edit distane) serves as the measure

for the allowed piture distortion.

2 Two-dimensional Languages

Informally, a two-dimensional string is alled a piture and is de�ned as a retangular

array of symbols taken from �nite alphabet �. A two-dimensional language (e.g.

piture language) is then a set of pitures.

A generalization of formal languages to two dimensions is possible in di�erent

ways, and several formal models to reognize or generate two-dimensional objets

have been proposed in the literature (see [KM1, KM2, LMN98℄). These approahes

were initially motivated by problems arising in the framework of pattern reognition

and image proessing.

De�nition [RS97℄ A two-dimensional string (e.g. piture) over � is a two-

dimensional retangular array of elements from �. The set of all two-dimensional

strings over � is denoted as �

��

. A two-dimensional language over � is a subset of

�

��

.

Given a piture p 2 �

��

, l

1

(p) denotes the number of rows and l

2

(p) denotes the

number of olumns of p.

The pair (l

1

(p); l

2

(p)) is alled the size of the piture p. The set of all pitures over �

of size (m;n), with m;n > 0 will be indiated as �

m�n

. Furthermore, if 1 � i � l

1

(p)

and 1 � j � l

2

(p), then p(i; j) (or equivalently p

i;j

) denotes the symbol in piture p

on oordinates (i; j).

Two-dimensional languages, or piture languages, are an interesting generalization

of the standard languages of omputer siene. Rather than one-dimensional strings,

we onsider two-dimensional arrays of symbols over a �nite alphabet. These arrays

an then be aepted or rejeted by various types of automata. The introdution of

two-dimensional automata brought a new sort of automata on the stage, with its own

huge theoretial bakground.

3 Another Approah

Our approah is to reuse the existing traditional (single-dimensional) automata (lan-

guages respetively) and simplify the automaton onstrution problem. The most

important thing is to transform the two-dimensional language (pitures) into one-

dimensional strings. This an be done using spae �lling urves. The onseutive

automaton onstrution depends on the properties of spae �lling urve we have ho-

sen.
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3.1 Spae Filling Curves

We want to transform the two-dimensional string over � into the one-dimensional

string over �. The two-dimensional string over � is a two-dimensional retangle array

of elements of �. We an look at the array as a two dimensional spae 
 = D

1

�D

2

,

where the ardinality of domain D

1

(jD

1

j) is equal to the rows ount of the array and

jD

2

j is equal to the olumns ount. The tuple (point) with oordinates (olumn; row)

within the spae will have a value in �.

Many spae �lling urves have been developed, for example C-urve, Z-urve or

Hilbert urve ([Ma99℄). For deeper aquaintane with the topi of general spae �lling

urves we refer to the omprehensive monography by Hans Sagan [Sa94℄.

The usage of the urves isn't in two-dimensional spae only, but the urves �ll any

vetor spae with arbitrary dimension. It is possible to use the urves for transforma-

tion of the n-dimensional string over � into the one-dimensional string over �. We

an see C-urve, Hilbert urve, and Z-urve �lling the two dimensional spae 8� 8 in

Figure 1.

Figure 1: The spae �lling urves. a) C-urve, b) Hilbert urve, and ) Z-urve.

We an onsider several urves, but it is onvenient to hoose the urve that

is highly self-similar ([Ma99℄, [SKS02℄) { informally, it means that points that are

geometrially lose, would have to lie lose on the urve. For example, the Z-urve is

used for indexing of multidimensional data with UB-trees ([Ba97℄). In the following

setion we will desribe the Z-urve as an example of spae �lling urve.

3.2 Z-address

De�nition 1 (Z-address)

Let 
 be an n-dimensional spae. For tuple O 2 
 with n attributes and binary

representation attribute value A

i

= A

i;s�1

A

i;s�2

: : : A

i;0

, where 1 � i � n. Then

Z(O) =

s�1

X

j=0

n

X

i=1

A

i;j

2

jn+i�1

is the Z-address funtion for spae 
.
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The attributes of tuple de�ne the oordinates of point representing tuple in the

spae 
. If we are alulating the Z-address for all points of n-dimensional spae 


and order the points aording their Z-address value, we get the Z-urve �lling the

entire spae 
 (see Figure 2a). For alulation of tuple Z-address exists algorithm

with linear omplexity - so alled bit interleaving algorithm (see bellow).

Figure 2: a) The two-dimensional spae (image) 8 � 8 �lled by Z-urve. b) Piture

in image interleaved by the Z-urve.

Z-address alulation example

We see the alulation of Z-address aording bit interleaving algorithm for point

(6,13) in two-dimensional spae in Figure 3. Numbers 6 and 13 have the binary

form 0110 and 1101 respetively. We obtain the oordinate values as four plaes bit

strings. Maximal values for four plaes binary number is 16. The domains D

i

of both

attribute are sets f0,1, : : :, 14,15g, point lies in two-dimensional spae 16� 16. The

result point Z-address is then 10110110 (182 deimal).

1

1 1 0 1 0 1 1 0

a)

1 1 0 1 0 1 1 0

1 0

b)

1 1 0 1 0 1 1 0

1 0 1

c)

1

1

0 1 0 1 1 0

1 0 1 1

d)

1

1

1

0 1 0 1 1 0

1 0 1 1 0

e)

1 1

1

0 1 0 1 1 0

1 0 1 1 0 1

f)

1 1

1

0 1 0 1 1 0

1 0 1 1 0 1 1

g)

1 1

1

0 1 0 1 1 0

1 0 1 1 0 1 1 0

h)

1

Figure 3: The Z-address alulation aording to bit interleaving algorithm for point

(6; 13) in two-dimensional spae 16� 16.
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It is possible to go through the entire spae passing upon Z-urve. We interleave a

piture (the two-dimensional string) over � by Z-urve and we reognize the piture

by the \lassial" one-dimensional �nite automata (e.g. see Figure 2b). The automata

onstrution of the piture reognition is outlined in the next setion.

3.3 Automaton Constrution

The automaton will reognize a square piture of size x � y within an image of a

greater size (see Figure 2b).

Constrution

The automaton type is well-known NDFA for mathing patterns with k di�erenes

{ in other words, it is an automaton for approximate string mathing using Leven-

shtein metri. The onstrution takes as a parameter the pattern sentene (piture

to be reognized) and a Levenshtein distane threshold whih de�nes the maximal

tolerane value of the above mentioned piture distortion. For detailed information

on onstrution of the Levenshtein automata see [Ho96℄.

The Levenshtein distane threshold is omputed as the minimal distane of the

pattern piture to an input piture when the orret input is still reognizable. More

learly, the orret input piture may appear on any position in the image and the

automaton must reognize the piture on this position. However, the threshold value

may ause that they an be reognized also inorret pitures. This impreise be-

haviour ould serve as a similarity reognition beause the reognized piture is always

within the Levenshtein distane threshold whih guarantees only a limited number of

di�erenes between the pattern piture and the input piture. Pitures that are lose

(in terms of Levenshtein distane) ould be onsidered as similar to eah other.

In following we will fous on measuring of the pattern piture and input piture

using Levenshtein metri.

3.3.1 What is the Levenshtein Distane?

Levenshtein distane (LD) is a measure of the similarity between two strings, whih

we will refer to as the soure string (s) and the target string (t). The distane is the

number of deletions, insertions, or substitutions required to transform s into t. For

example,

If s is "test" and t is "test", then LD(s,t) = 0, beause no transformations are

needed. The strings are already idential.

If s is "test" and t is "tent", then LD(s,t) = 1, beause one substitution (hange

\s" to \n") is suÆient to transform s into t. The greater the Levenshtein distane,

the more di�erent the strings are.

Levenshtein distane is named after the Russian sientist Vladimir Levenshtein,

who devised the algorithm in 1965 [Le66℄. If you an't spell or pronoune Levenshtein,

the metri is also sometimes alled edit distane.

The Levenshtein distane algorithm (based on dynami programming) has been

used in:

� Spell heking

� Speeh reognition
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� DNA analysis

� Plagiarism detetion

The Algorithm { step desription

1. Set n to be the length of s.

Set m to be the length of t.

If n = 0, return m and exit.

If m = 0, return n and exit.

Construt a matrix ontaining 0 : : :m rows and 0 : : : n olumns.

2. Initialize the �rst row to 0 : : : n.

Initialize the �rst olumn to 0 : : :m.

3. Examine eah harater of s (i from 1 to n).

4. Examine eah harater of t (j from 1 to m).

5. If s[i℄ equals t[j℄, the ost is 0.

If s[i℄ doesn't equal t[j℄, the ost is 1.

6. Set ell d[i,j℄ of the matrix equal to the minimum of: a. The ell immediately

above plus 1: d[i� 1; j℄ + 1.

b. The ell immediately to the left plus 1: d[i; j � 1℄ + 1.

. The ell diagonally above and to the left plus the ost: d[i� 1; j � 1℄ + ost.

7. After the iteration steps (3, 4, 5, 6) are omplete, the distane is found in ell

d[n;m℄.

3.4 Examples

As we have said earlier, the Levenshtein threshold value is omputed as a maximum

distane of the pattern piture and the orret input piture on any position in the

image being reognized. In Figure 4 are depited three examples of pitures (sized

3� 3) in images (sized 8� 8) and its distanes to pattern pitures.

Note that the pixel values are haraters from a �nite alphabet. The numbers

next to the pixels are the harater identi�ers. The gaps denoting those pixels of

image that are not pixels of the piture are represented with appropriate haraters

but in our examples, for simpliity and larity, the gap is represented with a speial

harater that is not ontained in the alphabet �. This speial harater ensures the

worst mathing ase, thus the real distane omputations will be always smaller or

equal.

3.5 Extension to Multidimensional Languages

Beause the spae �lling urve remains single-dimensional even for multidimensional

spaes, we an extend the sope of two-dimensional languages to the multidimen-

sional languages without the need of hanging the automaton onstrution. Then,

multidimensional sentenes an be onstruted simply by extending the language with

additional oordinates.
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Figure 4: Measuring the Levenshtein distane on pitures.

In general, we an say that the impreision aused by the Levenshtein distane

threshold will inrease with inreasing dimension. This fat arises from the behaviour

of the spae �lling urves in high-dimensional vetor spaes. The other fator is the

relation of sentene size to spae size. The longer sentenes and smaller sentene/spae

size ratio, the lower impreision.

4 Conlusions

In this paper we have proposed an alternative solution of image reognition and even

multidimensional language reognition. This method is based on spae �lling urves

and Levenshtein automaton onstrution. The interesting property of this approah

is an ability of similarity reognition.
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