
Image Re
ognition Using Finite Automata

Tom�a�s Skopal, V�a
lav Sn�a�sel, Mi
hal Kr�atk�y

Department of Computer S
ien
e

V

�

SB-Te
hni
al University Ostrava

17. listopadu 15, 708 33 Ostrava

Cze
h Republi


e-mail: ftomas.skopal, va
lav.snasel, mi
hal.kratkyg�vsb.
z

Abstra
t. In this paper we introdu
e an idea of image re
ognition using 
on-

ventional (single-dimensional) �nite automata. This approa
h 
ould be an el-

egant alternative to 
ompli
ated solutions based on two-dimensional languages

and two-dimensional automata. In 
onsequen
e, this method 
ould be generally

extended to the 
ontext of higher-dimensional languages beyond the s
ope of

image re
ognition.

1 Introdu
tion

Image re
ognition re
ently be
ame an obje
t of interest for theory of automata. The

pi
ture, a re
tangular raster, 
an be 
onsidered as a senten
e of a two-dimensional

language where the pixels of pi
ture are 
hara
ters of a �nite alphabet.

It is obvious that senten
es of two or more-dimensional language 
annot be re
-

ognized by \
onventional" automata. Conventional automaton takes the 
hara
ters

from the input one by one as they appear in a single-dimension senten
e. On the

other side, two-dimensional senten
e pro
essing (e.g. pi
ture) is not so unambiguous,

there exist four dire
tions in whi
h the senten
e 
an be pro
essed in ea
h step { left,

right, upwards, downwards. There were several two-dimensional automata designed,

e.g. 4-way �nite-state automata [BH67℄.

Our solution tries to exploit the existing well-established area of \
onventional"

automata together with the transformation of the two-dimensional language into a

single-dimensional one. The transformation of a pi
ture (or two-dimensional sen-

ten
e) 
onsists of spa
e linearization. This means that the pixels of a pi
ture are

linearly ordered and the resultant ordering along with the original pi
ture de�ne the

appropriate single-dimensional senten
e. The linear order is performed using a spa
e

�lling 
urve. In this paper we propose 
ertain 
urves whi
h were proved to be the

good spa
e-des
ribing 
urves in many appli
ations (espe
ially in data storage and

retrieval). However, the quality of the 
urves may di�er in our 
ase and therefore we

refer to [SKS02℄ where we dis
uss some general properties of spa
e �lling 
urves.

On
e we have 
hosen the 
urve for language des
ription we must 
onstru
t an

automaton that re
ognizes a given pi
ture in its \
at shape". However, none of the

spa
e �lling 
urves des
ribe the spa
e (and pi
ture) perfe
tly, some distortion of the

pi
ture re
ognition must be taken into a

ount. This seeming drawba
k 
an turn over
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to an advantage if we realize that the measure of re
ognition distortion may represent

similarity of the re
ognized pi
ture to the prospe
tive pattern.

Automaton 
onstru
tion for re
ognition of the linearized pi
ture is based on the

Levenshtein DFA where the Levenshtein metri
 (edit distan
e) serves as the measure

for the allowed pi
ture distortion.

2 Two-dimensional Languages

Informally, a two-dimensional string is 
alled a pi
ture and is de�ned as a re
tangular

array of symbols taken from �nite alphabet �. A two-dimensional language (e.g.

pi
ture language) is then a set of pi
tures.

A generalization of formal languages to two dimensions is possible in di�erent

ways, and several formal models to re
ognize or generate two-dimensional obje
ts

have been proposed in the literature (see [KM1, KM2, LMN98℄). These approa
hes

were initially motivated by problems arising in the framework of pattern re
ognition

and image pro
essing.

De�nition [RS97℄ A two-dimensional string (e.g. pi
ture) over � is a two-

dimensional re
tangular array of elements from �. The set of all two-dimensional

strings over � is denoted as �

��

. A two-dimensional language over � is a subset of

�

��

.

Given a pi
ture p 2 �

��

, l

1

(p) denotes the number of rows and l

2

(p) denotes the

number of 
olumns of p.

The pair (l

1

(p); l

2

(p)) is 
alled the size of the pi
ture p. The set of all pi
tures over �

of size (m;n), with m;n > 0 will be indi
ated as �

m�n

. Furthermore, if 1 � i � l

1

(p)

and 1 � j � l

2

(p), then p(i; j) (or equivalently p

i;j

) denotes the symbol in pi
ture p

on 
oordinates (i; j).

Two-dimensional languages, or pi
ture languages, are an interesting generalization

of the standard languages of 
omputer s
ien
e. Rather than one-dimensional strings,

we 
onsider two-dimensional arrays of symbols over a �nite alphabet. These arrays


an then be a

epted or reje
ted by various types of automata. The introdu
tion of

two-dimensional automata brought a new sort of automata on the stage, with its own

huge theoreti
al ba
kground.

3 Another Approa
h

Our approa
h is to reuse the existing traditional (single-dimensional) automata (lan-

guages respe
tively) and simplify the automaton 
onstru
tion problem. The most

important thing is to transform the two-dimensional language (pi
tures) into one-

dimensional strings. This 
an be done using spa
e �lling 
urves. The 
onse
utive

automaton 
onstru
tion depends on the properties of spa
e �lling 
urve we have 
ho-

sen.
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3.1 Spa
e Filling Curves

We want to transform the two-dimensional string over � into the one-dimensional

string over �. The two-dimensional string over � is a two-dimensional re
tangle array

of elements of �. We 
an look at the array as a two dimensional spa
e 
 = D

1

�D

2

,

where the 
ardinality of domain D

1

(jD

1

j) is equal to the rows 
ount of the array and

jD

2

j is equal to the 
olumns 
ount. The tuple (point) with 
oordinates (
olumn; row)

within the spa
e will have a value in �.

Many spa
e �lling 
urves have been developed, for example C-
urve, Z-
urve or

Hilbert 
urve ([Ma99℄). For deeper a
quaintan
e with the topi
 of general spa
e �lling


urves we refer to the 
omprehensive monography by Hans Sagan [Sa94℄.

The usage of the 
urves isn't in two-dimensional spa
e only, but the 
urves �ll any

ve
tor spa
e with arbitrary dimension. It is possible to use the 
urves for transforma-

tion of the n-dimensional string over � into the one-dimensional string over �. We


an see C-
urve, Hilbert 
urve, and Z-
urve �lling the two dimensional spa
e 8� 8 in

Figure 1.

Figure 1: The spa
e �lling 
urves. a) C-
urve, b) Hilbert 
urve, and 
) Z-
urve.

We 
an 
onsider several 
urves, but it is 
onvenient to 
hoose the 
urve that

is highly self-similar ([Ma99℄, [SKS02℄) { informally, it means that points that are

geometri
ally 
lose, would have to lie 
lose on the 
urve. For example, the Z-
urve is

used for indexing of multidimensional data with UB-trees ([Ba97℄). In the following

se
tion we will des
ribe the Z-
urve as an example of spa
e �lling 
urve.

3.2 Z-address

De�nition 1 (Z-address)

Let 
 be an n-dimensional spa
e. For tuple O 2 
 with n attributes and binary

representation attribute value A

i

= A

i;s�1

A

i;s�2

: : : A

i;0

, where 1 � i � n. Then

Z(O) =

s�1

X

j=0

n

X

i=1

A

i;j

2

jn+i�1

is the Z-address fun
tion for spa
e 
.
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The attributes of tuple de�ne the 
oordinates of point representing tuple in the

spa
e 
. If we are 
al
ulating the Z-address for all points of n-dimensional spa
e 


and order the points a

ording their Z-address value, we get the Z-
urve �lling the

entire spa
e 
 (see Figure 2a). For 
al
ulation of tuple Z-address exists algorithm

with linear 
omplexity - so 
alled bit interleaving algorithm (see bellow).

Figure 2: a) The two-dimensional spa
e (image) 8 � 8 �lled by Z-
urve. b) Pi
ture

in image interleaved by the Z-
urve.

Z-address 
al
ulation example

We see the 
al
ulation of Z-address a

ording bit interleaving algorithm for point

(6,13) in two-dimensional spa
e in Figure 3. Numbers 6 and 13 have the binary

form 0110 and 1101 respe
tively. We obtain the 
oordinate values as four pla
es bit

strings. Maximal values for four pla
es binary number is 16. The domains D

i

of both

attribute are sets f0,1, : : :, 14,15g, point lies in two-dimensional spa
e 16� 16. The

result point Z-address is then 10110110 (182 de
imal).

1

1 1 0 1 0 1 1 0

a)

1 1 0 1 0 1 1 0

1 0

b)

1 1 0 1 0 1 1 0

1 0 1

c)

1

1

0 1 0 1 1 0

1 0 1 1

d)

1

1

1

0 1 0 1 1 0

1 0 1 1 0

e)

1 1

1

0 1 0 1 1 0

1 0 1 1 0 1

f)

1 1

1

0 1 0 1 1 0

1 0 1 1 0 1 1

g)

1 1

1

0 1 0 1 1 0

1 0 1 1 0 1 1 0

h)

1

Figure 3: The Z-address 
al
ulation a

ording to bit interleaving algorithm for point

(6; 13) in two-dimensional spa
e 16� 16.
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It is possible to go through the entire spa
e passing upon Z-
urve. We interleave a

pi
ture (the two-dimensional string) over � by Z-
urve and we re
ognize the pi
ture

by the \
lassi
al" one-dimensional �nite automata (e.g. see Figure 2b). The automata


onstru
tion of the pi
ture re
ognition is outlined in the next se
tion.

3.3 Automaton Constru
tion

The automaton will re
ognize a square pi
ture of size x � y within an image of a

greater size (see Figure 2b).

Constru
tion

The automaton type is well-known NDFA for mat
hing patterns with k di�eren
es

{ in other words, it is an automaton for approximate string mat
hing using Leven-

shtein metri
. The 
onstru
tion takes as a parameter the pattern senten
e (pi
ture

to be re
ognized) and a Levenshtein distan
e threshold whi
h de�nes the maximal

toleran
e value of the above mentioned pi
ture distortion. For detailed information

on 
onstru
tion of the Levenshtein automata see [Ho96℄.

The Levenshtein distan
e threshold is 
omputed as the minimal distan
e of the

pattern pi
ture to an input pi
ture when the 
orre
t input is still re
ognizable. More


learly, the 
orre
t input pi
ture may appear on any position in the image and the

automaton must re
ognize the pi
ture on this position. However, the threshold value

may 
ause that they 
an be re
ognized also in
orre
t pi
tures. This impre
ise be-

haviour 
ould serve as a similarity re
ognition be
ause the re
ognized pi
ture is always

within the Levenshtein distan
e threshold whi
h guarantees only a limited number of

di�eren
es between the pattern pi
ture and the input pi
ture. Pi
tures that are 
lose

(in terms of Levenshtein distan
e) 
ould be 
onsidered as similar to ea
h other.

In following we will fo
us on measuring of the pattern pi
ture and input pi
ture

using Levenshtein metri
.

3.3.1 What is the Levenshtein Distan
e?

Levenshtein distan
e (LD) is a measure of the similarity between two strings, whi
h

we will refer to as the sour
e string (s) and the target string (t). The distan
e is the

number of deletions, insertions, or substitutions required to transform s into t. For

example,

If s is "test" and t is "test", then LD(s,t) = 0, be
ause no transformations are

needed. The strings are already identi
al.

If s is "test" and t is "tent", then LD(s,t) = 1, be
ause one substitution (
hange

\s" to \n") is suÆ
ient to transform s into t. The greater the Levenshtein distan
e,

the more di�erent the strings are.

Levenshtein distan
e is named after the Russian s
ientist Vladimir Levenshtein,

who devised the algorithm in 1965 [Le66℄. If you 
an't spell or pronoun
e Levenshtein,

the metri
 is also sometimes 
alled edit distan
e.

The Levenshtein distan
e algorithm (based on dynami
 programming) has been

used in:

� Spell 
he
king

� Spee
h re
ognition
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� DNA analysis

� Plagiarism dete
tion

The Algorithm { step des
ription

1. Set n to be the length of s.

Set m to be the length of t.

If n = 0, return m and exit.

If m = 0, return n and exit.

Constru
t a matrix 
ontaining 0 : : :m rows and 0 : : : n 
olumns.

2. Initialize the �rst row to 0 : : : n.

Initialize the �rst 
olumn to 0 : : :m.

3. Examine ea
h 
hara
ter of s (i from 1 to n).

4. Examine ea
h 
hara
ter of t (j from 1 to m).

5. If s[i℄ equals t[j℄, the 
ost is 0.

If s[i℄ doesn't equal t[j℄, the 
ost is 1.

6. Set 
ell d[i,j℄ of the matrix equal to the minimum of: a. The 
ell immediately

above plus 1: d[i� 1; j℄ + 1.

b. The 
ell immediately to the left plus 1: d[i; j � 1℄ + 1.


. The 
ell diagonally above and to the left plus the 
ost: d[i� 1; j � 1℄ + 
ost.

7. After the iteration steps (3, 4, 5, 6) are 
omplete, the distan
e is found in 
ell

d[n;m℄.

3.4 Examples

As we have said earlier, the Levenshtein threshold value is 
omputed as a maximum

distan
e of the pattern pi
ture and the 
orre
t input pi
ture on any position in the

image being re
ognized. In Figure 4 are depi
ted three examples of pi
tures (sized

3� 3) in images (sized 8� 8) and its distan
es to pattern pi
tures.

Note that the pixel values are 
hara
ters from a �nite alphabet. The numbers

next to the pixels are the 
hara
ter identi�ers. The gaps denoting those pixels of

image that are not pixels of the pi
ture are represented with appropriate 
hara
ters

but in our examples, for simpli
ity and 
larity, the gap is represented with a spe
ial


hara
ter that is not 
ontained in the alphabet �. This spe
ial 
hara
ter ensures the

worst mat
hing 
ase, thus the real distan
e 
omputations will be always smaller or

equal.

3.5 Extension to Multidimensional Languages

Be
ause the spa
e �lling 
urve remains single-dimensional even for multidimensional

spa
es, we 
an extend the s
ope of two-dimensional languages to the multidimen-

sional languages without the need of 
hanging the automaton 
onstru
tion. Then,

multidimensional senten
es 
an be 
onstru
ted simply by extending the language with

additional 
oordinates.
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Figure 4: Measuring the Levenshtein distan
e on pi
tures.

In general, we 
an say that the impre
ision 
aused by the Levenshtein distan
e

threshold will in
rease with in
reasing dimension. This fa
t arises from the behaviour

of the spa
e �lling 
urves in high-dimensional ve
tor spa
es. The other fa
tor is the

relation of senten
e size to spa
e size. The longer senten
es and smaller senten
e/spa
e

size ratio, the lower impre
ision.

4 Con
lusions

In this paper we have proposed an alternative solution of image re
ognition and even

multidimensional language re
ognition. This method is based on spa
e �lling 
urves

and Levenshtein automaton 
onstru
tion. The interesting property of this approa
h

is an ability of similarity re
ognition.
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