A Work-Optimal Parallel Implementation of
Lossless Image Compression by Block Matching

Sergio De Agostino

School of Computing
Armstrong Atlantic State University
11935 Abercorn Street
Savannah, Georgia 31419
USA

e-mail: agosQarmstrong.edu

Abstract. Storer suggested that fast encoders are possible for two-dimensional
lossless compression by showing a square greedy matching LZ1 heuristic for bi-
level images, which can be implemented by a simple hashing scheme [S96]. In
this paper, we show a work-optimal parallel algorithm using a rectangle greedy
matching technique requiring O(log M logn) time on the PRAM EREW model,
where n is the size of the image and M the maximum size of a rectangle.

Key words: lossless image compression, sliding dictionary, parallel algorithm,
PRAM EREW

1 Introduction

Textual substitution compression methods (often called “LZ” methods due to the
work of Lempel and Ziv [LZ76]) have been designed by Lempel and Ziv [LZ77, ZL78]
and Storer and Szymanski [SS82]. These methods parse a string in phrases and
replace them with pointers to copies, called targets of the pointers, that are stored in a
dictionary. The encoded string is a sequence of pointers (some of which may represent
single characters). Static methods are when the dictionary is known in advance. By
contrast, with dynamic methods (LZ1 [LZ77] and LZ2 [ZL78]) the dictionary may be
constantly changing as the data is processed (see [BCW90, St88] for references).

Storer [S96] and Storer and Helfgott [SH97] generalized the LZ1 method to lossless
image compression and suggested that very fast encoders are possible by showing a
square greedy matching LZ1 compression heuristic, which can be implemented by a
simple hashing scheme and achieves 60 to 70 percent of the compression of JBIG1 on
the CCITT bi-level image test set.

With LZ1 text compression, one simply proceeds from left to right making matches
in greedy fashion between a substring in the current position and a copy in the part
of the string already seen. A key advantage of 1.Z1 compression is that decoding is
always simple and fast. Another advantage is that it is relatively easy to implement.
The two key issues for practical implementations are how the encoder searches for
matches and how pointers are encoded.

Proceedings of the Prague Stringology Conference 02

An image has to be scanned in some linear order. In order to achieve a good
compression performance, bidimensional matches have to be computed. In [SHI7], a
square-match encoding algorithm is proposed using a simple hashing scheme directed
to bi-level images. A 64K table with one position for each possible 4x4 subarray is the
only data structure used. All-zero and all-one squares are handled differently. The
encoding scheme is to precede each item with a flag field indicating whether there is
a monochromatic square, a match or raw data. When there is a match, the 4 x 4
subarray in the current position is hashed to yield a pointer to a copy. This pointer
is used for the current square greedy match and then replaced in the hash table by a
pointer to the current position.

To improve the compression performance, it was also introduced a slower rectangle
greedy matching technique requiring O(M log M) time where M is the size of the
match [SH97]. Therefore, O(nlog M) is the best sequential time for an image of size
n if we compress by rectangle matching with M the maximum size of a rectangle.

Both heuristics work with an unrestricted window. In [CDGO01] a rectangle greedy
matching heuristic using a finite window and a bound to the match size was pre-
sented. The heuristic is suitable for a fast implementation similar to the one in [S96]
and achieves 75 to 90 percent of the compression of JBIG1 on the CCITT bi-level
image test set. In this paper, we show a work-optimal PRAM EREW implementation
of lossless image compression by block matching requiring O(log M logn) time which
uses a rectangle greedy matching technique similar to the one in [CDGO1]. The par-
allel heuristic achieves 95 to 97 percent of the compression of the sequential heuristic
mentioned above [CDL02]. In section 2, we show how the sequential heuristic works.
In section 3, we explain the parallel algorithm. In section 4, conclusions and future
work are given.

2 The Rectangle Greedy Matching Technique

The compression heuristic scans an image n x m row by row (raster scan) (the greedy
matching technique could work with any other scan described in [SH97]). We denote
with p; ; the pixel in position (7,7). The procedure for finding the largest rectangle
with left upper corner (i, j) that matches a rectangle with left upper corner (k,h) is
described in Fig. 1.

At the first step, the procedure computes the longest possible width for a rectangle
match in (4, j) with respect to the position (k,h). The rectangle 1 x ¢ computed at
the first step is the current rectangle match and the sizes of its sides are stored in
stdel and side2. In order to check whether there is a better match than the current
one, the longest one-dimensional match on the next row and column j, not exceeding
the current width, is computed with respect to the row next to the current copy and
to column h. Its length is stored in the temporary variable width and the temporary
variable length is increased by one. If the rectangle R whose sides have size width
and length is greater than the current match, the current match is replaced by R.
We iterate this operation on each row until the area of the current match is greater
or equal to the area of the longest feasible width-wide rectangle, since no further
improvement would be possible at that point. For example, in Fig. 2 we apply the
procedure to find the largest rectangle match between position (0,0) and (6, 6).

A Work-Optimal Parallel Implementation of Lossless Image Compression by Block Matching

w=k;
r=1;
width = m;
length = 0;

stdel = side2 = area = 0;
repeat
Let py j - -Pr,j4+e—1 be the longest match in (w, h) with £ < width;
length = length + 1;
width = £;
r=r+1;
w=w-+1;
if (length x width > area) {
area = length x width;
sidel = length;
side2 = width;

}

until area > width* (i —k+ 1) orw=1+1

Figure 1: Computing the largest rectangle match in (7, j) and (k, h).

A one-dimensional match of width 6 is found at step 1. Then, at step 2 a better
match is obtained which is 2 x 4. At step 3 and step 4 the current match is still 2 x 4
since the longest match on row 3 and 9 has width 2. At step 5, another match of width
2 provides a better rectangle match which is 5 x 2. At step 6, the procedure stops since
the longest match has width 1 and the rectangle match can cover at most 7 rows. It
follows that 5 x 2 is the greedy match since a rectangle of width 1 cannot have a larger
area. Obviously, this procedure can be used for computing the largest monochromatic
rectangle in a given position (i,7) as well. If the 4 x 4 subarray in position (3, j)
is monochromatic, then we compute the largest monochromatic rectangle in that
position. Otherwise, we compute the largest rectangle match in the position provided
by the hash table and update the table with the current position. If the subarray
is not hashed to a pointer, then it is left uncompressed and added to the hash table
with its current position. The positions covered by matches are skipped in the linear
scan of the image.

As pointed out in [SH97], for typical bi-level images this scheme is extremely
fast for square matches and there is no significant slowdown over simply reading and
writing the image. As mentioned in the introduction, in [SH97] it is shown that the
rectangle greedy matching technique requires O(M log M) time where M is the size
of the match. Therefore, O(nlog M) is the best sequential time for an image of size n
if we compress by rectangle matching with M the maximum size of a rectangle. The
encoding scheme is to precede each item with a flag field indicating whether there
is a monochromatic square (0 for white, 10 for black), a match (110) or raw data
(111). Pointers are encoded with the straightforward encoding with three integers
for z, y and size while a simple variable-length code is used to specify the size of a
monochromatic square. We also mentioned in the introduction that a key issue for

Proceedings of the Prague Stringology Conference 02

o 0 1 0 1 1 0 1 0O O O O 1 1 1 stepl

o 0 1 1 1 0O O 1 O O O O O 1 0 step2

10 1 1 1 0 O 1 0 1 0 O0 1 1 1 step3

0 1 1 0 1 1 0 O O O O O O 1 1 step4d

o 1 1 0 1 0 O 1 O O O O O O 1 stepd

o 0 0 0 1.1 0 1 1 O O O 1 1 1 stepb6

o 0 1.0 1 1 0 O 1 O 1 1 1 1 1 stepl

o o 1 0 1 1 O O 1 1 O O 1 1 1 step2

o 0 1.0 1 1 1 0 O O O O 1 1 1 step3

o 0 1.0 1 1 0 1 O O O O 1 1 1 step4

o 0 1. 0 1.1 0 1 0 O O O 1 1 1 stepb

o 0 1.0 1 1 0 1 O O O O 1 1 1 stepb6

o 0 0 0 1.1 0 1 1 O O O 1 1 1

Figure 2: The largest match in (0,0) and (6,6) is computed at step 5.

practical implementations is how pointers are encoded. As pointed out in [SH97], good
pointer coding schemes are important for text compression and become even more
important for images since the number of matches that are used is typically less than
the number found and the straightforward coding uses many more bits per pointer.
With rectangular matches this issue becomes even more significant. The encoding of
monochromatic rectangles is a dominant factor of the compression performance and
the efficiency of the method increases with large images.

In [CDGO1] we experimented our rectangle greedy matching algorithm with a
bounded size dictionary defined by a window comprising the last 64K pixels read. We
bounded by twelve the number of bits to encode either the width or the length of a
rectangle match. We use either four or eight or twelve bits to encode one rectangle
side. Therefore, nine different kinds of rectangle are defined. A pointer is encoded in
the following way:

e the flag field indicating the type of item;

e if the item is not monochromatic, sixteen bits which are raw or indicating the
position of the match in the window;

e three or four bits encoding one of the nine kinds of rectangle;
e bits for the length and the width.

Larger rectangles are less frequent but still relevant for the compression performance.
Then, four bits are used to indicate when twelve bits or eight and twelve bits are
needed for the length and the width. This way of encoding rectangles plays a relevant
role for the compression performance. In fact, it wastes four bits when twelve bits are
required for the sides but saves four to twelve bits when four or eight bits suffice. On

4

A Work-Optimal Parallel Implementation of Lossless Image Compression by Block Matching

the CCITT bi-level image test set, we achieved 75 to 90 percent of the compression
of JBIGI.

3 The Parallel Algorithm

To achieve logarithmic time we partition an m x n image I in x x y rectangular
areas where x and y are @(logl/2 mn). In parallel for each area, one processor applies
the sequential parsing algorithm so that in logarithmic time each area will be parsed
in rectangles, some of which are monochromatic. We do not allow overlapping of
the monochromatic rectangles when we apply the sequential algorithm to each area.
Each processor could work with a sliding window of size 64K and bounded matches,
using the same pointer encoding scheme described in the previous section. However,
before encoding we wish to compute larger monochromatic rectangles. If we compute
unbounded monochromatic rectangles, the coding for them could be the flag field, log
m bits for the length and log n bits for the width.

In the description of the algorithm, we use four m x n matrices RC, C'C', W and
L which are determined by the parsing procedure on each area. RC([i, j] and CCi, j]
are equal to zero if I[i, j] is not covered by a monochromatic rectangle, otherwise
they are equal to the row and column coordinate of the left upper corner of the
monochromatic rectangle. Wi, j] and L[i, j] are equal to zero if I[i, j] is not covered
by a monochromatic rectangle, otherwise they are equal to the width and length of
the monochromatic rectangle. We also use four matrices TRC, TCC, TW and TR
to store temporary values needed for the computation of the final parsing, which are
initially set to RC', C'C', W and L. The procedure to compute larger monochromatic
rectangles works as in Fig. 3.

Basically, we try to merge monochromatic rectangles adjacent on the horizontal
boundaries and then on the vertical boundaries, doubling in this way the length and
width of each area at each step. It is always the rectangle of an area in odd position
with respect either to the vertical or horizontal order which tries to merge with the
adjacent rectangle in the next area. Generally, this merging operation causes that the
rectangles split into two or three subrectangles. The rectangle from which we start
the merging is split in at most two subrectangles since we want to preserve the upper
left corner. The merging is realized by updating the temporary matrices storing the
information on the monochromatic rectangles computed on the image. If we obtain a
larger rectangle then we update the original matrices, otherwise we continue merging
by working with the temporary values to see if we can get a larger rectangle later.

We describe the procedure more in details. At the first line internal to the main
loop (Figure 3), we consider in parallel the left lower corners of monochromatic rect-
angles of the areas in odd positions which are adjacent to a monochromatic rectangle
with the same color in the next area below. Then, at line 3 we change the width and
length of the rectangle considered, where the length is the sum of the lengths of the
two adjacent rectangles and the width changes if the right corners of the rectangle in
the next area are to the left of the right corners of the other rectangle. At line 4 and
5 the values in the temporary matrices are changed also for the pixels in the next
area since they merged. Obviously, these changes can be made with optimal work in
logarithmic time. As mentioned above, the merging causes a splitting of rectangles
into subrectangles and the values in the temporary matrices must be redefined also

Proceedings of the Prague Stringology Conference 02

until > m/2 or y > n/2 do {

1 in parallel for i and j: i = az, a odd, j = TCCJi,j], TRC[i + 1,j] <> 0 and I[i,j] = I[i + 1,5] {

2 in parallel for TRC[:,j] < k<14, <h < min{TCC[i+ 1,j]+ TW[i+1,5]— 1,5 + TW]i,j] — 1} {
3 TWlk,h] = min {TCC[i+ 1,51+ TW[i+1,5] — 1, + TW[i,j] — 1} —j+ 1;

3 TL[k,h] =TL[k,h]+TL[i+ 1,5]; }

4 inparallel fori+1 < k <i+TL[i+1,j],5 < h <min{TCC[i+1,j]+TW[i+1,j]-1,5+TW]|i,j]—1}
5 {TCC[k,h] = j;TRC[k,h] = TRC[i,j|; TW|k,h] = TW|i,j|;TL[k,h] = TL[i,j]; } }

6 in parallel for ¢ and j: TCC[i,j — 1]+ TW{i,j — 1] = 5, TCCJi, j] <> j,TCCJ[i,j] <>= 0 or

7 TCCli, 5] =7 {

8 compute the smallest k with k > j: TCC(4,k) + TW (i, k] > k+ 1,TCC[i,k+1]=k+ 1 or

9 TCC(i, k) + TW[i,k]=k+1

10 in parallel for j < h <k { TCC[i,h] =j; TW][i,h]=k—j+1; } }

11 in parallel for ¢, j: TRCJi,j] = ¢ and TCCJ[i,j] = j

12 if TWTi,j]« TL[i,5] > Wi, j] % L[i, j] in parallel for i < k < i+ TL[3,j],j <h<j+TWI[i,j]{
13 RCli,j] = TRC[i, j]; CC[4, 5] = TCCIi, jl; Wi, j] = TWI[i, j]; L[i, j] = TL[3, j]; }

14 in parallel for i and j: j = ay, a odd, i = TRC[i, j|, TRC[i,j + 1] <> 0 and I[i,5] = I[i,5 + 1] {

15 in parallel for TCC[i,j] < h < j, ¢ < k < min{TRC[i,j + 1]+ TL[i,j+ 1] — 1, + TL[i,j] — 1)} {

16 TL[k,h] = min{TRC[4,5 + 1] + TL[i,j + 1] — 1,i + TL[i, 5] — 1))};

16 TL[k,h] = TL[k,h] + TL[i + 1,5]; }

17 in parallel for j+1 < h < j+TW/[i,j+1],i < k < min{T RC[i, j+1]+TL[i, j+1]—1,i+TL[, j]—1)}
18 { TRC[k,h] = i; TLC[k,h] = TLC[i, j}; TW[k,h] = TW[i,j]; TL[k,h] = TL = [i,5]; } }

19 in parallel for ¢ and j: TRC[i — 1,5]+ TL[: — 1,5] =4 — 1,TRCI[i, j] <> %, TRC[i,j] <>= 0 or

20 TRC[i,j] =i {

21 compute the smallest k with k > 4: TRC(k,j) + TLlk,j] > k+ 1,TRC[k+1,j]=k+1or

22 TRC(k,5) + TL[k,j] = k + 1

23 in parallel for i <h <k { TRC[h,j] =4 TWh,j]=k—i+1; } }

24 in parallel for i, j: ¢ = TRCJi, j] and j = TRCi, j]

25 if TWTi,j] = TL[i, 5] > Wi, j] * L[i,j] in parallel for i < k < i+ TL[i,5],] <h < j+TWI[i,j] {
2 RCli, j] = TRCli, j); CCli, j] = TCCli,); Wli, j) = TW i, 1; Lli, j] = TL[i, j]; }

27T ¢ =2x;y =2y; }

Figure 3: How to compute monochromatic rectangles in parallel.

for the pixels covered by the other rectangles produced by the merging. This is done
from line 6 to 10. In parallel we consider all the pixels for which, according to the
temporary values, either they are not on the leftmost column of a rectangle and the
adjacent pixels in front of them result to be on the rightest column of a rectangle
(line 6) or they are on the leftmost column (line 7). For each of them, we compute
the closest pixel to the right for which, according to the temporary values, either it
is not on the rightmost column of a rectangle and the next pixel results to be on the
leftmost column of a rectangle (line 8) or it is on the rightmost column of a rectan-
gle (line 9). Being this pixel the closest to the one computed in lines 6 and 7, they
must be on the rightmost and leftmost column of the same monochromatic rectangle
respectively. This is redefined in the temporary matrices at line 10. At this point,
for each left upper corner of a monochromatic rectangle (line 11) if we obtained a
larger rectangle after the merging (line 12) we can ovewrite the information on the

6

A Work-Optimal Parallel Implementation of Lossless Image Compression by Block Matching

new rectangle on the original matrices (line 13). Observe that this way of updating
the matrices may introduce overlapping of the monochromatic rectangles. Then, we
repeat the same procedure trying to merge rectangles horizontally (line 14-26).

To analize the complexity of the algorithm, it is enough to consider that at each
iteration of the main loop we double the sides of the areas and to recall the classical
parallel prefix computation technique. All the statements inside the loop require
logarithmic time with optimal parallel work (lines 8-9 and 21-22 by parallel prefix).
Since no operation is executed if there is nothing to merge, the total running time
with optimal parallel work is O(log nlog M), where M is the maximum size of a
monochromatic rectangle. Then, from the matrices we can easily derive the sequence
of pointers with optimal parallel work and logarithmic time by parallel prefix.

4 Conclusions

In this paper, we showed a work-optimal parallel algorithm for lossless image compres-
sion by block matching using a rectangle greedy matching technique which requires
O(log M logn) time. The algorithm is suitable for an implementation on practical
parallel architectures as meshes of trees, multigrids and pyramids.

As future work, a detailed study on how the algorithm must be implemented on
these architectures could be provided. Also, practical parallel algorithms for decom-
pression should be designed.

References
[BCW90] Bell T.C., Cleary J.G., Witten I.H: Text Compression. Prentice Hall.

[CDGO1] Cinque L., De Agostino S., Grande E: LZ1 Compression of Binary Im-
ages using a Simple Rectangle Greedy Matching Technique. IEEE Data
Compression Conference, 492.

[CDL02] Cinque L., De Agostino S., Liberati F.: A Parallel Algorithm for Lossless
Image Compression by Block Matching. IEEE Data Compression Confer-
ence, 450.

[LZ76] Lempel A., Ziv J: On the Complexity of Finite Sequences. IEEE Trans-
actions on Information Theory, 22, 75-81.

[LZ77] Lempel A., Ziv J: A Universal Algorithm for Sequential Data Compres-
sion. IEEE Transactions on Information Theory, 23, 337-343.

[St88] Storer J.A.: Data Compression: Methods and Theory. Computer Science
Press.

[S96] Storer J. A.: Lossless Image Compression using Generalized LZ1-Type
Methods. IEEE Data Compression Conference, 290-299.

[SHO7] Storer J. A., Helfgott H.: Lossless Image Compression by Block Matching.
The Computer Journal, 40, 137-145.

7

Proceedings of the Prague Stringology Conference 02

[SS82] Storer J. A., Szymanski T. G.: Data Compression via Textual Substitu-
tion. Journal of ACM, 29, 928-951.

[ZL78] Ziv J., Lempel A.;: Compression of Individual Sequences via Variable
Rate Coding. Transactions on Information Theory, 24, 530-536.

