
Searhing in an EÆiently Stored DNA Text

Using a Hardware Solution

T. Berry, S. Keller and S. Ravindran

Department of Computer Siene

Liverpool John Moores University

Byrom Street

Liverpool

United Kingdom

e-mail: T.Berry�livjm.a.uk, S.Keller�livjm.a.uk, S.Ravindran�livjm.a.uk

Abstrat. In this paper, we desribe a storage method that redues the size

of a DNA text �le to 25% of its original size. Also outlined is a new algorithm,

whih an searh an input stream of DNA text for multiple DNA sub-strings

in a single pass. Although this new algorithm is ompetitive when ompared

to the majority of existing string mathing algorithms, the intention is to fur-

ther improve performane by implementing the algorithm as a hardware-only

solution.

1 Introdution

String mathing and Compression are two widely studied areas in omputer Siene

[10℄. String mathing is deteting a pattern P of length m in a larger text T of length

n. Compression involves transforming a string into a new string whih ontains the

same information but whose length is as small as possible. These two areas naturally

lead to Compressed String Mathing, i.e. searhing for a pattern in a ompressed

text. This method will save both spae and time.

In this paper we desribe a hardware solution that searhes in the ompressed

DNA text. We also desribe an algorithm oded in the programming language C that

will be synthesized into hardware. A DNA text (or moleule) enodes information

whih by onvention is represented as a string over the DNA alphabet A, C, G and

T. Compressed String Mathing in a DNA text is useful for the following reasons.

Although the ost of memory is reduing, the sizes of DNA databases are growing

exponentially.

Optimal ompression will devote two bits to represent eah DNA harater, if

eah harater is drawn uniformly at random from the DNA alphabet and that all

positions in the text are independent [14℄. The ompression method desribed in

Setion 2 also devotes two bits per harater, i.e. the method guarantees to ompress

the DNA text to 25% of its original size. Setion 3, outlines the BK algorithm,

as being a string mathing algorithm, whih as well as being relatively fast as a

software solution, ould also be implement in a hardware-only solution. Setion 4,

desribes a modi�ation to the basi BK algorithm, whih will searh a stream of

1

Proeedings of the Prague Stringology Conferene '01

DNA text for multiple sub-strings in a single pass of the text. Setion 5, overs

the proess of implementing programs as hardware-only solutions. Attention is paid

to the inadequaies of modern miroproessors and the advantages whih so-alled

'hardware ompilation tehniques' an o�er as a means of aelerating the exeution

of algorithms. Setion 6, desribes how the BK string mathing algorithm may be

implemented as a hardware only solution. In setion 7 we desribe 5 existing string

mathing algorithms. In setion 8 we ompare our new algorithm with the 5 existing

algorithms by experimentation. The texts and the patterns used for these experiments

have been taken from [11℄ and [1℄ respetively.

2 EÆient storage of a DNA text

In the DNA alphabet, S, there are four haraters, namely A, C, G and T. As there

are only 4 possible haraters in a DNA text we an represent the harater's with

the funtion, f: �) [0 .. 3℄, suh that:

f(A) = 0, f (C) = 1, f (G) = 2, and f (T) = 3.

Let a blok be a string of four haraters. The ode of a blok of DNA haraters

is the value that returned by the funtion g, g: � � �� �� �) [0 .. 255℄, for the

blok. The funtion g is de�ned as follows. g(��Æ) = (f(�) �4

3

) + (f(�) �4

2

) +

(f() �4

1

) + (f(Æ) �4

0

)

This means that we an represent eah of the DNA haraters with 2 bits. Namely

A = 00, C = 01, G = 10 and T = 11. A DNA text blok will be represented by 32-bits,

as eah harater needs 8-bits. Using the funtion g we an represent a text blok

with 8-bits. For eah text blok we print an ASCII harater whose ASCII number

is the value return by the funtion g. As the funtion g is a bijetive funtion, we

an ompress any text blok into 8-bits and it is possible to reonstrut the original

DNA text exatly.

For example, CAAGAGCGCAGT) 010000100010011001001011) 66 38 75)

B&K. So we an store the string CAAGAGCGCAGT using 24 bits. This storage

method will guarantee to store the DNA text in a �le, whih is 25% of its original

size.

3 Investigation into a hardware only solution to

the string mathing problem

The string mathing algorithm illustrated in Figure 1 was devised as part of a ase

study to investigate the feasibility of performing omputational algorithms in hard-

ware. String mathing was hosen as one of the areas to be tested as suh algorithms

typially involve many hardware manipulations of words of binary data. These manip-

ulations are invoked by the mahine ode instrutions, whih onstitute the program

and performed by the general-purpose hardware within the miroproessor itself. So

alled software to hardware synthesis tehniques aim to aelerate algorithm exeu-

tion by �rst of all removing the need for mahine instrutions and by also performing

omputational and logial operations on bespoke hardware.

2

Searhing in an EÆiently Stored DNA Text Using a Hardware Solution

while (match != 0 && word_count != 0) {
 result = current & mask;
 match = result - target;
 if (match != 0) {
 current = current >> 2;
 temp = buffer << 14;
 current = current | temp;
 if (shifted == 7) {
 word_count--;
 shifted = 0;
 buffer = *ptr;
 ptr++;
 }
 else {
 buffer = buffer >> 2;
 shifted++;
 }
 }
 }

Figure 1: The C ode for searhing for ourrenes of a single pattern in a given text

The example ode shown works on a word size of 16 bits and an detet a pattern

of up to 8 DNA haraters in length. However, the algorithm is by no means limited

to this word size.

The algorithm works by shifting the input stream through the variable urrent.

When the data is shifted, it is shifted two bits at a time to the right. It is shifted two

bits at a time beause this is more eÆient as the algorithm are searhing for DNA

features whih are enoded into two bit patterns. Eah time urrent is shifted to the

right it is heked for a math with the target pattern. This onept is illustrated in

Figure 2.

Figure 2: Comparison of input stream against target

When shifted, the two least signi�ant bits (LSBs), whih are bits 1 and 0, are lost

and the two most signi�ant bits (MSBs), whih are bits 15 and 14, beome empty.

These two null MSBs are �lled with the two LSBs of buffer. The variable buffer is

a pre-feth word, whih will ontain word i+1 with urrent ontaining word i. This

is neessary if urrent is to kept full at all times. During initialisation, the �rst word

of data is opied to urrent from the input bu�er and buffer is �lled with the seond

word of data.

In order to opy the two LSBs of buffer to the two MSBs of urrent, buffer is

�rst opied to a variable temp, whih is then shifted 14 bits to the left. This shift

operation results in the two least signi�ant bits of bu�er (1 and 0) being moved to

3

Proeedings of the Prague Stringology Conferene '01

the two most signi�ant bits (15 and 14), with the remainder of the word (bits 13 to

0) being �lled with 0's. The ontents of temp is then ORed with urrent resulting in

the two most signi�ant bits of urrent being replaed with the two least signi�ant

bits of buffer.

In order to make sure that buffer always has at least two bits available for

urrent, a ount is kept of how many times urrent has been shifted to the right. This

ount is stored in the variable shifted, whih is initialised to 0 and then inremented

eah time shifted is shifted to the right and the two MSBs replaed with the two

LSBs of buffer. If after a omparison shifted is less than 7, then buffer is shifted

two bits to the right in order to replae the two LSBs whih have been moved to

urrent and the variable shifted is inremented. If shifted reahes 7, then the last

two bits of data have moved from buffer to urrent and buffer requires re-�lling.

When this ours, shifted is set bak to 0 and buffer is loaded with a omplete new

word from the input stream.

The next byte to be fethed from the input stream is pointed to by the pointer

variable ptr, whih is inremented one buffer has been re�lled with a word from

data bu�er named data buffer.

To asertain whether urrent ontains a math for the bit pattern being searhed

for, urrent is �rst ANDed with a variable named mask. The purpose of mask is to

mask out those bits of urrent whih are not required for the omparison. To ignore

a bit during the omparison between target and urrent, then the assoiated bit of

mask should be 0. Likewise, to inlude a bit in the omparison, then that bit of the

mask should be set to 1. As illustrated in Figure 3 below, the pattern 'ACGT' is

being searhed for, whih is only an 8 bit pattern. Hene the remaining upper eight

bits an be ignored during the omparison and are thus set to 0.

Figure 3: The use of the mask to redue the number of bits ompared

When urrent is ANDed with the mask, the result of the logial AND is stored

in result. A bit of result will only be set to 1 if both the orresponding bits of mask

and urrent are 1, otherwise the bit will be set to 0. A math with the target an

now be determined by subtrating target from result. If the result of this subtration

is all 0's, then both result and the target must have ontained the same values and

hene a math has been found. This proess is illustrated in Figure 4.

4

Searhing in an EÆiently Stored DNA Text Using a Hardware Solution

Figure 4: The steps required to determine whether the target mathes the urrent

data

The program has been written to loate patterns of DNA up to and inluding

eight two bit odes. Hene, all words are 16bits in length and are delared as being of

type unsignedshort. However, the program ould easily be amended to loate longer

patterns by simply hanging the variable types and program onstants.

4 Searhing for multiple strings

The example algorithm illustrated in Figure 1, simply searhes an input stream for

all ourrenes of a single string. The program an be easily modi�ed to searh an

input stream for all ourrenes of many strings by reading in many targets from a

�le and storing them in an array. This way, eah time urrent is shifted, it may be

ompared with many targets before it is one more shifted. In order to do this, a

seond array must be reated to store the masks for eah of the targets. These masks

may be automatially generated from the targets as they are read in.

5

Proeedings of the Prague Stringology Conferene '01

while (shifts>0) {
 for (i=0; i<no_of_targets; i++) {
 result = current & mask_array[i];
 match = result - target_array[i];
 if (match == 0) {
 .. match found
 }
 }

 current = current >> 2;
 shifts--;
 temp = buffer << 14;
 current = current | temp;

 if (shifted == 7) {
 shifted = 0;
 buffer = *ptr;
 ptr++;
 }
 else {
 buff = buff >> 2;
 shifted++;
 }
 }

Figure 5: An algorithm to searh for multiple patterns in a single text

Apart from this simple modi�ation, the program remains relatively unhanged.

This is the version of the program, whih will be the subjet of the investigation into

hardware aeleration of string mathing.

Figure 6: Illustration of Figure 5

6

Searhing in an EÆiently Stored DNA Text Using a Hardware Solution

5 Hardware aeleration

Over the past deade hardware synthesis has been explored as a method of ael-

erating omputing tasks at whih onventional general-purpose miroproessors are

ineÆient. The problem is that urrent miroproessors, although being suitable for

many tasks, are not partiularly eÆient at performing any one task. This is beause

they are designed to be appliable to as many problem areas or tasks as possible.

Therefore, through neessity they possess many features whih although utilised by

one appliation may never be used by another appliation. Another problem with

onventional mahines is the stored program onept whereby and algorithm is ex-

euted by the miroproessor obeying a series of ommands, whih are stored in

memory. These ommands are the mahine ode instrutions, whih the miropro-

essor fethes, deodes and then exeutes one at time. This fething and deoding

takes omparatively vast amount of time due to the slow speed of memory and the

numerous instrutions within the instrution set of the proessor. Even the exeution

phase is by no means eÆient. The exeution iruits of a proessor are �nite and

although some resoures are repliated, many must be shared. This resoure on-

tention slows exeution times. Additionally, the exeution iruits of miroproessors

are designed to perform many tasks, making them less eÆient.

Hardware and software o-design or hardware to software synthesis is a proess

whereby omputing algorithms expressed in high-level languages, are ompiled to pro-

due either an exeutable program and a hardware iruit design or just a hardware

iruit. In the ase of hardware and software o-design [16, 17℄, the majority of the

program is turned into an exeutable binary for exeution on a miroproessor, whilst

the remainder of the algorithm is synthesised to hardware. The portion synthesised

to hardware would be the setion of the algorithm at whih the miroproessor would

be least eÆient. The hardware portion is usually programmed into a Field Pro-

grammable Gate Array (FPGA) [18℄, whih then ats as a o-proessor to the host

miroproessor. Produing programs for suh arhitetures is usually performed using

a hybrid programming language and appropriate ompilers and synthesis tools [15℄.

Suh programming languages tend to be based on C, with extensions being added to

express the hardware-only omponents for the FPGA.

With pure software to hardware synthesis [2, 3℄, an attempt is made to map the

entire algorithm into an FPGA, resulting in a digital iruit, whih is funtionally

idential to and diretly derived from an algorithm, whih was originally expressed

in a programming language. Suh approahes tend to used hardware desription

languages suh as VHDL [13℄, whih are exlusively used for expressing the funtion

of hardware iruits.

Synthesis to a hardware only solution o�ers the greatest potential inrease in

speed, removing the need for instrutions and a onventional feth-deode-exeute

yle. However, it is also the most diÆult to ahieve. The diÆulty arises from the

design features of urrent FPGAs, whih were originally intended for implementing

digital iruits. Although suitable for the prototyping and implementation of gen-

eral iruits omprising of digital logi, they are not well suited for implementing

algorithms. This is beause algorithms require data storage for variables, buses for

register to register and register to exeution unit transfers. Data storage and buses

are not available within an FPGA and must be reated using the FPGAs resoures,

7

Proeedings of the Prague Stringology Conferene '01

suh as maro-ells and signal lines. What makes the situation worse is that both

registers and buses are expensive in terms of FPGA resoures, whih ultimately limits

the size of the algorithm to may be implemented in hardware.

As part of the researh into implementing string mathing algorithms in hardware-

solutions, reommendations will be made regarding the development of a new FPGA

arhiteture, whih will be more suited to purpose of implementing software in hard-

ware.

6 Hardware Implementation of string Mathing

The researh urrently being undertaken aims to overome the limitations of urrent

FPGAs, with regards to on�gurable omputing. First of all, it aims to do this by

reommending a new on�gurable devie arhiteture, whih lends itself more to the

mapping of software to hardware. The devie will feature the busing systems, areas of

storage and synhronization iruits required to failitate both e�etive and eÆient

hardware generation. Seondly, software tools are being developed whih will proess

standard C programs and as their output, will produe on�guration �les for the

programmable devie.

Beause of the low-level nature of the task of string mathing, it is an ideal an-

didate for suh aeleration tehniques. At the hardware level, the most eÆient

method of searhing a string for a sub-string is as illustrated in Figure 2. The stream

to be searhed is passed through a register, shifting one bit at a time. Eah time the

register is shifted, the register is ompared with the sub-string being searhed for.

This is the same method as employed in the C algorithm disussed previously. The

number of register bits to be ompared need only be equal in length to the number

of bits in the sub-string, with any additional bits simply be masked out or ignored

in the same way as the C algorithm. Additionally, the register being searhed need

not only be shifted one bit at a time. In the ase of searhing for ourrenes of bit

patterns onsisting of two bit sub-patterns, it is more eÆient to shift the register

two bits before a omparison with the target is made.

Figure 7., illustrates a simpli�ed diagram of the omponents to be implemented in

hardware. Missing are the hardware omponents responsible for shifting both urrent

and buffer to the right. Also missing are the iruits required for synhronizing the

ativities of the omponents in order to perform the operations of the algorithm in

the orret order.

8

Searhing in an EÆiently Stored DNA Text Using a Hardware Solution

Figure 7: Simpli�ed version of the omponents to be implemented in hardware

The memory labelled data buffer holds the data to be searhed for a sub-string.

The width of the words ontained in data buffer is immaterial and may be of any

width.

The registers labelled ptr and buffer are assoiated with the fething of the

words from memory. The register buffer is the same width as the words ontained

in data buffer. This register is used to ontain a pre-feth word. The register ptr is

used as a pointer to referene the words ontained in data buffer. As suh, its width

need only be suÆient to referene all of the words in data buffer.

The register urrent ontains the urrent bit pattern to be mathed against a

sub-string bit pattern. It is a shift register, with the data ontained in the register

being shifted right two bits at a time, with the two least signi�ant bits being lost

and the two most signi�ant bits being replaed with the two least signi�ant bits of

bu�er. This is the purpose of bu�er, to keep urrent full of bits. Only one all the

bits ontained in bu�er have been shifted into urrent, will new data be loaded into

buffer from data buffer.

As with the C algorithm, the mask register is used to ontain a bit pattern to

mask o� the bits of urrent, whih are not to be ompared. When ANDed with the

ontents of urrent, then the resulting word is stored in the register result. It is the

ontents of result, whih will be ompared with the target to determine whether or

not a mathing bit pattern has been loated. To asertain whether the ontents of

result and target do math, result is subtrated from target. Again, if the result of

the subtration is zero, then a math has been loated.

The synhronisation tehniques to be implemented to synhronise the funtioning

of the omponent parts is beyond the sope of this paper. However, the tehniques

employed and the arhiteture of the programmable logi devie, will be reported

9

Proeedings of the Prague Stringology Conferene '01

upon in subsequent papers.

7 Existing string mathing algorithms

The string mathing algorithms desribed below work as follows. First the pattern

of length m, P[1..m℄, is aligned with the extreme left of the text of length n, T[1..n℄.

Then the pattern haraters are ompared with the text haraters. The algorithms

vary in the order in whih the omparisons are made. After a mismath is found

the pattern is shifted to the right and the distane the pattern an be shifted is

determined by the algorithm that is being used. It is this shifting proedure, whih

is the main di�erene between the string mathing algorithms.

There are a number of string mathing algorithms available in the literature. We

have hosen six of them, whih were found to be fast in [5℄ and desribed them briey

below. All of the algorithms have worst-ase searh time O(nm). Animations of

these algorithms an be found at [9℄ and more information about the algorithms an

be found in [8℄.

In the Boyer-Moore (BM) algorithm [7℄ the haraters are ompared from right

to left starting with the rightmost harater of the pattern. In a ase of mismath it

uses two funtions, last ourrene funtion and good suÆx funtion and shifts the

pattern by the maximum number of positions omputed by these funtions. The good

suÆx funtion returns the number of positions for moving the pattern to the right by

the least amount, so as to align the already mathed haraters with the rightmost

substring in the pattern that are idential. The number of positions returned by the

last ourrene funtion determines the rightmost ourrene of the mismathed text

harater in the pattern. If the text harater does not appear in the pattern then

the last ourrene funtion returns m.

The Horspool (HOR) algorithm [12℄ is a simpli�ation of the BM algorithm. It

does not use the good suÆx funtion, but uses a modi�ed version of the last ourrene

funtion. The modi�ed last ourrene funtion determines the right most ourrene

of the (k +m)

th

text harater, T[k +m℄ in the pattern, if a mismath ours when

a pattern is aligned with T[k .. k +m℄. This algorithm hanges the order in whih

haraters of the pattern are ompared with the text. It ompares the rightmost

harater in the pattern �rst then ompares the leftmost harater, then all the other

haraters in asending order from the seond position to the m� 1

th

position.

The Berry-Ravindran (BR) algorithm [5℄ uses the next two haraters outside the

pattern text alignment T[k+m+1℄ T[k+m+2℄ to alulate the shift. If the pair is in

the pattern then we shift the pattern so as to align it with the rightmost ourrene

of the pair in the pattern. If the pair is not in the pattern then we shift by m+2

plaes to the right.

The DS algorithm [6℄ is an algorithm designed to searh diretly in the eÆiently

stored DNA text. It was found to be the fastest algorithm for the task of string

mathing in DNA �les. The speed of the algorithm was mainly due to the ut down

in the time required to san in the text due to it being 25% of the size of the original

text. The DS algorithm has a worst ase run time of O(nm) but an average ase run

time of O(n +m). The algorithm ompares text bloks with pattern bloks diretly

to see if they math. Upon a mismath the algorithm moves to the next text blok

to be onsidered.

10

Searhing in an EÆiently Stored DNA Text Using a Hardware Solution

The Shift-OR (SO) algorithm [4℄ has a worst ase run time of O(n) independent

of the size of the alphabet being used or the pattern being searhed for. The SO

algorithm onstruts a bit array R of length m. The array has the initial state R

i

and R

i

[j℄ is equal to 0 if P[0,j℄ = T[i � j,i℄ for all 0 � j � m. Otherwise R

i

[j℄ is

equal to 1. R

i

is realulated to form R

i

+ 1 by using two operations a logial shift

of 1 and a logial OR hene the name of the algorithm Shift-OR.

8 Comparison with existing algorithms

We measure the user time for the six algorithms. We timed the searh of eah of the

5 texts randomly hosen from the Entrez database [11℄ for all ourrenes of the 62

enzyme utting boundaries in [1℄. There are 9 patterns of length 4, 50 of length 6

and 3 of length 8. The BK and DS algorithms searhed in the eÆiently stored DNA

text �le and the BM, HOR, BR and SO algorithms searhed in the original DNA text

�le. We used a 486-DX66 with 32 megabytes of RAM and a 100 megabyte hard drive

running SUSE 5.2. The user time inludes the time taken for any pre-proessing and

the reading of the text into memory. Eah algorithm was evaluated ten times and

the average user time taken is given in Table 1. The timings were aurate to 1/100

of a seond. The di�erene between the slowest and fastest time for eah test for an

algorithm was less than 0.1 of a seond.

Text Text size BM BR HOR SO DS BK

1 100,000 47.57 31.49 41.09 54.92 15.31 45.77

2 100,000 47.63 31.46 40.99 54.91 15.36 45.76

3 253,505 119.97 79.29 102.97 138.96 33.18 115.92

4 319,000 151.13 99.63 129.70 174.71 40.84 145.83

5 217,000 102.72 67.98 88.26 118.85 29.05 99.22

Table 1: The user time taken (given in seonds) to searh for all 62 patterns in eah

of the texts

>From Table 1 we an see that the DS algorithm is the fastest algorithm for the

task. This is due to the savings made by the algorithm searhing in the ompressed

DNA �le, whih is a quarter of the size of the original DNA text �le. The BR

algorithm is the best algorithm for searhing in the original DNA text �le. This

is due to the larger shift of m+2 given by this algorithm. Using two haraters to

perform the searh means that the probability of a large shift is inreased. We would

expet the average shift for the algorithm to be greater than m for all the patterns

searhed for. The BK algorithm is faster than the BM and the SO algorithms. The

BK algorithm is a C implementation of our proposed hardware solution. We expet

our hardware solution to be faster than our C implementation, whih will also be

faster than the DS algorithm.

11

Proeedings of the Prague Stringology Conferene '01

9 Conlusion

Using the storage method desribed in Setion 2 we an store DNA text �les in 25%

of spae required for the original DNA text �le. Using algorithms suh as the DS

and BK algorithm we an keep DNA texts eÆiently stored and perform searhes on

them. Thus saving both time and spae.

Although the BK algorithm, whih is presented in this paper, is not the fastest

algorithm for the task of string mathing in an eÆiently stored DNA text �le, it

is never-the-less still ompetitive when ompared to existing string mathing algo-

rithms. Although it is by no means the fastest algorithm for sub-string searhes,

the hardware synthesis of the BK algorithm into a hardware only implementation is

expeted to produe a solution that we estimate to be signi�antly faster than even

the DS algorithm.

Referenes

Referenes

[1℄ Amersham life siene produts atalogue, pp 378-379, 1998.

[2℄ James B. Peterson, R. Brendan O'Connor, Peter M. Athanas, "Sheduling and

Partitioning ANSI-C Programs onto Multi-FPGA CCM Arhitetures", The

Bradley Department of Eletrial Engineering, Virginia Polytehni Institute

and State University, Blaksburg, Virginia.

[3℄ James B. Peterson, Peter M. Athanas, "High-Speed 2-D Convolution with a Cus-

tom Computing Mahine", The Bradley Department of Eletrial Engineering,

Virginia Polytehni Institute and State University, Blaksburg, Virginia.

[4℄ Baeza-Yates R. A., Gonnet G. H., "A New Approah to Text Searhing", Com-

muniations of the ACM, 35(10), pp. 74-82, 1992

[5℄ Berry T., Ravindran S., "A fast string mathing algorithm and experimental

results", Prague Stringology Club Workshop '99, 1999.

[6℄ Berry T., Ravindran S., "String mathing in a ompressed DNA text", Proeed-

ings of the Australian Workshop on Combinatorial Algorithms (AWOCA '99),

pp. 53-62, 1999.

[7℄ Boyer R. S., Moore J. S., "A fast string searhing algorithm", Communiations

of the ACM, 23(5), pp 1075-1091, 1977.

[8℄ Charras C., Leroq T., 1997, Exat string mathing, available at:

http://www-igm.univ-mlv.fr/~leroq/string.ps

[9℄ Charras C., Leroq T., 1998, Exat string mathing animation in JAVA avail-

able at: http://www-igm.univ-mlv.fr/~leroq/string/

[10℄ Crohemore M., Rytter W., "Text algorithms", Oxford University Press, 1994.

[11℄ Entrez database available at: http://www.nbi.nlm.nih.gov/Entrez/

12

Searhing in an EÆiently Stored DNA Text Using a Hardware Solution

[12℄ Horspool R. N., "Pratial fast searhing in strings", Software Pratie and

Experiene, 10(6), pp 501-506, 1980.

[13℄ "IEEE Standard VHDL Language Referene Manual", The Institute of Eletri-

al and Eletronis Engineers, In. (1987)

[14℄ Loewenstern D., Yianilos P., "Signi�antly lower entropy estimates for natural

DNA sequenes", Journal of Computational Biology, 6(1), 1999.

[15℄ Page I., Luk W., "Compiling oam into FPGAs", in FPGA, eds., Will Moore

and Wayne Luk, 271-283, Abingdon EE&CS books, (1991).

[16℄ Page I., "Construting Hardware-Software Systems from a Single Desription",

Oxford University Computing Laboratory.

[17℄ Page I., Aubury M., Randall G., Saul J., Watts R., "h: A Handel-C Com-

piler", Oxford University Computing Laboratory.

[18℄ Xilinx In., "Spartan and SpartanXL Families of Field Programmable Gate Ar-

rays", Preliminary Produt Spei�ation". San Jose, CA, (1999)

13

