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Abstrat. A onnetion is made between ertain multiple sequene alignment

problems and faility loation problems, and the existene of a PTAS (polyno-

mial time approximation sheme) for these problems is shown. Moreover, it is

shown that multiple sequene alignment with SP-sore and �xed gap penalties

is MAX SNP-hard.
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1 Introdution

Reent advanes in the availability of biologial data (i.e. DNA, RNA or protein)

has led to tremendous improvements in Moleular Biology. This huge amount of

data has also given a tremendous boost to a new �eld of Computer Siene alled

Bioinformatis. Pattern mathing is a basi tool in Moleular Biology, as sequene

similarity usually implies homology and funtional similarity of the proteins or genes

enoded by suh sequenes. Another ruial appliation of sequene omparison are

searhes of biologial databases. All known biologial sequenes are stored in huge

databases (e.g. EMBL, Swiss-Prot), and all reent papers in Moleular Biology that

report the disovery of a new sequene inlude a detailed omparison of the novel

sequenes with those stored in the publily available databases.

These fats reveal the importane of developing eÆient algorithms for aligning a set

of sequenes. It is standard pratie to represent biologial sequenes as sequenes

over a �xed alphabet (4 symbols for DNA and RNA sequenes, 20 symbols for pro-

teins). An alignment of a set S of sequenes is basially a matrix where the rows

orrespond to the sequenes in the set, possibly with some spaes inserted, and the

ost of an alignment is the sum of the osts of all olumns. The goal is to ompute

the alignment of S of minimum ost (or, in an equivalent formulation preferred by

�
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many biologists, maximum sore). This general de�nition allows di�erent spei�a-

tions of the problem, aording to the de�nition of ost of a olumn in the alignment

we hoose. In pratie at least two de�nitions make sense, the �rst (alled Tree Align-

ment) requires a tree whose node set is exatly S and where the ost of a olumn

is the sum of the osts of the pairs of symbols of the two sequenes that are adja-

ent in the tree. A partiular ase of this problem is alled Star Alignment, whih is

the restrition to trees with exatly one internal node. The other de�nition (alled

SP-Alignment) will be the one studied in this paper and de�nes the ost of a olumn

as the sum of all pairs of symbols in the olumn. Equivalently, the SP-sore an be

de�ned as the sum over the pairwise alignment sores of all indued alignments of

pairs of the sequenes. The pairwise alignment sores are de�ned as follows. Let � be

a �xed alphabet and let � =2 � denote the spae symbol, then a soring sheme is a

symmetri soring funtion d

M

: (�[�)� (�[�) 7! N together with spei�ations

on how to handle gaps. A soring funtion d

M

an be onveniently represented by a

soring matrix M . The ost of a pair of symbols s

1

; s

2

under the soring matrix M

is d

M

(s

1

; s

2

). A gap is a string of the form �

i

. Most soring shemes used in pratie

are aÆne, i.e., they speify a �xed gap opening penalty g (possibly 0) that is added

to the sore alulated aording to d

M

for eah newly reated gap in the alignment.

In this ontext, the numbers d

M

(s;�) for s 2 � are alled gap extension penalties.

Note that if all gap extension penalties are zero, then we have a soring sheme with

�xed gap penalties. If d

M

(s;�) > 0 for all s 2 �, then we will say that the soring

sheme spei�es stritly positive gap extension penalties.

Both Tree Alignment and SP-Alignment problems have been proved to be NP-hard

by Wang and Jiang [WJ94℄. Hene reasearh has foused on heuristi algorithms

or approximation algorithms for suh problems and on �nding restritions that are

eÆiently solvable. A restrition whih has a natural interpretation is the one where

the soring funtion is a metri. For this restrition some approximation algorithms

with guaranteed 2�o(1) error ratio have been desribed [G93, P92, BLP97℄. Moreover,

optimal alignments in atual biologial sequenes tend to have relatively few gaps

[W93, F93, BCG93, PA92℄, but unfortunately even in suh restrited ases the SP-

Alignment problem is still NP-hard [BD00, J99℄. In [J99℄, several suh modi�ations

of the SP-Alignment problem were studied. In the Gap-0 Alignment problem, spaes

may be inserted at the beginning and at the end of sequenes, but not between

haraters from �, and the Gap-0-1 Alignment problem is the restrition of Gap-0

Alignment where at most one spae an be inserted in eah sequene. It turns out

that SP-Alignment, Gap-0 Alignment and Gap-0-1 Alignment problems are all NP-

hard for pratially every aÆne soring sheme with stritly positive gap extension

penalties used by moleular biologists [J99℄. This leaves open the ase of other ways

of alulating the gap penalties that are sometimes used in Moleular Biology. In

partiular, this leaves open the interesting ase of �xed gap penalties, where all gaps

are penalized equally, no matter where they our and how long they are.

Moreover, it had been shown in [J99℄ that for some soring matrix M the three

problems mentioned above are MAX SNP-hard. The soring matrix M used in the

the latter result does not penalize all harater mismathes, and thus is not metri.

In [JKL99℄, Jiang et al. ask whether a partiular restrition of the SP-Alignment

problem (the ase of metri soring matrix) has a polynomial time approximation

sheme (PTAS), that is, there exists a polynomial time approximation algorithm for
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any �xed onstant guaranteed error ratio. In [LMW99℄ a related question has been

answered positively by showing that the Star--Alignment Problem (where the number

of gaps in the pairwise alignment between any given sequene and the median sequene

is bounded by a onstant ) with Hamming distane admits a PTAS. In our paper

we show that a di�erent restrition of the problem admits a PTAS. More preisely,

we show that a PTAS exists if the total number of spaes that an be inserted into

eah sequene is bounded and the ratio of the osts between eah pairwise alignment

is in a �xed interval. Our results trivially hold also for Gap-0-1 Alignment.

Moreover, we will show that at least for some soring sheme with �xed gap penalty,

the Gap-0 Alignment and the SP-Alignment problems are MAX SNP-hard. Sine the

optimal alignment in the example that yields the latter result ontains only one spae

in eah sequene, the requirement of bounded ost ratio annot be dropped from the

onstrution of the PTAS we desribe in the paper.

2 Preliminaries

Let � be a �nite alphabet, let � =2 � be the spae symbol, let d

M

: (� [�) � (� [

�) ! N be a funtion alled soring funtion, and let g be a nonnegative integer

onstant alled gap opening penalty. The symbol �(M) will denote the maximum

value d

M

(a

1

; a

2

) between two di�erent symbols a

1

; a

2

2 � [ f�g. Given a sequene

a over � [ f�g, the symbol a[i℄ will denote the i-th harater of a and jaj will

denote the length n of a sequene a = a[1℄; : : : ; a[n℄. Then given two sequenes

s

1

= s

1

[1℄; : : : ; s

1

[m℄, s

2

= s

2

[1℄; : : : ; s

2

[m℄ of m symbols over (� [ �), the ost

of aligning s

1

and s

2

is d

M

(s

1

; s

2

) = g(G

1

+ G

2

) +

P

m

i=1

d

M

(s

1

[i℄; s

2

[i℄), where G

j

is the number of gaps (onseutive runs of spae symbols) in s

j

. Given a k-tuple

< t

1

; : : : ; t

k

> of sequenes over the alphabet � [ f�g, a multiple alignment is a k-

tuple < at

1

; : : : ; at

k

> of equal-length sequenes (where at

i

stands for aligned t

i

) over

the alphabet � [ f�g suh that eah at

i

an be obtained from t

i

by inserting some

spae symbols into the sequenes without altering the order of symbols of t

i

. Given

two equal-length sequenes at

1

; at

2

, their pairwise alignment is the pair of sequenes

bt

1

; bt

2

that is obtained from at

1

; at

2

by removing all olumns ontaining only �s. If

L is a nonnegative integer, by d

opt

M;L

(t

1

; t

2

) we will denote the minimum ost among

all pairwise alignments of < t

1

; t

2

> that insert at most L spaes into eah of the

sequenes t

1

, t

2

. The SP-Alignment problem for a given soring sheme (d

M

; g) is to

�nd the multiple alignment < at

1

; : : : ; at

k

> that minimizes SP (< at

1

; : : : at

k

>) =

P

1�i<j�k

d(bt

i

; bt

j

) among all possible multiple alignments of < t

1

; : : : ; t

k

>.

Here we will study a restrition of SP-Alignment that aptures to some extent the pat-

tern of spae insertions observed in real biomoleular sequenes and is di�erent from

the restritions studied in [J99℄. A spae-L alignment A of a k-tuple < t

1

; : : : ; t

k

> of

sequenes is an alignment < at

1

; : : : ; at

k

> of < t

1

; : : : ; t

k

> suh that jat

i

j � jt

i

j+L

for eah sequene t

i

. Note that spae-L-alignments exist only if the length of the

shortest of these sequenes is at least n � L, where n is the length of the longest

among the sequenes t

1

; : : : ; t

k

. Please also note that there are no restritions about

where the spae symbols an be inserted. The Spae-L Multiple Alignment problem

asks to �nd, for a k-tuple of sequenes < t

1

; : : : ; t

k

> and a soring sheme (d

M

; g),

a spae-L multiple alignment that minimizes the SP-sore with respet to (d

M

; g).
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Given an instane I =<< t

1

; : : : ; t

k

>; (d

M

; g) > of the Spae-L Multiple Alignment

problem we de�ne the variability of I, denoted by v(I), as

v(I) = maxf

n�(M) + Lg

d

opt

M;L

(t

i

; t

j

)

: 1 � i < j � kg;

Please note that the value v(I) of the instane I an be omputed in polynomial time.

The Spae-L Multiple Alignment(�) problem is the restrition of the Spae-L Multiple

Alignment problem to instanes I with v(I) � �.

A few omments are in order. The most ommon multiple alignment problem in

Moleular Biology is the alignment of homologous protein sequenes from di�erent

speies. For a pair < t

i

; t

j

> of suh sequenes, < a(i; j)t

i

; a(i; j)t

j

> will be small

only if the sequenes are very similar, whih usually happens only if the two speies

of origin have a relatively reent (in the timesale of evolution) ommon anestor,

and will be lose to the average distane of random sequenes if the speies diverged

a long time ago, or if the optimal alignment requires more than L spaes. For soring

matries used in pratie, the average distane of random sequenes is usually a

number of about the same order of magnitude as n�(M). The algorithms used in

pratie for multiple sequene alignment tend to perform well if all sequenes are

losely related to eah other, while our �rst theorem overs one of the ases that are

diÆult in pratie and quite ommon, namely the ase where none of the sequenes

are losely related to eah other.

3 The PTAS

The main results of this setion is the following:

Theorem 1 Let � be a onstant. Then the Spae-L Multiple Alignment(�) problem

has a polynomial time approximation sheme.

Note that in the above theorem, the soring sheme (d

M

; g) is onsidered part of the

input, thus the theorem works for all aÆne soring shemes, no matter whether the

soring funtion is a metri and the gap penalties are �xed or variable. This does

not ontradit the results about MAX SNP-hardness from [J99℄ though, sine the

variability of the instanes used to obtain the latter results was not bounded.

Theorem 1 will be proved by reformulating it as a kind of faility loation problem.

To see the onnetion, suppose a ommuniation network is to be set up in a ountry

that onsists of k regions. In eah region, there should be one swithboard of the

network, and eah swithboard is to be onneted by expensive, high quality able

to every other swithboard. If in eah region there are several possible loations

for the swithboard that are equally good for the operation of the network within

this region, then the loations of swithboards should be hosen in suh a way as

to minimize overall ost of able between them. The question of hoosing optimal

loations for the swithboards an then be formalized as follows. The Swithboard

Loation problem has as instane some disjoint sets R

1

; : : : ; R

k

alled regions, as well
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as a distane funtion d between all pairs of points x

i

; x

j

in R

1

[� � �[R

k

. The distane

funtion gives stritly positive values whenever the two points are distint. A feasible

solution is a k-tuple < x

1

: : : ; x

k

> of points suh that x

i

2 R

i

for 1 � i � k. The

problem asks for a feasible solution that minimizes

P

1�i<j�k

d(x

i

; x

j

).

While faility loation problems with objetive funtions similar to those of Swith-

board Loation have been studied for regions of the real line (see e.g. [AH97℄, [T94℄),

we are not aware of any published results onerning the general formulation of Swith-

board Loation given above.

We will disuss later how instanes of Spae-L Alignment(�) an be mapped to suitable

instanes of Swithboard Loation in order to have a (1+ �) approximation algorithm.

But �rst we have to introdue a restrition of Swithboard Loation similar to the

one introdued for Spae-L Alignment. Let I = fR

1

; : : : ; R

k

; dg be an instane of the

Swithboard Loation problem. We de�ne the spread s(I) of I as

s(I) =

maxfd(x

i

; x

j

) : 1 � i < j � k; x

i

2 R

i

; x

j

2 R

j

g

minfd(x

i

; x

j

) : 1 � i < j � k; x

i

2 R

i

; x

j

2 R

j

g

:

It is immediate from the de�nition that s(i) � 1. For any pair of onstants P; �, the

Swithboard Loation

P

(�) problem is the Swithboard Loation problem restrited to

instanes of spread at most � and where eah region ontains at most P points.

Theorem 2 Let P; � be two onstants. Then the Swithboard Loation

P

(�) problem

admits a PTAS.

Proof. The PTAS for Swithboard Loation is based on the smooth polynomial pro-

gramming tehnique of Arora et. al [AKK99℄. We will briey reall the relevant

material from those papers. A -smooth polynomial integer program (or PIP) is a

problem of the form

minimize p

0

(x

1

; : : : ; x

n

)

subjet to l

j

� p

i

(x

1

; : : : ; x

n

) � u

j

x

i

2 f0; 1g for i = f1; : : : ; ng

(6)

where eah p

j

is an n-variate polynomial of maximum degree d, and eah oeÆient

of eah degree ` monomial (term) has an absolute value of at most  � n

d�`

.

The fundamental result that we will use, Theorem 1.10 of [AKK99℄, asserts that, for

eah Æ > 0, there exists an approximation algorithm running in time O(n

1

Æ

2

) that

omputes a 0/1 assignment < y

1

; : : : ; y

n

> to the variables x

i

of a -smooth PIP

suh that, for n-variate degree-d polynomials, the value of p

0

(y

1

; : : : ; y

n

) is within an

additive error is at most Æn

d

of minimum for 0/1 solutions that satisfy all onstraints

p

1

; : : : ; p

m

, and suh that < y

1

; : : : ; y

n

> satis�es eah linear onstraint within an

additive error of O(Æ

p

n logn).

Now let � be a �xed onstant, and suppose we have an instane I of the Swithboard

Loation

P

(�) problem, where fR

i

: 1 � i � kg are the regions of I, and R

i

= fx

i;j

:

1 � j � Pg. (Sine one an always add dummy points to the regions, we do not

lose generality by assuming the regions to be exatly of ardinality P .) Let D be the
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value minfd(x

i;j

; x

h;`

) : 1 � i < h � k; 1 � j; ` � Pg. Now we an formulate the

Swithboard Loation problem as a PIP:

minimize

P

1�h<i�k; 1�j;`�k

d(x

i;j

;x

h;`

)

D

y

i;j

y

h;`

subjet to

P

j

ky

i;j

= k i = 1; : : : ; k

y

i;j

2 f0; 1g i = 1; : : : ; k; j = 1; : : : ; P

(7)

Please note that the total number of variables is at most kP . Sine s(I) � �, all

oeÆients of the objetive funtions are between 1 and �. Thus the PIP is �-smooth.

Now suppose we want to �nd a solution to the Swithboard Loation problem that is

within a fator of (1 + �) of minimum. Setting Æ =

�

2P

2

, and running the algorithm

of [AKK99℄ on the PIP de�ned above, we �nd a 0/1 solution that satis�es all on-

straints within an additive error of O(Æ

p

kP log kP ). Sine for 0/1 solutions the left

hand sides of our side onstraints are multiples of k; for suÆiently large k we an

assume that these side onstraints are satis�ed exatly. But then for eah region R

i

,

exatly one of the numbers y

i;j

is equal to 1. Thus the orresponding x

i;j

's form a

feasible solution of instane I of the Swithboard Loation problem, and the sum of the

distanes is within an additive error of D�

�

k

2

�

. By the hoie of D, the minimum value

for the sum of all distanes in any feasible solution of instane I of the Swithboard

Loation problem annot be less than D

�

k

2

�

, and thus we have found, in polynomial

time, an approximation within a fator of (1 + �). 2

Now let us show how Theorem 2 implies Theorem 1. Suppose we are given an instane

I =<< t

1

; : : : ; t

k

>; (d

M

; g) > of the Spae-L Alignment(�) problem, and let � > 0.

We want to �nd a spae-L multiple alignment of these sequenes that sores within

(1 + �) of optimum. Let N = d

4L�

�

e and note that N is a onstant. Let n be the

length of the longest among the sequenes t

1

; : : : ; t

k

, and let K = d2N +

gN

�(M)

e.

First assume that n � K. In this ase we let R

i

be the set of all sequenes x

i;j

that are

obtainable by inserting L spaes into t

i

(at the beginning, end, or between symbols).

This set ontains at most

�

K+L

L

�

elements. Note that

�

K+L

L

�

is a onstant that does

not depend on the number of sequenes k. Thus the family fR

i

: 1 � i � kg together

with the distanes d(x

i;j

; x

i

0

;j

0

) de�ned by the soring sheme is an instane of the

Swithboard Loation problem where the ardinality of all regions is bounded by the

onstant

�

K+L

L

�

. Feasible solutions of the Swithboard Loation problem are exatly

all spae-L alignments of our sequenes, and the objetive funtion of the Swithboard

Loation problem is exatly the SP-sore of the alignment. Sine the variability of

the Spae-L Alignment problem is bounded by �, the spread of the orresponding

Swithboard Loation problem that we just onstruted is also bounded by �. Thus

the PTAS for Swithboard Loation

(

K+L

L

)

(�) �nds a solution within (1+�) of optimum.

Now assume that n > K. In this ase we partition eah sequene t

i

into onseutive

hunks < s

i;h

: 1 � h � N >, where the length of eah hunk di�ers from

n

N

by no

more than 1. With eah funtion f : f1; : : : ; N+1g ! N suh that

P

1�i�N+1

f(i) � L

we assoiate a sequene t

i;f

by inserting f(h) spae symbols to the left of eah hunk

s

i;h

. In other words,

t

i;f

= �

f(1)

s

i;1

�

f(2)

s

i;2

: : :�

f(N)

s

i;N

�

f(N+1)
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Now we let R

i

be the set of all t

i;f

for funtions f : f1; : : : ; N + 1g ! N that

satisfy

P

1�i�N+1

f(i) � L. We run the approximation algorithm for Swithboard

Loation

N+1

(�) that �nds a solution within (1 +

�

3

) on the instane given by the

k + 1-tuple < R

1

; : : : ; R

k

; (d

M

; g) >.

The algorithm returns a spae-L multiple alignment < t

1;f

1

; : : : ; t

k;f

k

> of the se-

quenes < t

1

; : : : ; t

k

>. It remains to show that the alignment < t

1;f

1

; : : : ; t

k;f

k

>

sores within (1 + �) of optimum. Let < at

1

; : : : ; at

k

> denote a spae-L multiple

alignment with optimal SP-sore. For eah i, let g

i

: f1; : : : ; N + 1g ! N be the

funtion suh that for eah 1 � i � k and 1 � h � N , g

i

is equal to the number of

spaes in at

i

inserted immediately to the left of the hunk s

i;h

or between haraters

of s

i;h

. Instead of t

i;g

i

we will write bt

i

. Sine bt

i

2 R

i

for eah i, we have

SP (< t

1;f

1

; : : : ; t

k;f

k

>) � (1 +

�

3

)SP (< bt

1

; : : : ; bt

k

>):

Sine 1 + � > (1 + �=2)(1 + �=3) whenever � < 1, it now suÆes to show that

SP (< bt

1

; : : : ; bt

k

>) � (1 +

�

2

)SP (< at

1

; : : : ; at

k

>):

Let us split the sequenes at

i

, bt

i

into N + 1 hunks at

i;h

, bt

i;h

for 1 � h � N + 1

where bt

i;h

= �

g

i

(h)

s

i;h

, s

i;N+1

is the empty string, and jbt

i;h

j = jat

i;h

j, so that at

i

=

at

i;1

at

i;2

� � �at

i;N+1

and bt

i

= bt

i;1

bt

i;2

� � � bt

i;N+1

. From the de�nition of g

i

, whenever

g

i

(h) = g

j

(h) = 0, the pairwise alignment< at

i;h

; at

j;h

> is the same as < bt

i;h

; bt

j;h

>.

Sine at most L spaes are inserted into eah sequene t

i

, and sine the maximum

penalty on eah hunk (exluding the newly inserted spaes) is equal to the length

of the hunk (i.e. at most

n

N

+ 1) multiplied by �(M), and there are globally only L

extra spaes, we get the inequality

d

M

(bt

i

; bt

j

) � d

M

(at

i

; at

j

) + �(M)L(2 +

n

N

) + Lg:

Sine n > 2N +

gN

�(M)

and thus �(M)

Ln

N

� 2L�(M) + Lg, we get

d

M

(bt

i

; bt

j

) � d

M

(at

i

; at

j

) + �(M)n

2L

N

:

By the hoie of N , the latter yields

d

M

(bt

i

; bt

j

) � d

M

(at

i

; at

j

) +

�(M)n�

2�

:

Sine the variability of our instane was assumed to be at most �, the inequality

d

M

(at

i

; at

j

) �

�(M)n

�

holds, and we get

d

M

(bt

i

; bt

j

) � d

M

(at

i

; at

j

)(1 +

�

2

);

as required.
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4 MAX SNP-hardness

The following theorem shows that the assumption of bounded variability annot be

simply dropped in Theorem 1.

Theorem 3 There exists a soring sheme (d

M

; g) with �xed gap penalties suh that:

(a) For the soring sheme (d

M

; g) and for every L > 0 the Spae-LMultiple Alignment

problem is MAX SNP-hard.

(b) For the soring sheme (d

M

; g) the Gap-0 Alignment problem is MAX SNP-hard.

() For the soring sheme (d

M

; g), the SP-Alignment problem is MAX SNP-hard.

Here is the soring sheme mentioned in the above theorem. The alphabet will be

� = fA;C; Tg, the gap opening penalty will be g = 2, and the soring matrix M will

be:

� A C T

� 0 0 0 0

A 0 0 0 1

C 0 0 0 0

T 0 1 0 0

Proof. We will prove Theorem 3 by reduing the Max Cut problem on ubi graphs

(denoted by 3-Max Cut) to the respetive multiple alignment problems. Reall that

an instane of size k of the 3-Max Cut problem is a simple graph G =< V;E > suh

that jV j = k and eah vertex of G has degree exatly 3. The problem is to �nd a

partition of the set of verties V into disjoint sets V

0

and V

1

suh that the number

of edges that onnet a vertex in V

0

with a vertex in V

1

, i.e., the size of the ut

determined by < V

0

; V

1

>, is as large as possible. It is well known that the 3-Max Cut

problem is MAX SNP-hard [AK97℄. For our purposes, it is most important to note

that the latter implies that there exists a real � > 0 suh that no polynomial-time

approximation algorithm an �nd a ut suh that the number of edges that are NOT

ut is within an additive onstant of �k of minimum.

Given a ubi graph G =< V;E > with k verties, we de�ne a 2k-tuple

�

t

G

=<

t

1

; : : : ; t

2k

> of sequenes as follows: Enumerate V = fv

1

; : : : ; v

k

g, E = fe

0

; : : : ; e

`�1

g.

Eah sequene t

i

will have length 2(k

4

+ d�ke`), where � is a onstant that will be

de�ned below. Intuitively speaking, for 1 � i � k, the sequene t

i

will enode

the vertex v

i

. Edge e

m

= fv

i

; v

h

g will be enoded by haraters t

h

[j℄; t

i

[j℄, where

j = 2(d�kem+1); : : : ; 2d�ke(m+1). More preisely, we de�ne t

i

[j℄, the j-th hara-

ter in t

i

, as follows. For 1 � m � `, e

m

= fv

h

; v

i

g, h < i, d�kem < j < d�ke(m + 1)

we put: t

h

[2j℄ = A, t

i

[2j℄ = T , and t

p

[2j℄ = C for p =2 fi; hg.

The sequene t

k+i

will at as a \mirror image" of t

i

. The purpose of mirror images is

to neutralize the e�ets of unbalaned uts on the sores of aligments. For 1 � i � k

and d�ke`+ ik

3

< j < d�ke`+ (i + 1)k

3

we put: t

i

[2j℄ = A, t

k+i

[2j℄ = T , t

p

[2j℄ = C

for p =2 fi; k + ig.

For all p; j, we let t

p

[2j � 1℄ = C. Let us illustrate this onstrution with a piture.

We exhibit a situation where e

m

= fv

h

; v

i

g.
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t[2(d�kem + 1)℄ t[2d�ke` + 2(h� 1)k

3

℄ t[2d�ke` + 2(i� 1)k

3

℄

# # #

t

h

: ... A C A C A ... A C A C A C ... C C C C C ...

t

i

: ... T C T C T ... C C C C C C ... A C A C A ...

t

k+h

: ... C C C C C ... T C T C T C ... C C C C C ...

t

k+i

: ... C C C C C ... C C C C C C ... T C T C T ...

Let us de�ne a \benhmark alignment" of the above sequenes. We will de�ne this

alignment by partitioning the sequenes into two sets L and R and inserting one

spae to the left of eah sequene in L and one spae to the right of eah sequene

in R. Let < V

1

; V

2

> be a ut of G. We will show how to assoiate a benhmark

alignment to suh ut. For eah 1 � i � k we let t

i

2 L i� t

k+i

2 R. Moreover for

eah 1 � i � k we let t

i

2 L i� v

i

2 V

1

.

Note that the sore for the benhmark alignment is 4k

2

+�kU , where U is the number

of edges that are not in the ut < V

1

; V

2

>. Moreover, the benhmark alignment is a

gap-0-1 alignment, and hene both a gap-0 alignment and a spae-1 alignment.

We will show that there exists a �xed Æ > 0 suh that if an alignment a of the above

sequenes is found that sores within a fator of (1 + Æ) of the benhmark alignment,

then it will be possible to reonstrut, in polynomial time, from this alignment a

partition of the vertex set that indues a ut whose size is within a additive onstant

of �k of maximum. Suppose we have any alignment a that sores within 1 + Æ of our

benhmark alignment, where Æ is suÆiently small and will be determined later. Let

us say that a sequene pair < t

p

; t

q

> is stati in a if there is no spae in the indued

pairwise alignment < bt

p

; bt

q

>. Being stati in a is easily seen to be an equivalene

relation. Let T

1

and T

2

denote the two largest equivalene lasses of the \stati"

relation, and let T

3

denote the set of sequenes that are neither in T

1

nor in T

2

. Note

that none of the sequene pairs < t

i

; t

k+i

> an be stati in a, otherwise the ost of

the alignment of < t

i

; t

k+i

> is too large. Thus the size of T

1

and T

2

is at most k. Let

jT

1

j = k � k

1

, jT

2

j = k � k

2

. Then jT

3

j = k

1

+ k

2

. Sine eah pair of sequenes from

di�erent equivalene lasses adds at least 4 to the SP-sore of a, we have

SP (< at

1

; : : : ; at

2k

>) � 4((k� k

1

)(k� k

2

) + (k� k

1

)(k

1

+ k

2

)+ (k� k

2

)(k

1

+ k

2

)) =

4(k

2

+ k

1

k

2

+ k(k

1

+ k

2

)� (k

1

+ k

2

)

2

) = 4(k

2

+ k

1

k

2

+ (k � jT

3

j)jT

3

j):

Thus the numbers k

1

and k

2

must be suh that k

1

k

2

+(k�jT

3

j)jT

3

j < Æk

2

+Æ�kU , where

U is the number of edges that are not ut by the partition used in the benhmark

alignment. Note that U � 3k. We will hoose Æ <

��

100

. It follows that as long as � is

suÆiently small, we an assume that jT

3

j < k

�

6

. Now let �, Æ be as above, and let

V

i

be the set of all verties suh that t

i

2 T

i

for i 2 f1; 2g. Consider the partition

< V

1

; V nV

1

>. Let W be the number of edges of G that are not ut by < V

1

; V nV

1

>.

Note that this number di�ers from the number Z of edges fv

i

; v

j

g suh that < t

i

; t

j

>

is stati by at most 3jT

3

j, sine every edge in the di�erene must have an endpoint

in T

3

and the degree of the graph is 3. If the SP-sore of the alignment is within a

fator of (1 + Æ) of that of the benhmark alignment, then we have:

4k

2

+ �kW � 4k

2

+ �k(Z + k

�

2

) � (1 + Æ)(4k

2

+ �kU) + �

�

2

k

2

:
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By the hoie of Æ and sine U � 3k, we get

�kW � �kU < 4Æk

2

+ Æ�kU + �

�

2

k

2

:

Assuming, as we may, that � � 1, and noting that U � 3k, our hoie of Æ gives:

W � U < 4

�

100

k + 3

�

100

�k +

�

2

k < �k:

2

The following results on hardness of Swithboard Loation problems are not overed

by Theorem 3.

Theorem 4 For every onstant � > 1, the Swithboard Loation

2

(�) problem is NP-

hard.

Proof. Let � > 1. Sine the number of instanes of Swithboard Loation

2

(�) in-

reases with �, we may without loss of generality assume that � � 2. We prove

the theorem by reduing the Max-Cut problem to Swithboard Loation

2

(�). Given

a graph G =< V;E > with verties V = fv

1

; : : : ; v

k

g, onstrut a metri spae

X = fx

1

; : : : ; x

k

; y

1

; : : : ; y

k

g as follows: For i 6= j, we let d(x

i

; x

j

) = d(y

i

; y

j

) = 1. If

fv

i

; v

j

g 2 E, then d(x

i

; y

j

) = �; if fv

i

; v

j

g =2 E, then d(x

i

; y

j

) = 1. (Note that for our

hoie of �, the distane funtion is atually a metri.) For 1 � i � k, the region R

i

is

de�ned as fx

i

; y

i

g. This gives us an instane I of the Swithboard Loation

2

(�) prob-

lem. Every solution �x of I indues a partition < V

x

; V

y

>, where V

x

= fv

i

: x

i

2 �xg

and V

y

= fv

i

: y

i

2 �xg. If 

�x

denotes the size of the ut indued by the partition

< V

x

; V

y

>, then the measure of �x is equal to

�

k

2

�

+(��1)(jEj� 

�x

), and the theorem

follows from NP-hardness of the Max-Cut problem (see [GJ79℄). 2

Theorem 5 The Swithboard Loation

2

problem is MAX SNP-hard.

In view of our observation that Gap-0-1 Alignment is a speial ase of Swithboard

Loation, Theorem 5 is a orollary of Theorem 3() of [J99℄.
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