Computing Approximate Repetitions in Musical
Sequences

C. S. Iliopoulos' *, T. Lecrog® ', L. Mouchard®f, Y. J. Pinzon'?

! Dept. Computer Science, King’s College London, London WC2R 2LS, England,
and School of Computing, Curtin University of Technology, GPO Box 1987 U, WA.
Australia
{csi,pinzon}@dcs.kcl.ac.uk,

2 LIFAR - ABISS, Université de Rouen, 76821 Mont Saint Aignan Cedex, France.
lecroq@dir.univ-rouen.fr
3 ESA 6037: Dept. of Vegetal Physiology - ABISS, Université de Rouen, 76821
Mont Saint Aignan Cedex, France and School of Computing, Curtin University of
Technology, GPO Box 1987 U, WA., Australia
Im@dir.univ-rouen.fr

e-mail:

Abstract. Here we present new algorithms for computing all d-approximate
and (d,v)-approximate repetitions in musical sequences. We also present al-
gorithms for computing the longest d-approximate repeats, (d,y)-approximate
repeats and minimum-tolerance powers (a “repeat” is a repetition variant).

Key words: String algorithms, approximate string matching, dynamic pro-
gramming, computer-assisted music analysis.

1 Introduction

The approximate repetition problem has been extensively studied over the last few
years. Such problem can be found in computational biology, information retrieval,
musical analysis and compression. This paper focuses in one type of repetition that
arise especially in musical information retrieval, i.e. d-approximate repetitions. A
musical score can be viewed as a string: at a very rudimentary level, the alphabet
could simply be the set of notes in the chromatic or diatonic notation, or the set of
intervals that appear between notes (e.g. pitch may be represented as MIDI numbers
and pitch intervals as number of semitones). Approximate repetitions in one or more
musical works play a crucial role in discovering similarities between different musical
entities and may be used for establishing “characteristic signatures” (see [3]).

*Partially supported by the Royal Society Grant CCSLAAR.
tPartially supported by the C.N.R.S. Program “Génomes”.
tPartially supported by the University of London Central Research Fund (CRF).

49

Proceedings of the Prague Stringology Club Workshop 2000

Furthermore, efficient algorithms for computing the approximate repetitions are also
directly applicable to molecular biology (see [4, 5, 7]) and in particular in DNA
sequencing by hybridization ([8]), reconstruction of DNA sequences from known DNA
fragments (see [10, 11]), in human organ and bone marrow transplantation as well as
the determination of evolutionary trees among distinct species ([10]).

The approximate matching problem has been used for a variety of musical applications
(see overviews in McGettrick [6]; Crawford et al [3]; Rolland et al [9]; Cambouropoulos
et al [1]). It is known that exact matching cannot be used to find occurrences of
a particular melody. Approximate matching should be used in order to allow the
presence of errors. The number of errors allow will be referred to as 9.

The paper is organised as follows. In the next section we present some basic def-
initions for strings and background notions for approximate matching. In Section
3 we present algorithms for computing d-approximate repetitions and in Section 4
for computing (4, v)-approximate repetitions. In Section 5 we present algorithms for
computing another variant of the above repetitions: longest J-approximate repeats,
(0,v)-approximate repeats and minimum-tolerance powers. Finally in Section 6 we
present our conclusions and open problems.

2 Background and basic string definitions

A string is a sequence of zero or more symbols from an alphabet X; the string with
zero symbols is denoted by €. The set of all strings over the alphabet ¥ is denoted
by ¥*. A string x of length n is represented by x; ...x,, where x; € ¥ for 1 <17 < n.
A string w is a substring of x if x = uwv for u,v € ¥*; we equivalently say that the
string w occurs at position |u|+ 1 of the string x. The position |u| + 1 is said to be
the starting position of w in x and the position |w|+ |u| the end position of w in .
A string w is a prefix of z if x = wu for v € ¥*. Similarly, w is a suffix of z if v = uw
for u € ¥*.

The string xy is a concatenation of two strings x and y. The concatenations of &
copies of z is denoted by z*. For two strings = z; ...z, and y = ¥, ... ¥, such that
Tp_ig1---Ty =1Y1...y; forsomes > 1, the string 1 ... 2,11 ... Ym IS & Superposition
of z and y. We say that = and y overlap.

Let = be a string of length n. The integer p is said to be a period of z, if x; = z;4,
for all 1 <i < n —p. The period of a string z is the smallest period of z. A string y
is a border of x if y is a prefix and a suffix of x.

Let X be an alphabet of integers and § an integer. Two symbols a, b of ¥ are said to
be d-approximate, denoted a 2 b if and only if

ja—0b[<6
We say that two strings z,y are d-approximate, denoted z LR y if and only if
5 .
2| = ly|, and z; = y;, Vi€ {1,... ||} (2.1)

20

Computing Approximate Repetitions in Musical Sequences

For a given integer v we say that two strings x,y are y-approximate, denoted x Ly
if and only if

|z

|z| = ly[, and Z [z — il <7 (2.2)
1

Furthermore, we say that two strings x,y are {7, J }-approximate, denoted x 0 y, if
and only if z and y satisfy conditions (2.1) and (2.2).

3 Computing)-Approximate Repetitions

The problem of computing all §-approximate repetitions is formally defined as follows:
given a string t=t; ...t, and integers d and m, compute all positions j of ¢, that there
exists a string ¢ of length m such that

tij+m—1]<i
ti+mj+2m—1]24%

i+ —mj+etm—12%

where ¢ and ¢ are said to be the root and the power of the repetition respectively.

When we look for a repetition we will run into two possibilities: the root does or
does not occur necessarily in the text. In this section we study the first case, that is,
t = t[j..j +m — 1] (exact matching) for some j € {1,... ,n—m —1}. We state as an
open problem the second case when the root does not occur necessarily in the text.

Let D[0..n,0..n] be the §-matrix such that

m

D(i,5) < > 6(timeksti-mer) V(i 5) € [0..n] x [0..n]

k=1

where 0(t;,t;) is 0 if and only if #; L t; and 1 otherwise.

Example. Table 1 shows the d-matrix for ¢ = ABBACABDAA, =1 and m=3.
Row 7 shows that D(7,4) = D(7,7) = D(7,10) = 0, which means that there is a
d-repetition of power 3 (d-cube) starting at position 2 (BBA.CAB.DAA) with root
(C'AB) starting at position 5.

Note that our algorithm will be seeking those cells with D(7, j) = 0 since u; 2 u; and
therefore candidates for belonging to a repetition. The basic steps of the algorithm
are as follows:

1. Computation of the §J-matrix D[0..n,0..n]
0 Cif i, j=0
D(i,j) « { D(i—1,j—1)+0d(t;t;) Cif 0<i,j<m
D(i—1,j—1)40(t;,tj) — 0(tiem,tj—m), otherwise

ol

Proceedings of the Prague Stringology Club Workshop 2000

root
o

> >olw >0 >w o>

d-repetition of power 3 (cube)

1T 2 3 4 5 6 7 8 9 10
A B B/AIC|A|B D A A
olololo/1]/o0]ol1]0]0
olojlo olo/1/0 110
ololojololol1]1] 1]1
olololo/1/0]o]1]1]1
170/0/1/0]/2/0l0]2]2
o/1/0/0/2/0]/2/1/0]2
oo 1Mo 2 '
10101]1]/0 12 022
ol1/1/ 1,201 2]0]2
olol1 1/ 2/2/0/ 220

Table 1: The §-matrix D for t = ABBACABDAA, =1 and m=3.

2. Computation of the index matrix 7]0..n,0..n] defined as follows:

I(i,j) - mod(|j — mod(i,m)|,m) V(i,j) € [1..n] x [1..n]

3. We say that there is a d-approximate repetition of power ¢ starting at position
j with root # starting at position i if and only if D(i+m—1,j+km —1) = 0 for
k € {1,...,¢}. In other words, we are looking for runs of zeros (in each row)
with the same index value.

Table 2 shows all the d-approximate repetitions after considering all rows.

‘ S ‘ r ‘ Root Repetition ‘ Power ‘
1|1]| ABB ABB.ACA 2
1|2 | BBA ABB.ACA 2
2| 2| BBA BBA.CAB 2
3| 3| BAC BAC.ABD 2
3|6 | ABD BAC.ABD 2
4 | 7| BDA ACA.BDA 2
5|8 | DAA CAB.DAA 2
14| ACA | ABB.ACA.BDA 3
2| 5| CAB | BBA.CAB.DAA 3

Table 2: d-repetitions for t=ABBACABDAA, =1 and m=3. Note that s denotes
the starting position of the repetition and r denotes the starting position of the root.

02

Computing Approximate Repetitions in Musical Sequences

3.1 Pseudo-code

Fig. 1 show the pseudo-code for computing all §-approximate repetitions. The algo-
rithm was optimized to use O(n) space instead of O(n?). This is possible because the
computation of each row only depends on the previous one. The array a is of length
n and it stores the current row of D. Also, r[i].start holds the starting position of
the repetition for those cells with index ¢ in the current row (array a). In a similar
way, r[i].power holds the power and r[i].root holds the starting position of the root.

d-REPETITIONS(f, 6, m) > n = |t

1 for i< 0 until n do

2 for j < n — 1 until 0 step -1 do

3 k< mod (|j — mod (i,m)|,m)

4 if |t; —t;| > d then a[j] < a[j — 1] +1

5 if i —m>0and |t,_,, — tj_| > I then a[j] «+ alj] —m
6 if j > n —m then

7 rlk].root < i —m + 2

8 rlk].power < 0

9 if a[j] = 0 then

10 rlk].power < r[k].power + 1

11 rlk].start < j —m+ 2

12 if j < 2m — 1 and r[k].power > 1 then

13 write “Repetition power”, r[k].power, “at”, r[k].start,
“with root at”, r[k].root

14 else

15 if r[k].power > 1 then

16 write “Repetition power”, r[k].power, “at”, r[k].start,
“with root at”, r[k].root

17 rlk].power < 0

Figure 1: The 6-REPETITIONS algorithm.

3.2 Running time

The time complexity of the algorithm is easily seen to be O(n?) and the space com-
plexity is O(n).

4 Computing (J,v)-Approximate Repetitions

The problem of computing all (d,v)-approzimate repetitions is formally defined as
follows: given a string t=t; ...t, and integers ¢, v and m, compute all positions j of
t, that there exists a string ¢ such that

93

Proceedings of the Prague Stringology Club Workshop 2000

tjj+m—1%24

tj+m.j+2m—121

tj+ (6= m.j+etm—1%24%

If we know where the d-approximate repetitions are, then next we need to discard
somehow those repetitions that are not (4,)-approximate repetitions. We can extend
the d-approximate repetition algorithm to the (9, v)-approximate repetition problem
by adding some information about . This information will be stored in the y-matrix
G[0..n,0..n] so that

G(ZJJ) < Z |tifm+k - tj7m+k| V(Z,]) € [On] X [On]
k=1

We say that u; o u; when D(i,j) =0 and G(i,j) < 7.

The additional steps of the algorithm are as follows:

1. Computation of the y-matrix G[0..n,0..n]
0 Cif =0
G(i,j) < Gi—1,j—1)+|t; — t i 0<ij<m
G(i—1,7— 1)+ |t; — t;| — |ticm — tj—m]|, otherwise

2. We say that there is a (4, v)-approximate repetition of power ¢ starting at po-
sition j with root £ starting at position i iff D(i +m — 1, + km — 1)=0 and
Gii+m—1,j+km—1)<~vyforke{l,... [}

Example. Table 3 shows the y-matrix G for t = ABBACABDAA, 6=1, yv=2 and
m=3. We know there is a §-cube starting at position 2 (BBA.CAB.DAA) with root
starting at position 5 (CAB). This d-cube can be a (4,7)-cube only if G(7,4) < 2,
G(7,7) <2 and G(7,10) < 2. However GG(7,4) = 3 and we conclude that this §-cube
is not a (0, y)-cube. But if we look at row 6, we see that there is a (¢, y)-approximate
repetition of power 3 ((d,v)-cube) starting at position 1 (ABB.AC A.BDA) with root
(AC A) starting at position 4.

Table 4 shows all the (4, ~)-approximate repetitions after considering all rows in G.

4.1 Pseudo-code

Fig. 2 shows the pseudo-code for computing all (§, v)-approximate repetitions. The
algorithm was also optimized to use O(n) space instead of O(n?). This is possible
because the computation of each row only depends on the previous one.

The array a is of length n and it stores the current rows of D and ¢ (a.delta for D
and a.gamma for G in Fig. 2). Moreover as in d-approximate repetitions , r[i].start
holds the starting position of the repetition for those cells with index 7 in the current
row (array a), r[i].power holds the power and r[i].root the holds the starting position
of the root.

54

Computing Approximate Repetitions in Musical Sequences

(8,y)-repetition of power 3 (cube)

1 2 3 4 5 6 7 8 9 10
A B B/AIC|A|B D A A

dallol171]o0l2]0]1]3]0]0
2Bl |10 1 21303 4]H1
s B |11 0/2/3/2/3/2/4]|5
dAallol2]2/0/3/2/3 4]2]3
Slscll2 1/3/3 05 23 5|4
A o s 2 505 « s
B |1]0/3/3 2/5/0/5/5]2
s D |3]3/2/4 34/ 5|/0/6|7
s All0/4 4/ 25/ 2|56/ 0|5
w Al lol1]/5]3/4/5/2/7/5]0

Table 3: The v-matrix G for t = ABBACABDAA, =1, yv=2 and m=3.

Root ‘ Repetition ‘ Power ‘

ABB ABB.ACA 2
BBA ABB.ACA
BDA ACA.BDA
DAA CAB.DAA
ACA | ABB.ACA.BDA

— Ot = = = ®
= 00 I N =
W DN DN DN

Table 4: (0, v)-approximate repetitions for t=ABBACABDAA, 6=1, y=2 and m=3.
Note that s denotes the starting position of the repetition and r denotes the starting
position of the root.

4.2 Running time

The time complexity of the algorithm is easily seen to be O(n?) and the space com-
plexity is O(n).

5 Computing the Longest j- Approximate and (9,)-
Approximate Repeat

The problem of computing the longest d-approximate repeats (LDAR) is defined as

follows: given a text ¢ of length n, and integers m and 0, find whether there exist a

sequence of substrings uq, us, ... ,u, of ¢t that satisfy the following conditions:

1. w; 2wy, forallie {1,...,0—1}

95

Proceedings of the Prague Stringology Club Workshop 2000

(0,7)-REPETITIONS(¢, §, v, m) > n = |t|

1 for ¢ <— 0 until » do

2 for j <~ n — 1 until 0 step -1 do

3 k <+ mod (|j — mod (i,m)|,m)

4 alj].delta < alj — 1].delta + 6(t;,t;)

5 alj].gamma « a[j — 1].gamma + |t; — ;]

6 if i —m > 0 then

7 alj].delta < a[j].delta — §(ti—m,tj—m)

8 a[jl.gamma < alj].gamma — |t;_m, tj_p|

9 if 7 > n —m then

10 rlk].root < i —m + 2

11 rlk].power < 0

12 if a[j].delta = 0 and a[j].gamma < then

13 rlk].power < r[k].power + 1

14 rlk].start < j —m + 2

15 if j < 2m — 1 and r[k].power > 1 then

16 write “Repetition power”, r[k].power, “at”, r[k].start,
“with root at”, r[k].root

17 else

18 if r[k].power > 1 then

19 write “Repetition power”, r[k].power, “at”, r[k].start,
“with root at”, r[k].root

20 rlk].power < 0

Figure 2: The (,v)-REPETITIONS algorithm.

2. t =rujus ... us, for some strings r, s.

3. Maximizes /

Note that in case of J-approximate repetitions every repetition is d-approximate to
the root. But in the case of repeats, each repeat is guaranteed to be d-approximate
only to its neighbour.

The method for finding the LDAR is based on the construction of the matrix D
presented in the previous section. We can construct m lists L,, ¢ = 1,2, ..., m such
that

Lyli) :==D((i —1)m + ¢q,im+q) i=1,2,..

It is not difficult to see that the longest repeats corresponds to the longest subsequence
of 0’s in one of the L,’s.

Example. Let t = DCCADCADCBEDCAA, m=3 and § = 2. Table 5 shows the
d-matrix needed to compute to lists L; := {1,0,0,2}, Ly := {0,0,0} and L3 :=
{0,0,1}. The longest subsequence of 0’s occurs in Ly and corresponds to the repeat
(CCA.DCA.DCB.EDC).

o6

Computing Approximate Repetitions in Musical Sequences

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[D|C]|C]A[D[C]A|D[C[B[E[D|C]A[A]

J[D]JoJoJol1]olof1]ofof[1]o]oO[1]1
2 [O olo[1|1]of[1[1]0][0]2]0]0]1]2
3| C'| olt[tfaf1|1|1]o]1]2]0]1]2
i | Al ol2]2lo]2]2]0]1[2]3]0]1
5| D ol212]of2]2]0]1]2]4]1
6| C' o[2]2]o]1[3][0[1]|3]5
7| Al ol212lo]2]4]1]1]3
s | D] ol2]2]0]2]4]2]2
o|C' o/1[3]0|2]5]3
0| B 0[2]4]0]2]5
| E 0[2]5]1]3
12| D] 0/2]6(2
13| C| 037
| Al 03
5| Al 0

Table 5: The §-matrix D for t = DCCADCADCBEDCAA, §=2 and m=3.

The problem of computing the longest (8, v)-approzimate repeats (LDGAR) is defined
as follows: given a text ¢ of length n, and integers m. and ~, find whether there
exist a sequence of substrings uq, us, ..., u, of ¢t that satisfy the following conditions:

Lo 2oy, forallie {1,...,0—1}
2. t =rujus...us, for some strings r, s.

3. Maximizes /

The method for finding the LDGAR is based on the construction of the matrix G
presented in the previous section. We can construct m lists F,, ¢ = 1,2, ..., m such
that

y i=1,2, ..

Pl = 0, if G((i —1)m+q,im+q) <7y
"] 1, otherwise

The longest repeats is the longest subsequence of 0’s in L, + Fj.

Example. Table 5 shows the v-matrix for the above example. Let v =2 so that
Fy = {1,0,1,1}, F» := {0,0,1} and F3 := {0,0,1}. Now, considering both lists
(L and F) we see that the longest repeat is in either Lo/F, or L3/F3 and they are
(CCA.DCA.DCB) and (CAD.CAD.CBE) respectively.

The problem of the minimum-tolerance power (MTP) is as follows: given a text ¢ of
length n, and integers m, p and 4, find whether there exist the sequence of substrings
w1, Us, . .. ,u, of t that satisfy the conditions:

o7

Proceedings of the Prague Stringology Club Workshop 2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[D|C]C]A[D[C]A[D[C|B[E[D|C]|A[A]

D)ot]1]3]o1]3]of1[2]1]0[1[3]3
el ol1]3l4]0[3]4]0]2]4]2]03]5
3| C| 0[3[4lal2l4]4a]1]4]|5]2]|2]5
.| Al ol5]5[1][5[5][2][5[6][5]1]2
5| D 0/6/6l0][6[5]2|5]6]6]3
6 |C| 0l6/6|0[5[6[3[4]6]7
[A ol6|6[1]6|7[4]0]3
s | D] 0[6[5]2[5[6][6]3
o|C' 0l5[6[3[4]6]7
10| B 0/5/6[3|1]4
n|E| 0[5/6|6]5
2| D] 0[5]7]8
13| C| 04]7
| A 0]3
15| Al 0

Table 6: The y-matrix G for t = DCCADCADCBEDCAA, §=2 and m=3.

1. ui@uiﬂ forallie {1,...,0—1}
2. t = rujus...us, for some strings r, s.

3. Minimizes
-1

V(Uz’, Ui+1)
1

=

i

The computation of the MTP is based on the list F'.

5.1 Running time

The time complexity of the algorithms for computing the LDAR, LDGAR and MTP
is easily seen to be dominated by the complexity of the computation of the matrices
D and G. Hence, the overall complexity for the both problems will be O(n?).

6 Conclusion and Open problems

Here we have presented new essentially quadratic algorithms for computing d-approximate
and (4, v)-approximate repetitions, the longest d-approximate and (4, y)-approximate
repeat and the longest minimum-tolerance repeats.

An interesting open problem is to compute d-approximate and (4, ~y)-approximate
repetitions where the root does not belongs to the text.

o8

Computing Approximate Repetitions in Musical Sequences

References

1]

8]

9]

[10]

[11]

E. Cambouropoulos, T. Crawford and C.S. Tliopoulos, (1999) Pattern Process-
ing in Melodic Sequences: Challenges, Caveats and Prospects. In Proceedings of
the AISB’99 Convention (Artificial Intelligence and Simulation of Behaviour),
Edinburgh, U.K., pp. 42-47 (1999).

E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos, .. Mouchard, and Y. J.
Pinzon. Algorithms for computing approximate repetitions in musical se-
quences. In R. Raman and J. Simpson, editors, Proceedings of the 10th Aus-
tralasian Workshop On Combinatorial Algorithms, pages 129-144, Perth, WA,
Australia, 1999.

T. Crawford, C. S. Iliopoulos and R. Raman, String Matching Techniques for
Musical Similarity and Melodic Recognition, Computing in Musicology, Vol 11
(1998) 73-100.

V. Fischetti, G. Landau, J. Schmidt and P. Sellers, Identifying periodic oc-
curences of a template with applications to protein structure, Proc. 3rd Combi-
natorial Pattern Matching, Lecture Notes in Computer Science, vol. 644, 1992,
pp. 111-120.

S. Karlin, M. Morris, G. Ghandour, and M. Y. Leung, Efficients algorithms for
molecular sequences analysis, Proc. Natl. Acad. Sci., USA (1988) 85:841-845

P. McGettrick, MIDIMatch: Musical Pattern Matching in Real Time. MSc
Dissertation, York University, U.K. (1997).

A. Milosavljevic and J. Jurka, Discovering simple DNA sequences by the algo-
rithmic significance method, Comput. Appl. Biosci. (1993) 9:407-411

P. A. Pevzner and W. Feldman, Gray Code Masks for DNA Sequencing by
Hybridization, Genomics, 23, 233-235 (1993).

P.Y. Rolland and J.G. Ganascia, Musical Pattern Extraction and Similarity
Assessment. In Readings in Music and Artificial Intelligence. E. Miranda. (ed.).
Harwood Academic Publishers (forthcoming) (1999).

J. P. Schmidt, All shortest paths in weighted grid graphs and its application to
finding all approximate repeats in strings, in Proc. of the Fifth Symposium on
Combinatorial Pattern Matching CPM’94, Lecture Notes in Computer Science
(1994).

S. S. Skiena and G. Sundaram, Reconstructing strings from substrings, J.
Computational Biol. 2 (1995) 333-353.

29

