
Computing Approximate Repetitions in Musi
al

Sequen
es

C. S. Iliopoulos

1 �

, T. Le
roq

2 y

, L. Mou
hard

3 y

, Y. J. Pinzon

1 z

1

Dept. Computer S
ien
e, King's College London, London WC2R 2LS, England,

and S
hool of Computing, Curtin University of Te
hnology, GPO Box 1987 U, WA.

Australia

f
si,pinzong�d
s.k
l.a
.uk,

2

LIFAR - ABISS, Universit�e de Rouen, 76821 Mont Saint Aignan Cedex, Fran
e.

le
roq�dir.univ-rouen.fr

3

ESA 6037: Dept. of Vegetal Physiology - ABISS, Universit�e de Rouen, 76821

Mont Saint Aignan Cedex, Fran
e and S
hool of Computing, Curtin University of

Te
hnology, GPO Box 1987 U, WA., Australia

lm�dir.univ-rouen.fr

e-mail:

Abstra
t. Here we present new algorithms for
omputing all Æ-approximate

and (Æ;
)-approximate repetitions in musi
al sequen
es. We also present al-

gorithms for
omputing the longest Æ-approximate repeats, (Æ;
)-approximate

repeats and minimum-toleran
e powers (a \repeat" is a repetition variant).

Key words: String algorithms, approximate string mat
hing, dynami
 pro-

gramming,
omputer-assisted musi
 analysis.

1 Introdu
tion

The approximate repetition problem has been extensively studied over the last few

years. Su
h problem
an be found in
omputational biology, information retrieval,

musi
al analysis and
ompression. This paper fo
uses in one type of repetition that

arise espe
ially in musi
al information retrieval, i.e. Æ-approximate repetitions. A

musi
al s
ore
an be viewed as a string: at a very rudimentary level, the alphabet

ould simply be the set of notes in the
hromati
 or diatoni
 notation, or the set of

intervals that appear between notes (e.g. pit
h may be represented as MIDI numbers

and pit
h intervals as number of semitones). Approximate repetitions in one or more

musi
al works play a
ru
ial role in dis
overing similarities between di�erent musi
al

entities and may be used for establishing \
hara
teristi
 signatures" (see [3℄).

�

Partially supported by the Royal So
iety Grant CCSLAAR.

y

Partially supported by the C.N.R.S. Program \G�enomes".

z

Partially supported by the University of London Central Resear
h Fund (CRF).

49

Pro
eedings of the Prague Stringology Club Workshop '2000

Furthermore, eÆ
ient algorithms for
omputing the approximate repetitions are also

dire
tly appli
able to mole
ular biology (see [4, 5, 7℄) and in parti
ular in DNA

sequen
ing by hybridization ([8℄), re
onstru
tion of DNA sequen
es from known DNA

fragments (see [10, 11℄), in human organ and bone marrow transplantation as well as

the determination of evolutionary trees among distin
t spe
ies ([10℄).

The approximate mat
hing problem has been used for a variety of musi
al appli
ations

(see overviews in M
Gettri
k [6℄; Crawford et al [3℄; Rolland et al [9℄; Cambouropoulos

et al [1℄). It is known that exa
t mat
hing
annot be used to �nd o

urren
es of

a parti
ular melody. Approximate mat
hing should be used in order to allow the

presen
e of errors. The number of errors allow will be referred to as Æ.

The paper is organised as follows. In the next se
tion we present some basi
 def-

initions for strings and ba
kground notions for approximate mat
hing. In Se
tion

3 we present algorithms for
omputing Æ-approximate repetitions and in Se
tion 4

for
omputing (Æ;
)-approximate repetitions. In Se
tion 5 we present algorithms for

omputing another variant of the above repetitions: longest Æ-approximate repeats,

(Æ;
)-approximate repeats and minimum-toleran
e powers. Finally in Se
tion 6 we

present our
on
lusions and open problems.

2 Ba
kground and basi
 string de�nitions

A string is a sequen
e of zero or more symbols from an alphabet �; the string with

zero symbols is denoted by �. The set of all strings over the alphabet � is denoted

by �

�

. A string x of length n is represented by x

1

: : : x

n

, where x

i

2 � for 1 � i � n.

A string w is a substring of x if x = uwv for u; v 2 �

�

; we equivalently say that the

string w o

urs at position juj+ 1 of the string x. The position juj+ 1 is said to be

the starting position of w in x and the position jwj+ juj the end position of w in x.

A string w is a pre�x of x if x = wu for u 2 �

�

. Similarly, w is a suÆx of x if x = uw

for u 2 �

�

.

The string xy is a
on
atenation of two strings x and y. The
on
atenations of k

opies of x is denoted by x

k

. For two strings x = x

1

: : : x

n

and y = y

1

: : : y

m

su
h that

x

n�i+1

: : : x

n

= y

1

: : : y

i

for some i � 1, the string x

1

: : : x

n

y

i+1

: : : y

m

is a superposition

of x and y. We say that x and y overlap.

Let x be a string of length n. The integer p is said to be a period of x, if x

i

= x

i+p

for all 1 � i � n� p. The period of a string x is the smallest period of x. A string y

is a border of x if y is a pre�x and a suÆx of x.

Let � be an alphabet of integers and Æ an integer. Two symbols a; b of � are said to

be Æ-approximate, denoted a

Æ

= b if and only if

ja� bj � Æ

We say that two strings x; y are Æ-approximate, denoted x

Æ

= y if and only if

jxj = jyj; and x

i

Æ

= y

i

; 8i 2 f1; : : : ; jxjg (2:1)

50

Computing Approximate Repetitions in Musi
al Sequen
es

For a given integer
 we say that two strings x; y are
-approximate, denoted x

= y

if and only if

jxj = jyj; and

jxj

X

1

jx

i

� y

i

j <
 (2:2)

Furthermore, we say that two strings x; y are f
; Æg-approximate, denoted x

;Æ

= y, if

and only if x and y satisfy
onditions (2.1) and (2.2).

3 Computing Æ-Approximate Repetitions

The problem of
omputing all Æ-approximate repetitions is formally de�ned as follows:

given a string t=t

1

: : : t

n

and integers Æ and m,
ompute all positions j of t, that there

exists a string

^

t of length m su
h that

t[j::j +m� 1℄

Æ

=

^

t

t[j +m::j + 2m� 1℄

Æ

=

^

t

.

.

.

t[j + (`� 1)m::j + `m� 1℄

Æ

=

^

t

where

^

t and ` are said to be the root and the power of the repetition respe
tively.

When we look for a repetition we will run into two possibilities: the root does or

does not o

ur ne
essarily in the text. In this se
tion we study the �rst
ase, that is,

^

t = t[j::j +m� 1℄ (exa
t mat
hing) for some j 2 f1; : : : ; n�m� 1g. We state as an

open problem the se
ond
ase when the root does not o

ur ne
essarily in the text.

Let D[0::n; 0::n℄ be the Æ-matrix su
h that

D(i; j)

m

X

k=1

Æ(t

i�m+k

; t

j�m+k

) 8(i; j) 2 [0::n℄� [0::n℄

where Æ(t

i

; t

j

) is 0 if and only if t

i

Æ

= t

j

and 1 otherwise.

Example. Table 1 shows the Æ-matrix for t = ABBACABDAA, Æ=1 and m=3.

Row 7 shows that D(7; 4) = D(7; 7) = D(7; 10) = 0, whi
h means that there is a

Æ-repetition of power 3 (Æ-
ube) starting at position 2 (BBA:CAB:DAA) with root

(CAB) starting at position 5.

Note that our algorithm will be seeking those
ells with D(i; j) = 0 sin
e u

i

Æ

= u

j

and

therefore
andidates for belonging to a repetition. The basi
 steps of the algorithm

are as follows:

1. Computation of the Æ-matrix D[0::n; 0::n℄

D(i; j)

8

<

:

0 ; if i; j = 0

D(i� 1; j � 1) + Æ(t

i

; t

j

) ; if 0 < i; j < m

D(i� 1; j � 1) + Æ(t

i

; t

j

)� Æ(t

i�m

; t

j�m

); otherwise

51

Pro
eedings of the Prague Stringology Club Workshop '2000

1

1

2

2

3

3

4

4

5

5

ro
o

t

d-repetition of power 3 (cube)

6

6

7

7

8

8

9

9

10

10

A B B A C A B D A A

A

B

B

A

C

A

B

D

A

A

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

1

0

1

1

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

0

0

1

1

1

1

0

0

1

0

2

0

0

2

2

0

1

0

0

2

0

2

1

0

2

0

0

1

0

0

2

0

2

1

0

1

1

1

1

0

1

2

0

2

2

0

1

1

1

2

0

1

2

0

2

0

0

1

1

2

2

0

2

2

0

Table 1: The Æ-matrix D for t = ABBACABDAA, Æ=1 and m=3.

2. Computation of the index matrix I[0::n; 0::n℄ de�ned as follows:

I(i; j) mod(jj �mod(i;m)j; m) 8(i; j) 2 [1::n℄� [1::n℄

3. We say that there is a Æ-approximate repetition of power ` starting at position

j with root

^

t starting at position i if and only if D(i+m�1; j+km�1) = 0 for

k 2 f1; : : : ; `g. In other words, we are looking for runs of zeros (in ea
h row)

with the same index value.

Table 2 shows all the Æ-approximate repetitions after
onsidering all rows.

s r Root Repetition Power

1 1 ABB ABB:ACA 2

1 2 BBA ABB:ACA 2

2 2 BBA BBA:CAB 2

3 3 BAC BAC:ABD 2

3 6 ABD BAC:ABD 2

4 7 BDA ACA:BDA 2

5 8 DAA CAB:DAA 2

1 4 ACA ABB:ACA:BDA 3

2 5 CAB BBA:CAB:DAA 3

Table 2: Æ-repetitions for t=ABBACABDAA, Æ=1 and m=3. Note that s denotes

the starting position of the repetition and r denotes the starting position of the root.

52

Computing Approximate Repetitions in Musi
al Sequen
es

3.1 Pseudo-
ode

Fig. 1 show the pseudo-
ode for
omputing all Æ-approximate repetitions. The algo-

rithm was optimized to use O(n) spa
e instead of O(n

2

). This is possible be
ause the

omputation of ea
h row only depends on the previous one. The array a is of length

n and it stores the
urrent row of D. Also, r[i℄:start holds the starting position of

the repetition for those
ells with index i in the
urrent row (array a). In a similar

way, r[i℄:power holds the power and r[i℄:root holds the starting position of the root.

Æ-Repetitions(t, Æ, m) B n = jtj

1

for i 0 until n do

2

for j n� 1 until 0 step -1 do

3

k mod (jj � mod (i;m)j; m)

4

if jt

i

� t

j

j > Æ then a[j℄ a[j � 1℄ + 1

5

if i�m � 0 and jt

i�m

� t

j�m

j > Æ then a[j℄ a[j℄�m

6

if j � n�m then

7

r[k℄:root i�m + 2

8

r[k℄:power 0

9

if a[j℄ = 0 then

10

r[k℄:power r[k℄:power + 1

11

r[k℄:start j �m+ 2

12

if j < 2m� 1 and r[k℄:power > 1 then

13

write \Repetition power", r[k℄:power, \at", r[k℄:start,

\with root at", r[k℄:root

14

else

15

if r[k℄:power > 1 then

16

write \Repetition power", r[k℄:power, \at", r[k℄:start,

\with root at", r[k℄:root

17

r[k℄:power 0

Figure 1: The Æ-Repetitions algorithm.

3.2 Running time

The time
omplexity of the algorithm is easily seen to be O(n

2

) and the spa
e
om-

plexity is O(n).

4 Computing (Æ;
)-Approximate Repetitions

The problem of
omputing all (Æ;
)-approximate repetitions is formally de�ned as

follows: given a string t=t

1

: : : t

n

and integers Æ,
 and m,
ompute all positions j of

t, that there exists a string

^

t su
h that

53

Pro
eedings of the Prague Stringology Club Workshop '2000

t[j::j +m� 1℄

Æ;

=

^

t

t[j +m::j + 2m� 1℄

Æ;

=

^

t

.

.

.

t[j + (`� 1)m::j + `m� 1℄

Æ;

=

^

t

If we know where the Æ-approximate repetitions are, then next we need to dis
ard

somehow those repetitions that are not (Æ;
)-approximate repetitions. We
an extend

the Æ-approximate repetition algorithm to the (Æ;
)-approximate repetition problem

by adding some information about
. This information will be stored in the
-matrix

G[0::n; 0::n℄ so that

G(i; j)

m

X

k=1

jt

i�m+k

� t

j�m+k

j 8(i; j) 2 [0::n℄� [0::n℄

We say that u

i

Æ;

= u

j

when D(i; j) = 0 and G(i; j) �
.

The additional steps of the algorithm are as follows:

1. Computation of the
-matrix G[0::n; 0::n℄

G(i; j)

8

<

:

0 ; if i; j = 0

G(i� 1; j � 1) + jt

i

� t

j

j ; if 0 < i; j < m

G(i� 1; j � 1) + jt

i

� t

j

j � jt

i�m

� t

j�m

j; otherwise

2. We say that there is a (Æ;
)-approximate repetition of power ` starting at po-

sition j with root

^

t starting at position i i� D(i +m � 1; j + km � 1)=0 and

G(i+m� 1; j + km� 1) �
 for k 2 f1; : : : ; `g.

Example. Table 3 shows the
-matrix G for t = ABBACABDAA, Æ=1,
=2 and

m=3. We know there is a Æ-
ube starting at position 2 (BBA:CAB:DAA) with root

starting at position 5 (CAB). This Æ-
ube
an be a (Æ;
)-
ube only if G(7; 4) � 2,

G(7; 7) � 2 and G(7; 10) � 2. However G(7; 4) = 3 and we
on
lude that this Æ-
ube

is not a (Æ;
)-
ube. But if we look at row 6, we see that there is a (Æ;
)-approximate

repetition of power 3 ((Æ;
)-
ube) starting at position 1 (ABB:ACA:BDA) with root

(ACA) starting at position 4.

Table 4 shows all the (Æ;
)-approximate repetitions after
onsidering all rows in G.

4.1 Pseudo-
ode

Fig. 2 shows the pseudo-
ode for
omputing all (Æ;
)-approximate repetitions. The

algorithm was also optimized to use O(n) spa
e instead of O(n

2

). This is possible

be
ause the
omputation of ea
h row only depends on the previous one.

The array a is of length n and it stores the
urrent rows of D and g (a:delta for D

and a:gamma for G in Fig. 2). Moreover as in Æ-approximate repetitions , r[i℄:start

holds the starting position of the repetition for those
ells with index i in the
urrent

row (array a), r[i℄:power holds the power and r[i℄:root the holds the starting position

of the root.

54

Computing Approximate Repetitions in Musi
al Sequen
es

1

1

2

2

3

3

4

4

5

5

ro
o

t

(d,g)-repetition of power 3 (cube)

6

6

7

7

8

8

9

9

10

10

A B B A C A B D A A

A

B

B

A

C

A

B

D

A

A

0

1

1

0

2

0

1

3

0

0

1

0

1

2

1

3

0

3

4

1

1

1

0

2

3

2

3

2

4

5

0

2

2

0

3

2

3

4

2

3

2

1

3

3

0

5

2

3

5

4

0

3

2

2

5

0

5

4

2

5

1

0

3

3

2

5

0

5

5

2

3

3

2

4

3

4

5

0

6

7

0

4

4

2

5

2

5

6

0

5

0

1

5

3

4

5

2

7

5

0

Table 3: The
-matrix G for t = ABBACABDAA, Æ=1,
=2 and m=3.

s r Root Repetition Power

1 1 ABB ABB:ACA 2

1 2 BBA ABB:ACA 2

4 7 BDA ACA:BDA 2

5 8 DAA CAB:DAA 2

1 4 ACA ABB:ACA:BDA 3

Table 4: (Æ;
)-approximate repetitions for t=ABBACABDAA, Æ=1,
=2 and m=3.

Note that s denotes the starting position of the repetition and r denotes the starting

position of the root.

4.2 Running time

The time
omplexity of the algorithm is easily seen to be O(n

2

) and the spa
e
om-

plexity is O(n).

5 Computing the Longest Æ-Approximate and (Æ;
)-

Approximate Repeat

The problem of
omputing the longest Æ-approximate repeats (LDAR) is de�ned as

follows: given a text t of length n, and integers m and Æ, �nd whether there exist a

sequen
e of substrings u

1

; u

2

; : : : ; u

`

of t that satisfy the following
onditions:

1. u

i

Æ

= u

i+1

for all i 2 f1; : : : ; `� 1g

55

Pro
eedings of the Prague Stringology Club Workshop '2000

(Æ;
)-Repetitions(t, Æ,
, m) B n = jtj

1

for i 0 until n do

2

for j n� 1 until 0 step -1 do

3

k mod (jj � mod (i;m)j; m)

4

a[j℄:delta a[j � 1℄:delta + Æ(t

i

; t

j

)

5

a[j℄:gamma a[j � 1℄:gamma+ jt

i

� t

j

j

6

if i�m � 0 then

7

a[j℄:delta a[j℄:delta� Æ(t

i�m

; t

j�m

)

8

a[j℄:gamma a[j℄:gamma� jt

i�m

; t

j�m

j

9

if j � n�m then

10

r[k℄:root i�m+ 2

11

r[k℄:power 0

12

if a[j℄:delta = 0 and a[j℄:gamma �
 then

13

r[k℄:power r[k℄:power + 1

14

r[k℄:start j �m + 2

15

if j < 2m� 1 and r[k℄:power > 1 then

16

write \Repetition power", r[k℄:power, \at", r[k℄:start,

\with root at", r[k℄:root

17

else

18

if r[k℄:power > 1 then

19

write \Repetition power", r[k℄:power, \at", r[k℄:start,

\with root at", r[k℄:root

20

r[k℄:power 0

Figure 2: The (Æ;
)-Repetitions algorithm.

2. t = ru

1

u

2

: : : u

`

s, for some strings r; s.

3. Maximizes `

Note that in
ase of Æ-approximate repetitions every repetition is Æ-approximate to

the root. But in the
ase of repeats, ea
h repeat is guaranteed to be Æ-approximate

only to its neighbour.

The method for �nding the LDAR is based on the
onstru
tion of the matrix D

presented in the previous se
tion. We
an
onstru
t m lists L

q

, q = 1; 2; :::; m su
h

that

L

q

[i℄ := D((i� 1)m + q; im+ q) i = 1; 2; :::

It is not diÆ
ult to see that the longest repeats
orresponds to the longest subsequen
e

of 0's in one of the L

q

's.

Example. Let t = DCCADCADCBEDCAA, m=3 and Æ = 2. Table 5 shows the

Æ-matrix needed to
ompute to lists L

1

:= f1; 0; 0; 2g, L

2

:= f0; 0; 0g and L

3

:=

f0; 0; 1g. The longest subsequen
e of 0's o

urs in L

2

and
orresponds to the repeat

(CCA:DCA:DCB:EDC).

56

Computing Approximate Repetitions in Musi
al Sequen
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D C C A D C A D C B E D C A A

1 D 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1

2 C 0 0 1 1 0 1 1 0 0 2 0 0 1 2

3 C 0 1 1 1 1 1 1 0 1 2 0 1 2

4 A 0 2 2 0 2 2 0 1 2 3 0 1

5 D 0 2 2 0 2 2 0 1 2 4 1

6 C 0 2 2 0 1 3 0 1 3 5

7 A 0 2 2 0 2 4 1 1 3

8 D 0 2 2 0 2 4 2 2

9 C 0 1 3 0 2 5 3

10 B 0 2 4 0 2 5

11 E 0 2 5 1 3

12 D 0 2 6 2

13 C 0 3 7

14 A 0 3

15 A 0

Table 5: The Æ-matrix D for t = DCCADCADCBEDCAA, Æ=2 and m=3.

The problem of
omputing the longest (Æ;
)-approximate repeats (LDGAR) is de�ned

as follows: given a text t of length n, and integers m. Æ and
, �nd whether there

exist a sequen
e of substrings u

1

; u

2

; : : : ; u

`

of t that satisfy the following
onditions:

1. u

i

Æ;

= u

i+1

for all i 2 f1; : : : ; `� 1g

2. t = ru

1

u

2

: : : u

`

s, for some strings r; s.

3. Maximizes `

The method for �nding the LDGAR is based on the
onstru
tion of the matrix G

presented in the previous se
tion. We
an
onstru
t m lists F

q

, q = 1; 2; :::; m su
h

that

F

q

[i℄ :=

�

0; if G((i� 1)m + q; im+ q) �

1; otherwise

i = 1; 2; :::

The longest repeats is the longest subsequen
e of 0's in L

q

+ F

q

.

Example. Table 5 shows the
-matrix for the above example. Let
 =2 so that

F

1

:= f1; 0; 1; 1g, F

2

:= f0; 0; 1g and F

3

:= f0; 0; 1g. Now,
onsidering both lists

(L and F) we see that the longest repeat is in either L

2

=F

2

or L

3

=F

3

and they are

(CCA:DCA:DCB) and (CAD:CAD:CBE) respe
tively.

The problem of the minimum-toleran
e power (MTP) is as follows: given a text t of

length n, and integers m; p and Æ, �nd whether there exist the sequen
e of substrings

u

1

; u

2

; : : : ; u

p

of t that satisfy the
onditions:

57

Pro
eedings of the Prague Stringology Club Workshop '2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D C C A D C A D C B E D C A A

1 D 0 1 1 3 0 1 3 0 1 2 1 0 1 3 3

2 C 0 1 3 4 0 3 4 0 2 4 2 0 3 5

3 C 0 3 4 4 2 4 4 1 4 5 2 2 5

4 A 0 5 5 1 5 5 2 5 6 5 1 2

5 D 0 6 6 0 6 5 2 5 6 6 3

6 C 0 6 6 0 5 6 3 4 6 7

7 A 0 6 6 1 6 7 4 0 3

8 D 0 6 5 2 5 6 6 3

9 C 0 5 6 3 4 6 7

10 B 0 5 6 3 1 4

11 E 0 5 6 6 5

12 D 0 5 7 8

13 C 0 4 7

14 A 0 3

15 A 0

Table 6: The
-matrix G for t = DCCADCADCBEDCAA, Æ=2 and m=3.

1. u

i

Æ;

= u

i+1

for all i 2 f1; : : : ; `� 1g

2. t = ru

1

u

2

: : : u

`

s, for some strings r; s.

3. Minimizes

p�1

X

i=1

(u

i

; u

i+1

)

The
omputation of the MTP is based on the list F .

5.1 Running time

The time
omplexity of the algorithms for
omputing the LDAR, LDGAR and MTP

is easily seen to be dominated by the
omplexity of the
omputation of the matri
es

D and G. Hen
e, the overall
omplexity for the both problems will be O(n

2

).

6 Con
lusion and Open problems

Here we have presented new essentially quadrati
 algorithms for
omputing Æ-approximate

and (Æ;
)-approximate repetitions, the longest Æ-approximate and (Æ;
)-approximate

repeat and the longest minimum-toleran
e repeats.

An interesting open problem is to
ompute Æ-approximate and (Æ;
)-approximate

repetitions where the root does not belongs to the text.

58

Computing Approximate Repetitions in Musi
al Sequen
es

Referen
es

[1℄ E. Cambouropoulos, T. Crawford and C.S. Iliopoulos, (1999) Pattern Pro
ess-

ing in Melodi
 Sequen
es: Challenges, Caveats and Prospe
ts. In Pro
eedings of

the AISB'99 Convention (Arti�
ial Intelligen
e and Simulation of Behaviour),

Edinburgh, U.K., pp. 42{47 (1999).

[2℄ E. Cambouropoulos, M. Cro
hemore, C. S. Iliopoulos, L. Mou
hard, and Y. J.

Pinzon. Algorithms for
omputing approximate repetitions in musi
al se-

quen
es. In R. Raman and J. Simpson, editors, Pro
eedings of the 10th Aus-

tralasian Workshop On Combinatorial Algorithms, pages 129{144, Perth, WA,

Australia, 1999.

[3℄ T. Crawford, C. S. Iliopoulos and R. Raman, String Mat
hing Te
hniques for

Musi
al Similarity and Melodi
 Re
ognition, Computing in Musi
ology, Vol 11

(1998) 73{100.

[4℄ V. Fis
hetti, G. Landau, J. S
hmidt and P. Sellers, Identifying periodi
 o
-

uren
es of a template with appli
ations to protein stru
ture, Pro
. 3rd Combi-

natorial Pattern Mat
hing , Le
ture Notes in Computer S
ien
e, vol. 644, 1992,

pp. 111{120.

[5℄ S. Karlin, M. Morris, G. Ghandour, and M. Y. Leung, EÆ
ients algorithms for

mole
ular sequen
es analysis, Pro
. Natl. A
ad. S
i., USA (1988) 85:841{845

[6℄ P. M
Gettri
k, MIDIMat
h: Musi
al Pattern Mat
hing in Real Time. MS

Dissertation, York University, U.K. (1997).

[7℄ A. Milosavljevi
 and J. Jurka, Dis
overing simple DNA sequen
es by the algo-

rithmi
 signi�
an
e method, Comput. Appl. Bios
i. (1993) 9:407{411

[8℄ P. A. Pevzner and W. Feldman, Gray Code Masks for DNA Sequen
ing by

Hybridization, Genomi
s, 23, 233{235 (1993).

[9℄ P.Y. Rolland and J.G. Ganas
ia, Musi
al Pattern Extra
tion and Similarity

Assessment. In Readings in Musi
 and Arti�
ial Intelligen
e. E. Miranda. (ed.).

Harwood A
ademi
 Publishers (forth
oming) (1999).

[10℄ J. P. S
hmidt, All shortest paths in weighted grid graphs and its appli
ation to

�nding all approximate repeats in strings, in Pro
. of the Fifth Symposium on

Combinatorial Pattern Mat
hing CPM'94, Le
ture Notes in Computer S
ien
e

(1994).

[11℄ S. S. Skiena and G. Sundaram, Re
onstru
ting strings from substrings, J.

Computational Biol. 2 (1995) 333{353.

59

