Word-based Compression Method with Direct
Access!

Jiti Dvorsky, Vaclav Snasel

Computer Science Department, Palacky University of Olomouc, Tomkova, 40,
779 00 Olomouc, Czech Republic

e-mail: {jiri.dvorsky,vaclav.snasel}@upol.cz

Abstract. Compression method (WRAC) based on finite automata is pre-
sented in this paper. Simple algorithm for constructing finite automaton for
given regular expression is shown. The best advantage of this algorithm is
the possibility of random access to a compressed text. The compression ratio
achieved is fairly good. The method is independent on source alphabet i.e.
algorithm can be character or word based.

Key words: word-based compression, text databases, information retrieval,
HuffWord, WLZW

1 Introduction

Data compression is an important part of the implementation of full text retrieval
systems. The compression is used to reduce space occupied by indexes and text of
documents. There are many popular algorithms to compress a text, but none of them
can perform direct access to the compressed text. This article presents an algorithm,
based on finite automaton, which allows such type of access. The definition of finite
automata is given in the first section. Compression algorithm itself is described in
the second section and the third section shows some experimental results. At the end
the conclusion is given.

2 Finite automata

Definition 1 A deterministic finite automaton (DFA) [5] is a quintuple (Q, A, §, qo, F),
where @) is a finite set of states, A is a finite set of input symbols (input alphabet), §
is a state transition function Q X A — Q, qo is the initial state, F C @ is the set of
final states.

!This work was done under grant from the Grant Agency of Czech Republic, Prague No.:
201/00/1031

24

Word-based Compression Method with Direct Access

Definition 2 Regular expression U on alphabet A is defined as follows:
1. 0, € and a are regular expression for all a € A

2. If U,V are regular expression on A then (U + V), (U - V) and (U)* are regular
expression on A.

Definition 3 Value h(U) of regular expression U is defined as:

h(0) = 0

h(e) = {e}

h(a) = {a}
h(U+V) = h(U)URV)
hU-V) = hU)-h(V)

hU?) = (MU))

Definition 4 Derivative ‘;—Z of reqular expression U by x € A* is defined as:

L dU
= U
de
2. VYa € A it holds:
de
e 0
d
= = 0

da e otherwise

AU +V) dU AV

db {(2) ifa#b

da da @ da
d(UdC'LV) = Z—Z-VnLCfl—Zifaeh(U)
d(Ud('zV) = Z—Z-Vz’fsgéh(U)
d(V* dv
(da) - %.V*

3. For x = ayas...a,, where a; € A it holds:

W d(d (v
dr da, \da, i das \ daq

Derivative of regular expression V' by string x is an equivalent

v(%) = s e nvy

In other words, derivative of V' by z is expression U such h(U) contains strings which
arise from strings in A(V') by cutting prefix z.

Example 1 Let be h(V') = {abccabb, abbach, babbcab}. Then h(4X) = {bccabb, bbach} .

a

25

Proceedings of the Prague Stringology Club Workshop 2000

av. av.
d0 dl
0+ 1)*- 01 (0+1)-0L+1| (0+1)*-01

O+1)-01+1|(0+1)*-014+1| (0+1)*-01+¢
(0+1) 01+ | (0+1)*-014+1]| (0+1)*-01

Table 1: Construction of DFA for V' = (04 1)* - 01

2.1 Construction of DFA for given regular expression V'

Theorem 1 When DFA accepts, in state q, language defined by V' then accepts in
state §(q,a) language defined by 4%, for all a € A (see [5]).

For given regular expression V' we construct DFA(V) = (Q, A, 0, qo, F'), where

e () is a set of regular expressions
e A is given alphabet

e §(q,a) = %,Va €A

e (o =V

F={qecQ:c€q}

Example 2 Let’s construct automaton for V.= (04 1)*-01 — words ending with 01.
See table 1. Final state is (0 +1)* - 01 4+ & only.

3 Random access compression

Let be A = {ay,as,...,a,} an alphabet. Document D of length m can be written
as sequence D = dy,dq, ... ,d,,_1, where d; € A. For each position i we are able to
find out which symbol d; is at this position. We must save this property to create
compressed document with random access.

A set of position {i;0 < i < m} can be written as a set of binary words {b;} of fixed
length. This set can be considered as language L(D) on alphabet {0, 1}. Tt can be easy
shown that the language L(D) is regular (L(D) is finite) and it is possible to construct
DFA which accepts the language L(D). This DFA can be created, for example, by
algorithm given in section 2. Regular expression is formed as by + by + -+ + by—1.

Compression of the document D consists in creating a corresponding DFA. But de-
compression is impossible. The DFA for the document D can only decide, whether
binary word b; belongs to the language L(D) or not. The DFA does not say anything
about a symbol which appears in position i. Inorder to do this, the definition of DFA
must be extended.

26

Word-based Compression Method with Direct Access

Definition 5 A deterministic finite automaton with output (DFAO) is a 7-tuple
(Q, A, B,d,0,q0, F), where Q is a finite set of states, A is a finite set of input sym-
bols (input alphabet), B is a finite set of output symbols (output alphabet), ¢ is a state
transition function Q@ X A — Q, qo is the initial state, o is an output function F — B,
F C Q s the set of final states.

This type of automaton is able to determine for each of the accepted words b; which
symbol lies on position 7. To create an automaton of such a type the algorithm
mentioned in section 2 must be extended too. Regular expression V, which is input
into the algorithm, consists of words b;. Each b; must carry its output symbol d;.
Regular expression is now formed as bydy + bidy + - - + by, 1dp, 1,

Example 3 Let be for example document D = abracadabra, m = 11. Reqular ez-
pression V' will be

V' = 0000a 4 00016 + 00107 4+ 0011a +
0100¢ + 0101a + 0110d 4 0111a +
10006 + 10017 4 1010a

DFAO(V) = (Q, A, B,4,0,q, F) will be constructed. For the construction of DFAO
see following table.

| State ¢ | V | dV/d0 | dV/d1 ‘

0000a, 0001b, 0010r,
0011a, 0100c, 0101a, | 000a, 001b, 010r, Olla,

0 0110d, 0111a, 1000b, | 100c, 101a, 110d, 111a | 000D 001r, 0102
1001r, 1010a

1 ?882:?812;?182,%%?2 00a, 01b, 10r, 11a 00c, 01a, 10d, 11a

2 000b, 001r, 010a 00b, 01r, 10a 0

3 00a, 01b, 10r, 11a Oa, 1b Or, 1a

4 00c, O1a, 10d, 11a Oc, 1a 0d, 1a

5 00b, 01r, 10a Ob, 1r Oa,

6 Oa, 1b €a eb

7 Or, 1a er €a,

8 Oc, 1a ec €a

9 0d, 1a ed €a

10 Ob, 1r eb er

11 Oa €a 0

12 a 0 0

13 eb 0 0

14 er 0 0

15 ec 0 0

16 ed 0 0

Q = {q07q17 B 'q16}7 A = {07]-}7 B = {CL, ba C, d,T}, F= {Q12,Q13aCI14,Q15aQ16}7

27

Proceedings of the Prague Stringology Club Workshop 2000

I
ONONONO
_—

¢

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4

Figure 1: Automaton for expression V' from example 3

Such constructed automaton have following properties:

1. there are no transitions from final states,

2. let be |g| for ¢ € @ the length of words in appropriate regular expression. If
§(gi, a) = q;, where ¢;,q; € Q, a € A, then |g;| > |g;|. In other words, the state
transition function contain only forward transitions. There are no cycles.

The set of states @@ of the automaton DF AO(V) is divided into disjunct subsets (so
called layers). Transitions are done only between two adjacent layers. Thus states
can be numbered locally in those layer. Final automaton from our example is drawn
in figure 1.

Final automaton is stored on disk after construction. All layers are stored sequentially.
Three methods of storing layers are available now:

Raw - the layer is stored as a sequence of integer numbers. Appropriate for short
layers.

Bitwise — maximum state number max in layer is found. The layer is stored as a
sequence of integer numbers, each [log, max| bits long.

Linear — linear prediction of transitions is made. Parameters of the founded line and
a correction table are stored.

Let’s remark, that algorithm of construction of automaton is independent with respect
to its output alphabet. There are two possibilities. The first is a classic character

28

Word-based Compression Method with Direct Access

NT LT NS LCF CR

10 29 39 580 2000

100 258 103 780 302.33

1,000 2,636 589 2,016 76.48
10,000 25,793 5,018 13,548 52.53
50,000 129,728 22,418 59,676 46.00
100,000 259,571 41,593 113,976 43.91
200,000 522,872 74,872 206,728 39.54
300,000 788,773 106,775 294,448 37.33
400,000 | 1,053,040 139,900 402,840 38.25
500,000 | 1,314,038 173,126 492,448 37.48
800,000 | 2,120,924 274,495 797,292 37.59
1,000,000 | 2,651,385 340,020 999,920 37.71
1,535,710 | 4,077,774 511,678 1,480,884 36.32

Table 2: Experimental results for file bible.txt
Where NT is the number of tokens, LT is the length of tokens in bytes, NS is

the number of states, LCF is the length of compressed text in bytes (automaton
in memory has the same size) and CR is the compression ratio (LCF/LT)-100%

based version. Algorithm is one-pass and output alphabet is a standard ASCII.
For the text retrieval systems word-based version (the second possibility) is more
advantageous because of the character of natural languages.

4 Experimental results

To allow practical comparison of algorithm, experiments have been performed on
some compression corpus. For test has been used Canterbury Compression Corpus
(large files), especially King’s James Bible (bible.txt) file which is 4,077,774 bytes
long. There are 153,5710 tokens and 13,461 of them are distinct.

A word-based version of algorithm has been used for a test. Compression algorithm
has been tested for different input size. The length of the input tokens, the number of
states of the resulting automaton, the size of the compressed file and the compression
ratio have been observed. Results are given in table 2.

Another tests were done with Czech text file. This file is 11,076,629 bytes long.
There are 2,332,127 and 70,177 of them are distinct. Results are given in table 4.

Both tests were done on Pentium II/350Mhz with 128MB of RAM. Program was
compiled by MS Visual C++ 6.0 as 32-bit console application under MS Windows
2000. Implementation of this method is described in [4].

5 Conclusion and Future works

Some advanced techniques, how to store layers (i.e. sequences of numbers) will be
adopted, such as differential encoding etc.

29

Proceedings of the Prague Stringology Club Workshop 2000

Compression utility Compressed text [bytes] | Ratio [%)]
WRAC 1,480,884 36.32
ARJ 2.41a 1,207,114 29.6
WINZIP 6.2 1,178,869 28,91
GZip (UNIX) 1,178,757 28.9
WinRAR 2.6 994,346 24,38
Jar32 1.01 908,547 92,98
WLZW (word-based LZW) 896,956 22
WRAC

(estimation for nonperiodic texts) 816,000 20

Table 3: Comparison with other compression utilities (bible.txt)

NT LT NS LCF CR
1,000 4,684 285 2,132 45,52
10,000 45,977 7,075 21,172 46,05
100,000 432,181 98,526 167,780 38,82
1,000,000 4,872,038 562,766 1,817,820 37,31
2,332,127 | 11,076,629 1,235,086 4,152,888 37,49

Table 4: Experimental results for Czech text
Where NT is the number of tokens, LT is the length of tokens in bytes, NS is

the number of states, LCF is the length of compressed text in bytes (automaton
in memory has the same size) and CR is the compression ratio (LCF/LT)-100%

Compression utility Compressed text [bytes] | Ratio [%)]
WRAC 4,152,888 37,49
ARJ 2.41a 2,890,560 26,1
WINZIP 6.2 2,816,458 25,43
WinRAR 2.6 2,379,730 21,48
WLZW (word-based LZW) 2,294,576 20,72

Table 5: Comparison with other compression utilities (Czech text file)

30

Word-based Compression Method with Direct Access

From figure 1 can be seen, that the most piece of information is between layer 3 and
layer 4. The transitions from state 0 in layer 3 represents the first and the second
character in document. The transitions from state 1 in layer 3 represents the third
and the fourth character in document and so on. For such automaton layers 0, 1 and
2 can be omitted. There is at least one problem of course. Let’s consider the text
abraabraara. When the two last layers would be stored decompressed text is abraara.
It is due to that there are two equal substrings abra which length are equal to power
of 2 and its positions are powers of 2 too. These positions differ only in one bit and
this bit make a multiple transition (by 0 and 1). The result is that only one of these
substrings appears in decompressed text. The position of multiple transition have to
be stored.

But while automaton would be smaller because equal substrings have the same sub-
automata i.e. compression ratio would be better. Compression ratio is estimated at
20 percent.

Compression methods suitable for the use in textual databases have certain special
properties:

e these methods must be very fast in decompression;

e the information necessary for decompression should be usable for text searching.

It is important to realise that this method does not actually depend on text encoding.
This means that it performs successfully for a text encoded in UNICODE as well.

Several word-based compression algorithms were developed for the text retrieval sys-
tems. There is well-known Huffword [1, 6], and WLZW [2, 3] (our version of word-
based, two-phase LZW).

References

[1] R. B. Yates, B. R. Neto. Modern Information Retrieval. Addison Wesley 1999

[2] J. Dvorsky, V. Snéagel, J. Pokorny: Word-based Compression Methods for Text
Retrieval Systems. Proc. DATASEM’98, Brno 1998

(3] J. Dvorsky, V. Snagel, J. Pokorny. Word-based Compression Methods for Large
Text Documents. Data Compression Conferencs - DCC ’99, Snowbird, Utah
USA.

[4] J. Dvorsky. Text Compression with Random Access. Workshop ISM 2000, Czech
Republic, ISBN 80-85988-45-3

[5] G. Rozenberg, A.Salomaa, Ed. Handbook of Formal Language. Springer Verlag
1997, Vol. I.-III.

6] I. H. Witten, A. Moffat, T. C. Bell: Managing Gigabytes: Compressing and
Indexing Documents and Images. Van Nostrand Reinhold, 1994.

31

