
Word-based Compression Method with Diret

Aess

1

Ji�r�� Dvorsk�y, V�alav Sn�a�sel

Computer Siene Department, Palaky University of Olomou, Tomkova 40,

779 00 Olomou, Czeh Republi

e-mail: fjiri.dvorsky,valav.snaselg�upol.z

Abstrat. Compression method (WRAC) based on �nite automata is pre-

sented in this paper. Simple algorithm for onstruting �nite automaton for

given regular expression is shown. The best advantage of this algorithm is

the possibility of random aess to a ompressed text. The ompression ratio

ahieved is fairly good. The method is independent on soure alphabet i.e.

algorithm an be harater or word based.

Key words: word-based ompression, text databases, information retrieval,

Hu�Word, WLZW

1 Introdution

Data ompression is an important part of the implementation of full text retrieval

systems. The ompression is used to redue spae oupied by indexes and text of

douments. There are many popular algorithms to ompress a text, but none of them

an perform diret aess to the ompressed text. This artile presents an algorithm,

based on �nite automaton, whih allows suh type of aess. The de�nition of �nite

automata is given in the �rst setion. Compression algorithm itself is desribed in

the seond setion and the third setion shows some experimental results. At the end

the onlusion is given.

2 Finite automata

De�nition 1 A deterministi �nite automaton (DFA) [5℄ is a quintuple (Q;A; Æ; q

0

; F),

where Q is a �nite set of states, A is a �nite set of input symbols (input alphabet), Æ

is a state transition funtion Q� A ! Q, q

0

is the initial state, F � Q is the set of

�nal states.

1

This work was done under grant from the Grant Ageny of Czeh Republi, Prague No.:

201/00/1031

24

Word-based Compression Method with Diret Aess

De�nition 2 Regular expression U on alphabet A is de�ned as follows:

1. ;, " and a are regular expression for all a 2 A

2. If U; V are regular expression on A then (U + V); (U � V) and (U)

�

are regular

expression on A.

De�nition 3 Value h(U) of regular expression U is de�ned as:

h(;) = ;

h(") = f"g

h(a) = fag

h(U + V) = h(U) [h(V)

h(U � V) = h(U) � h(V)

h(U

�

) = (h(U))

�

De�nition 4 Derivative

dU

dx

of regular expression U by x 2 A

�

is de�ned as:

1.

dU

d"

= U

2. 8a 2 A it holds:

d"

da

= ;

d;

da

= ;

db

da

=

�

; if a 6= b

" otherwise

d(U + V)

da

=

dU

da

+

dV

da

d(U � V)

da

=

dU

da

� V +

dV

da

if " 2 h(U)

d(U � V)

da

=

dU

da

� V if " =2 h(U)

d(V

�

)

da

=

dV

da

� V

�

3. For x = a

1

a

2

: : : a

n

, where a

i

2 A it holds:

dV

dx

=

d

da

n

�

d

da

n�1

�

� � �

d

da

2

�

dV

da

1

�

� � �

��

Derivative of regular expression V by string x is an equivalent

h

�

dV

dx

�

= fy : xy 2 h(V)g

In other words, derivative of V by x is expression U suh h(U) ontains strings whih

arise from strings in h(V) by utting pre�x x.

Example 1 Let be h(V) = fababb; abbab; babbabg. Then h(

dV

da

) = fbabb; bbabg.

25

Proeedings of the Prague Stringology Club Workshop '2000

dV

d0

dV

d1

(0 + 1)

�

� 01 (0 + 1)

�

� 01 + 1 (0 + 1)

�

� 01

(0 + 1)

�

� 01 + 1 (0 + 1)

�

� 01 + 1 (0 + 1)

�

� 01 + "

(0 + 1)

�

� 01 + " (0 + 1)

�

� 01 + 1 (0 + 1)

�

� 01

Table 1: Constrution of DFA for V = (0 + 1)

�

� 01

2.1 Constrution of DFA for given regular expression V

Theorem 1 When DFA aepts, in state q, language de�ned by V then aepts in

state Æ(q; a) language de�ned by

dV

da

, for all a 2 A (see [5℄).

For given regular expression V we onstrut DFA(V) = (Q;A; Æ; q

0

; F), where

� Q is a set of regular expressions

� A is given alphabet

� Æ(q; a) =

dq

da

; 8a 2 A

� q

0

= V

� F = fq 2 Q : " 2 qg

Example 2 Let's onstrut automaton for V = (0+ 1)

�

� 01 { words ending with 01.

See table 1. Final state is (0 + 1)

�

� 01 + " only.

3 Random aess ompression

Let be A = fa

1

; a

2

; : : : ; a

n

g an alphabet. Doument D of length m an be written

as sequene D = d

0

; d

1

; : : : ; d

m�1

, where d

i

2 A. For eah position i we are able to

�nd out whih symbol d

i

is at this position. We must save this property to reate

ompressed doument with random aess.

A set of position fi; 0 � i < mg an be written as a set of binary words fb

i

g of �xed

length. This set an be onsidered as language L(D) on alphabet f0; 1g. It an be easy

shown that the language L(D) is regular (L(D) is �nite) and it is possible to onstrut

DFA whih aepts the language L(D). This DFA an be reated, for example, by

algorithm given in setion 2. Regular expression is formed as b

0

+ b

1

+ � � �+ b

m�1

.

Compression of the doument D onsists in reating a orresponding DFA. But de-

ompression is impossible. The DFA for the doument D an only deide, whether

binary word b

i

belongs to the language L(D) or not. The DFA does not say anything

about a symbol whih appears in position i. Inorder to do this, the de�nition of DFA

must be extended.

26

Word-based Compression Method with Diret Aess

De�nition 5 A deterministi �nite automaton with output (DFAO) is a 7-tuple

(Q;A;B; Æ; �; q

0

; F), where Q is a �nite set of states, A is a �nite set of input sym-

bols (input alphabet), B is a �nite set of output symbols (output alphabet), Æ is a state

transition funtion Q�A ! Q, q

0

is the initial state, � is an output funtion F ! B,

F � Q is the set of �nal states.

This type of automaton is able to determine for eah of the aepted words b

i

whih

symbol lies on position i. To reate an automaton of suh a type the algorithm

mentioned in setion 2 must be extended too. Regular expression V, whih is input

into the algorithm, onsists of words b

i

. Eah b

i

must arry its output symbol d

i

.

Regular expression is now formed as b

0

d

0

+ b

1

d

1

+ � � �+ b

m�1

d

m�1

,

Example 3 Let be for example doument D = abraadabra, m = 11. Regular ex-

pression V will be

V = 0000a+ 0001b+ 0010r + 0011a+

0100+ 0101a+ 0110d+ 0111a+

1000b+ 1001r + 1010a

DFAO(V) = (Q;A;B; Æ; �; q

0

; F) will be onstruted. For the onstrution of DFAO

see following table.

State q V dV=d0 dV=d1

0

0000a, 0001b, 0010r,

0011a, 0100, 0101a,

0110d, 0111a, 1000b,

1001r, 1010a

000a, 001b, 010r, 011a,

100, 101a, 110d, 111a

000b, 001r, 010a

1

000a, 001b, 010r, 011a,

100, 101a, 110d, 111a

00a, 01b, 10r, 11a 00, 01a, 10d, 11a

2 000b, 001r, 010a 00b, 01r, 10a ;

3 00a, 01b, 10r, 11a 0a, 1b 0r, 1a

4 00, 01a, 10d, 11a 0, 1a 0d, 1a

5 00b, 01r, 10a 0b, 1r 0a

6 0a, 1b "a "b

7 0r, 1a "r "a

8 0, 1a " "a

9 0d, 1a "d "a

10 0b, 1r "b "r

11 0a "a ;

12 "a ; ;

13 "b ; ;

14 "r ; ;

15 " ; ;

16 "d ; ;

Q = fq

0

; q

1

; : : : q

16

g, A = f0; 1g, B = fa; b; ; d; rg, F = fq

12

; q

13

; q

14

; q

15

; q

16

g,

27

Proeedings of the Prague Stringology Club Workshop '2000

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

0

0

1

0

1

2

0

1

2

3

4

5

0

1

2

3

4

3

s

3

j

s

q

1

1

q

1

q

j

R

1

w

w

6

�

�

w

�

0

1

0

1

0

0

1

0

1

0

1

0

1

1

0

1

0

1

0

0

1

0

-

-

-

-

-

a

b

r

d

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4

7

�

Figure 1: Automaton for expression V from example 3

Suh onstruted automaton have following properties:

1. there are no transitions from �nal states,

2. let be jqj for q 2 Q the length of words in appropriate regular expression. If

Æ(q

i

; a) = q

j

, where q

i

; q

j

2 Q, a 2 A, then jq

i

j > jq

j

j. In other words, the state

transition funtion ontain only forward transitions. There are no yles.

The set of states Q of the automaton DFAO(V) is divided into disjunt subsets (so

alled layers). Transitions are done only between two adjaent layers. Thus states

an be numbered loally in those layer. Final automaton from our example is drawn

in �gure 1.

Final automaton is stored on disk after onstrution. All layers are stored sequentially.

Three methods of storing layers are available now:

Raw { the layer is stored as a sequene of integer numbers. Appropriate for short

layers.

Bitwise { maximum state number max in layer is found. The layer is stored as a

sequene of integer numbers, eah dlog

2

maxe bits long.

Linear { linear predition of transitions is made. Parameters of the founded line and

a orretion table are stored.

Let's remark, that algorithm of onstrution of automaton is independent with respet

to its output alphabet. There are two possibilities. The �rst is a lassi harater

28

Word-based Compression Method with Diret Aess

NT LT NS LCF CR

10 29 39 580 2000

100 258 103 780 302.33

1,000 2,636 589 2,016 76.48

10,000 25,793 5,018 13,548 52.53

50,000 129,728 22,418 59,676 46.00

100,000 259,571 41,593 113,976 43.91

200,000 522,872 74,872 206,728 39.54

300,000 788,773 106,775 294,448 37.33

400,000 1,053,040 139,900 402,840 38.25

500,000 1,314,038 173,126 492,448 37.48

800,000 2,120,924 274,495 797,292 37.59

1,000,000 2,651,385 340,020 999,920 37.71

1,535,710 4,077,774 511,678 1,480,884 36.32

Table 2: Experimental results for �le bible.txt

Where NT is the number of tokens, LT is the length of tokens in bytes, NS is

the number of states, LCF is the length of ompressed text in bytes (automaton

in memory has the same size) and CR is the ompression ratio (LCF=LT)�100%

based version. Algorithm is one-pass and output alphabet is a standard ASCII.

For the text retrieval systems word-based version (the seond possibility) is more

advantageous beause of the harater of natural languages.

4 Experimental results

To allow pratial omparison of algorithm, experiments have been performed on

some ompression orpus. For test has been used Canterbury Compression Corpus

(large �les), espeially King's James Bible (bible.txt) �le whih is 4; 077; 774 bytes

long. There are 153; 5710 tokens and 13; 461 of them are distint.

A word-based version of algorithm has been used for a test. Compression algorithm

has been tested for di�erent input size. The length of the input tokens, the number of

states of the resulting automaton, the size of the ompressed �le and the ompression

ratio have been observed. Results are given in table 2.

Another tests were done with Czeh text �le. This �le is 11; 076; 629 bytes long.

There are 2; 332; 127 and 70; 177 of them are distint. Results are given in table 4.

Both tests were done on Pentium II/350Mhz with 128MB of RAM. Program was

ompiled by MS Visual C++ 6.0 as 32-bit onsole appliation under MS Windows

2000. Implementation of this method is desribed in [4℄.

5 Conlusion and Future works

Some advaned tehniques, how to store layers (i.e. sequenes of numbers) will be

adopted, suh as di�erential enoding et.

29

Proeedings of the Prague Stringology Club Workshop '2000

Compression utility Compressed text [bytes℄ Ratio [%℄

WRAC 1,480,884 36.32

ARJ 2.41a 1,207,114 29,6

WINZIP 6.2 1,178,869 28,91

GZip (UNIX) 1,178,757 28.9

WinRAR 2.6 994,346 24,38

Jar32 1.01 908,547 22,28

WLZW (word-based LZW) 896,956 22

WRAC

(estimation for nonperiodi texts) 816,000 20

Table 3: Comparison with other ompression utilities (bible.txt)

NT LT NS LCF CR

1,000 4,684 585 2,132 45,52

10,000 45,977 7,075 21,172 46,05

100,000 432,181 58,526 167,780 38,82

1,000,000 4,872,038 562,766 1,817,820 37,31

2,332,127 11,076,629 1,235,086 4,152,888 37,49

Table 4: Experimental results for Czeh text

Where NT is the number of tokens, LT is the length of tokens in bytes, NS is

the number of states, LCF is the length of ompressed text in bytes (automaton

in memory has the same size) andCR is the ompression ratio (LCF=LT)�100%

Compression utility Compressed text [bytes℄ Ratio [%℄

WRAC 4,152,888 37,49

ARJ 2.41a 2,890,560 26,1

WINZIP 6.2 2,816,458 25,43

WinRAR 2.6 2,379,730 21,48

WLZW (word-based LZW) 2,294,576 20,72

Table 5: Comparison with other ompression utilities (Czeh text �le)

30

Word-based Compression Method with Diret Aess

From �gure 1 an be seen, that the most piee of information is between layer 3 and

layer 4. The transitions from state 0 in layer 3 represents the �rst and the seond

harater in doument. The transitions from state 1 in layer 3 represents the third

and the fourth harater in doument and so on. For suh automaton layers 0, 1 and

2 an be omitted. There is at least one problem of ourse. Let's onsider the text

abraabraara. When the two last layers would be stored deompressed text is abraara.

It is due to that there are two equal substrings abra whih length are equal to power

of 2 and its positions are powers of 2 too. These positions di�er only in one bit and

this bit make a multiple transition (by 0 and 1). The result is that only one of these

substrings appears in deompressed text. The position of multiple transition have to

be stored.

But while automaton would be smaller beause equal substrings have the same sub-

automata i.e. ompression ratio would be better. Compression ratio is estimated at

20 perent.

Compression methods suitable for the use in textual databases have ertain speial

properties:

� these methods must be very fast in deompression;

� the information neessary for deompression should be usable for text searhing.

It is important to realise that this method does not atually depend on text enoding.

This means that it performs suessfully for a text enoded in UNICODE as well.

Several word-based ompression algorithms were developed for the text retrieval sys-

tems. There is well-known Hu�word [1, 6℄, and WLZW [2, 3℄ (our version of word-

based, two-phase LZW).

Referenes

[1℄ R. B. Yates, B. R. Neto. Modern Information Retrieval. Addison Wesley 1999

[2℄ J. Dvorsk�y, V. Sn�a�sel, J. Pokorn�y: Word-based Compression Methods for Text

Retrieval Systems. Pro. DATASEM'98, Brno 1998

[3℄ J. Dvorsk�y, V. Sn�a�sel, J. Pokorn�y. Word-based Compression Methods for Large

Text Douments. Data Compression Conferens - DCC '99, Snowbird, Utah

USA.

[4℄ J. Dvorsk�y. Text Compression with Random Aess. Workshop ISM 2000, Czeh

Republi, ISBN 80-85988-45-3

[5℄ G. Rozenberg, A.Salomaa, Ed. Handbook of Formal Language. Springer Verlag

1997, Vol. I.{III.

[6℄ I. H. Witten, A. Mo�at, T. C. Bell: Managing Gigabytes: Compressing and

Indexing Douments and Images. Van Nostrand Reinhold, 1994.

31

