
Word-based Compression Method with Dire
t

A

ess

1

Ji�r�� Dvorsk�y, V�a
lav Sn�a�sel

Computer S
ien
e Department, Pala
ky University of Olomou
, Tomkova 40,

779 00 Olomou
, Cze
h Republi

e-mail: fjiri.dvorsky,va
lav.snaselg�upol.
z

Abstra
t. Compression method (WRAC) based on �nite automata is pre-

sented in this paper. Simple algorithm for
onstru
ting �nite automaton for

given regular expression is shown. The best advantage of this algorithm is

the possibility of random a

ess to a
ompressed text. The
ompression ratio

a
hieved is fairly good. The method is independent on sour
e alphabet i.e.

algorithm
an be
hara
ter or word based.

Key words: word-based
ompression, text databases, information retrieval,

Hu�Word, WLZW

1 Introdu
tion

Data
ompression is an important part of the implementation of full text retrieval

systems. The
ompression is used to redu
e spa
e o

upied by indexes and text of

do
uments. There are many popular algorithms to
ompress a text, but none of them

an perform dire
t a

ess to the
ompressed text. This arti
le presents an algorithm,

based on �nite automaton, whi
h allows su
h type of a

ess. The de�nition of �nite

automata is given in the �rst se
tion. Compression algorithm itself is des
ribed in

the se
ond se
tion and the third se
tion shows some experimental results. At the end

the
on
lusion is given.

2 Finite automata

De�nition 1 A deterministi
 �nite automaton (DFA) [5℄ is a quintuple (Q;A; Æ; q

0

; F),

where Q is a �nite set of states, A is a �nite set of input symbols (input alphabet), Æ

is a state transition fun
tion Q� A ! Q, q

0

is the initial state, F � Q is the set of

�nal states.

1

This work was done under grant from the Grant Agen
y of Cze
h Republi
, Prague No.:

201/00/1031

24

Word-based Compression Method with Dire
t A

ess

De�nition 2 Regular expression U on alphabet A is de�ned as follows:

1. ;, " and a are regular expression for all a 2 A

2. If U; V are regular expression on A then (U + V); (U � V) and (U)

�

are regular

expression on A.

De�nition 3 Value h(U) of regular expression U is de�ned as:

h(;) = ;

h(") = f"g

h(a) = fag

h(U + V) = h(U) [h(V)

h(U � V) = h(U) � h(V)

h(U

�

) = (h(U))

�

De�nition 4 Derivative

dU

dx

of regular expression U by x 2 A

�

is de�ned as:

1.

dU

d"

= U

2. 8a 2 A it holds:

d"

da

= ;

d;

da

= ;

db

da

=

�

; if a 6= b

" otherwise

d(U + V)

da

=

dU

da

+

dV

da

d(U � V)

da

=

dU

da

� V +

dV

da

if " 2 h(U)

d(U � V)

da

=

dU

da

� V if " =2 h(U)

d(V

�

)

da

=

dV

da

� V

�

3. For x = a

1

a

2

: : : a

n

, where a

i

2 A it holds:

dV

dx

=

d

da

n

�

d

da

n�1

�

� � �

d

da

2

�

dV

da

1

�

� � �

��

Derivative of regular expression V by string x is an equivalent

h

�

dV

dx

�

= fy : xy 2 h(V)g

In other words, derivative of V by x is expression U su
h h(U)
ontains strings whi
h

arise from strings in h(V) by
utting pre�x x.

Example 1 Let be h(V) = fab

abb; abba
b; babb
abg. Then h(

dV

da

) = fb

abb; bba
bg.

25

Pro
eedings of the Prague Stringology Club Workshop '2000

dV

d0

dV

d1

(0 + 1)

�

� 01 (0 + 1)

�

� 01 + 1 (0 + 1)

�

� 01

(0 + 1)

�

� 01 + 1 (0 + 1)

�

� 01 + 1 (0 + 1)

�

� 01 + "

(0 + 1)

�

� 01 + " (0 + 1)

�

� 01 + 1 (0 + 1)

�

� 01

Table 1: Constru
tion of DFA for V = (0 + 1)

�

� 01

2.1 Constru
tion of DFA for given regular expression V

Theorem 1 When DFA a

epts, in state q, language de�ned by V then a

epts in

state Æ(q; a) language de�ned by

dV

da

, for all a 2 A (see [5℄).

For given regular expression V we
onstru
t DFA(V) = (Q;A; Æ; q

0

; F), where

� Q is a set of regular expressions

� A is given alphabet

� Æ(q; a) =

dq

da

; 8a 2 A

� q

0

= V

� F = fq 2 Q : " 2 qg

Example 2 Let's
onstru
t automaton for V = (0+ 1)

�

� 01 { words ending with 01.

See table 1. Final state is (0 + 1)

�

� 01 + " only.

3 Random a

ess
ompression

Let be A = fa

1

; a

2

; : : : ; a

n

g an alphabet. Do
ument D of length m
an be written

as sequen
e D = d

0

; d

1

; : : : ; d

m�1

, where d

i

2 A. For ea
h position i we are able to

�nd out whi
h symbol d

i

is at this position. We must save this property to
reate

ompressed do
ument with random a

ess.

A set of position fi; 0 � i < mg
an be written as a set of binary words fb

i

g of �xed

length. This set
an be
onsidered as language L(D) on alphabet f0; 1g. It
an be easy

shown that the language L(D) is regular (L(D) is �nite) and it is possible to
onstru
t

DFA whi
h a

epts the language L(D). This DFA
an be
reated, for example, by

algorithm given in se
tion 2. Regular expression is formed as b

0

+ b

1

+ � � �+ b

m�1

.

Compression of the do
ument D
onsists in
reating a
orresponding DFA. But de-

ompression is impossible. The DFA for the do
ument D
an only de
ide, whether

binary word b

i

belongs to the language L(D) or not. The DFA does not say anything

about a symbol whi
h appears in position i. Inorder to do this, the de�nition of DFA

must be extended.

26

Word-based Compression Method with Dire
t A

ess

De�nition 5 A deterministi
 �nite automaton with output (DFAO) is a 7-tuple

(Q;A;B; Æ; �; q

0

; F), where Q is a �nite set of states, A is a �nite set of input sym-

bols (input alphabet), B is a �nite set of output symbols (output alphabet), Æ is a state

transition fun
tion Q�A ! Q, q

0

is the initial state, � is an output fun
tion F ! B,

F � Q is the set of �nal states.

This type of automaton is able to determine for ea
h of the a

epted words b

i

whi
h

symbol lies on position i. To
reate an automaton of su
h a type the algorithm

mentioned in se
tion 2 must be extended too. Regular expression V, whi
h is input

into the algorithm,
onsists of words b

i

. Ea
h b

i

must
arry its output symbol d

i

.

Regular expression is now formed as b

0

d

0

+ b

1

d

1

+ � � �+ b

m�1

d

m�1

,

Example 3 Let be for example do
ument D = abra
adabra, m = 11. Regular ex-

pression V will be

V = 0000a+ 0001b+ 0010r + 0011a+

0100
+ 0101a+ 0110d+ 0111a+

1000b+ 1001r + 1010a

DFAO(V) = (Q;A;B; Æ; �; q

0

; F) will be
onstru
ted. For the
onstru
tion of DFAO

see following table.

State q V dV=d0 dV=d1

0

0000a, 0001b, 0010r,

0011a, 0100
, 0101a,

0110d, 0111a, 1000b,

1001r, 1010a

000a, 001b, 010r, 011a,

100
, 101a, 110d, 111a

000b, 001r, 010a

1

000a, 001b, 010r, 011a,

100
, 101a, 110d, 111a

00a, 01b, 10r, 11a 00
, 01a, 10d, 11a

2 000b, 001r, 010a 00b, 01r, 10a ;

3 00a, 01b, 10r, 11a 0a, 1b 0r, 1a

4 00
, 01a, 10d, 11a 0
, 1a 0d, 1a

5 00b, 01r, 10a 0b, 1r 0a

6 0a, 1b "a "b

7 0r, 1a "r "a

8 0
, 1a "
 "a

9 0d, 1a "d "a

10 0b, 1r "b "r

11 0a "a ;

12 "a ; ;

13 "b ; ;

14 "r ; ;

15 "
 ; ;

16 "d ; ;

Q = fq

0

; q

1

; : : : q

16

g, A = f0; 1g, B = fa; b;
; d; rg, F = fq

12

; q

13

; q

14

; q

15

; q

16

g,

27

Pro
eedings of the Prague Stringology Club Workshop '2000

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

0

0

1

0

1

2

0

1

2

3

4

5

0

1

2

3

4

3

s

3

j

s

q

1

1

q

1

q

j

R

1

w

w

6

�

�

w

�

0

1

0

1

0

0

1

0

1

0

1

0

1

1

0

1

0

1

0

0

1

0

-

-

-

-

-

a

b

r

d

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4

7

�

Figure 1: Automaton for expression V from example 3

Su
h
onstru
ted automaton have following properties:

1. there are no transitions from �nal states,

2. let be jqj for q 2 Q the length of words in appropriate regular expression. If

Æ(q

i

; a) = q

j

, where q

i

; q

j

2 Q, a 2 A, then jq

i

j > jq

j

j. In other words, the state

transition fun
tion
ontain only forward transitions. There are no
y
les.

The set of states Q of the automaton DFAO(V) is divided into disjun
t subsets (so

alled layers). Transitions are done only between two adja
ent layers. Thus states

an be numbered lo
ally in those layer. Final automaton from our example is drawn

in �gure 1.

Final automaton is stored on disk after
onstru
tion. All layers are stored sequentially.

Three methods of storing layers are available now:

Raw { the layer is stored as a sequen
e of integer numbers. Appropriate for short

layers.

Bitwise { maximum state number max in layer is found. The layer is stored as a

sequen
e of integer numbers, ea
h dlog

2

maxe bits long.

Linear { linear predi
tion of transitions is made. Parameters of the founded line and

a
orre
tion table are stored.

Let's remark, that algorithm of
onstru
tion of automaton is independent with respe
t

to its output alphabet. There are two possibilities. The �rst is a
lassi

hara
ter

28

Word-based Compression Method with Dire
t A

ess

NT LT NS LCF CR

10 29 39 580 2000

100 258 103 780 302.33

1,000 2,636 589 2,016 76.48

10,000 25,793 5,018 13,548 52.53

50,000 129,728 22,418 59,676 46.00

100,000 259,571 41,593 113,976 43.91

200,000 522,872 74,872 206,728 39.54

300,000 788,773 106,775 294,448 37.33

400,000 1,053,040 139,900 402,840 38.25

500,000 1,314,038 173,126 492,448 37.48

800,000 2,120,924 274,495 797,292 37.59

1,000,000 2,651,385 340,020 999,920 37.71

1,535,710 4,077,774 511,678 1,480,884 36.32

Table 2: Experimental results for �le bible.txt

Where NT is the number of tokens, LT is the length of tokens in bytes, NS is

the number of states, LCF is the length of
ompressed text in bytes (automaton

in memory has the same size) and CR is the
ompression ratio (LCF=LT)�100%

based version. Algorithm is one-pass and output alphabet is a standard ASCII.

For the text retrieval systems word-based version (the se
ond possibility) is more

advantageous be
ause of the
hara
ter of natural languages.

4 Experimental results

To allow pra
ti
al
omparison of algorithm, experiments have been performed on

some
ompression
orpus. For test has been used Canterbury Compression Corpus

(large �les), espe
ially King's James Bible (bible.txt) �le whi
h is 4; 077; 774 bytes

long. There are 153; 5710 tokens and 13; 461 of them are distin
t.

A word-based version of algorithm has been used for a test. Compression algorithm

has been tested for di�erent input size. The length of the input tokens, the number of

states of the resulting automaton, the size of the
ompressed �le and the
ompression

ratio have been observed. Results are given in table 2.

Another tests were done with Cze
h text �le. This �le is 11; 076; 629 bytes long.

There are 2; 332; 127 and 70; 177 of them are distin
t. Results are given in table 4.

Both tests were done on Pentium II/350Mhz with 128MB of RAM. Program was

ompiled by MS Visual C++ 6.0 as 32-bit
onsole appli
ation under MS Windows

2000. Implementation of this method is des
ribed in [4℄.

5 Con
lusion and Future works

Some advan
ed te
hniques, how to store layers (i.e. sequen
es of numbers) will be

adopted, su
h as di�erential en
oding et
.

29

Pro
eedings of the Prague Stringology Club Workshop '2000

Compression utility Compressed text [bytes℄ Ratio [%℄

WRAC 1,480,884 36.32

ARJ 2.41a 1,207,114 29,6

WINZIP 6.2 1,178,869 28,91

GZip (UNIX) 1,178,757 28.9

WinRAR 2.6 994,346 24,38

Jar32 1.01 908,547 22,28

WLZW (word-based LZW) 896,956 22

WRAC

(estimation for nonperiodi
 texts) 816,000 20

Table 3: Comparison with other
ompression utilities (bible.txt)

NT LT NS LCF CR

1,000 4,684 585 2,132 45,52

10,000 45,977 7,075 21,172 46,05

100,000 432,181 58,526 167,780 38,82

1,000,000 4,872,038 562,766 1,817,820 37,31

2,332,127 11,076,629 1,235,086 4,152,888 37,49

Table 4: Experimental results for Cze
h text

Where NT is the number of tokens, LT is the length of tokens in bytes, NS is

the number of states, LCF is the length of
ompressed text in bytes (automaton

in memory has the same size) andCR is the
ompression ratio (LCF=LT)�100%

Compression utility Compressed text [bytes℄ Ratio [%℄

WRAC 4,152,888 37,49

ARJ 2.41a 2,890,560 26,1

WINZIP 6.2 2,816,458 25,43

WinRAR 2.6 2,379,730 21,48

WLZW (word-based LZW) 2,294,576 20,72

Table 5: Comparison with other
ompression utilities (Cze
h text �le)

30

Word-based Compression Method with Dire
t A

ess

From �gure 1
an be seen, that the most pie
e of information is between layer 3 and

layer 4. The transitions from state 0 in layer 3 represents the �rst and the se
ond

hara
ter in do
ument. The transitions from state 1 in layer 3 represents the third

and the fourth
hara
ter in do
ument and so on. For su
h automaton layers 0, 1 and

2
an be omitted. There is at least one problem of
ourse. Let's
onsider the text

abraabraara. When the two last layers would be stored de
ompressed text is abraara.

It is due to that there are two equal substrings abra whi
h length are equal to power

of 2 and its positions are powers of 2 too. These positions di�er only in one bit and

this bit make a multiple transition (by 0 and 1). The result is that only one of these

substrings appears in de
ompressed text. The position of multiple transition have to

be stored.

But while automaton would be smaller be
ause equal substrings have the same sub-

automata i.e.
ompression ratio would be better. Compression ratio is estimated at

20 per
ent.

Compression methods suitable for the use in textual databases have
ertain spe
ial

properties:

� these methods must be very fast in de
ompression;

� the information ne
essary for de
ompression should be usable for text sear
hing.

It is important to realise that this method does not a
tually depend on text en
oding.

This means that it performs su

essfully for a text en
oded in UNICODE as well.

Several word-based
ompression algorithms were developed for the text retrieval sys-

tems. There is well-known Hu�word [1, 6℄, and WLZW [2, 3℄ (our version of word-

based, two-phase LZW).

Referen
es

[1℄ R. B. Yates, B. R. Neto. Modern Information Retrieval. Addison Wesley 1999

[2℄ J. Dvorsk�y, V. Sn�a�sel, J. Pokorn�y: Word-based Compression Methods for Text

Retrieval Systems. Pro
. DATASEM'98, Brno 1998

[3℄ J. Dvorsk�y, V. Sn�a�sel, J. Pokorn�y. Word-based Compression Methods for Large

Text Do
uments. Data Compression Conferen
s - DCC '99, Snowbird, Utah

USA.

[4℄ J. Dvorsk�y. Text Compression with Random A

ess. Workshop ISM 2000, Cze
h

Republi
, ISBN 80-85988-45-3

[5℄ G. Rozenberg, A.Salomaa, Ed. Handbook of Formal Language. Springer Verlag

1997, Vol. I.{III.

[6℄ I. H. Witten, A. Mo�at, T. C. Bell: Managing Gigabytes: Compressing and

Indexing Do
uments and Images. Van Nostrand Reinhold, 1994.

31

