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1 Introdution

The motivation to the Closest Common Subsequene (CCS Problems) an be found

in the typing of a text on the keyboard. The following mistakes an be made in

typing some string: (1) Typing a di�erent harater, usually from the neighbour area

of the given harater. (2) Inserting a single harater into the soure string. (3)

Omitting (skipping) any single soure harater. (4) Transposition of two elements.

It means, we have some words with mistakes. The problem is how to �nd the strings

they are very similar very losed to the exat strings. Very important role has here

the ommon subsequene of similar strings.

The ommon subsequene problem of two strings is to determine one of the sub-

sequenes that an be obtained by deleting zero or more symbols from eah of the

given strings. It is possible to demand some additional properties for the ommon

subsequene. Usually, it is the greatest length of the ommon subsequene, but we

an onsider some di�erent measures for the ommon subsequene.

The longest ommon subsequene problem (LCS Problem) of two strings is to deter-

mine the ommon subsequene with the maximal length. Algorithms for this problem

an be used in hemial and geneti appliations and in many problems onerning

data and text proessing [4, 8, 10℄. Further appliations inlude the string-to-string

orretion problem [8℄ and determining the measure of di�erenes between text �les

[4℄. The length of the longest ommon subsequene (LLCS Problem) an determine
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the measure of di�erenes (or similarities) of text �les. The simulation method for

the approximate strings and sequene mathing using the Levenstein metri an be

found in J. Holub [7℄ and the algorithm for the searhing of the subsequenes is in Z.

Tron���ek and B. Melihar [11℄.

D. S. Hirshberg and L. L. Larmore [6℄ have disussed a generalization of LCS Prob-

lem, whih is alled Set-Set LCS Problem (SSLCS Problem). In this ase both strings

are strings of subsets over an alphabet 
. In the paper [6℄ is presented the O(m � n)-

time algorithm for the general SSLCS Problem.

In this paper we present algorithms for more general ase of the Common Subsequene

Problem, it means Closest Common Subsequene Problem SSCCS Problem for two

strings of symbol sets with membership values of elements in the sets.

2 Basi De�nitions

In this setion, some basi de�nitions and results onerning to CCS Problem, SCCS

and SSCCS Problem are presented.

Let 
 be a �nite alphabet, j
j = s; P (
) the set of all subsets of 
; jP (
)j = 2

s

.

Let A = a

1

a

2

: : : a

m

; a

i

2 
; 1 � i � m be a string over an alphabet 
, where jAj = m

is the length of the string A.

The string C 2 


�

; C = 

1

: : : 

p

is a subsequene of the string A = a

1

: : : a

m

, if a

monotonous inreasing sequene of natural numbers i

1

< � � � < i

p

exists suh that



j

= a

i

j

; 1 � j � p. The string C is a ommon subsequene of two strings A;B if C

is a subsequene of A and C is a subsequene of B. jCj is the length of the ommon

subsequene. The lassial problem to �nd the longest ommon subsequene is de�ned

and solved in Hirshberg [5℄. In the lassial problem, eah element in the string is

in his position as full member, but sometimes we are not sure about it in texts. The

element should be in his position with 70%, it means, the element is in his position

with 0:7 membership value. Sometimes, we an suppose that in some position should

be one element of some set of elements with membership values.

Let �

A

(a

i

) 2 (0; 1i; 1 � i � m; be some membership values of elements in the string

A. The pair (A; �

A

) is the string A with the membership funtion �

A

, m-string �A

for short. V al(�A) is a measure of �A de�ned by the (1).

V al(�A) = �

m

i=1

�

A

(a

i

) (1)

The string �C = (C; �

C

) is a subsequene with the membership funtion �

C

, shortly

m-subsequene of the m-string �A if C is a subsequene of the string A and 0 <

�

C

(

t

) � �

A

(a

i

t

), for 1 � t � p. The m-subsequene �C is a losest m-subsequene if

V al(�C) = �

p

j=1

�

C

(

j

) = �

p

j=1

�

A

(a

i

j

).

The string �C is a ommon m-subsequene of two m-strings �A and �B if �C is a

m-subsequene of �A and �C is a m-subsequene of �B.

The string �C is a losest ommon m-subsequene of the m-strings �A and �B if �C

is a ommon m-subsequene with the maximal value V al(�C). It means, if �D is a

ommon m-subsequene of the strings �A and �B then V al(�D) � V al(�C).
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If �C is a losest ommon m-subsequene of the m-strings, �A and �B then �

C

(

t

) =

minf�

A

(a

k

t

); �

B

(b

l

t

)g, for 1 � t � p.

The CCS Problem: Let �A and �B be m-strings. To �nd a losest ommon

subsequene of the m-strings �A and �B, CCS(�A; �B) for short.

The MCCS Problem is to �nd the measure of CCS m-string, MCCS for

short. It means, MCCS(�A; �B) = V al(CCS(�A; �B)). �

Algorithms for CCS and MCCS Problem Andrejkov�a [2℄.

m m m m m m m m m

m m m m m m m

a

b
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b
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b
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b



d b



b
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Figure 1. The losest ommon subsequene of two m-strings A and B.
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Example 1. 
 = fa; b; g; A = abaabaab;m = 9; �

A

= (:9; :9; :6; :5; :2; :8; :4; :6; :5),

B = abdbb; n = 7; �

B

= (:6; :6; :3; :4; :9; :5; :6). The stringC = abb is a subsequene,

C

0

= abbb is the longest ommon subsequene of the strings A and B, and �C",

C" = abb; �

C"

= (:6; :9; :4; :5) is the losest ommon subsequene of the m-strings

�A and �B; V al(�C") = MCCS(�A; �B) = 2:4 as it is shown in Figure 1.

A string of sets B over an alphabet 
, set-string for short, is any �nite sequene of

sets from P (
). Formally, B = B

1

B

2

: : : B

n

; B

i

2 P (
); 1 � i � n, n is the number of

sets in B. The length of the symbol string desribed by B is N = �

n

i=1

jB

i

j. A string of

symbols C = 

1



2

: : : 

p

; 

i

2 
; 1 � i � p, is a subsequene of symbols (subsequene,

for short) of the set-string B if there is a nondereasing mapping F : f1; 2; : : : ; pg !

f1; 2; : : : ; ng, suh that

1. if F (i) = k then 

i

2 B

k

, for i = 1; 2; : : : ; p

2. if F (i) = k and F (j) = k and i 6= j then 

i

6= 

j

.

Let A = A

1

: : : A

m

;B = B

1

: : : B

n

; 1 � m � n, be two set-strings of sets over an

alphabet 
. The string of symbols C is a ommon subsequene of symbols of A and

B is C a subsequene of symbols of A and C is a subsequene of symbols of the

set-string B.

As similar as for strings, let de�ne m-set as a set with membership funtion de�ned

on its elements.

Let �

B

i

; i = 1; 2; : : : ; n be the membership funtions of the sets B

i

; i = 1; 2; : : : ; n in

the string B. It means, �B = �B

1

�B

2

: : : �B

n

. �B is the m-set-string B of m-sets

B

i

; i = 1; 2; : : : ; n with the membership funtions �

B

i

, m-set-string �B for short. The

weight of the m-set B 2 P(
) with membership funtion �

B

is de�ned by

W (B) =

X

x2B

�

B

(x) (2)
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A string �C is a m-subsequene of the m-set-string �B if (1) �C is the subsequene

of symbols of the set-string B and (2) if  = 

i

; 

i

2 B

k

then �

C

(

i

) � �

B

k

().

The m-string �C is a ommon m-subsequene of the m-set-strings �A and �B if �C

is m-subsequene of �A and �C is m-subsequene of �B.

The string �C is a losest ommon m-subsequene of the m-set-strings �A and �B if

�C is a ommon subsequene with maximal value V al(�C). Note that �C is not in

general unique.

The SSCCS Problem: Let �A; �B be two m-set-strings. The Set-Set Closest

Common Subsequene problem of the m-set-strings �A and �B, (SSCCS(�A; �B)

for short, onsists of �nding a losest ommon m-subsequene �C with the maximal

value V al(�C).

The MSSCCS Problem onsists of �nding the measure of SSCCS m-set-

string, MSSCCS(�A; �B) for short.

It means, MSSCCS(�A; �B) = V al(SSCCS(�A; �B)), �

m m m m m m m m

m m m m m m m m m m m

a

d

 a

b

e

b

a

d

e  a

d

e

b d
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Figure 2. The losest ommon m-subsequene of two m-set-strings A and B.
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Example 2. Let A = fa; dgf; a; dgfe; b; ag; m = 3, �

A

1

= (:7; :3); �

A

2

= (:6; :4;

:5); �

A

3

= (:6; :3; :8);B = fd; e; gfa; d; egfb; d; gfb; dg; n = 4: �

B

1

= (:4; :3; :5); �

B

2

=

(:7; :6; :8); �

B

3

= (:9; :5; :7); �

B

4

= (:5; :3). The membership values are desribed

aording to the named order in the set. For example, �

A

1

(a) = 0:7; �

A

1

(d) = 0:3:

Then MSSCCS(�A; �B) = 2:4 as it is shown in the Figure 2.

3 ALGORITHM FOR MSSCCS Problem

The basi idea of the algorithm starts from the de�nition of MSSCCS Problem.

MSSCCS(�A; �B) = max

�C

fV al(�C) : �C is the ommon m-subsequene

of �A and �Bg (3)

In the following part of the paper we will use the m-set only and for a simpler

desription we will omit the symbol � in the names of sets.

A attening of a sequene of sets is de�ned as a onatenation, in order of the se-

quene, of strings formed by some permutation of individual elements of the sets

in the sequene. For example, a attening of the m-set-string A in Example 2 is

4
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A

fl1

= dabaeba; �

A

fl1

= (:3; :7; :5; :4; :6; :6; :3; :8) and so is A

fl2

= daabbae; �

A

fl2

=

(:3; :7; :4; :6; :5; :3; :8; :6).

If we have some attening of both set-strings then it is possible to apply the MCCS

algorithm, Andrejkov�a [2℄. It is neessary to ompute MCCS values of all pairs of

all attenings both set-strings but it is too muh time onsuming.

If we have the attening of one set-string and the seond is a set-string then it is

possible to use the MSCCS algorithms. But it is neessary to ompute MSCCS

value for all attenig of one string. It is to muh time onsuming too. Both algorithms

have an exponential time omplexity.

It is possible to use the following algorithm of polynomial time omplexity. The

algorithm works in two steps:

1. to reate the string of symbols for eah of set-string; eah set an be enoded

as the string of all permutations of its elements (the length of suh string is

k

2

� 2 � k + 4, k is the number of elements in set [9℄); for example, the shortest

m-string of elements in the m-set-string A in example 2 is dadababbeabeab

and so is adaababebaebae.

2. to apply the MCCRS algorithm, Andrejkov�a [1℄ for the two in the previous step

onstruted m-strings (eah element of the m-set an be used one at most);

The algorithm works in polynomial time: O(M

2

� N

2

� K), where M = �

m

i=1

jA

i

j,

N = �

n

j=1

jB

j

j, and K is the number of elements in the losest ommon restrited

subsequene.

We formulate the following algorithm with the better time omplexity aording to

Hirshberg's idea for SSLCS Problem [6℄. The algorithm works with intersetion,

union and equivalene, di�erene of m-sets. It is possible to use many de�nitions of

them but the following [3, 12℄ are more obvious:

Let A;B be the m-sets with membership funtions �

A

; �

B

, and x"A explains a mem-

bership of the element x to the m-set A; �

A

(x) > 0, then

1. intersetion \\

m

" of two m-sets is de�ned:

A \

m

B =

def

fxjx"A ^ x"Bg; �

A\

m

B

(x) = minf�

A

(x); �

B

(x)g

2. union "[

m

" of two m-sets is de�ned:

A [

m

B =

def

fxjx"A _ x"Bg; �

A[

m

B

(x) = maxf�

A

(x); �

B

(x)g

3. equivalene \=

m

" of two m-sets is de�ned:

A =

m

B , x"A ^ x"B ^ x"A \

m

B ^ x"A [

m

B

4. di�erene \�

m

" of two m-sets is de�ned:

A�

m

B =

def

fxjx"A ^ x 6 "Bg; �

A�B

(x) = �

A

(x)

5. A is m-subset of B;A �

m

B; if and only if 8x"A is ful�lled x"B and 0 <

�

A

(x) � �

B

(x).
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3.1 Desription of the simple algorithm A.

For onveniene, we de�ne A

0

= B

0

= ;.

We de�ne Ent(i; j) to be the set of quintuples (k; F

f

; F

u

; G

f

; G

u

) suh that:

(1) k is the measure of , a ommon m-subsequene of some attening of A

1

: : : A

i

and some attening of B

1

: : : B

j

, de�ned by (1).

(2) free m-set F

f

�

m

A

i

is the m-set of elements of A

i

whih are not used by ,

(3) free m-set G

f

�

m

B

j

, is the m-set of elements of B

j

not used by ,

(4) m-set of used elements F

u

�

m

A

i

is the m-set of elements of A

i

used by , and

(5) m-set of used elements G

u

�

m

B

j

is the m-set of elements of B

j

used by .

Example 3. (1:2; f(; 0:5); (a; 0:4)g; f(b; 0:5)g; f(a; 0:4)g; f(d; 0:6); (e; 0:8)g) is in

Ent(2; 2) for m-set-strings in Example 2.

We refer to suh quintuple as an entry. The measure of the CCS of the some attening

of A

1

: : : A

m

and some attening of B

1

: : : B

n

is then, by de�nition, the largest k suh

that (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(m;n) for some m-sets F

f

; F

u

; G

f

and G

u

. Ent(0; 0)

ontains just one entry, namely (0; ;; ;; ;; ;), while Ent(i; j) an be omputed dy-

namially from Ent(i � 1; j) and Ent(i; j � 1). The problem is that the ardinality

of Ent(i; j) ould beome very large, making suh an algorithm exponential in the

worst ase.

Let e = (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i � 1; j) and F

s

; F

u

�

m

F

s

be the m-set with the

following property: x"F

s

, x"F

u

and �

F

u

(x) � �

F

s

(x) = �

A

i

(x). It means, the m-set

F

s

is the maximal m-set that has the same elements as the m-set F

u

, but membership

values of elements in F

s

are the same as in the m-set A

i

.

Let S be any subset of A

i

\

m

G

f

. We say that e vertially generates e

0

2 Ent(i; j)

i�

1. e

0

= (k +W (S) � W (A

i

\

m

G

u

) +W (S

0

); A

i

�

m

S; F

u

; G

f

�

m

S;G

u

) for any

subset S

0

of A

i

\

m

G

s

;W (S

0

) > W (A

i

\

m

G

u

), or

2. e

0

= (k +W (S); A

i

�

m

S; F

u

; G

f

�

m

S;G

u

) and for eah subset S

0

of A

i

\

m

G

s

is W (S

0

) � W (A

i

\

m

G

u

).

The element e

0

2 Ent(i; j) and it is shown by the following: If � is ommon m-

subsequene with a measure k = V al(�) of the attening of A

1

: : : A

i�1

and some

attening of B

1

: : : B

j

, where F

f

�

m

A

i�1

and G

f

�

m

B

j

are free m-sets, and �

is a m-sequene onsisting of the elements of S �

m

A

i

\ G

f

written in any order,

then �� (having measure k + V al(S)) is ommon subsequene of a attening of

A

1

: : : A

i

and a attening of B

1

: : : B

j

, with free m-sets A

i

� S and G

f

�S. The used

elements from m-set G

u

an be used with some better membership values and it is

evaluated by the omparison of the weights of the sets A

i

\

m

G

s

and A

i

\

m

G

u

. If

W (A

i

\

m

G

u

) < W (A

i

\

m

G

s

) then there exists some better using of elements in A

i

.
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Similarly, if (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i; j�1) and S �

m

F

f

\

m

B

j

and S

0

is any subset

of B

j

\

m

F

s

);W (S

0

) > W (B

j

\

m

F

u

), we say that (k; F

f

; F

u

; G

f

; G

u

) horizontally

generates (k+W (S)�W (B

j

\

m

F

u

)+W (S

0

); F

f

�

m

S; F

u

; B

j

�

m

S;G

u

) 2 Ent(i; j)

or (k+W (S); F

f

�

m

S; F

u

; B

j

�

m

S;G

u

) 2 Ent(i; j) aording to the relationW (B

j

\

m

F

u

) < = � W (S

0

).

Lemma 1 If e 2 Ent(i; j) for i+ j � 0 then e is generated by some element of either

Ent(i� 1; j) or Ent(i; j � 1).

Proof. e = (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i; j), it means e = ��, � is the part of elements

in A

i

\

m

B

j

. Aording to above onstrution, the part � is the prolongation of some

element e

0

2 Ent(i � 1; j) or Ent(i; j � 1). In the part � should be elements with

higher membership values. 2

The element e 2 Ent(i; j) is generated from elements in E(i � 1; j) or Ent(i; j � 1)

using of two sets: the free subset and the used subset of B

j

, respetively A

i

. The

following algorithm is a dynami programming algorithm in whih the boundary

onditions are set and then the interval entries are determined:

Algorithm A.

for all i do Ent(i; 0) := f(0; A

i

; ;; ;; ;)g

for all j do Ent(0; j) := f(0; ;; ;; B

j

; ;)g

for i := 1 to m do

for j := 1 to n do

Ent(i; j) := fall entries vertially generated from Ent(i� 1; j)g

S

fall entries horizontally generated from Ent(i; j � 1)g

max k := the largest k suh that (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(m;n) for some

F

f

; F

u

; G

f

; G

u

.

3.2 Desription of a better algorithm

The above algorithm may be very time-onsuming beause of too many quintuples

is neessary to analyze. We will speed the algorithm by eliminating onsideration of

many quintuples.

If (k; F

f

; F

u

; G

f

; G

u

); (k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

) 2 Ent(i; j), we say that (k; F

f

; F

u

; G

f

; G

u

)

dominates (k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

) ((k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

) � (k; F

f

; F

u

; G

f

; G

u

)) if the follow-

ing onditions hold:

1. d = k � k

0

� 0,

2.

�

W (F

0

f

� F

f

) � d and F

0

u

�

m

F

u

�

or

�

W (F

0

u

� F

u

) � d and F

0

f

�

m

F

f

�

,

3.

�

W (G

0

f

�G

f

) � d and G

0

u

�

m

G

u

�

or

�

W (G

0

u

�G

u

) � d and G

0

f

�

m

G

f

�

.
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The relation "�" is a transitive, antisymmetri and reexive relation. The elements

of Ent(i; j) an be ordered aording to relation "�", it means they are ordered in

some hains. The last element of the hain has maximal measure and that is very

important.

Lemma 2 Any element of Ent(i; j) whih is not maximal with respet to the relation

"�" an be disarded during exeution of the algorithm without a�eting the �nal value

of max k.

Proof. It will be proved by downward indution on both indies i and j. The value

of max k is obtained from Ent(m;n) in the last step and all other elements may be

disarded with no e�et.

Suppose i + j < m + n and e

0

2 Ent(i; j); e

0

is not maximal. Let e 2 Ent(i; j)

is maximal. It means, e

0

� e. It is neessary to prove that maximal element of

Ent(i+1; j) or Ent(i; j+1) whih is generated by e

0

an be generated by e too. And

the element e

0

an be disarded.

Let e = (k; F

f

; F

u

; G

f

; G

u

); e

0

= (k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

) and e

0

vertially generates f

0

. f

0

should have two forms for some m-set P � A

i+1

\G

0

f

(a) f

0

= (k

0

+W (P )�W (A

i+1

\

m

G

0

u

)+W (A

i+1

\

m

G

0

s

); A

i+1

�

m

P; P;G

0

f

�

m

P;G

0

u

),

if W (A

i+1

\

m

G

0

u

) < W (A

i+1

\

m

G

0

s

), or

(b) f

0

= (k

0

+W (P ); A

i+1

�

m

P; P;G

0

f

�

m

P;G

0

u

), ifW (A

i+1

\

m

G

0

u

) � W (A

i+1

\

m

G

0

s

).

Let S = P \ G

f

, and f is vertially generated by e. f should have two forms: (1)

f = (k +W (S) �W (A

i+1

\

m

G

u

) +W (A

i+1

\

m

G

s

); A

i+1

�

m

S; S;G

f

�

m

S;G

u

) or

(2)f = (k+W (S); A

i+1

�

m

S; S;G

f

�

m

S;G

u

). It is neessary to analyze four ases to

prove the Lemma (a)-(1), (a)-(2), (b)-(1), (b)-(2). We start with the �rst one, it means

(a)-(1), andW (A

i+1

\

m

G

0

u

) < W (A

i+1

\

m

G

0

s

) andW (A

i+1

\

m

G

u

) < W (A

i+1

\

m

G

s

).

Sine e

0

� e; d = k � k

0

,

d � 0,

��

W (F

0

f

� F

f

) � d and F

0

u

�

m

F

u

�

or

�

W (F

0

u

� F

u

) � d and F

0

f

�

m

F

f

��

, and

��

W (G

0

f

�G

f

) � d and G

0

u

�

m

G

u

�

or

�

W (G

0

u

�G

u

) � d and G

0

f

�

m

G

f

��

. Then

W (P �

m

S) = W (P �

m

P \

m

G

f

) = W (P �

m

G

f

) � W (F

0

f

�

m

F

f

) � d and

W (P �

m

S) � W (P ) � W (S). Let d

0

= (W (P ) � W (S)) � (W (A

i+1

\

m

G

s

) �

W (A

i+1

\

m

G

0

s

))� (W (A

i+1

\

m

G

u

)�W (A

i+1

\

m

G

0

u

) � d We prove that f

0

� f , it

means f

0

is not maximal or f = f

0

. Aording to de�nition of "�" it is neessary to

hek three onditions 1.-3.

1. z = k+W (S)�W (A

i+1

\

m

G

u

) +W (A

i+1

\

m

G

s

)� (k

0

+W (P )�W (A

i+1

\

m

G

0

u

)+W (A

i+1

\

m

G

0

s

)) = k�k

0

�(W (P )�W (S))+W (A

i+1

\

m

G

s

)�W (A

i+1

\

m

G

0

s

) +W (A

i+1

\

m

G

u

)�W (A

i+1

\

m

G

0

u

� d� d

0

� 0

2. W (P �

m

S) � d and A

i+1

�

m

P �

m

A

i+1

�

m

S

3. W (G

0

f

�

m

P �

m

(F

f

�

m

S)) = W (G

0

f

�

m

G

f

) � d and G

0

u

�

m

G

u

.
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The rest three ases an be proved by a very similar method. And the vertial ase

is similar. 2

If e = (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i; j), we de�ne the horizontal hild of e to be hor(e) =

k +W (F

f

\B

j+1

)�W (A

i

\

m

G

u

) +W (A

i

\

m

G

s

); F

f

� B

j+1

; F

u

; B

j+1

� F

f

; G

u

) or

hor(e) = k + W (F

f

\ B

j+1

); F

f

� B

j+1

; F

u

; B

j+1

� F

f

; G

u

) and de�ne the vertial

hild of e to be ver(e) = k+W (A

i+1

\G

f

)�W (B

j+1

\G

u

) +W (B

j+1

\G

s

); B

j+1

�

G

f

; F

u

; G

f

�B

j+1

; G

u

)or ver(e) = k +W (A

i+1

\G

f

); B

j+1

�G

f

; F

u

; G

f

�B

j+1

; G

u

).

We de�ne MaxEnt(i; j) to be the set of maximal elements of Ent(i; j) under the

dominane relation "�".

Lemma 3 Any entry horizontally generates at most one maximal entry and vertially

generates at most one maximal entry.

Proof. Let e = (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i; j). The only elements vertially gener-

ated by e whih an be maximal are in the ver(e), sine they dominates any others

vertially generated by e. Similarly, hor(e) dominates any entries horizontally gener-

ated by e. 2

We say that (k; F

f

; F

u

; G

f

; G

u

) strongly dominates (k

0

; F

f

; F

u

; G

f

; G

u

) if k > k

0

. If

S � Ent(i; j), de�nes Dom(S) � S to be the set obtained by deleting every element

of S whih is strongly dominated by another element of S. We now indutively de�ne

sets Chain(i; j) � Ent(i; j) by:

1. Chain(i; 0) = f(0; A

i

; ;; ;; ;)g;

2. Chain(0; j) = f(0; ;; ;; B

j

; ;)g;

3. Chain(i; j) = Dom(fver(e)je 2 Chain(i�1; j)g [ fhor(e)je 2 Chain(i; j�1)g):

We refer to entries Chain(i; j) asweakly maximal. We observe the following lemma.

Theorem 1 MaxEnt(i; j) � Chain(i; j):

Proof. By indution. For i = 0 or j = 0 the two sets MaxEnt(i; j) and Chain(i; j)

are idential. For i; j > 0, and e 2MaxEnt(i; j) must be vertial or horizontal hild

of some maximal element, whih is weakly maximal by indution. It means, e must

be weakly maximal, sine it is maximal and thus annot be deleted by operator Dom.

2

Using the results of the Lemmas 2 and 3 and Theorem 1 we have the following

algorithm:

Algorithm B.

fUsing weakly maximal entries.g

for all i do Chain(i; 0) := f(0; A

i

; ;; ;; ;)g;

for all j do Chain(0; j) := f(0; ;; ;; B

j

; ;)g;

9
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for i:=1 to m do

for j:=1 to n do

begin

Chain(i; j) := ;;

for all (k; F

f

; F

u

; G

f

; G

u

) 2 Chain(i; j � 1) do begin

help :=W (B

j

\

m

F

s

)�W (B

j

\

m

F

u

);

if help � 0 then

insert (k +W (F \B

j

); F

f

� B

j

; F

u

; B

j

� F

f

; G

u

) into Chain(i; j)

else insert (k+W (F

f

\B

j

)+help; F

f

�B

j

; F

u

; B

j

�F

f

; G

u

) into Chain(i; j)

end;

for all (k; F

f

; F

u

; G

f

; G

u

) 2 Chain(i� 1; j) do begin

help :=W (A

i

\

m

G

s

)�W (A

i

\

m

G

u

);

if help � 0 then

insert (k +W (A

i

\G); A

i

�G

f

; F

u

; G

f

� A

i

; G

u

) into Chain(i; j)

else insert (k+W (G

f

\A

i

)+help; A

i

�G

f

; F

u

; G

f

�A

i

; G

u

) into Chain(i; j)

end;

delete all nonweakly maximal elements from Chain(i; j)

end

max k := the maximum value of k suh that (k; F

f

; F

u

; G

f

; G

u

) 2 Chain(m;n)

for some F

f

; F

u

; G

f

and G

u

.

The algorithmworks inO(m�n�K�t)-time, whereK is the maximal number of elements

in Chain(i; j) and t is the maximal time spent for omputing the intersetion of two

sets. The algorithm works in O(m � n � k)-spae, where k is the maximal number of

elements in the m-sets A

i

; B

j

. In the next setion we show the idea of some eÆient

implementation of the algorithm.

3.3 EÆient implementation of algorithm B.

We show the struture of Chain(i; j) that will help obtain an eÆient implementation

of algorithm B. We begin by de�ning a transitive reexive relation / on Ent(i; j). We

say that (k; F

f

; F

u

; G

f

; G

u

) / (k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

) if F

f

�

m

F

0

f

; G

0

f

�

m

G

f

; F

u

=

m

F

0

u

and G

u

=

m

G

0

u

.

Lemma 4 (a) If e; e

0

2 Ent(i� 1; j), and if e / e

0

, then ver(e) / ver(e

0

).

(b) If e; e

0

2 Ent(i; j � 1), and if e / e

0

, then hor(e) / hor(e

0

).

() If e 2 Ent(i; j � 1) and e

0

2 Ent(i� 1; j), then hor(e) / ver(e

0

).

10
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Proof. (a) ver(e) = (k; F

f

\

m

B

j

; F

u

; B

j

�

m

F

f

; G

u

) and ver(e

0

) = (k

0

; F

0

�

m

B

j

; F

0

u

; B

j

�

m

F

0

f

; G

0

u

): It follows from F

f

�

m

F

0

f

that F

f

� B

j

�

m

F

0

f

� B

j

and

B

j

� F

0

f

�

m

B

j

� F

f

, i.e. ver(e) / ver(e

0

):

(b) Similar to the proof of (a).

() Let e = (k; F

f

; F

u

; G

f

; G

u

) and e

0

= (k

0

; F

0

f

; F

0

u

; G

0

f

; G

0

u

). Then hor(e) = (k; F

f

�

m

B

j

; F

u

; B

j

�

m

F

f

; G

u

) and ver(e

0

) = (k

0

; F

0

f

�

m

B

j

; F

0

u

; B

j

�

m

F

0

f

; G

0

u

). It an be seen

that F

f

�

m

A

i

sine e 2 Ent(i; j � 1), and that G

0

f

�

m

B

j

sine e

0

2 Ent(i � 1; j).

And we have F

f

� B

j

�

m

A

i

� G

0

f

and G

0

f

� A

i

�

m

B

j

� F

f

, i.e. hor(e) / ver(e

0

):

2

Lemma 5 The relation / imposes a total ordering on Chain(i; j).

Proof. We need to prove that for any distint f; f

0

2 Chain(i; j), either f / f

0

or

f

0

/ f but not both. If f

0

/ f and f / f

0

, then f and f

0

would have the same free sets,

whih implies they must be idential, else the one with the smaller value of k would

not be weakly maximal. Thus, we need only show that f and f

0

are omparable. We

do this by indution on i and j.

Chain(0; j) ontains just one entry, namely (0; ;; ;; B

j

; ;), and hene is ordered. Sim-

ilarly, Chain(i; 0) ontains only the entry (0; A

i

; ;; ;; ;).

Suppose, i; j > 0, and f; f

0

2 Chain(i; j). Both f and f

0

must be generated by

maximal entries e and e

0

, respetively. We onsider three ases. If f and f

0

are the

vertial hildren of e and e

0

, respetively, then by indution, e and e

0

are omparable,

hene f and f

0

are omparable by above Lemma. If f and f

0

are the horizontal

hildren of e and e

0

the proof is similar. If f is the horizontal hild of e and f

0

is

vertial hild of e

0

, then f and f

0

are omparable by above Lemma too. 2

Lemma 6 Chain(i; j) has the number of elements at most 1 + jA

i

j + jB

j

j, where

jA

i

j; jB

j

j are the numbers of elements in the m-sets A

i

; B

j

, for i = 1; : : : ; m; j =

1; : : : ; n.

Proof. The main idea of the proof is in the following: Eah element from m-set

should be used one at most but with some di�erent membership value.

If e 2 (k; F

f

; F

u

; G

f

; G

u

) 2 Ent(i; j), de�ne signature of e to be jF

f

j � jG

f

j, whih

must lie in the interval [�jB

j

j::jA

i

j℄. Sine Chain(i; j) is ordered under the relation

/, eah entry must have di�erent signature. 2

It means, the algorithm works in O(m �n �L � t)-time, where L is the maximal number

of the numbers in f1+jA

i

j+jB

j

j; i = 1; : : :m; j = 1; : : : ng and t = maxfjA

i

j; jB

j

j; i =

1; : : :m; j = 1; : : : ng is the maximal time spent for omputing of the intersetion of

two sets. The algorithm works in O(n � L � t)-spae.

4 CONCLUDING REMARKS

Polynomial algorithms for the solutions of the SSCCS and MSSCCS Problem with

membership funtions have been presented. The algorithms work in O(m�n�L�t)-time

and O(n � L � t)-spae, where L = maxf1 + jA

i

j + jB

j

j; i = 1; : : :m; j = 1; : : : ng and

t = maxfjA

i

j; jB

j

j; i = 1; : : :m; j = 1; : : : ng is the maximal time spent for omputing

of the intersetion of two sets.
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