
Centroid Trees with Appliation to String

Proessing

Fei Shi and Dong-Guk Shin

Dept. Math and Computer Siene

Su�olk University

Boston, MA 02114-428, USA

shi�as.su�olk.edu

and

Dept. Computer Siene and Engineering

The University of Connetiut

Storrs, CT 06269-3155, USA

shin�eng2.uonn.edu

e-mail: fgoeman,lauseng�s.uni-bonn.de

Abstrat. A entroid of a tree T is a node v whih minimizes over all nodes the

largest onneted omponent of T indued by removing v from T . A entroid

tree U of another tree T is de�ned on the same set of nodes of T : the root v

of U is a entroid of T and the subtrees of v (in U) are the entroid trees of

the onneted omponents of T � v. We desribe some interesting properties of

the entroid and of the entroid tree. Our linear algorithm to �nd a entroid

of a tree improves on the previously known algorithms either in terms of spae

requirement or in terms of time requirement. From the algorithm for �nding a

entroid it is easy to obtain an O(n log n) time algorithm to onstrut a entroid

tree of a given tree with n nodes. However, we do not know whether this is

the best that one an ahieve. By exploiting the properties of the entroid

tree, we devise an eÆient algorithm for the longest ommon substring problem

(LCS). Given two strings S (the text) of length n and P (the pattern) of length

m, the LCS problem is to �nd the longest substring that appears in both the

text and the pattern. Our algorithm requires O(n logn) time and O(n) spae

to preproess the text. After preproessing of the text, the algorithm takes

O(m log n) time using O(m) extra spae to �nd the solution. The algorithm

may be used in the DNA appliations in whih the text is very large and �xed

and is to be searhed with many di�erent patterns (n� m).

Key words: balaned trees, entroid of trees, string pattern mathing, the

longest ommon substring problem

1 Introdution

Let T be an arbitrary tree and let V denote the set of nodes in T . Let v 2 V and

let T

1

; T

2

; � � � ; T

d

be the onneted omponents of T indued by removing v from T

(denoted by T � v). Let jT j denote the number of nodes in T . De�ne

N(v) = max

1�i�d

fjT

i

jg:

61

Proeedings of the Prague Stringology Club Workshop '99

A entroid of the tree T [Har69℄ is a node v

whih minimizes N(v) over all nodes v,

i.e.,v

satis�es

N(v

) = min

v2V

fN(v)g:

It an be shown that every tree has either one entroid or two. This fat has been

extensively applied (see, for examples, [Gol71℄, [KH79℄, [FJ80℄, [MTZC81℄, [Sla82℄).

Goldman [Gol71℄ and Megiddo et al. [MTZC81℄ proposed linear algorithms for �nding

the entroid of a tree. All algorithms known to us that make use of a entroid �nding

algorithm all either Goldman's algorithm or Megiddo's algorithm as a subroutine.

Goldman's algorithm requires a opy of the original tree T as an auxiliary tree on

whih it works. Therefore, O(n) extra spae is needed. While Megiddo's algorithm

does not need any extra spae, it has to visit eah node at least one. In this paper,

we present an algorithm, whih might be viewed as a ombination of Goldman's

algorithm and Megiddo's algorithm. Our algorithm improves on the mentioned two

algorithms either in terms of spae or in terms of time. Spei�ally, our algorithm

does not need an extra opy of the original tree; at the same time, it does not need

more time than Goldman's algorithm. Our algorithm visits eah node of the tree at

most one; at the same time, it does not need more spae than Megiddo's algorithm.

Of ourse, one annot improve the omplexity order of the two mentioned algorithms

sine both are asymptotially optimal in terms of spae and time.

The notion of the entroid of a tree inspired the notion of the entroid tree.

A entroid tree U of another tree T has the same set of nodes as T . U 's root v

is a entroid of T and v's hildren (in U) are the entroid trees of the onneted

omponents of T � v. A nie property of the entroid tree is that its height is logn.

It is easy to obtain an O(n logn) time algorithm to onstrut a entroid tree from the

algorithm for �nding a entroid of a tree. However, it is unknown whether this is the

best time omplexity that one an ahieve.

By exploiting the properties of the entroid tree, we are able to give an eÆient

algorithm for the longest ommon substring (LCS) problem. Given two strings S (the

text) of length n and P (the pattern) of length m, the LCS problem is to �nd the

longest substring that appears in both the text and the pattern. An eÆient solution

to the problem an be useful for homology searhing in nuleotide/protein sequene

databases [Wat89℄, in the editing distane problem, in the multiple pattern searhing

problem, et. Our algorithm requires O(n logn) time and O(n) spae to preproess

the text. After the preproessing, a query an be answered in O(m logn) time. The

algorithm is probabilisti and there is a small hane of error. That is, it may laim

that a substring of the pattern is idential to a substring of the text while they are not

really idential. This is alled a \false math". However, the probability of a false

math an be made arbitrarily (inverse-polynomially) small within the above time

bounds. Our algorithm has obvious advantages over the previously known algorithms

and is partiularly useful for the DNA appliations in whih the text is very large

and �xed (n � m) and in whih one wishes to searh the text with many di�erent

patterns (For example, the DNA sequene of a human being may have up to 3� 10

9

nuleotides and a typial pattern sequene may have a few hundreds to thousands

nuleotides).

The rest of the paper is organized as follows. In Setion 2 we present our algorithm

for �nding a entroid of a tree. We address the problem of onstruting a entroid

tree in Setion 3. In Setion 4 we devise an algorithm for the LCS problem applying

62

Centroid Trees with Appliation to String Proessing

the results presented in Setions 2 and 3. We then onlude the paper by disussing

some open problems in Setion 5.

2 Finding entroid

Lemma 2.1 ([Har69℄) Every tree has either one entroid or two. In the later ase,

the two entroids are onneted by an edge.

If i and j are two neighboring nodes of the tree T , then by removing the edge (i; j)

two onneted omponents C(i; j) and C(j; i) are indued: C(i; j) is the omponent

whih ontains node i and C(j; i) is the omponent whih ontains node j (Note that

C is de�ned on ordered pairs of neighboring nodes). Let u be a node of T and let

x

1

; � � � ; x

d

be all neighbors of u. Then C(x

1

; u); � � � ; C(x

d

; u) are all the onneted

omponents of T � u. In the following we sometimes simply use C(i; j) to refer to

jC(i; j)j (i.e., the number of nodes in C(i; j)) when no ambiguity would likely our.

The following lemma is ruial for our algorithm to �nd a entroid of a tree

orretly.

Lemma 2.2 A node v is a entroid of the tree T if and only if

N(v) � n=2:

Proof We �rst prove the neessary ondition of the lemma. Let v be a entroid of

the tree T . Suppose N(v) > n=2. Let x

1

; � � � ; x

d

be all neighboring nodes of v. Then

by the de�nition of a entroid, there must exist a neighboring node, say x

i

0

, of v suh

that C(x

i

0

; v) > n=2. Let y

1

; � � � ; y

k�1

; y

k

= v be all neighboring nodes of x

i

0

. Then,

N(x

i

0

) = maxfC(y

1

; x

i

0

); C(y

2

; x

i

0

); � � � ; C(y

k�1

; x

i

0

); C(v; x

i

0

)g (13)

We then have

N(x

i

0

) = C(v; x

i

0

) if C(v; x

i

0

) � C(y

j

; x

i

0

)(j = 1; : : : ; k � 1)

N(x

i

0

) < C(x

i

0

; v) otherwise :

(14)

Sine C(x

i

0

; v) > n=2, C(v; x

i

0

) < n=2. It then follows that

N(x

i

0

) < C(x

i

0

; v) = N(v):

So by the de�nition of a entroid of a tree, v annot be a entroid of the tree T . This

ontradits the assumption that v is a entroid of the tree T and therefore establishes

the neessary ondition of the lemma.

We now turn to prove the suÆient ondition of the lemma. Suppose v is a node

of the tree T satisfying N(v) � n=2. Let u be a entroid of T . If u = v, the suÆient

ondition is proved. We thus onsider the ase in whih u 6= v. Let x

1

; � � � ; x

d

be

all neighboring nodes of u. v must be in one of the onneted omponents of T � u,

say C(x

i

0

; u). Let y

1

; � � � ; y

k

= v be all neighboring nodes of v. Let y

j

0

6= v be

the neighboring node of v on the path from x

i

0

to v. From N(v) � n=2, we know

that C(y

j

0

; v) � n=2, and then C(v; y

j

0

) � n=2. Beause C(v; y

j

0

) is a subtree of

the omponent C(x

i

0

; u), we know that C(x

i

0

; u) � n=2. Thus, N(u) � n=2. Thus,

63

Proeedings of the Prague Stringology Club Workshop '99

N(u) � N(v). Therefore, sine u is a entroid of T , v must also be a entroid of T

and N(u) = N(v). This ompletes the proof of the suÆient ondition of the lemma.

2

Lemma 2.2 says a node v is a entroid of T if no onneted omponent indued by

removing v from T ontains more than n=2 nodes.

We now desribe the algorithm. Without loss of generality, we let the tree T be

rooted at an arbitrary node r. We denote by K(i) the number of nodes in the subtree

rooted at i. Then it is easy to see the following:

1. K(i) = 1 if i is a leaf, and

2. K(i) =

P

: hild of i

K() + 1 if i is not a leaf.

The algorithm omputes K(i)s by proeeding from the leaves of the tree towards the

root. One may start from any leaf. But by rule, one is only allowed to use rules (1)

and (2) to ompute K(i)s (This is alled the bottom-up manner).

The algorithm

Compute the K(i)s in the above de�ned bottom-up manner until a node v is reahed

suh that K(v) � n=2. Node v is a entroid of T . If K(v) = n=2, v's father is another

entroid of T .

The ost

We assume that the representation of the tree allows us to aess eah leaf of the tree

in onstant time and any node an be reahed from any of it's hildren in onstant

time. We note that it is easy to build a linked representation of the tree that will

have these desired properties in linear time and spae. Then in the worst ase, the

algorithm needs to visit eah node of the tree just one. The worst ase ours only

when the sole entroid of the tree is also the root of the tree.

We ould use, for instane, the most ommon left-hild, right-brother representa-

tion of a tree. In this representation, eah node x of the tree ontains three pointers:

1. parent[x℄ points to the parent of node x, 2. left-hild[x℄ points to the leftmost

hild of x, and 3. right-brother[x℄ points to the brother of x immediately to the right.

Under this representation, the algorithm will enter eah node x at most twie: 1.

either from its father or from its left-brother, and 2. (when x is a nonterminal node)

from one of its hildren. So if the left-hild, right-brother representation of a tree is

used, the algorithm needs at most 2n� f node visits where f denotes the number of

leaves of the tree. Note that this implementation of the algorithm does not make use

of the assumption that at any point one an aess the leaves of the tree in onstant

time. This is why this implementation may visit some nodes of the tree more than

one (but at most twie). If we augment the left-hild, right-brother representation

of a tree with an array of pointers eah pointing to a leaf node of the tree, the above

algorithms only needs to visit eah node of the tree at most one.

Megiddo's algorithm needs �rst to traverse the tree to ompute some funtion

whose de�nition is similar to that of K(i) for eah node i, then looks for the entroid

64

Centroid Trees with Appliation to String Proessing

along a \right" path of the tree. That is, it need at least 2n � f steps if the left-

hild, right-brother representation of the tree is used. While the idea of Goldman's

algorithm is similar to that of ours, Goldman's algorithm requires an extra opy of

the tree to work on. It deletes in some way the nodes of the extra tree until there is

only one node left; this remaining node is then a entroid of the tree (see [KH79℄ for

another version of Goldman's algorithm).

The orretness of the algorithm

If v is the �rst node we enountered in the ourse of omputing the k(i)'s in the

bottom-up manner suh that k(v) � n=2, then N(v) � n=2. The orretness of the

algorithm then follows from Lemma 2.2.

3 Centroid trees

De�nition 3.1 (entroid tree) A entroid tree U of another tree T is de�ned on

the same set of nodes of T : the root v of U is a entroid of T , and the subtrees of v

(in U) are the entroid trees of the onneted omponents of T � v and v (in U) is

onneted to the roots of these (sub-)entroid trees.

We sometimes use U(T) to denote a entroid tree of another tree T . Note that

U(T) 6= T in general but U(U(T)) = U(T). So di�erent trees may have the same

entroid tree. Lemma 3.2 shows a nie property of the entroid tree, whih motivated

our work of searhing for eÆient methods for onstruting entroid trees.

Lemma 3.2 For any tree T with n nodes, the height of its entroid tree U is O(logn).

Proof Eah node exept the leaves in U has at least two hildren; by Lemma 2.2 the

number of nodes in any branh at any node v in U is no more than half the number

of nodes in the subtree rooted at v in T . So the height of U annot exeed the height

of a omplete binary tree with the same number of nodes, whih is blog

2

n. 2

A straightforward approah to the onstrution of a entroid tree is to repeatedly

all the entroid �nding algorithm disussed in the previous setion. This approah

requires O(n logn) time. There are many ways to speed up this approah. However,

it is not lear whether it is possible to asymptotially improve the time omplexity

of this naive approah. Let's all this simple approah Algorithm Naive.

The following simple observations may help us to gain more insight into the en-

troid tree onstrution problem.

Lemma 3.3 Let u be any node of the tree T . If the sizes of all onneted omponents

of T�u are less than or equal to n=2, then u is a entroid of T . Otherwise, the entroid

of T must be in the maximal omponent of T � u.

Proof The orretness follows from Lemma 2.2. 2

65

Proeedings of the Prague Stringology Club Workshop '99

Lemma 3.4 If a entroid v of the tree T is in a subtree S of T , then v must lie on

the path s; � � � ; u or lie on the path s; � � � ; u; u

0

where s denotes the root of S, u is a

entroid of S and u

0

is a hild of u (with respet to the root s). In the latter ase,

both u and u

0

are the entroids of T .

Proof Let v be a entroid of T . Suppose that v is not on the path s; � � � ; u. Then

there are two ases to onsider.

In the �rst ase, v's father f (v 6= f) is on a path f

0

; � � � ; f; v suh that f

0

is on

the path s; � � � ; u (it is possible that f = f

0

). Sine v is a entroid of T , jC(f; v)j �

n=2. Thus C(v; f) (the subtree rooted at v) ontains at least n=2 nodes. Then the

onneted omponent of S that onsists of C(v; f) and the path s; � � � ; f ontains at

least n=2 + 1 nodes. Therefore, by Lemma 2.2, u annot be a entroid of the subtree

S, whih leads to a ontradition.

In the seond ase, v is a desendant of u

0

and v 6= u

0

where u

0

is a hild of u (it is

possible that u'=u). Sine v is a entroid of T , C(v; u

0

) (the subtree rooted at v) has

at least n=2 nodes. We need to onsider two subases: a. C(v; u

0

) has exatly n=2

nodes. Then by Lemma 2.2, u

0

is another entroid of T . It is easy to see that u = u

0

.

Otherwise, the subtree rooted at u

0

ontains at least n=2+1 nodes and therefore, u is

not a entroid of the subtree S, whih is a ontradition. b. C(v; u

0

) has more than

n=2 nodes. This means a branh of u that ontains u

0

has more than n=2 + 1 nodes.

Thus, u annot be a entroid of the subtree S, whih is also a ontradition.

This ompletes the proof of Lemma 3.4. 2

Lemma 3.5 Let s

1

and s

2

be any two neighboring nodes of the tree T with jC(s

1

; s

2

)j

= n

1

, jC(s

2

; s

1

)j = n

2

and n

2

> n

1

. Let u be a entroid of C(s

2

; s

1

) and let n

3

denote

the number of nodes of the subtree rooted at u of T . If the K(i)s of all nodes i of

T are known, we need at most min(n=2 � n

1

; n=2 � n

3

) steps eah of whih takes

onstant time to �nd a entroid of the entire tree T .

Proof Let v be a entroid of the tree T . By Lemma 3.4, v must lie on the path

s

2

; � � � ; u. We an hek the nodes on the path one by one until we �nally reah a

entroid of T . The onneted omponent of T � v that ontains s

2

has at most n=2

nodes; so if we proeed from s

2

towards u we need at most n=2� n

1

steps before we

reah a entroid of T . The onneted omponent of T �v that ontains u has at most

n=2 nodes; so if we proeed from u towards s

2

we need at most n=2 � n

3

steps. In

either of these two diretions, eah step takes onstant time beause the K(i)s of all

nodes i of T are known. 2

We have modi�ed Algorithm Naive by making use of Lemmas 3.3, 3.4 and 3.5.

The resulting algorithm is alled Algorithm Heuristi. We have applied Algorithm

Heuristi to several random trees. The preliminary experimental results showed that

Algorithm Heuristi onstruted a entroid tree for a given random tree in time

proportional to the number of nodes in the tree on the average. However, at we are

unable to prove this behavior of Algorithm Heuristi rigorously.

66

Centroid Trees with Appliation to String Proessing

4 Appliation to string proessing

In this setion we make use of the properties of the entroid tree to solve the longest

ommon substring (LCS) problem. The problem is, given a string S (the text) of n

haraters and a string P (the pattern) of m haraters over some �nite alphabet �,

to �nd the longest substring whih ours in both of the two strings. An eÆient

solution to the problem an be useful for homology searhing in nuleotide/protein

sequene databases [Wat89℄, in the editing distane problem, in the multiple pattern

searhing problem [Per93℄, et. We are partiularly interested in the ase of the

problem in whih the text is given in advane and is �xed, and many queries with

di�erent patterns will be made later.

Three algorithms for the LCS problem are previously known (named algorithms

P1, P2, and P3 respetively) [Per93℄. It is also possible to solve the problem by

onstruting a suÆx tree for the onatenation of the two strings and then marking

eah node of the suÆx tree that has leaves from both of the two strings in its subtree.

Let's name this algorithm Cat. In the following we will propose a new algorithm

for the problem. Table 1 shows the time and spae bounds of the previously known

algorithms ompared with this new algorithm (named Algorithm New).

Table 1: Comparison of the LCS algorithms

Algorithm Preproessing Searhing time

spae time worst ase average

P1 m j�j m j�j+m

2

n

P2 j�j j�j+m mn n logn

P3 m + j�j 2m+ j�j mn (1 +

m

j�j

)n

Cat m+ n

New n n logn m logn

A weakness of Algorithm P1 is that it requires large amounts of spae and pre-

proessing time for large alphabets and/or patterns. Algorithm P2 requires that the

size of the pattern be no more than the size of a word of the mahine on whih the

algorithm is exeuted. When the size of the underlying alphabet is quite small, e.g.,

j�j = 4 in the ase of DNA appliations, the average-ase performane of Algorithm

P3 deteriorates to its worst-ase performane. While Algorithm Cat runs in O(n+m)

time, it is not proper for appliations in whih the text is very large and �xed and

one wishes to searh the text with many di�erent shorter patterns (n � m). This

is beause although the text is �xed and stati for many queries, for eah new query

(new pattern) Algorithm Cat has to rebuild a suÆx tree for the text and the pattern

whih takes as muh as O(n +m) time. For example, a DNA sequene of a human

being may have up to 3 � 10

9

nuleotides and a typial pattern sequene may have

a few hundreds to thousands nuleotides. In suh ases, m + n � m logn, the time

needed by our new algorithm to answer a query.

The new algorithm �nds the longest pre�x of eah of the suÆxes of the pattern P

in the text S. Note that P has m suÆxes and therefore there are at most m longest

pre�xes (of the suÆxes) that appear in T . The algorithm then simply hoose the

67

Proeedings of the Prague Stringology Club Workshop '99

longest one from these pre�xes found as an answer to the LCS problem. It requires

O(n logn) time and O(n) spae to preproess the text. After the preproessing, a

query an be answered in O(m logn) time. An advantage of this approah is that in

ases where the text is large (e.g., n > m logn) and stati for many queries, we only

have to preproess the text one; after the text has been preproessed, a query an

be answered quikly. It is a probabilisti algorithm and there is a small hane of

error. That is, the algorithm may laim that a substring of the pattern is equal to a

substring of the text while they are not equal at all (This is alled a \false math").

However, as will be seen later, the probability of a false math an be made arbitrarily

(inverse-polynomially) small.

The general struture of the algorithm is as follows:

� Preproessing stage

{ onstrut a suÆx tree T for the text S

{ onstrut a entroid tree U for the suÆx tree T

� Searhing stage

{ searh the entroid tree U for loations of the longest pre�x of eah of the

suÆxes of the pattern P in the text T

Now, we desribe the algorithm in detail. Sine algorithms for building suÆx trees

in linear time and spae are known in the literature [Wei73, MC76, Ukk95℄ and we

have already presented an algorithm for building the entroid tree (in Setion 3), we

will onentrate on the searhing stage of the algorithm.

Let the text be S = S[1℄ � � �S[n℄ and let the pattern be P = P [1℄ � � �P [m℄. We

use a suÆx tree to represent the text. Assuming that the suÆx tree T of the text S

and a entroid tree U of T are already available, our searh algorithm searhes the

trees for the ourrenes of the pattern in the text.

Let w be the end node of the path that the pattern P determines in T . If P is

not a substring of S, then we de�ne the end node w to be the node that orresponds

to the longest pre�x of P that is a substring of S. Our goal is to �nd w.

We maintain the following variables:

� v, the urrent node in U ; v is a entroid of some onneted omponent C of T .

� u, the topmost node of C (in T); the substring orresponding to u is the longest

substring of S found so far that is a pre�x of P .

� i, an index to P suh that P [1℄; � � � ; P [i℄ determines the path from the root to

u.

� j, the length of the substring determined by the path from u to v.

� k, a pointer to S that orresponds to the end position of the substring deter-

mined by the path from the root to v.

Furthermore, let x be any node of T . We denote by x:length the length of the

substring determined by the path from the root to node x and denote by x:end an

68

Centroid Trees with Appliation to String Proessing

index to S that orresponds to the end position of this substring in S. Note that by

assumption, x:length and x:end are already stored in eah node x on onstrution of

the suÆx tree.

Given u and v omputing j and k is easy:

j := v:length� u:length;

k := v:end:

(15)

Initially, u := the root of T ; v := the root of U ; i := 0; and j and k are omputed

by (15).

In order to �nd w eÆiently we need to �nd a way to deide quikly whih of

the onneted omponents indued by removing v from T ontains w. There are

two possibilities: w is in the omponent that is \above" v or w is in one of the

omponents that are \below" v. We notie that w is a desendant of v if and only

if S[k � j + 1℄ � � �S[k℄ = P [i + 1℄ � � �P [i + j℄. If w is in the omponent \above" v,

we assign the entroid of that omponent to v and u is unhanged; if we know whih

of the omponents \below" v ontains w, we assign the root of that omponent to

u and assign the entroid of that omponent to v. The above ideas are preisely

presented in proedure searh in Figure 1. proedure searh �nds and stores w

in its variable v and stores the index to P referring to the end position of the longest

pre�x of P that is equal to a substring of S in its variable i when exeuted with u

being initialized to be the root of T , v being initialized to be the root of U and i

being initialized to be 0.

The question that is ruial to implement proedure searh eÆiently is: Given

a substring S[k℄ � � �S[k + j℄ of S and a substring P [i℄ � � �P [i + j℄ of P , how an we

answer quikly whether they are equal or not? There is a probabilisti method [Nao91,

KR87℄ whih, after preproessing the strings S and P in linear time and spae, an

test whether a substring of S is equal to a substring of P in onstant time. There is a

probability of error (a false math) in any test. But the probability of a false math

an be made arbitrarily (inverse polynomially) small.

The method needs a prime q whih is hosen at random from a set of primes

smaller than M (to be stated soon). It is this prime q that may lead to a false math.

By Theorem 3 of [KR87℄ the probability of a false math is less than �(n)/�(M)

where �(n) denotes the number of primes smaller than n. By Lemma 2 of [KR87℄

u

lnu

� �(u) � 1:25506

u

lnu

. Thus, for example, if we hoose M to be n

3

logn, the

probability of a false math is (asymptotially) 1/n

2

logn.

We now look at the omplexity of proedure searh. Note that at eah step v

is assigned to one of its hildren (in U). By Lemma 3.2 the height of U is O(logn).

So proedure searh requires O(logn) steps. From the above disussion, eah step

takes onstant time. So proedure searh needs O(logn) time to �nd the longest

pre�x of P that appears in S.

To solve the whole LCS problem, for every suÆx P

i

= P [i℄ � � �P [m℄ (i = 1; � � � ; m)

we �nd the longest pre�x of P

i

that appears in S with proedure searh. From

among all these (loally) longest pre�xes found, we hoose the (globally) longest one

as an answer to the LCS problem. All this takes O(m logn) time.

To summarize, our algorithm for the LCS problem onsists of:

� Preproessing the text

69

Proeedings of the Prague Stringology Club Workshop '99

proedure searh(node: u, v; integer: i);

integer: j, k;

begin

j := v:length� u:length;

k := v:end;

if S[k � j + 1℄ : : : S[k℄ = P [i+ 1℄ : : : P [i+ j℄ then /* j may be 0 */

if i+ j = m then i := m; stop

/* P is equal to the substring of S orresponding to node v */

else

if there exists a hild of v in T orresponding to the symbol

P [i+ j + 1℄ then

if the substring S[k + 1℄ : : : S[k + l℄ of S orresponding to the edge

(v;) is equal to a substring of P starting at P [i+ j + 1℄ then

u := ;

v := v's hild in U orresponding to the subtree rooted at in T ;

i := i+ j + l;

searh(u; v; i)

else

/* Let L denote the maximal x in [1; l℄ suh that

S[k + 1℄ : : : S[k + x℄ = P [i+ j + 1℄ : : : P [i+ j + x℄ */

�nd L with binary searh supported with the substring equality

testing tehnique;

i := i+ j + L; stop

/* P [1℄:::P [i℄ is the longest pre�x of P that is equal to a

substring of S; this substring is the onatenation of the

substring orresponding to node v and S[k + 1℄ : : : S[k + L℄ */

end

else

i := i + j; stop

/* P [1℄ : : : P [i℄ is the longest pre�x of P that is equal to a

substring of S; this substring orresponds to node v */

end

end

else

if there exists a hild of u in T orresponding to P [i+ 1℄ then

v := v's hild in U orresponding to the omponent \above" v;

searh(u; v; i)

else

v := u; stop

/* P [1℄ : : : P [i℄ is the longest pre�x of P that is equal to a

substring of S; this substring orresponds to node v */

end

end

Figure 1: Searh for end node of path determined by pattern.

70

Centroid Trees with Appliation to String Proessing

{ onstrut a suÆx tree T for the text S in O(n) time and spae.

{ onstrut a entroid tree U for the suÆx tree T in O(n logn) time and

using O(n) spae.

{ proess the text S in order to be able to hek quikly the substring equal-

ity. This takes O(n) time and spae.

� Searhing for the pattern

{ proess the pattern P in order to be able to hek quikly the substring

equality. This takes O(m) time and spae.

{ searh the entroid tree U for loations of the longest pre�xes of all the

suÆxes of the pattern P in the text S in O(m logn) time and O(1) spae.

That is, the preproessing takes O(n logn) time and O(n) spae and the searhing

takes O(m logn) time and O(m) extra spae.

To make this algorithm error free, we an add a step that heks whether a laimed

math is true or false. If the laimed longest math is false, we disard it and hek the

seond longest math, and so on, until we reah a true math. Sine the probability

of a false math an be made arbitrarily (inverse-polynomially) small without asymp-

totially inreasing the time and spae requirements of the algorithm, the hane of

using this heking step an be made arbitrarily inverse-polynomially small as well.

5 Open questions

It is of onsiderable interest to either establish that there exists a non-linear lower

bound on the run time of all algorithms whih onstrut a entroid tree for any given

tree, or to exhibit an algorithm whose run time is O(n).

It is also interesting, at least from a pratial point of view, to �nd entroid tree

onstrution algorithms that run in linear time on the average and require linear spae

even if their worst-ase behavior ould be muh worse. Are there any deterministi

algorithms to do the searh (as disussed in Setion 4) using the same order of time

as the probabilisti one does?

Referenes

[FJ80℄ G.N. Frederihson and D.B. Johnson, Generating and searhing sets indued

by networks, Pro. of the 7th International Colloquium on Automata, Languages

and Programming, LNCS 85, July 1980.

[Gol71℄ A.J. Goldman, Optimal enter loation in simple networks, Trans. Si.,

3(1971).

[Har69℄ F. Harary, Graph Theory, Addison-Wesley, Mass., 1969.

[KH79℄ O. Kariv and S.L. Hakim, An algorithmi approah to network loation prob-

lems. I: The p-enters, SIAM J. appl. Math., Vol 37, No.3, De. 1979.

71

Proeedings of the Prague Stringology Club Workshop '99

[Knu73℄ D.E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searh-

ing. Addison-Wesley, Reading, Mass, 1973, Ch. 6.3, pp. 490-493.

[KR87℄ R. Karp and M. Rabin, EÆient Randomized Pattern Mathing Algorithms.

IBM J. Res. Develop., Vol. 31, No. 2, Marh 1987.

[MC76℄ E.M. MCreight, A Spae-eonomial SuÆx Tree Constrution Algorithm.

Journal of the ACM 23 (1976), 262-272.

[MTZC81℄ N. Megiddo, A. Tamir, E. Zemel and R. Chandrasekaran, An O(n log

2

n)

algorithm for the kth longest path in a tree with appliations to loation problems,

SIAM J. Comput., Vol.10, No.2, May 1981.

[Nao91℄ M. Naor, String mathing with preproessing of text and pattern, Pro.

of the 18th International Colloquium on Automata, Languages and Programming,

Madrid, July 1991, pp.739-750.

[Per93℄ C.H. Perleberg, Three Longest Substring Algorithms, Pro. First South

Amerian Workshop on Strong Proessing, Belo Horizonte, Brazil, 1993, eds. R.

Baeza-Yates and N. Ziviani.

[Sla82℄ P.J. Slater, Loating Central Paths in a graph,Trans. Si., Vol.16, No.1, Feb.

1982.

[Ukk95℄ E. Ukkonen, On-line onstrution of suÆx-trees. Algorithmia (1995) 14:

249-260, Springer-Verlag, New York.

[Wat89℄ M.S. Waterman (ed.),Mathematial Methods for DNA Sequenes, CRC Press

1989, Boa Raton, Florida.

[Wei73℄ P. Weiner, Linear pattern mathing algorithm, Pro. 14th IEEE Symp. on

Swithing and Automata Theory, 1973, pp. 1-11.

72

