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Abstrat. This paper deals with a new pratial method for solving the longest

ommon subsequene (LCS) problem. Given two strings of lengths m and n,

n � m, on an alphabet of size s, we �rst present an algorithm whih determines

the length p of an LCS in O(ns + minfmp; p(n � p)g) time and O(ns) spae.

This result has been ahieved before [Ri94, Ri95℄, but our algorithm is signi�-

antly faster than previous methods. We also provide a seond algorithm whih

generates an LCS in O(ns+minfmp;m logm+ p(n� p)g) time while preserv-

ing the linear spae bound, thus solving the problem posed in [Ri94, Ri95℄.

Experimental results on�rm the eÆieny of our method.

Key words: Design and analysis of algorithms, edit distane, longest ommon

subsequene.

1 Introdution

Let x = x

1

: : : x

m

and y = y

1

: : : y

n

, n � m, be two strings over an alphabet � =

f�

1

; : : : ; �

s

g of size s. A subsequene of x is a sequene of symbols obtained by deleting

zero or more haraters from x. The Longest Common Subsequene (LCS) Problem

is to �nd a ommon subsequene of x and y whih is of greatest possible length.

It will be onvenient to desribe the problem in another way. An ordered pair

(k; `), 1 � k � m, 1 � ` � n, is alled a math if x

k

= y

`

. The set M of all mathes

an be identi�ed with a mathing matrix of size m�n in whih eah math is marked

with a dot. For example, if x = ababba and y = babbaa, then M is as shown

in Fig. 1 (a). De�ne a partial order � on N � N by establishing (k; `) � (k

0

; `

0

)

i� both k < k

0

and ` < `

0

. A hain C � M is a set of points whih are pairwise

omparable, i.e., for any two distint p

1

; p

2

2 C, either p

1

� p

2

or p

1

� p

2

, where

p

1

� p

2

means p

2

� p

1

. Then the LCS problem an be viewed as �nding a hain of

maximal ardinality in M . One suh hain is indiated as a path in Fig. 1 (b).

Finding an LCS is losely related with the omputation of string edit distanes

[LW75, MP80, Wag75, WC76℄ and shortest ommon supersequenes [GMS80℄. It was

�
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Figure 1: (a) mathing matrix, (b) path representing an LCS.

�rst used by moleular biologists to study similar amino aids [Day65, Day69, NW70,

SC73℄. Other appliations are in data ompression [AHU76, GMS80, Mai78℄ and

pattern reognition [FB73, LF78℄.

The LCS problem an be solved in O(mn) time by a dynami programming ap-

proah [SK83, WF74℄, while the asymptotially fastest general solution uses the \four

russians" trik and takes O(nm= logn) time [MP80℄. A lot of other algorithms have

also been developed whih are sensitive to other problem parameters, e.g., the length

p of an LCS. They usually perform muh better than the latter algorithms, although

they all have a worst ase time omplexity at least of 
(mn). For example, Hunt and

Szymanski [HS77℄ have presented an O((r+n) logn) algorithm, where r := jM j. Thus

their approh is fast when r is small, e.g., r = O(n), but its worst{ase time omplex-

ity is O(n

2

logn). Later, this has been improved to O(mn) [Apo86℄. There are also

several routines whih run in O(n(n+1�p)) or O(n(m+1�p)) time, and thus are ef-

�ient when an LCS is expeted to be long [Mye86, NKY82, Ukk85, WMM90℄. Other

algorithms have running times O(n(p + 1)) or O(m(p + 1)) and should be used for

short LCS [Apo87, AG87, Hir77, HD84℄. However, it might be very diÆult to a pri-

ori selet a good strategy beause in general the length p annot be easily estimated.

Also, when having a small alphabet, we an expet p to be of intermediate size, e.g.,

for s = 4, the average length of an LCS is bounded between 0:54 �m � p � 0:71 �m

[CS75, DP94, Dek79, PD94, SK83℄. Then none of the above methods performs well.

Therefore reent researh has been onentrated on more exible algorithms whih

are eÆient for short, intermediate, and long LCS, suh as the method proposed by

Chin/Poon [CP94℄. Another approah from Rik [Ri94, Ri95℄ with running time

O(ns+minfmp; p(n� p)g) has been widely aepted as the fastest algorithm for the

general LCS problem.

In this paper, we shall develop a new algorithm whih is based on a kind of

dualization of Rik's method. A detailed desription of the theoretial bakground

will be given in Set. 2 and 3. Our idea does not improve the O(ns+minfmp; p(n�

p)g) time bound, but two important advantages are obtained. First, the number of

mathes proessed while omputing the length of an LCS is signi�antly dereased,

resulting in a faster exeution speed. The orresponding algorithm will be presented

in Set. 4. Seond, when generating an LCS, we an ahieve linear spae through a

divide{and{onquer sheme similar to that of other (but slower) algorithms [ABG92,
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Hir75, KR87℄. This will be explained in Set. 5. The methods mentioned before all

need at least 
(nm= logn) spae in their worst ases (see [PD94℄ for a survey), and

most of them, inluding Rik's approah, annot be ombined with the divide{and{

onquer tehnique. The open problem of a linear spae implementation of Rik's

algorithm [Ri95℄ is hereby solved. Experimental results presented in Set. 6 on�rm

the eÆieny of our method.

2 A New Approah to the LCS Problem

As already mentioned in the introdution, the LCS problem is equivalent to �nding a

hain of maximum ardinality in M . Dilworth's fundamental theorem [Dil50℄ states

that this ardinality equals the minimum number of disjoint antihains into whih

M an be deomposed (an antihain of M onsists of mathes whih are pairwise

inomparable). In our example, this number (alled the Sperner number ofM) equals

�ve. A suitable deomposition is shown in Fig. 2 (f). To �nd suh a minimum

deomposition, we �rst split [1 : m℄� [1 : n℄ into subsets denoted by T

i

, L

i

, B

i

, and

R

i

, where

T

i

:= fig � [i : n+ 1� i℄

L

i

:= [i+ 1 : m + 1� i℄� fig

B

i

:= fm+ 1� ig � [i + 1 : n+ 1� i℄

R

i

:= [i+ 1 : m� i℄� fn+ 1� ig

and 1 � i � dm=2e (see Fig. 2 (a) for an illustration). Additionally, let

T

�i

:=

[

j�i

T

j

; L

�i

:=

[

j�i

L

j

; B

�i

:=

[

j�i

B

j

; R

�i

:=

[

j�i

R

j

:

Now for i = 1; 2; : : : ; dm=2e, we onstrut four sets of antihains A

T;i

, A

L;i

, A

B;i

, and

A

R;i

whih deompose (a suitable subset of) T

�i

, L

�i

, B

�i

, and R

�i

, respetively. The

deompositions are generated by updating the previous sets, using the mathes found

in T

i

, L

i

, B

i

, and R

i

(details are given below). We use A

u

A

T;i

to denote an antihain in

A

T;i

, where u is an index between 1 and the size e

T;i

:= jA

T;i

j of A

T;i

. Therefore e

T;i

is also alled the end index of A

T;i

. For A

L;i

, A

B;i

, and A

R;i

, we introdue analogous

notations. Furthermore, there are two start indies s

TL;i

and s

BR;i

. The �rst one is

used to split both A

T;i

and A

L;i

into two parts. One part ontains all antihains with

indies less than s

TL;i

, and the other part onsists of the rest. Only the latter part

will be used for the updating proess, whereas the former one will be opied to A

T;i+1

resp. A

L;i+1

without hange. s

BR;i

similarly splits A

B;i

and A

R;i

.

Fig. 2 (b), (), (d), and (e) give a preview of the onstrution in the sample

mathing matrix after step i = 1, 2, 3, and 4, respetively. The entered grey box

represents the remaining part of M whih has not been proessed so far. By our

onstrution, with eah step, it shrinks by two rows and olumns.

We need the following terminology for the desription of the onstrution proess.

For two antihains C;D �M the set

IP(C;D) := fp

1

2 C j 8 p

2

2 D : :(p

1

� p

2

_ p

1

� p

2

)g
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Figure 2: (a) splitting of M , (b){(e) onstrution of antihains, (f) �nal deompo-

sition.

is alled the inomparable part of C relative to D. Clearly, IP(C;D) [ D is the

greatest antihain above D ontained in C [ D. We say C is inomparable to D if

IP(C;D) = C, and a single math p

1

2M is inomparable toD if IP(fp

1

g; D) = fp

1

g.

We are now prepared to disuss the generation of the antihains in more detail.

Initially, there are no antihains, i.e., we have A

T;0

= A

L;0

= A

B;0

= A

R;0

= ; by

initializing eah start and end index to 1 and 0, respetively. Then, for eah step

i = 1; : : : ; dm=2e, we start with T

i

to determine A

T;i

from A

T;i�1

. Let s := s

TL;i�1

and e := e

T;i�1

. The �rst s � 1 antihains remain unhanged and are simply opied

from A

T;i�1

to A

T;i

. Now de�ne A

s

A

T;i

as A

s

A

T;i�1

[IP(T

i

\M;A

s

A

T;i�1

). For example, when

proessing T

2

in Fig. 2 (b), IP(T

2

\M;A

1

A

T;1

) = f(2; 2)g, and thus the math (2; 2)
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ombined with A

1

A

T;1

makes up A

1

A

T;2

as shown in Fig. 2 (). Next, for u = s+ 1; : : : ; e,

the antihain A

u

A

T;i�1

is handled in the same way to set up A

u

A

T;i

, but only those mathes

in T

i

not belonging to A

s

A

T;i

; : : : ; A

T;i

A

u�1

are onsidered. Finally, we establish s

TL;i

:= s

and, if there are no mathes left, e

T;i

:= e. Otherwise, we set e

T;i

to e+1 and ollet all

remaining mathes in a new antihain A

T;i

A

e+1

. Also, if A

R;i�1

6= ;, we hek whether its

last antihain A

~e

A

R;i�1

, ~e := e

R;i�1

, is inomparable to A

T;i

A

e+1

. In this ase we say A

~e

A

R;i�1

is inativated by A

T;i

A

e+1

, and we remove A

~e

A

R;i�1

from A

R;i

by setting e

R;i

:= e

R;i�1

.

Continuing our example with T

2

in Fig. 2 (b), we see there are two mathes (2; 4)

and (2; 5) left after proessing A

1

A

T;2

. Therefore a new antihain A

2

A

T;2

is reated, but

A

1

A

R;1

remains unhanged beause, for example, (2; 4) � (4; 9). The �nal set A

T;2

is

shown in Fig. 2 () (the modi�ations to the other antihains are desribed below).

Now let us onsider the work involved with T

3

. The math (3; 3) annot be put into

A

1

A

T;3

, but into A

2

A

T;3

, and the other math (3; 6) makes up the new antihain A

3

A

T;3

. This

time (3; 6) inativates (3; 8), and thus A

2

A

R;2

is removed. The result is illustrated in

Fig. 2 (d) (all mathes loated in deleted antihains are indiated by grey dots).

S := T

i

\M ; (� Determine A

T;i

�)

For u := s

TL;i�1

To e

T;i�1

Do f

A

u

A

T;i

:= A

u

A

T;i�1

[ IP(S;A

u

A

T;i�1

);

S := S n IP(S;A

u

A

T;i�1

);

5 g;

If S 6= ; Then f

e

T;i

:= e

T;i�1

+ 1; e := e

T;i

; A

e

A

T;i

:= S;

e

R;i

:= e

R;i�1

; ~e := e

R;i

;

If s

BR;i�1

� e

R;i�1

Then f

10 If IP(A

~e

A

R;i�1

; A

e

A

T;i

) = A

~e

A

R;i�1

Then f

D

TR

:= D

TR

[A

~e

A

R;i�1

;

e

R;i

:= ~e� 1;

g;

g;

15 g Else f e

T;i

:= e

T;i�1

; e

R;i

:= e

R;i�1

g;

For u := 1 To s

TL;i�1

� 1 Do A

u

A

T;i

:= A

u

A

T;i�1

;

S := L

i

\M ; (� Determine A

L;i

�)

For u := s

TL;i�1

To e

L;i�1

Do f

A

u

A

L;i

:= A

u

A

L;i�1

[ IP(S;A

u

A

L;i�1

);

20 S := S n IP(S;A

u

A

L;i�1

);

g;

If S 6= ; Then f

e

L;i

:= e

L;i�1

+ 1; e := e

L;i

; A

e

A

L;i

:= S;

e

B;i

:= e

B;i�1

; ~e := e

B;i

;

25 If s

BR;i�1

� e

B;i�1

Then f

If IP(A

~e

A

B;i�1

; A

e

A

L;i

) = A

~e

A

B;i�1

Then f

D

BL

:= D

BL

[ A

~e

A

B;i�1

;

e

B;i

:= ~e� 1;

g;

30 g;

g Else f e

L;i

:= e

L;i�1

; e

B;i

:= e

B;i�1

g;

For u := 1 To s

TL;i�1

� 1 Do A

u

A

L;i

:= A

u

A

L;i�1

;

33 s

TL;i

:= s

TL;i�1

;

S := B

i

\M ; (� Determine A

B;i

�)

For u := s

BR;i�1

To e

B;i

Do f

A

u

A

B;i

:= A

u

A

B;i�1

[ IP(S;A

u

A

B;i�1

);

S := S n IP(S;A

u

A

B;i�1

);

g;

If S 6= ; Then f

e

B;i

:= e

B;i

+ 1; e := e

B;i

; A

e

A

B;i

:= S;

If s

TL;i

� e

L;i

Then f

~e := e

L;i

;

If IP(A

~e

A

L;i

; A

e

A

B;i

) = A

~e

A

L;i

Then f

D

BL

:= D

BL

[ A

~e

A

L;i

;

e

L;i

:= ~e� 1;

g;

g;

g;

For u := 1 To s

BR;i�1

� 1 Do A

u

A

B;i

:= A

u

A

B;i�1

;

S := R

i

\M ; (� Determine A

R;i

�)

For u := s

BR;i�1

To e

R;i

Do f

A

u

A

R;i

:= A

u

A

R;i�1

[ IP(S;A

u

A

R;i�1

);

S := S n IP(S;A

u

A

R;i�1

);

g;

If S 6= ; Then f

e

R;i

:= e

R;i

+ 1; e := e

R;i

; A

e

A

R;i

:= S;

If s

TL;i

� e

T;i

Then f

~e := e

T;i

;

If IP(A

~e

A

T;i

; A

e

A

R;i

) = A

~e

A

T;i

Then f

D

TR

:= D

TR

[A

~e

A

T;i

;

e

T;i

:= ~e� 1;

g;

g;

g;

For u := 1 To s

BR;i�1

� 1 Do A

u

A

R;i

:= A

u

A

R;i�1

;

s

BR;i

:= s

BR;i�1

;

(a) (b)

Figure 3: The algorithms for generating A

T;i

& A

L;i

(a), and A

B;i

& A

R;i

(b).

Having determined A

T;i

, we ontinue with the neessary alulations for A

L;i

whih

are very similar. The �rst s� 1 antihains are opied and then, for u = s; : : : ; e

L;i�1

,

A

u

A

L;i

is de�ned as the union of A

u

A

L;i�1

and the inomparable part of L

i

relative to

A

u

A

L;i�1

, where only those mathes are onsidered whih have not already been used.

Remaining mathes form a new antihain and, if they are inomparable to the last
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antihain in A

B;i�1

, we derease e

B;i

by one. The orresponding algorithm in Fig. 3 (a)

also introdues two additional sets D

TR

and D

BL

whih ontain all deleted mathes.

Details will be given in the next setion.

Before proessing A

B;i�1

and A

R;i�1

in an analogous way, we �rst hek whether

the �rst antihain in A

T;i

or A

L;i

is TL{omplete, i.e., whether one of them ontains a

math (k; `) suh that 1 � k; ` � i. For example, in the on�guration shown in Fig. 2

(), A

1

A

T;2

is TL{omplete due to the math (2; 2). As soon as A

s

A

T;i

is deteted to be

TL{omplete, s

TL;i

is inreased by one, thus the �rst antihains in both orresponding

sets whih are heked for additional mathes remain unhanged from now on. If there

is no suh antihain in A

L;i

(i.e. s > e

L;i

), but s

BR;i�1

� e

B;i

, then we additionally

test whether A

s

A

T;i

is inomparable to the last antihain in A

B;i�1

and, should this

situation arise, delete this antihain from A

B;i

by dereasing e

B;i

.

Now assume A

s

A

L;i

is TL{omplete. Then, as shown in Fig. 4 (a), we also inrease

s

TL;i

, and similarly, if s > e

T;i

and s

BR;i�1

� e

R;i

, we derease e

R;i

if A

s

A

L;i

inativates

the last antihain in A

R;i

.

(� Chek A

T;i

for TL{ompleteness �)

If s

TL;i

� e

T;i

Then f

s := s

TL;i

;

If 9 (k; `) 2 A

s

A

T;i

: k; ` � i Then f

5 If s > e

L;i

Then f

If s

BR;i�1

� e

B;i

Then f

~e := e

B;i

;

If IP(A

~e

A

B;i�1

; A

s

A

T;i

) = A

~e

A

B;i�1

Then f

D

BL;i

:= D

BL;i

[A

~e

A

B;i�1

;

10 e

B;i

:= ~e� 1;

g;

g;

e

L;i

:= s; A

s

A

L;i

:= ;;

g;

15 s

TL;i

:= s+ 1;

g;

g;

(� Chek A

L;i

for TL{ompleteness �)

If s

TL;i

� e

L;i

Then f

20 s := s

TL;i

;

If 9 (k; `) 2 A

s

A

L;i

: 1 � k; ` � i Then f

If s > e

T;i

Then f

If s

BR;i�1

� e

R;i

Then f

~e := e

R;i

;

25 If IP(A

~e

A

R;i�1

; A

s

A

L;i

) = A

~e

A

R;i�1

Then f

D

TR;i

:= D

TR;i

[A

~e

A

R;i�1

;

e

R;i

:= ~e� 1;

g;

g;

30 e

T;i

:= s; A

s

A

T;i

:= ;;

g;

s

TL;i

:= s+ 1;

g;

34 g;

(� Chek A

B;i

for BR{ompleteness �)

If s

BR;i

� e

B;i

Then f

s := s

BR;i

;

If 9 (k; `) 2 A

s

A

B;i

: k > m� i ^ ` > n� i Then f

If s > e

R;i

Then f

If s

TL;i

� e

T;i

Then f

~e := e

T;i

;

If IP(A

~e

A

T;i

; A

e

A

R;i

) = A

~e

A

T;i

Then f

D

TR;i

:= D

TR;i

[ A

~e

A

T;i

;

e

T;i

:= ~e� 1;

g;

g;

e

R;i

:= s; A

s

A

R;i

:= ;;

g;

s

BR;i

:= s+ 1;

g;

g;

(� Chek A

R;i

for BR{ompleteness �)

If s

BR;i

� e

R;i

Then f

s := s

BR;i

;

If 9 (k; `) 2 A

s

A

R;i

: k > m� i ^ ` > n� i Then f

If s > e

B;i

Then f

If s

TL;i

� e

L;i

Then f

~e := e

L;i

;

If IP(A

~e

A

L;i

; A

e

A

B;i

) = A

~e

A

L;i

Then f

D

BL;i

:= D

BL;i

[A

~e

A

L;i

;

e

L;i

:= ~e� 1;

g;

g;

e

B;i

:= s; A

s

A

B;i

:= ;;

g;

s

BR;i

:= s+ 1;

g;

g;

(a) (b)

Figure 4: The algorithms for handling omplete antihains in A

T;i

& A

L;i

(a), and in

A

B;i

& A

R;i

(b).

The remaining work in step i onerns with the analogous onstrution of A

B;i

and

A

R;i

. (The analogue of TL{ompleteness is alled BR{ompleteness. An antihain is

BR{omplete if it ontains a math (k; `) with m � i < k � m and n � i < ` � n.)

Details are available from the algorithms shown in Fig. 3 (b) and Fig. 4 (b).

45



Proeedings of the Prague Stringology Club Workshop '99

The main program shown in Fig. 5 is straightforward. Our next task is to elaborate

the onnetion between the generated antihains and a minimal deomposition of M .

This is done in the next setion.

i := 1; (� Initialization �)

s

T;0

:= 1; s

L;0

:= 1; s

B;0

:= 1; s

R;0

:= 1;

e

T;0

:= 0; e

L;0

:= 0; e

B;0

:= 0; e

R;0

:= 0;

For i := 0 To dm=2e Do D

TL;i

:= ;;

5 For i := 0 To bm=2 Do D

BR;i

:= ;;

While i � bm=2 Do f (� Main loop �)

Determine A

T;i

and A

L;i

; (� see Fig. 3 (a) �)

Look for TL-omplete antihains in A

T;i

and A

L;i

; (� see Fig. 4 (a) �)

Determine A

B;i

and A

R;i

; (� see Fig. 3 (b) �)

10 Look for BR-omplete antihains in A

B;i

and A

R;i

; (� see Fig. 4 (b) �)

i := i+ 1;

g;

If Odd(m) Then f

Determine A

T;dm=2e

and A

L;dm=2e

; (� see Fig. 3 (a) �)

15 Look for TL-omplete antihains in A

T;dm=2e

and A

L;dm=2e

; (� see Fig. 4 (a) �)

g;

Figure 5: The main program for deomposing M

3 Analysis of the Constrution

In this setion, we study how to ombine the antihains into larger ones suh that

a minimal deomposition of M is obtained. We further establish some results whih

later help us to onstrut an LCS in linear spae.

Let us assume m is odd, and let i = dm=2e. For tehnial reasons, we then put

A

u

A

B;i

:= A

u

A

B;i�1

and A

u

A

R;i

:= A

u

A

R;i�1

for all 1 � u � e

B;i�1

and 1 � u � e

R;i�1

. We also

set s

BR;i

:= s

BR;i�1

, e

B;i

:= e

B;i�1

, and e

R;i

:= e

R;i�1

. Furthermore, for 0 � i � dm=2e,

we de�ne A

u

A

T;i

:= ;, A

u

A

L;i

:= ;, A

u

A

B;i

:= ;, and A

u

A

R;i

:= ; for u > e

T;i

, u > e

L;i

, u > e

B;i

,

and u > e

R;i

, respetively.

Lemma 3.1 Let 1 � i � dm=2e. Then the following holds:

a) 8 s

TL;i�1

� u < v � e

T;i

8 p

1

2 A

v

A

T;i

9 p

2

2 A

u

A

T;i

: p

1

� p

2

:

b) 8 s

TL;i�1

� u < v � e

L;i

8 p

1

2 A

v

A

L;i

9 p

2

2 A

u

A

L;i

: p

1

� p

2

:

) 8 s

BR;i�1

� u < v � e

B;i

8 p

1

2 A

v

A

B;i

9 p

2

2 A

u

A

B;i

: p

1

� p

2

:

d) 8 s

BR;i�1

� u < v � e

R;i

8 p

1

2 A

v

A

R;i

9 p

2

2 A

u

A

R;i

: p

1

� p

2

:

Proof. We only show the �rst laim, the other proofs are similar. Let p

1

= (k; `). Sine

A

v

A

T;i

� T

�dm=2e

, p

1

has been added to A

v

A

T;k

while proessing T

k

in step k, and k � i.

Clearly, from the way S is handled in lines 1{5 of Fig. 3 (a), p

1

=2 IP(T

k

\M;A

j

A

T;k�1

),

for s

TL;k�1

� j < v. Hene, sine s

TL;k�1

� s

TL;i�1

� u < v, there is some p

2

2 A

u

A

T;k�1

suh that p

1

� p

2

or p

1

� p

2

. But the seond ase would imply p

2

2 T

k

0

for some

k

0

> k whih is impossible during the �rst k steps of our onstrution. Finally observe

that the algorithm never removes mathes while updating an antihain, thus p

2

is still

present in A

u

A

T;i

. 2
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Lemma 3.2 The following holds:

a) 8 1 � i � dm=2e 8 v : v < s

TL;i

() A

v

A

T;i

or A

v

A

L;i

is TL{omplete :

b) 8 1 � i � dm=2e 8 v : v < s

BR;i

() A

v

A

B;i

or A

v

A

R;i

is BR{omplete :

Proof. We only prove the �rst laim, the other one is similar.

If. By ontradition, let i be the �rst step suh that A

v

A

T;i

or A

v

A

L;i

is TL{omplete,

but v � s

TL;i

. Clearly v 6= s

TL;i�1

, otherwise the TL{ompleteness would have been

deteted by the algorithm shown in Fig. 4 (a), and thus, ontraditing the property of

v, we would have v < s

TL;i

= s

TL;i�1

+1. Hene v > s

TL;i�1

. By the TL{ompleteness,

there is some math (k; `) 2 A

v

A

T;i

[A

v

A

L;i

suh that 1 � k; ` � i. Furthermore, by Lemma

3.1, there exists some math (k

0

; `

0

) 2 A

T;i

A

v�1

[A

L;i

A

v�1

suh that (k

0

; `

0

)� (k; l). But then

1 � k

0

; `

0

< i, and therefore either A

T;i

A

v�1

or A

L;i

A

v�1

would be TL-omplete after step i�1,

a ontradition to the hoie of i.

Only if. Obvious from the management of the start indies. 2

Lemma 3.3 For all i; u de�ne A

u

A

TL;i

:= A

u

A

T;i

[ A

u

A

L;i

and A

u

A

BR;i

:= A

u

A

B;i

[ A

u

A

R;i

. Then

a) 8 0 � i � dm=2e 8 1 � u � minfe

T;i

; e

L;i

g : A

u

A

TL;i

is an antihain .

b) 8 0 � i � dm=2e 8 1 � u � minfe

B;i

; e

R;i

g : A

u

A

BR;i

is an antihain .

Proof. We prove the �rst laim by indution on i. The base i = 0 it trivial beause

A

T;0

= A

L;0

= ;. For the indution step i� 1! i, we onsider three di�erent ases.

Case a: 1 � u < s

TL;i�1

. Then A

u

A

T;i

= A

u

A

T;i�1

and A

u

A

L;i

= A

u

A

L;i�1

(see lines 15 and 30

in Fig. 3 (a), respetively). Thus, by the indution hypothesis, A

u

A

TL;i

is an antihain.

Case b: s

TL;i�1

� u � minfe

T;i�1

; e

L;i�1

g. By de�nition the set T := IP(S;A

u

A

T;i�1

)

added toA

u

A

T;i

in line 3 (Fig. 3 (a)) is inomparable to A

u

A

T;i�1

, but it is also inomparable

to A

u

A

L;i

as we now demonstrate. Let (k; `) 2 IP(S;A

u

A

T;i�1

) and (k

0

; `

0

) 2 A

u

A

L;i

. Observe

k = i and ` � i. Also note that k

0

> `

0

and `

0

� i beause A

u

A

L;i

� L

�i

. Thus

(k; `) � (k

0

; `

0

) would ontradit ` � i � `

0

. Furthermore, (k

0

; `

0

) � (k; `) would

imply `

0

< k

0

< k = i, i.e., A

u

A

L;i�1

would be TL-omplete, a ontradition to Lemma

3.2 and the hoie of u. Similar arguments an be used for the set L := IP(S;A

u

A

L;i�1

)

added to A

u

A

L;i

in line 19. Finally note that T � T

i

and L � L

i

are also inomparable.

Case : minfe

T;i�1

; e

L;i�1

g < u � minfe

T;i

; e

L;i

g. Clearly, this ase is only possible

if u = e

T;i

= e

T;i�1

+ 1 or u = e

L;i

= e

L;i�1

+ 1. If both onditions hold, then

A

u

A

T;i

� T

i

\M (lines 1 and 7) and A

u

A

L;i

� L

i

\M (lines 17 and 23), thus their union

obviously makes up an antihain. Otherwise, only one new antihain is generated

whereas the other one is updated, and we an argument as in the seond ase to show

that both antihains are inomparable.

The proof of the seond laim is similar. 2

Lemma 3.4 Let 1 � i � dm=2e. Then the following holds:

a) 8 j � maxfe

T;i

; e

L;i

g 8 p

j

2 A

j

A

TL;i

9 p

1

2 A

1

A

TL;i

; : : : ; p

j�1

2 A

j�1

A

TL;i

:

p

1

� : : :� p

j

:
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b) 8 j � maxfe

B;i

; e

R;i

g 8 p

j

2 A

j

A

BR;i

9 p

1

2 A

1

A

BR;i

; : : : ; p

j�1

2 A

j�1

A

BR;i

:

p

1

� : : :� p

j

:

Proof. We prove the �rst laim by hoosing p

v

for v = j � 1; : : : ; 1.

Consider step j

0

� i when p

v+1

was added to A

v+1

A

TL;j

0

� A

v+1

A

TL;i

. Then Lemma 3.1

implies the existene of p

v

if v � s

TL;j

0

�1

. Otherwise, by Lemma 3.2, A

v

A

T;j

0

�1

or A

v

A

L;j

0

�1

has been deteted to be TL{omplete before step j

0

, i.e., A

v

A

TL;j

0

�1

ontains a math

(k

0

; `

0

) suh that k

0

; `

0

< j

0

. But p

v+1

is of the form (k; `) with k; ` � j

0

, thus we an

hoose p

v

:= (k

0

; `

0

).

Similar arguments an be used for the seond laim. 2

Lemma 3.5 For 0 � i � dm=2e, there are two hains

C

TR;i

; C

BL;i

� T

�i

[ L

�i

[ B

�i

[ R

�i

of length e

T;i

+ e

R;i

and e

B;i

+ e

L;i

, respetively.

Proof. We prove the existene of the �rst hain C

TR;i

by indution on i. The base

i = 0 is trivial. For the indution step (i� 1)! i, we have to analyse the situations

whih ause e

T;i

+ e

R;i

to be greater than e

T;i�1

+ e

R;i�1

. One suh situation is given

in lines 7{14 of Fig. 3 (a) if the ondition in line 10 is not satis�ed beause then

e := e

T;i

= e

T;i�1

+ 1 and ~e := e

R;i

= e

R;i�1

. But sine IP(A

~e

A

R;i�1

; A

e

A

T;i

) 6= A

~e

A

R;i�1

there exist two omparable mathes 

T

2 A

e

A

T;i

and 

R

2 A

~e

A

R;i�1

. More preisely, sine



T

2 T

i

and 

R

2 R

�i�1

, we must have (k; `)� (k

0

; `

0

). Thus, by Lemma 3.4, we an

onstrut a hain

p

1

� : : :� p

e�1

� 

T

� 

R

� p

0

~e�1

� : : :� p

0

1

of length e + ~e.

Similar arguments an be used for the remaining situations and for the other

hain. 2

Our next task is to reveal the struture in D

TR

and D

BL

. We shall show that

for eah deleted math there always is some antihain whih is inomparable to this

math. In order to prove this property, we keep trak of eah deleted math by assign-

ing it to some antihain during the onstrution proess. More preisely, whenever

an antihain A is removed due to the existene of some other antihain B whih ina-

tivates it, all mathes in A are assigned to B, e.g., onsidering the situation in Fig. 2

(d), the math (3; 8) is assigned to A

3

A

T;3

. Furthermore, all previously deleted mathes

assigned to A now also belong to B. The assigned mathes are inherited when an

antihain is updated, e.g., in Fig. 2 (e), (3; 8) also belongs to A

3

A

T;4

. These rules guar-

antee that after step i, eah deleted math is assigned to exatly one antihain in

A

T;i

[A

L;i

[A

B;i

[A

R;i

. We write D(A) to denote the set of mathes assigned to an

antihain A.

Lemma 3.6 Let 1 � i � dm=2e, and assume (k; `) 2 D(A) for some antihain A in

A

T;i

, A

L;i

, A

B;i

, or A

R;i

. Then

a) (k; `) 2 D

TR

=) 8 (k

0

; `

0

) 2 A : k � k

0

^ ` � `

0

.
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b) (k; `) 2 D

BL

=) 8 (k

0

; `

0

) 2 A : k � k

0

^ ` � `

0

.

Proof. For the �rst laim, let us assume (k; `) was assigned to A while exeuting line

11 in Fig. 3 (a) during step j � i (the following arguments an analogously be applied

to the other instrutions whih modify D

TR

). Thus A = A

e

A

T;i

, where e = e

T;j

. Now

we onsider two ases onerning the status of (k; `) before step j.

Case a: (k; `) 2 A

~e

A

R;j�1

� R

�j�1

, ~e = e

R;j�1

. Then ` > n � j + 1. From lines 1,

6, 7, and 10 we see that (k; `) is inomparable to any math (k

00

; `

00

) in A

e

A

T;j

. But

A

e

A

T;j

� T

j

, thus k

00

= j and `

00

� n� j +1. Hene, the inomparability implies k � j.

Now observe that A

e

A

T;j

is the �rst onstruted part of A

e

A

T;i

, later extensions are taken

from T

j+1

; : : : ; T

i

. Thus every math (k

0

; `

0

) 2 A

e

A

T;i

ful�lls k

0

� j and `

0

� n� j + 1,

and the laim follows.

Case b: (k; `) is assigned to A

~e

A

R;j�1

. We an indutively assume

8 (k

00

; `

00

) 2 A

~e

A

R;j�1

: k � k

00

^ ` � `

00

Deleted mathes are never assigned to empty antihains. Thus there is at least one

math (k

00

; `

00

) 2 A

~e

A

R;j�1

, and we an prove as in the �rst ase that k

00

� k

0

and `

00

� `

0

.

Hene we have k � k

0

and ` � `

0

.

The proof of the seond laim follows similar arguments and is therefore omitted. 2

Lemma 3.7 Let 1 � i � dm=2e. Then the following holds:

a) 8 1 � u � e

T;i

: D

BL

\D(A

u

A

T;i

) 6= ; =) A

u

A

L;i

= ; ^ A

u

A

T;i

is TL{omplete .

b) 8 1 � u � e

L;i

: D

TR

\D(A

u

A

L;i

) 6= ; =) A

u

A

T;i

= ; ^ A

u

A

L;i

is TL{omplete .

) 8 1 � u � e

B;i

: D

TR

\D(A

u

A

B;i

) 6= ; =) A

u

A

R;i

= ; ^ A

u

A

B;i

is BR{omplete .

d) 8 1 � u � e

R;i

: D

BL

\D(A

u

A

R;i

) 6= ; =) A

u

A

B;i

= ; ^ A

u

A

R;i

is BR{omplete .

Proof. We again only show the �rst laim. From lines 10 and 11 in Fig. 3 (a),

we see that all mathes assigned there to A

u

A

T;i

are either plaed into D

TR

, or they

have been assigned before to some non{omplete antihain in A

R;i�1

. But onerning

the latter ase, we see from lines 26 and 27 in Fig. 3 (b) that any suh math has

been put into D

TR

as well, or again belongs to some non{omplete antihain in A

T;j

,

j < i. Repeating this argument, we onlude that all mathes assigned to A

T;i

are

ontained in D

TR

. The only exeption is given by lines 8 and 9 in Fig. 4 (a), where

deleted mathes are assigned to A

u

A

T;i

, but added to D

BL

. But then, from lines 3, 4,

and 13, the laim follows. 2

Lemma 3.8 All mathes assigned to an antihain A are pairwise inomparable, thus

by Lemma 3.6, they extend the antihain to a larger one.

Proof. Whenever a math is deleted, the algorithm always removes a omplete an-

tihain. By indution, this antihain B together with its assigned mathes forms a

larger antihain C. If there already is a set of mathes D assigned to A (whih is

only possible when A is deteted to be omplete), then, following the arguments given
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in the proof of Lemma 3.7, C � D

BL

and D � D

TR

or vie versa, and Lemma 3.6

immediately implies that B and D are pairwise inomparable. 2

We are now prepared to onstrut a minimal deomposition of M . We start by

deomposing M n (D

TR

[D

BL

), the deleted mathes are later onsidered in Thm. 3.9

below. The onstrution is as follows. Using Lemma 3.3, we ombine the �rst

e

TL

:= minfe

T;dm=2e

; e

L;dm=2e

g antihains in A

T;dm=2e

and A

L;dm=2e

to larger ones. We

also onnet the �rst e

BR

:= minfe

B;dm=2e

; e

R;dm=2e

g antihains in A

B;dm=2e

to the orre-

sponding ones in A

R;dm=2e

. For example, in Fig. 2 (e), we have e

T;dm=2e

= e

B;dm=2e

= 3

and e

L;dm=2e

= e

R;dm=2e

= 2, thus this generates four ombined antihains. Conerning

the remaining antihains we onsider four di�erent ases.

Case a: e

T;dm=2e

� e

L;dm=2e

and e

B;dm=2e

� e

R;dm=2e

. Then we leave the remaining

antihains as they are and have p := e

L;dm=2e

+ e

B;dm=2e

antihains in total. But by

Lemma 3.5, there also exists a hain of this length. Thus, by Dilworth's theorem, the

deomposition is minimal.

Case b: e

T;dm=2e

> e

L;dm=2e

and e

B;dm=2e

� e

R;dm=2e

. Similar to the �rst ase we have

p := e

T;dm=2e

+ e

R;dm=2e

antihains, and also a hain of this length.

Case : e

T;dm=2e

� e

L;dm=2e

and e

B;dm=2e

< e

R;dm=2e

. From the management of the

start and end indies, we have e

T;dm=2e

� s

TL;dm=2e

� 1. Thus, by Lemma 3.2, A

u

A

L;dm=2e

is not TL{omplete for u > e

T;dm=2e

. This implies k > dm=2e and ` � dm=2e for

any math (k; `) 2 A

u

A

L;dm=2e

� L

�dm=2e

. For all v > e

B;dm=2e

and (k

0

; `

0

) 2 A

v

A

R;dm=2e

we similarly have k

0

� dm=2e and `

0

> n � bm=2 � dm=2e. Thus A

u

A

L;dm=2e

and

A

v

A

R;dm=2e

are inomparable. Now assume e

L;dm=2e

� e

R;dm=2e

. Then we an onnet

all remaining antihains in A

R;dm=2e

to orresponding ones in A

L;dm=2e

and obtain

p := e

L;dm=2e

+ e

B;dm=2e

antihains in total, thus again a minimal deomposition. If

e

L;dm=2e

< e

R;dm=2e

, then similarly p := e

T;dm=2e

+ e

R;dm=2e

is the optimal length of a

hain in M n (D

TR

[D

BL

).

Case d : e

T;dm=2e

> e

L;dm=2e

and e

B;dm=2e

> e

R;dm=2e

. Finding a minimal deomposition

is slightly more ompliated in this ase. Consider the following algorithm. Starting

with u := e

T;dm=2e

and v := e

R;dm=2e

+ 1, we hek whether A

u

A

T;dm=2e

and A

v

A

B;dm=2e

are

inomparable. If they are not, then we bakup u and v in ~u and ~v, respetively, and

inrease v by one. Otherwise the antihains are onneted, u is set to u� 1, and v is

set to v+1. We repeat this until all remaining antihains in either A

T;dm=2e

or A

B;dm=2e

have been used, i.e., u = e

L;dm=2e

or v > e

B;dm=2e

. Then the total number of antihains

is p := u + e

B;dm=2e

. Thus, if u = e

L;dm=2e

, we have p = e

L;dm=2e

+ e

B;dm=2e

, and the

deomposition is optimal. Now assume u > e

L;dm=2e

. If ~u and ~v are unused, then all

remaining antihains in A

B;dm=2e

have been onneted to orresponding antihains in

A

T;dm=2e

, and we have p = e

T;dm=2e

+e

R;dm=2e

. Hene, in this ase the deomposition is

also a minimal one. Finally assume that ~u and ~v have been used for saving u and v at

least one. Then for j = ~v + 1; : : : ; e

B;dm=2e

, A

j

A

B;dm=2e

has been onneted to A

~u+~v�j

A

T;dm=2e

,

and we have u = ~u� (e

B;dm=2e

� ~v). Thus p = ~u� (e

B;dm=2e

� ~v) + e

B;dm=2e

= ~u+ ~v.

But from the properties of ~u and ~v, it an be shown (similar to the proof of Lemma

3.5) that there is a hain of length ~u + ~v whih ontains two mathes p

1

2 A

~u

A

T;dm=2e

and p

2

2 A

~v

A

B;dm=2e

. Hene, the onstruted deomposition is optimal.

Let us onsider our example. Case d applies to the situation in Fig. 2 (e), and A

3

A

T;4

is ompared with A

3

A

B;4

. Sine these antihains are inomparable, they are onneted,

and we obtain a deomposition onsisting of 5 antihains in total.
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Theorem 3.9 The length of an LCS in M equals p as de�ned in the four ases above.

Proof. Consider a ombined antihain A of the deomposition. Assume an antihain

A

u

A

T;dm=2e

2 A

T;dm=2e

is one omponent of it (otherwise, we an handle the following

onstrution in a similar way).

Case a: A

u

A

T;dm=2e

is the only omponent of A. Then we extend A with the set B of

deleted mathes assigned to A

u

A

T;dm=2e

. Lemma 3.8 guarantees that the result is still

an antihain.

Case b: A

u

A

T;dm=2e

has been ombined with A

u

A

L;dm=2e

. By Lemma 3.7, B � D

TR

. Let

(k; `) 2 A

u

A

L;dm=2e

and (k

0

; `

0

) 2 A

u

A

T;dm=2e

. From (k; `) 2 L

dm=2e

, (k

0

; `

0

) 2 T

dm=2e

, and

the inomparability of (k; `) and (k

0

; `

0

), we have k � k

0

^ ` � `

0

. Now onsider a

math (k

00

; `

00

) 2 B. By Lemma 3.6, we have k � k

0

� k

00

and ` � `

0

� `

00

. Hene,

A

u

A

L;dm=2e

is inomparable to B. We an use a similar way to show that the set C of

deleted mathes assigned to A

u

A

L;dm=2e

is a subset of D

BL

and inomparable to A

u

A

T;dm=2e

.

Finally, B and C are learly inomparable as well. Thus A

u

A

T;dm=2e

[ A

u

A

L;dm=2e

[B [ C

is still an antihain.

Case : A

u

A

T;dm=2e

has been ombined with some other antihain D 2 A

B;i

. Then,

similar to the proof of the seond ase, we an show that the union of A and the two

orresponding sets of assigned mathes still make up an antihain.

By handling eah ombined antihain in this way, we an onstrut a deomposi-

tion of M without generating any additional antihains. The proof is omplete. 2

Fig. 2 (f) illustrates the orresponding deomposition for our example.

4 Implementation

We now desribe an eÆient implementation for the given algorithm and analyse its

time and spae omplexity.

All new antihains reated in step i are extensions from antihains generated

during step i�1. Furthermore, the only antihains used for deomposingM are from

the last step. Thus for the implementation it is suÆient to update the antihains of

interest. The same is true for the start and end indies, and we thus sometimes drop

the index i from now on. The neessary information for eah atual antihain an be

kept in one single number as follows. Let 1 � i � dm=2e and 1 � u � e

T;i

. We de�ne

ThreshT [u℄ as the leftmost olumn used by some math in A

u

A

T;i

, i.e.,

ThreshT [u℄ := minf` j 9 k : (k; `) 2 A

u

A

T;i

g :

For example, in Fig. 2 (b), ThreshT [1℄ = 3, and in Fig. 2 (d), Top-Thresh[1℄ = 2,

ThreshT [2℄ = 3, and ThreshT [3℄ = 6. To update this array in eah step, we use an

auxiliary array LeftPos on �� [1 : n+ 1℄ given by

LeftPos [; `℄ := min(fn+ 1g [ fj j ` � j � n ^ y

`

= g) ;

i.e., LeftPos[a

i

; `℄ equals the olumn number of the leftmost ourene of a math in

row i loated right to olumn `, and equals n + 1 if there is no suh math. In our

example (y = babbaa), we obtain the following values:
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a 3 3 3 6 6 6 8 8 10 10

b 2 2 4 4 5 10 10 10 10 10

 1 7 7 7 7 7 7 9 9 10

Now it is not diÆult to see that the following routine orretly updates ThreshT

when proessing T

i

, representing lines 1{7 in Fig. 3 (a). (Similar proedures are used

in [AG87, Ri94, Ri95℄ to determine ontours whih orrespond to the antihains

used here.)

k := LeftPos[a

i

; i℄;

For u := s

TL

To e

T

Do f

j := ThreshT [u℄;

If k � j And k � n� i+ 1 Then f

ThreshT [u℄ := k; k := LeftPos [a

i

; j + 1℄;

g;

g;

If k � n� i+ 1 Then f e

T

:= e

T

+ 1; ThreshT [e

T

℄ := k g;

For A

L;i

, A

B;i

, and A

R;i

we introdue additional arrays ThreshL, ThreshB , and

ThreshR whih similarly store the topmost rows, rightmost olumns, and bottommost

rows used by the orresponding antihains. To handle them analogously to ThreshT ,

we also need three more auxiliary arrays given by

TopPos[; k℄ := min(fm + 1g [ fj j k � j � m ^ x

j

= g) ; (1 � k � m + 1) ;

RightPos[; `℄ := max(f0g [ fj j 1 � j � ` ^ y

`

= g) ; (0 � ` � n) ;

BottomPos[; k℄ := max(f0g [ fj j 1 � j � k ^ x

j

= g) ; (0 � k � m) :

Note that in Fig. 3 and Fig. 4, eah test for the inomparability of two antihains

an be replaed by a rather simple onditional statement. For example, onsidering

line 10 in Fig. 3 (a), we know that all mathes in T

i

are loated to the left of any

math in R

�i�1

. Thus, with e := e

T;i

and ~e := e

R;i

, A

e

A

T

and A

~e

A

R

are inomparable if

and only if A

~e

A

R

is also ompletely ontained in the �rst i rows, i.e., ThreshR[~e℄ � i.

The algorithm presented in Fig. 6 shows how the other situations are handled. It also

makes use of some speial implementation details whih annot be disussed here,

e.g., the onstrution starts with the bottommost row instead of the topmost one

when m is even. In Fig. 6 some lines are marked with a dot (�) on their left sides.

These lines are used for the onstrution of an LCS and should be ignored for the

moment.

The omplexity of the algorithm may be dedued as follows. The four auxiliary

arrays an be easily preproessed in O(ns) time and spae, where s = j�j. Clearly,

during one of the dm=2e iterations of the main loop, none of the four inner While{

loops takes more than O(p) time, and when determining p, at most dm=2e pairs of

antihains have to be ompared. Thus the algorithm takes at most O(ns+mp) time.

Furthermore, observe that the j{th antihain in A

T

(whih is added to A

T

during

some step i � j) must ontain a math (k; `) with ` � n� (p� j), otherwise it would

be impossible to onstrut a hain of length p. But then this antihain is deteted

to be TL{omplete after step n� (p� j), therefore it is only onsidered for at most

n� (p� j)� i � n� p times in the orresponding While{loop (lines 59{65). Similar

arguments an be given for antihains in A

L

, A

B

, and A

R

. Hene, we have shown the

following theorem.
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Determine TopPos and LeftPos;

Determine BottomPos and RightPos;

For u := 0 To dm=2e Do f

ThreshT [u℄ := 0; ThreshL[u℄ := 0;

5 g;

For u := 0 To bm=2 Do f

ThreshB [u℄ := n+ 1; ThreshR[u℄ := m+ 1;

g;

t := 1; ` := 1; b := m; r := n;

10 s

TL

:= 1; e

T

:= 0; e

L

:= 0;

s

BR

:= 1; e

B

:= 0; e

R

:= 0;

If Odd(m) Then Goto Line 57;

While t � b Do f (� Main loop �)

k := RightPos [x

b

; r℄; (� Update A

B

�)

15 u := s

BR

;

While u � e

B

Do f

j := ThreshB [u℄;

If k � j Then f

ThreshB [u℄ := k; k := RightPos [x

b

; j � 1℄;

20 g;

u := u+ 1;

g;

If k � ` Then f

e

B

:= u; ThreshB [e

B

℄ := k;

25 If ThreshL[e

L

℄ � b Then e

L

:= e

L

� 1

� Else Update 

B

, 

L

, `

BL

;

g;

k := BottomPos [y

r

; b� 1℄; (� Update A

R

�)

u := s

BR

;

30 While u � e

R

Do f

j := ThreshR[u℄;

If k � j Then f

ThreshR[u℄ := k; k := BottomPos [y

r

; j � 1℄;

g;

35 u := u+ 1;

g;

If k � t Then f

e

R

:= u; ThreshR[e

R

℄ := k;

If ThreshT [e

T

℄ � r Then e

T

:= e

T

� 1

� Else Update 

T

, 

R

, `

TR

;

g;

(� Chek for BR{omplete antihains �)

If ThreshB [s

BR

℄ = r Then f

If s

BR

> e

R

Then f

45 If ThreshT [e

T

℄ � r Then e

T

:= e

T

� 1

� Else Update 

T

, 

R

, `

TR

;

g;

s

BR

:= s

BR

+ 1;

g Else If ThreshR[s

BR

℄ = b Then f

50 If s

BR

> e

B

Then f

If ThreshL[e

L

℄ � b Then e

L

:= e

L

� 1

� Else Update 

B

, 

L

, `

BL

;

g;

s

BR

:= s

BR

+ 1;

55 g;

t := t+ 1; ` := `+ 1;

k := LeftPos [x

t

; `℄; (� Update A

T

�)

u := s

TL

;

While u � e

T

Do f

60 j := ThreshT [u℄;

If k � j Then f

ThreshT [u℄ := k; k := LeftPos[x

t

; j + 1℄;

g;

u := u+ 1;

65 g;

If k � r Then f

e

T

:= u; ThreshT [e

T

℄ := k;

If ThreshR[e

R

℄ � t Then e

R

:= e

R

� 1

� Else Update 

T

, 

R

, `

TR

;

70 g;

k := TopPos [y

l

; t℄; (� Update A

L

�)

u := s

TL

;

While u � e

L

Do f

j := ThreshL[u℄;

75 If k � j Then f

ThreshL[u℄ := k; k := TopPos[y

l

; j + 1℄;

g;

u := u+ 1;

g;

80 If k � b Then f

e

L

:= u; ThreshL[e

L

℄ := k;

If ThreshB [e

B

℄ � ` Then e

B

:= e

B

� 1

� Else Update 

B

, 

L

, `

BL

;

g;

85 (� Chek for TL{omplete antihains �)

If ThreshT [s

TL

℄ = ` Then f

If s

TL

> e

L

Then f

If ThreshB [e

B

℄ � ` Then e

B

:= e

B

� 1

� Else Update 

B

, 

L

, `

BL

;

90 g;

s

TL

:= s

TL

+ 1;

g Else If ThreshL[s

TL

℄ = t Then f

If s

TL

> e

T

Then f

If ThreshR[e

R

℄ � t Then e

R

:= e

R

� 1

� Else Update 

T

, 

R

, `

TR

;

g;

s

TL

:= s

TL

+ 1;

g;

b := b� 1; r := r � 1;

100 g;

(� Determine length p of an LCS �)

If e

T

> e

L

And e

B

> e

R

Then f

If s

TL

� e

L

Then s

TL

:= e

L

+ 1;

If s

BR

� e

R

Then s

BR

:= e

R

+ 1;

105 u := e

T

; v := s

BR

;

While u � s

TL

And v � e

B

Do f

If ThreshT [u℄ � ThreshB [v℄

Then u := u� 1

� Else f ~u := u; ~v := v g;

110 v := v + 1;

g;

p := u+ e

B

;

113 g Else p := maxfe

L

+ e

B

; e

T

+ e

R

g;

Figure 6: The O(ns+minfmp; p(n� p)g) algorithm for determining the length p of

an LCS.

Theorem 4.1 The length p of an LCS an be omputed in O(ns+minfmp; p(n�p)g)

time and O(ns) spae.

This result has been ahieved before by Rik [Ri94, Ri95℄, and in fat, the algo-

rithm presented here is some kind of dualization of Rik's method, but our algorithm
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is signi�antly faster as we shall show in Set. 6.

5 Constrution of an LCS in Linear Spae

This setion deals with the generation of an LCS. The idea is to apply the divide{

and{onquer sheme [ABG92, Hir75, KR87℄ whih �rst identi�es at least one point

of an LCS suh that this LCS is splitted into two parts of roughly the same size.

Then the remainder is omputed by reursive alls. The method presented here

usually determines two LCS{neighbouring mathes 

TL

and 

BR

whih are loated

in T

�dm=2e

[ L

�dm=2e

and B

�dm=2e

[ R

�dm=2e

, respetively. This is aomplished as

follows.

In eah step i of the onstrution desribed in Set. 2, we subsequently update

the following variables:

� p

TL

is the math whih aused A

s

A

T;i

or A

s

A

L;i

to beome TL{omplete, s = s

TL;i

�1.

For example, in Fig. 2 (), p

TL

= (2; 2), and in Fig. 2 (d) and (e), p

TL

= (3; 3).

� p

BR

has a orresponding meaning for the last BR{omplete antihain in A

B;i

and A

R;i

, e.g., in Fig. 2 (d), p

BR

= (6; 7).

� 

T

and 

R

are the two mathes introdued in the proof of Lemma 3.5. They

both lie in C

TR;i

and are neighbours in this hain. Furthermore, 

T

and 

R

are always loated in the �rst i topmost rows and i rightmost olumns of M ,

respetively.

� 

B

and 

L

have analogous properties for C

BL;i

.

� `

TR

and `

BL

is the position of 

T

in C

TR;i

and of 

L

in C

BL;i

, respetively. Also,

`

TR

+1 and `

BL

+1 is the position of 

R

in C

TR;i

and of 

B

in C

BL;i

, respetively.

p

TL

and p

BR

an be easily updated. For example, onsider lines 85{98 in Fig. 6 where

new TL{omplete antihains are handled. Let p

TL

= (u; v). If the ondition in line

86 is satis�ed, then we know p

TL

has to be set to the bottommost math loated in

the �rst t rows and olumn `. Therefore two additional statements an be inserted

between lines 86 and 87 suh that u is set to BottomPos[y

`

; t℄ and v is set to `. Similar

statements apply for the situation in lines 92{98, and this ompletes the desription

of the management for p

TL

. p

BR

an be handled in a similar way.



T

, 

R

, and `

TR

must be updated whenever the length of C

TR;i

inreases. These

situations are indiated in lines 40, 46, 69, and 95 in Fig. 6, and here we only sketh

how to manage them. By arguments analogous to the ones given in the proof of

Lemma 3.4, we have to distinguish two ases when updating 

T

. If s

TL;i

> e

T;i

, then



T

is set to p

TL

, otherwise 

T

an be determined by some additional statements whih

are similar to the ones used for updating p

TL

. In either ase, we set `

TR

to e

T;i

beause

e

T;i

is the position of 

T

in C

TR;i

, as seen in the proof of Lemma 3.5. The management

of 

B

, 

L

, and `

BL

is similar.

Now let us review the onstrution of the �nal deomposition given in the end of

Set. 3. If p is set to e

T;dm=2e

+ e

R;dm=2e

, then we an use 

T

and 

R

as the appropriate

mathes for 

TL

and 

BR

. Similarly, if p = e

B;dm=2e

+ e

L;dm=2e

, we establish 

TL

= 

L

and 

BR

= 

B

. Finally, if a longest hain is determined by the algorithm desribed in

54



A New Pratial Linear Spae Algorithm for the Longest Common Subsequene Problem

ase d of the onstrution (orresponding to lines 103{112 in Fig. 6), and p is not set

to one of the above values, then we an use the bakup values ~u and ~v to determine



TL

:= (BottomPos[y

û

; b℄; y

û

) and 

BR

:= (TopPos[y

v̂

; t℄; y

v̂

), where û := ThreshT [~u℄

and v̂ := ThreshB [~v℄.

Before reursively alling the algorithm for the remaining parts of the LCS, we

see it is neessary for our routine to not only work on the omplete matrix of size

[1 : m℄� [1 : n℄, but also on any subarea [k

1

: k

2

℄� [`

1

: `

2

℄. The neessary hanges are

quite straightforward, and we do not provide any details here. Moreover, it might be

impossible to loate both 

TL

and 

BR

(e.g., when jM j = 1), but then one reursive

all an simply be skipped.

Theorem 5.1 An LCS an be onstruted in O(ns+minfmp;m logm+ p(n� p)g)

time and O(ns) spae.

Proof. Clearly, for the top{level all, the additional overhead needed to keep trak

of the new variables is bounded by O(m). Thus, not taking into aount the time

onsumed by preproessing or any reursive alls, we an assume the number of ele-

mentary operations to be bounded by d(m+minfmp; p(n�p)g), for some appropriate

onstant d. We �rst examine the bound d(m+mp). Let 

TL

= (k; `) and 

BR

= (k

0

; `

0

)

(if only one math has been determined, the analysis is similar). Consider the two

�rst{level reursive alls onerning the areas M

1

:= [1 : k � 1℄ � [1 : ` � 1℄ and

M

2

:= [k

0

+1 : m℄� [`

0

+1 : n℄. Let p

1

and p

2

denote the length of an LCS in M

1

and

M

2

, respetively, i.e., p

1

+ p

2

= p � 2. Reall that 

TL

is loated in the �rst dm=2e

rows and olumns, i.e., the length of one side of M

1

is bounded by dm=2e � 1. The

same is true for M

2

, and thus the number of operations taken for both �rst{level alls

is bounded by

d(dm=2e � 1)(p

1

+ 1) + d(dm=2e � 1)(p

2

+ 1) � dp

m

2

Repeating this argument, we obtain a dmp=2

i

bound for the at most 2

i

ith{level

reursive alls. Sine reursion ends at level dlog(m=2)e, this sums up to at most

2 � dmp for the omplete algorithm.

For the other bound d(m + p(n � p)), let g := (

p

5 � 1)=2 � 0:618 and onsider

the following two ases.

Case a: p � gm. Then

2 � dmp �

2

1� g

d(1� g)mp =

2

1� g

d(m� gm)p �

2

1� g

d(m� p)p �

2

1� g

d(n� p)p

Case b: p > gm. Let h := maxfk � 1; `� 1g and h

0

:= maxfm� k

0

; n� `

0

g. Clearly

h+ h

0

� n� 2. Also note that p

1

; p

2

� dm=2e� 1 beause an LCS annot exeed the

length of any side of M

1

and M

2

. But then the two �rst{level reursive alls use at

most

d(dm=2e � 1 + p

1

(h� p

1

)) + d(dm=2e � 1 + p

2

(h

0

� p

2

))

� d(m+ p

1

(h� p

1

) + p

2

(h

0

� p

2

)) � d(m+ (dm=2e � 1)(h� p

1

+ h

0

� p

2

))

� d(m+ (dm=2e � 1)(n� p)) � d(m+

1

2g

p(n� p))
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operations. Similarly, all ith{level reursive alls together use at most

d(m + p(n� p)=(2g)

i

)

operations. This sums up to

d(m logm+

1

1� 1=(2g)

p(n� p)) = d(m logm +

2

1� g

p(n� p)) :

Both ases imply that the algorithm takes at mostO(ns+minfmp;m logm+p(n�p)g)

time, and the worst ase overhead fator an be expeted to be 2=(1 � g) < 5:25.

Furthermore, when omparing the divide{and{onquer routine with the algorithm

whih determines the length p of an LCS, we only need O(logm) additional stak

spae, and thus the O(ns) spae bound is still valid. 2

6 Experimental Results

We ompared our routine with the algorithm proposed by Rik [Ri94, Ri95℄ whih

learly outperforms any other method when onstruting longest ommon subse-

quenes of intermediate lengths. Rik's algorithm is also a exible one, being very

eÆient for short and long LCS as well. It uses a strategy similar to the one pre-

sented here, but only onstruts antihains (or ontours) from the top and left side

of M . While this substantially simpli�es the implementation and also the prepro-

essing phase (i.e., we only have to ompute LeftPos and TopPos), there are two

severe drawbaks. First, in order to reover an LCS after determining its length, the

so{alled dominant mathes must be saved during the onstrution of the ontours,

and this might take 
(mn) spae. Seond, the number of heks of Thresh{values is

signi�antly inreased when deomposing M from only two sides. For an alphabet of

size 8, Table 1 shows some sample results when determining p for di�erent settings

of m, n, and p.

Table 1: Frequeny of heks of Thresh{values

m n p Rik [Ri95℄ New method

500 500 100 16864 14983

500 500 200 28962 23078

500 500 300 33276 23394

500 500 400 20384 13276

m n p Rik [Ri95℄ New method

1500 1500 300 145129 126796

1500 1500 600 265107 216845

1500 1500 900 280026 207000

1500 1500 1200 172846 121516

The orresponding running times are presented in Table 2. Both algorithms were

programmed in a straightforward way, using no speial optimizations, and were tested

on an Intel Pentium II at 300 MHz. It an be seen that our algorithm only takes

about 70% of the time needed by Rik's method when omputing the length of an

LCS whih is of intermediate length. For very short or very long LCS our method

slightly su�ers from the additional overhead during the preproessing phase, but is

still very eÆient.

Finally, we heked the running times and the onsumed spae when generating

an LCS. Table 3 shows that in spite of the linear spae restrition, our algorithm
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Table 2: Running times in miroseonds for determining the length p of an LCS.

m n p Rik [Ri95℄ New method

500 500 100 3352 3626

500 500 200 5659 4725

500 500 300 6978 4890

500 500 400 5000 3516

m n p Rik [Ri95℄ New method

1500 1500 300 24451 21868

1500 1500 600 46099 34835

1500 1500 900 54176 33791

1500 1500 1200 38791 22308

sometimes runs more than twie as fast as Rik's method. This is due to the signi�ant

overhead in Rik's routine whih is aused by the additional statements responsible

for saving the ontours in memory. Furthermore, the worst ase fator 5.25 alulated

in the proof of Thm. 5.1 is muh too pessimisti in pratial situations. Instead, a

omparison with Table 2 shows that it roughly equals 2.

Table 3: Running times in miroseonds for onstruting an LCS of length p.

m n p Rik [Ri95℄ New method

500 500 100 6319 6044

500 500 200 14341 9066

500 500 300 19505 9890

500 500 400 15769 7802

m n p Rik [Ri95℄ New method

750 750 250 23132 16374

750 750 400 39835 20495

750 750 550 38516 16758

750 750 700 16319 9945

Table 4: Alloated spae in bytes for onstruting an LCS of length p.

m n p Rik [Ri95℄ New method

500 500 100 64284 34072

500 500 200 143820 34072

500 500 300 199464 34072

500 500 400 176328 34072

m n p Rik [Ri95℄ New method

750 750 250 219244 51072

750 750 400 390172 51072

750 750 550 396136 51072

750 750 700 193780 51072

Conlusions

We have investigated a new algorithm for the Longest Common Subsequene Problem.

In spite of the quite ompliated tehnial details neessary for the onstrution and

analysis, the �nal routines proved to be extremely pratial. More preisely, we have

shown three results. First, we have presented a new fast method for determining the

length of an LCS. Seond, we have developed a linear spae algorithm for onstruting

an LCS in O(ns+minfmp;m logm+ p(n� p)g) time, thus solving a previously open

problem. And third, we have shown by some experimental results that this algorithm

is by far the fastest one when dealing with usual appliations.
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