
On Pro
edures for Multiple-string Mat
h with

Respe
t to Two Sets

1

Weiler A. Finamore, Rafael D. de Azevedo

& Mar
elo da Silva Pinho

Center for Tele
ommuni
ations Studies (CETUC)

Catholi
 University of Rio de Janeiro

Marqus de S. Vi
ente, 225

22453-900, RIO DE JANEIRO, RJ

Brazil

e-mail: weiler�
etu
.pu
-rio.br

Abstra
t. String mat
h pro
edures with respe
t to two sets are investigated.

The pro
edures traditionally used for data
ompression are based on single-

string mat
h with respe
t to a single set [LZ78, W84℄. Some re
ent work broad-

ened this view by presenting pro
edures for multiple-string mat
h with respe
t

to a single set [FPC98, PFP99℄ with improved performan
e as
ompared to

the single-mat
h versions. In this work an algorithm based on double-mat
h

with respe
t to two sets is stated. We do
onje
ture that multiple-string mat
h

pro
edures with respe
t to two sets
an a
hieve even better performan
e. A pre-

liminary analysis
orroborating this
onje
ture with some eviden
e is reported

in this work.

Key words: Multiple-string mat
h, Lempel-Ziv algorithm, Data
ompression.

1 Introdu
tion

The pro
edure proposed by Lempel and Ziv in 1978 [LZ78℄ for lossless data
ompres-

sion is a rather simple and elegant string-mat
h based algorithm. Its low
omplexity

and implementation simpli
ity has turned it into a very popular algorithm whi
h is

used for instan
e in the
ompress program of UNIX operational system.

By sele
ting diferent
ombinations of the basi
 parameters of this algorithm many

variations
an be established. In the result published in [FPC98℄ a version that

sear
hes for double-string mat
hes instead of the usual single-mat
h is stated |

an improved performan
e was obtained. Extension to multiple string-mat
h was

proposed in [PFP99℄. Similar results were reported by Hartman and Rodeh in [HR85℄.

In this work the two most popular Lempel-Ziv variations, LZ78 and LZW [LZ78,

W84℄, has been
ast in the framework of string-mat
h with respe
t to two sets. We

also propose two new variations (designated lg-LZ and dt-LZ), whi
h are inspired

and dis
ussed in this new framework. Although the ultimate goal of �nding new

1

This work was supported by grant CNPq-502235/91-8(NV) and AEB/PR-004/97.

29

Pro
eedings of the Prague Stringology Club Workshop '99

algorithms with improved is a motivation behind the algorithms proposed, the ime-

diate obje
tive is to expand the ways of looking at the string mat
hes algorithms and

hopefully to �nd better pro
edures.

This work is organized as follows: in Se
tion 3, we present the idea of string mat
h

with respe
t to two sets and establish a motivation by dis
ussing two well-known

algorithms in the framework of mat
hing with respe
t to two sets. A new algorithm

(lg-LZ) whi
h is a simple variation of the Lempel-Ziv algorithm is also proposed in this

se
tion. In Se
tion 4 a version of double-mat
h/double-tree algorithm is introdu
ed.

Results obtained by
omputer simulation are presented in Se
tion 5. Our
on
lusion

is then summarized in Se
tion 5.

2 Notations

We establish the following notation for use in this work.

1. x

j

i

= x

i

x

i+1

: : : x

j

, j > i denotes a �nite sequen
e of symbols x

k

, i � k � j,

that take their values in a given set A = fa

0

; a

1

; �; a

jAj�1

g of
ardinality jAj. If

j = i, this is the single symbol string x

i

and if i > j we will assume that x

j

i

is

the empty string.

2. j�j denotes the length, if � is a sequen
e, or the
ardinality, if � is a set.

3. � denotes the null-length string, i.e. j�j = 0.

4. s

i

Æ s

j

denotes the
on
atenation of the strings s

i

and s

j

. (the result of the

on
atenation will also be indi
ated by s

i

s

j

or s

i

,s

j

)

5. When s

1

; s

2

; � � � ; s

k

2 A

�

are strings of symbols of lengths js

1

j; js

2

j; � � � ; js

k

j re-

spe
tively, the notation s

k

1

represents the string of length js

1

j+ js

2

j+ � � �+ js

k

j

formed by the
on
atenation of strings s

1

Æ s

2

Æ � � � Æ s

k

.

6. The
on
atenation of the string ` 2 L = f`

0

; � � � ; `

jLj�1

g and the set M =

fm

0

; � � � ;m

jMj�1

g is the set

` ÆM =

jMj�1

[

i=0

f` Æm

i

g

7. Let L = f`

0

; � � � ; `

jLj�1

g andM = fm

0

; � � � ;m

jMj�1

g. We de�ne the
on
atena-

tion of these two sets by

L ÆM =

jLj�1

[

i=0

f`

i

ÆMg

8. dxe denotes the smallest integer greater than or equal to number x.

9. �[zjL℄, for jLj > 0, is the longest string `

i

2 L = f`

0

; � � � ; `

jLj�1

g whi
h is a

pre�x of z.

30

On Pro
edures for Multiple-string Mat
h with Respe
t to Two Sets

10. X [sjL℄ is the unique integer index i that identify the member `

i

2 L su
h that

`

i

= s.

11. z � y, when z = x

i

x

i+1

� � �x

j

and y = x

i

x

i+1

� � �x

k

is a pre�x of z, represents

the string x

k+1

� � �x

j

.

12. F [z℄ is the length 1 pre�x of z, if jzj > 0 else it is the empty string.

13. S[z℄ is the length jzj � 1 pre�x of z.

14. �

k

[J ℄, k � logJ (base 2 logarithm) is the trivial k-bit binary representation of

the integer J .

3 The Idea of String Mat
h Algorithm with Re-

spe
t to Two Sets

To establish the framework and the rationale behind our dis
ussion, the well-known

string-mat
h pro
edure proposed by Ziv and Lempel [LZ78℄ for data
ompression

will be presented, in the
ontext of string mat
h with respe
t to two sets. We will

undistinguishably refer to this as a double-tree string mat
h
ontext sin
e the sets we

will be dealing with are tree-stru
tured.

3.1 Lempel-Ziv Algorithm (LZ78)

Let us
onsider that z

0

= x

N�1

0

is the sequen
e of N symbols generated by the

information sour
e whi
h is to be en
oded (ea
h sour
e symbol x

i

belongs to the

sour
e alphabet A, of dyadi

ardinallity for simpli
ity). Generally speaking the

Lempel-Ziv algorithm (LZ78) [LZ78℄
an be envisioned as divided in three tasks: The

�rst task, (parsing), whi
h yields the unique parsing

x

N�1

0

= (`

0

Æm

0

); (`

1

Æm

1

); � � � ; (`

t

Æm

t

)

of the sour
e sequen
e in t+ 1 phrases. The next task, (map to integers), assign ea
h

phrase s

i

= (`

i

Æm

i

) to a unique pair of integers (J

i

; K

i

) whi
h are then, in the task

that follows (integer
ode), repla
ed (or en
oded) by a binary representation a

ording

to some rule to en
ode integer numbers into binary.

Spe
i�
ally, the algorithm LZ78 [LZ78℄
an be stated using the double-tree frame-

work by initially setting L

0

= f�; x

0

g, M

0

= A and s

0

= (`

0

Æm

0

) = (� Æ x

0

) = x

0

.

At a general step i, the sets L

i�1

and M

i�1

are known, the sour
e string has been

parsed in i phrases s

0

; � � � ; s

i�1

and there is a remaining unparsed string whi
h will

be denoted by z

i

. The algorithm is des
ribed next.

31

Pro
eedings of the Prague Stringology Club Workshop '99

Algorithm LZ78

i = 0

z

0

= x

N�1

0

L

0

= f�g, M

0

= A

s

0

= `

0

Æm

0

with `

0

= � and m

0

= x

0

.

1 � i � t

1. Update unparsed string:

z

i

= z

i�1

� (`

i�1

Æm

i�1

)

2. Find longest mat
h s

i

with respe
t to D

i

= L

i�1

ÆM

i�1

:

s

i

= �[z

i

jD

i

℄ = `

i

Æm

i

,

with `

i

= �[z

i

jL

i�1

℄, and m

i

= �[(z

i

� `

i

)jM

i�1

℄.

3. (J

i

; K

i

) = (X [`

i

jL

i�1

℄, X [m

i

jM

i�1

℄)

4. Update L-tree:

L

i

= L

i�1

[f`

i

Æ F [m

i

℄g

M

i

= A

5. (B

i

; C

i

) = (�

dlog jL

i�1

je

[J

i

℄, �

dlog jM

i�1

je

[K

i

℄)

The eÆ
ien
y of a string mat
h algorithm is
losely related to the number t+1 of

phrases parsed o� from the sour
e string and to the rate of growth of the sets L and

M. In the present
ase, LZ78, t+1 phrases are generated and the N sour
e symbols

will be represented by L binary symbols,

L =

t

X

i=0

(jB

i

j+ jC

i

j) = (t+ 1) log

2

jAj+

t

X

i=0

jB

i

j;

rendering a � = L=N
ompression rate. If the sour
e symbols are drawn from an

stationary sour
e, the
ompression rate provedly [LZ78℄
onverges to the entropy of

the sour
e. The interplay between these two parameters is quite envolved [S97℄ and is

not our main
on
ern. It is worth mentioning that Integer Codes more eÆ
ient than

the one used to produ
e the binary blo
k (B

i

; C

i

)
ould be used. An improvement in

the above
ode, for instan
e,
an be introdu
ed simply by noti
ing that the phrase s

i

whi
h is parsed o� at the i-th step, a
tually belongs to a set D

i

(
alled di
tionary or

odebook)

D

i

= L

i�1

ÆM

i�1

with some elements (or
odewords) on it, whi
h are not able to be sele
ted as a mat
h

to s

i

| the enumeration reserved for these are therefore a waste of bits. This is of

little
on
ern to us at this point and the Integer Code as it is will be used with the

other algorithm versions dis
ussed in the entire work.

The important point to be stressed in relation to the LZ78 is that no matter

the value of i, the asso
iated tree M

i

is kept �xed, equal to A. Whether there are

pro
edures whi
h performs more eÆ
iently, by allowing M

i

, the se
ond di
tionary

tree, to grow rather than be �xed, is a
onje
ture naturally raised. This issue is

examined on the next se
tion. A variation of the LZ78 whi
h
onstru
ts the di
tionary

D

i

in a sligthly di�erent manner and whi
h, for this reason, has a slightly better

performan
e will be presented. Example I ilustrates the workings of LZ78.

32

On Pro
edures for Multiple-string Mat
h with Respe
t to Two Sets

Example I

Let the sample string to be
ompressed be

Sample0 = x

33

0

= aa
abadababaa
adaba
abadadababaaaba

The quaternary sour
e alphabet is A = fa,b,
,dg. The sequen
e fL

i

: i = 0; 14g

of sets obtained with the LZ78 pro
edure, the
orresponding phrases and binary

odewords obtained are next presented.

Step i = 0

z

0

= aa
abadababaa
adaba
abadadababaaaba

L

0

= f�g, M

0

= A

`

0

= �, m

0

= a

s

0

= `

0

Æm

0

= a, W

0

= 00

Step i = 1

s

0

; z

1

= a,a
abadababaa
adaba
abadadababaaaba

L

1

= fag

`

0

= a, m

0

=

s

1

= `

1

Æm

1

= a Æ
, W

1

= 1 10

Keep going like this will take us to

s

13

0

z

14

=a,a
,ab,ad,aba,b,aa,
,ada,ba,
a,bad,adab,abaa,aba

L

14

= f a, a
, ab, ad, aba, b, aa,
, ada, ba,
a, bad, adab,

abaa g

s

14

= aba �; W

14

= 0101 �

3.2 A Less Greedy LZ78

We observe, in the plain LZ78 dis
ussed on Se
tion 3.1, that the set L

i

is in
reasead

by one element at ea
h step i, i.e., jL

i

j = jL

i�1

j + 1. The di
tionary D

i

is built

by transforming the tree
orresponding to L

i�1

into a
omplete tree having only

terminal nodes and nodes with exa
tly jAj bran
hes stemming from them. This

greedy expansion of the set L

i�1

seems to be one reason for the degraded performan
e

of the LZ78 algorithm, as
ompared to other variations, su
h as LZW for instan
e.

The variation introdu
ed in this se
tion (lg-LZ, in short), allows for a less-greedy

expansion in order to get the di
tionary D

i

. The longest string mat
h is not found

this time (lg-LZ), with respe
t to the di
tionary D

i

= L

i�1

ÆM

i�1

but, instead, with

respe
t to the di
tionary

D

i

= L

i�1

[fs

i

Æ Ag:

The di
tionary D

i

is now built by expanding the L

i�1

tree by appending to the node

orresponding to the path just sele
ted as a longest mat
h, the tree
orresponding to

the alphabet A. The algorithm is stated next.

33

Pro
eedings of the Prague Stringology Club Workshop '99

Algorithm lg-LZ

i = 0

z

0

= x

N�1

0

L

0

= A, M

0

= A

s

0

= x

0

J

0

= X [s

0

jA℄, B

0

= �

dlog jAje

[J

0

℄

1 � i � t

1. Update unparsed string

z

i

= z

i�1

� s

i�1

2. Find longest mat
h s

i

with respe
t to D

i

= L

i�1

[fs

i�1

ÆM

i�1

g

s

i

= �[z

i

jD

i

℄,

3. J

i

= X [s

i

jD

i

℄)

4. B

i

= �

dlog jD

i

je

[J

i

℄

5. Updating tree

`

new

= s

i�1

Æ F [s

i

℄

if j`

new

j = js

i

j and s

i

=2 L

i�1

then `

new

= s

i

L

i

= L

i�1

[f`

new

g

M

i

= A

Also here we have s

i

= `

i

Æm

i

with, possibly,m

i

= �. The performan
es displayed

on Table 2, obtained by
omputer simulation show instan
es where the lg-LZ performs

better when
ompared to its
ounterpart LZW. The example presented next ilustrate

the workings of the lg-LZ.

Example II

Let x

33

0

= aa
abadababaa
adaba
abadadababaaaba. A = fa; b;
; dg. The pars-

ing that the pro
edure lg-LZ yields is

a, a
, a, b, a, d, ab, aba, a
a, da, ba,
, aba, da, dab, abaa, aba

The
ompressed representation of x

33

0

is a binary string with 72 bits |
ompression

rate of 0:257

3.3 Lempel-Ziv-Wel
h Algorithm

The Lempel-Ziv-Wel
h pro
edure, popularly
alled LZW, is known to have a perfor-

man
e on the average 10% better then the plain LZ78 version. One aspe
t that makes

the LZW di�erent from LZ78 is that it works with a rule that build the di
tionary

D

i

by appending only one node to the
orresponding tree L

i�1

.

The following would be the des
ription of the LZW algorithm.

34

On Pro
edures for Multiple-string Mat
h with Respe
t to Two Sets

Algorithm LZW

i = 0

z

0

= x

N�1

0

L

0

= A,

M

0

= f�g and

s

0

= x

0

. `

0

= x

0

1 � i � t

1. z

i

= z

i�1

� s

i�1

2. Find longest mat
h with respe
t to D

i

= L

i�1

[`

i�1

ÆM

i�1

`

i

= �[z

i

jL

i�1

℄,

s

i

= �[z

i

jD

i

℄,

3. J

i

= X [s

i

jD

i

℄

4. L

i

= D

i

M

i

= fF [z

i

� s

i

℄g

5. B

i

=�

dlog jD

i

je

[J

i

℄

Example III

Consider again Sample0 = x

33

0

= aa
abadababaa
adaba
abadadababaaaba with

A = fa; b;
; dg. This sequen
e is parsed into 20 phrases as follows

a, a,
, a, b, a, d, ab, aba, a
, ad, aba,
a, ba, da, da,

ba, ba, aa, ba

and its
ompressed representation is a binary string with 81 bits | a
ompression

rate of 0:289

4 Des
ription of Double-tree Algorithms

In the previous se
tion two known agorithms (LZ78 and LZW) and a simple variation

of the former (lg-LZ) were stated within the framework of a double-tree string mat
h.

Ea
h one of the algorithms produ
e a sequen
e of trees fL

i

g

i=0;t

and
orresponding

sequen
e of di
tionaries fD

i

g

i=0;t

with a string mat
h done with respe
t to ea
h

di
tionary. The basi
 di�eren
e among the three algorithms relies in the manner

in whi
h the tree L

i�1

is
on
atenated with the
orresponding M

i�1

, to build the

di
tionary D

i

. Table 1 summarizes this aspe
t.

LZ78: jD

i

j = jL

i�1

ÆM

i�1

j

� jL

i�1

jjM

i�1

j

lg-LZ: jD

i

j = jL

i�1

[f`

i

Æ Agj

= jL

i�1

j+ jAj

LZW: jD

i

j = jL

i�1

[`

i�1

ÆM

i�1

j

= jL

i�1

j+ 1

Table 1: Length of the di
tionaries

35

Pro
eedings of the Prague Stringology Club Workshop '99

A point whi
h is
ommon to the three algorithms so far dis
ussed is that they all

on
atenate the set L

i�1

with a depth one tree in order to build their di
tionaries.

It is quite natural at this point to ask whether there are pro
edures whi
h performs

more eÆ
iently when the se
ond di
tionary tree is allowed to have depth greater

than one. A double-tree string mat
h algorithm, with a se
ond tree having a more

general stru
ture is stated in this se
tion. Allowing a more general stru
ture for the

se
ond tree M

i�1

, enlarge the number of algorithm variations that
an be stated.

The sear
h for string mat
hes are now sear
hes for double-mat
hes | this imply that

more general ways to sear
h are possible and that the longest-mat
h is not ne
essarily

a
on
atenation of a string `

i

(whi
h is the longest mat
h with respe
t to the tree

L

i�1

) with the string m

i

(whi
h is the longest mat
h with respe
t to the tree M

i�1

).

Now, in order to optimize the number t + 1 of parses, the best strategy is to sear
h

for a
on
atenation (`

i

Æm

i

) whi
h among all double-mat
hes, have the largest size

j`

i

j+jm

i

j. We have implemented one version of a double-mat
h/double-tree pro
edure

and analysed their performan
e by
omputer simulations. The algorithm, whi
h will

be, abreviatedly, referred to as dt-LZ, is presented next.

Algorithm dt-LZ

i = 0 (Initialization step)

� z

0

= x

N�1

0

� L

0

=M

0

= A

� m

0

= �[z

0

jM

0

℄,

� K

0

= X [m

0

jM

0

℄;

� C

0

= �

dlog jM

0

je

[K

0

℄

� z

1

= z

0

�m

0

;

� M

0

=M

0

[fm

0

Æ F [z

1

℄g

1 � i � t (Generi
 step)

1. Segmentation:

(a) `

i

= �[z

i

jL

i�1

℄,

z

temp

= z

i

� `

i

,

m

i

= �[z

temp

jM

i�1

℄,

� = j`

i

j+ jm

i

j,

u = `

i

.

(b) i. u = S[u℄

z

temp

= z

i

� u

v = �[z

temp

jM

i�1

℄.

ii. If (juj+ jvj � �): (`

i

;m

i

) = (u;v), � = j`

i

j+ jm

i

j.

iii. If juj > 0 return to step (i).

(
) z

i

= (z

i

� `

i

)�m

i

2. Update Di
tionaries:

L

i

= L

i�1

[f`

i

Æ F [m

i

℄g

M

i

=M

i�1

[fm

i

Æ F [z

i

℄g

3. Map to Integer

(J

i

; K

i

) = (X [`

i

jL

i�1

℄, X [m

i

jM

i�1

℄)

36

On Pro
edures for Multiple-string Mat
h with Respe
t to Two Sets

4. Integer Code:

(B

i

; C

i

) = (�

dlog jL

i�1

je

[J

i

℄, �

dlog jM

i�1

je

[K

i

℄)

Example IV

Let x

33

0

= aa
abadababaa
adaba
abadadababaaaba. A = fa; b;
; dg. The pars-

ing for the pro
edure dt-LZ yields is

(-,a), (a,
), (a,b), (a,d), (a,ba), (b,aa), (
,a), (d,a), (ba,
a),

(ba,da), (da,bab), (a,aa),(b,a).

where we show the double-mat
hes displayed in parenthesis.

5 Some Computer Simulation Results

The algorithms dis
ussed have been implemented as
omputer programs whi
h were

used to
ompress some sample sequen
es. Although the performan
e of all these

algorithms are optimum in the sense that their
ompression rate asymptoti
ally
on-

verges to the entropy of the information sour
e or to the Lempel-Ziv
omplexity of

the individual sequen
e, they perform quite di�erently when �nite sequen
es and the

rate of
onvergen
e to the asymptoti
 optimum are
onsidered. Table 2 displays some

of the simulation results exhibiting the performan
e of the algorithms. We have not

Sequen
e LZW lg-LZ dt-LZ

(size) (size) (size) (size)

Sample0 .289 .257 .311

(280) (81) (72) (87)

Sample1 .089 .099 .097

(576) (51) (57) (56)

Sample2 .077 .086 .103

(544) (42) (47) (56)

Sample3 .357 .371 .335

(672) (240) (249) (225)

Sample4 .258 .113 .320

(256) (66) (29) (82)

Table 2: Compression rate of algorithms LZW, lg-LZ and dt-LZ (all sequen
e sizes,

in parenthesis, are in bits)

presented results for the LZ78 algorithm. As the other versions this algorithm is

asymptoti
ally optimum but has an inferior perfoman
e as
ompared to the LZW.

As it
an be noti
ed from the results presented in Table 2 the behavior of the algo-

rithms are sequen
e dependent. For some sequen
es the LZW
an a
hieve a better

result than the lg-LZ | this gain is basi
ally due to the penalty paid by the lg-LZ

for expanding the �rst tree with A nodes to build the di
tionary, instead of the one

node expansion done by the LZW. This gain in performan
e tend to disappear as

the sequen
e length grows larger. Examining the line on Table 2
orresponding to

Sample4 one
an see that the performan
e of lg-LZ
an
onverge
onsiderably fast

37

Pro
eedings of the Prague Stringology Club Workshop '99

to the optimum, as
ompared to LZW, for
ertain types of sequen
es. These are

sequen
es
onstru
ted to bene�t the performan
e of lg-LZ (no su
h
onstru
tion
an

be done, we
onje
ture, to bene�t LZW).

Con
lusion

We have proposed algorithms whi
h are based on the idea of string mat
hes with

respe
t to two sets or, equivalently, string mat
h with respe
t to two trees. Many

implementations variations of these algorithms are possible | a double-string mat
h

with respe
t to two trees version (
alled dt-LZ) was implemented.

In our preliminary investigation we exam the behavior of these algorithms and

analyse its performan
e by
omputer simulation. Also we stated the well known

LZ78 algorithm [LZ78℄ in the framework of string mat
h with respe
t to two trees, as

well as the LZW [W84℄. A simple modi�
ation of the LZ78 was also proposed (this

was
alled lg-LZ).

It is our expe
tation that higher
ompression
an be a
hieved with double-string

mat
h with respe
t to two trees pro
edures. This is based on the argument that

the use of two trees allows the
onstru
tion of
on
atenated trees with more general

stru
tures, leaving more room for optimizing the sear
h. It is also based on results we

have obtained with multiple-string mat
hes algorithms [PFP99℄ | whi
h a
hieve a

better
ompression than single-mat
hes ones. These multiple-string mat
h algorithms

are based on the double-tree idea yet the two trees involved in the pro
ess are kept

equal.

The results presented in this work do not single out a de�nite better double-

mat
h/double-tree algorithm | if one
an be found | but bring to our attention

that there are many variations. Our investigations will be further pursued by exam-

ining other double-mat
h/double-tree implementations. An extension of the multiple-

mat
h des
ribed in [PFP99℄ will also be sought.

Referen
es

[LZ78℄ Ziv, J., Lempel, A., \Compression of individual sequen
es via variable-rate

oding," IEEE Trans. Inform. Theory, vol. IT-24, pp.530-536, Sep. 1978.

[W84℄ Wel
h, T. A., \A te
hnique for high-performan
e data
ompression," Com-

puter, vol. 17, pp.8-19, Jun. 1984.

[FPC98℄ Finamore, W. A., Pinho, M. S., Craizer, M., \A multi-string mat
h al-

gorithm for lossless data
ompression," Abstra
ts of Invited Le
tures and

Short Communi
ations, 7

th

International Colloquium on Numeri
al Anal-

ysis and Computer S
ien
es with Appli
ations, p.39, Plovdiv, Bulgaria,

Aug. 1998.

[PFP99℄ Pinho, M. S., Finamore, W. A., Pearlman, W. A., \Fast multi-mat
h

Lempel-Ziv," Pro
. of IEEE Data Compression Conferen
e, Snowbird, UT,

April 1999.

38

On Pro
edures for Multiple-string Mat
h with Respe
t to Two Sets

[HR85℄ Hartman, A., Rodeh, M., \Optimal Parsing of Strings," Combinatorial

Algorithms on Words, Springer-Verlag, A. Apostoli
o & Z. Galil, editors,

pp. 155-167, 1985.

[S97℄ Savari, S. A., \Redundan
y of Lempel-Ziv in
remental parsing rule," IEEE

Trans. Inform. Theory, vol. IT-43, pp.9-21, Jan. 1997.

39

