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Abstract. String match procedures with respect to two sets are investigated.
The procedures traditionally used for data compression are based on single-
string match with respect to a single set [LZ78, W84]. Some recent work broad-
ened this view by presenting procedures for multiple-string match with respect
to a single set [FPC98, PFP99] with improved performance as compared to
the single-match versions. In this work an algorithm based on double-match
with respect to two sets is stated. We do conjecture that multiple-string match
procedures with respect to two sets can achieve even better performance. A pre-
liminary analysis corroborating this conjecture with some evidence is reported
in this work.
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1 Introduction

The procedure proposed by Lempel and Ziv in 1978 [LZ78] for lossless data compres-
sion is a rather simple and elegant string-match based algorithm. Its low complexity
and implementation simplicity has turned it into a very popular algorithm which is
used for instance in the compress program of UNIX operational system.

By selecting diferent combinations of the basic parameters of this algorithm many
variations can be established. In the result published in [FPC98] a version that
searches for double-string matches instead of the usual single-match is stated —
an improved performance was obtained. Extension to multiple string-match was
proposed in [PFP99]. Similar results were reported by Hartman and Rodeh in [HR85].

In this work the two most popular Lempel-Ziv variations, LZ78 and LZW [LZ78,
W84], has been cast in the framework of string-match with respect to two sets. We
also propose two new variations (designated lg-LZ and dt-LZ), which are inspired
and discussed in this new framework. Although the ultimate goal of finding new
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algorithms with improved is a motivation behind the algorithms proposed, the ime-
diate objective is to expand the ways of looking at the string matches algorithms and
hopefully to find better procedures.

This work is organized as follows: in Section 3, we present the idea of string match
with respect to two sets and establish a motivation by discussing two well-known
algorithms in the framework of matching with respect to two sets. A new algorithm
(lg-LZ) which is a simple variation of the Lempel-Ziv algorithm is also proposed in this
section. In Section 4 a version of double-match/double-tree algorithm is introduced.
Results obtained by computer simulation are presented in Section 5. Our conclusion
is then summarized in Section 5.

2 Notations

We establish the following notation for use in this work.

1. xf = T;Tiy1-.-T4, J > 1 denotes a finite sequence of symbols zy, i < k < j,
that take their values in a given set A = {ag, a1, -, a4-1} of cardinality |A|. If
j =1, this is the single symbol string x; and if i > j we will assume that z! is

the empty string.
2. || denotes the length, if a is a sequence, or the cardinality, if « is a set.
3. A denotes the null-length string, i.e. |A| = 0.

4. s; o s; denotes the concatenation of the strings s; and s;. (the result of the
concatenation will also be indicated by s;s; or s;,s;)

5. When si,sy,---,s; € A" are strings of symbols of lengths |[s1],[sz2|,- -, |sk| re-
spectively, the notation s¥ represents the string of length |s;| + [sa| + -+ + |sg]
formed by the concatenation of strings s; 0 sy 0 --- 0 sy.

6. The concatenation of the string ¢/ € £ = {lo,---,{z-1} and the set M =
{myg, -+, mypq 1} is the set

IM|-1

toM= |]J {fom}

=0
7. Let L= {lo,---,{j-1} and M = {my,---,mrq_1}. We define the concatena-
tion of these two sets by

|c|—1
LoM=[]{tioM}

i=0
8. [z] denotes the smallest integer greater than or equal to number z.

9. I[z|L], for |£]| > 0, is the longest string ¢; € L = {fo, -+, -1} which is a
prefix of z.



On Procedures for Multiple-string Match with Respect to Two Sets

10. X[s|L] is the unique integer index ¢ that identify the member ¢; € £ such that
gi = S.

11. z —y, when z = z;2;41 ---2; and y = ;241 - - - T, is a prefix of z, represents
the string x4 - - 7;.

12. F|z] is the length 1 prefix of z, if |z| > 0 else it is the empty string.
13. SJz] is the length |z| — 1 prefix of z.

14. ¢g[J], k > log J (base 2 logarithm) is the trivial k-bit binary representation of
the integer J.

3 The Idea of String Match Algorithm with Re-
spect to Two Sets

To establish the framework and the rationale behind our discussion, the well-known
string-match procedure proposed by Ziv and Lempel [LZ78] for data compression
will be presented, in the context of string match with respect to two sets. We will
undistinguishably refer to this as a double-tree string match context since the sets we
will be dealing with are tree-structured.

3.1 Lempel-Ziv Algorithm (LZ78)

Let us consider that zg = z) ' is the sequence of N symbols generated by the

information source which is to be encoded (each source symbol x; belongs to the
source alphabet A, of dyadic cardinallity for simplicity). Generally speaking the
Lempel-Ziv algorithm (LZ78) [LZ78] can be envisioned as divided in three tasks: The
first task, (parsing), which yields the unique parsing
.I'évjl = (EU e} mo), (61 ©) ml), T, (gt [¢) mt)
of the source sequence in t 4+ 1 phrases. The next task, (map to integers), assign each
phrase s; = (¢; o m;) to a unique pair of integers (.J;, K;) which are then, in the task
that follows (integer code), replaced (or encoded) by a binary representation according
to some rule to encode integer numbers into binary.

Specifically, the algorithm LZ78 [LLZ78] can be stated using the double-tree frame-
work by initially setting Lo = {A\, 20}, My = A and sy = (fp o my) = (Ao xy) = xp.
At a general step i, the sets £, ; and M;_; are known, the source string has been
parsed in ¢ phrases sg,---,s;_1 and there is a remaining unparsed string which will
be denoted by z;. The algorithm is described next.
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Algorithm LZ78

1=20

zgzxév’l

Lo={A\}, Mg=A

So = ¢y o mg with {5 = A and mg = x.
1< <t

1. Update unparsed string:
Z; —Z;—1 — (@'—1 © mz’—l)
2. Find longest match s; with respect to D; = L£;_1 o M;_1:
S; = H[ZZ|DZ] = gz om;,
with ¢; = T[z;|L; 1], and m; = TI[(z; — ;)| M;_1].
3. (i, Ki) = (X[G]Lia], Xmi|M;4])
4. Update L-tree:
£i = £i—1 U {Ez @) ]:[ml]}
M;=A

5. (Biaci) = (¢f10g|ﬁi71ﬂ [Ji]ﬂ ¢f10g|Mi71H [Kl])

The efficiency of a string match algorithm is closely related to the number ¢+ 1 of
phrases parsed off from the source string and to the rate of growth of the sets £ and
M. In the present case, LZ78, t + 1 phrases are generated and the N source symbols
will be represented by L binary symbols,

t t
L=> (IB]|+|Cil) = (t+ 1) log, | A + > |Bil,

rendering a p = L/N compression rate. If the source symbols are drawn from an
stationary source, the compression rate provedly [LZ78] converges to the entropy of
the source. The interplay between these two parameters is quite envolved [S97] and is
not our main concern. It is worth mentioning that Integer Codes more efficient than
the one used to produce the binary block (B;, C;) could be used. An improvement in
the above code, for instance, can be introduced simply by noticing that the phrase s;
which is parsed off at the i-th step, actually belongs to a set D; (called dictionary or
codebook)
Di=Li1oM;,

with some elements (or codewords) on it, which are not able to be selected as a match
to s; — the enumeration reserved for these are therefore a waste of bits. This is of
little concern to us at this point and the Integer Code as it is will be used with the
other algorithm versions discussed in the entire work.

The important point to be stressed in relation to the LZ78 is that no matter
the value of 4, the associated tree M; is kept fixed, equal to A. Whether there are
procedures which performs more efficiently, by allowing M;, the second dictionary
tree, to grow rather than be fixed, is a conjecture naturally raised. This issue is
examined on the next section. A variation of the LLZ78 which constructs the dictionary
D; in a sligthly different manner and which, for this reason, has a slightly better
performance will be presented. Example I ilustrates the workings of LZ78.
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Example 1
Let the sample string to be compressed be

Sample0 = z33 = aacabadababaacadabacabadadababaaaba

The quaternary source alphabet is A = {a,b,c,d}. The sequence {L; : i = 0,14}
of sets obtained with the LZ78 procedure, the corresponding phrases and binary
codewords obtained are next presented.

Step i =0

Zy = aacabadababaacadabacabadadababaaaba
,C() = {)\}, Mo - A

60 = )\, myp=a

so =Vlyomy =a, Wy =100

Stepi=1
Sp,Z1 = a,acabadababaacadabacabadadababaaaba
,Cl = {a}

lh=a, myg=c

Slzflomlzaoc, W1:1 10

Keep going like this will take us to

sy3z14 =a,ac,ab,ad,aba,b,aa,c,ada,ba,ca,bad,adab,abaa,aba

Ly = { a, ac, ab, ad, aba, b, aa, ¢, ada, ba, ca, bad, adab,
abaa }

S14 = aba )\, W14 = 0101 A

3.2 A Less Greedy LZ78

We observe, in the plain LZ78 discussed on Section 3.1, that the set £; is increasead
by one element at each step i, i.e., |£;| = |£;—1| + 1. The dictionary D; is built
by transforming the tree corresponding to £;_; into a complete tree having only
terminal nodes and nodes with exactly |A| branches stemming from them. This
greedy expansion of the set £; | seems to be one reason for the degraded performance
of the LZ78 algorithm, as compared to other variations, such as LZW for instance.
The variation introduced in this section (lg-LZ, in short), allows for a less-greedy
expansion in order to get the dictionary D;. The longest string match is not found
this time (lg-LZ), with respect to the dictionary D; = L, ; o M;_; but, instead, with
respect to the dictionary
Di = ['ifl U {Si ©) A}

The dictionary D; is now built by expanding the £;_; tree by appending to the node
corresponding to the path just selected as a longest match, the tree corresponding to
the alphabet A. The algorithm is stated next.
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Algorithm lg-LZ

1=0

Zy = xév_l

Lo=A My=A

So = g

Jo = X[so|A], By = fiog|.4n[Jo]
1<i<t

1. Update unparsed string
Z; = Zj—1 — Sj—1
2. Find longest match s; with respect to D; = L£; 1 U{s; joM; }
S; = H[Z1|DZ],
4. Bj = Ppiogp;n[Ji
5. Updating tree
Enew =8,.10 f[SZ]
if |€new| = |Sz| and S; §é Ei—l then gnew = S;
£i - £i—1 U {Enew}
M, =A

Also here we have s; = ¢;om; with, possibly, m; = A. The performances displayed
on Table 2, obtained by computer simulation show instances where the lg-LZ performs
better when compared to its counterpart LZW. The example presented next ilustrate
the workings of the lg-LZ.

Example II

Let x33 = aacabadababaacadabacabadadababaaaba. A = {a,b,c,d}. The pars-
ing that the procedure 1g-LZ yields is
a, ac, a, b, a, d, ab, aba, aca, da, ba, c, aba, da, dab, abaa, aba
The compressed representation of z3 is a binary string with 72 bits — compression
rate of 0.257

3.3 Lempel-Ziv-Welch Algorithm

The Lempel-Ziv-Welch procedure, popularly called LZW, is known to have a perfor-
mance on the average 10% better then the plain LZ78 version. One aspect that makes
the LZW different from LZ78 is that it works with a rule that build the dictionary
D; by appending only one node to the corresponding tree £;_;.

The following would be the description of the LZW algorithm.
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Algorithm LZW
=0

Zy — .fI}'[])V_I E() = A,
My = {\} and

So = Tp. EUZZL'()
1<1<¢

1. z;=2; 1 —8;
2. Find longest match with respect to D; = L£;_1U¥l;_1o M;_4

;= Ulz;|Li1],

s; = I[z;|Dj],
3. Ji = X[s;|Dj]
4. L; =D,

M; = {Flz; —s;]}
5. Bi:¢[log |D;|] [JZ]

Example III
Consider again Sample0 = z}® = aacabadababaacadabacabadadababaaaba with
A ={a,b,c,d}. This sequence is parsed into 20 phrases as follows
a, a, ¢, a, b, a, d, ab, aba, ac, ad, aba, ca, ba, da, da,
ba, ba, aa, ba

and its compressed representation is a binary string with 81 bits — a compression
rate of 0.289

4 Description of Double-tree Algorithms

In the previous section two known agorithms (LZ78 and LZW) and a simple variation
of the former (lg-LZ) were stated within the framework of a double-tree string match.
Each one of the algorithms produce a sequence of trees {L£;};—o; and corresponding
sequence of dictionaries {D;};—p; with a string match done with respect to each
dictionary. The basic difference among the three algorithms relies in the manner
in which the tree £,_; is concatenated with the corresponding M;_;, to build the
dictionary D;. Table 1 summarizes this aspect.

LZ78: |Dz| = |»Ci—1 o Mi_1|
< LMy
= |Lia]+ A

LZW: |Dz| = |»Ci—1 U Ez’—l o} Mi_1|
= |Li]+1

Table 1: Length of the dictionaries
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A point which is common to the three algorithms so far discussed is that they all
concatenate the set £;_; with a depth one tree in order to build their dictionaries.
It is quite natural at this point to ask whether there are procedures which performs
more efficiently when the second dictionary tree is allowed to have depth greater
than one. A double-tree string match algorithm, with a second tree having a more
general structure is stated in this section. Allowing a more general structure for the
second tree M, i, enlarge the number of algorithm variations that can be stated.
The search for string matches are now searches for double-matches — this imply that
more general ways to search are possible and that the longest-match is not necessarily
a concatenation of a string ¢; (which is the longest match with respect to the tree
L; 1) with the string m; (which is the longest match with respect to the tree M; ;).
Now, in order to optimize the number ¢ + 1 of parses, the best strategy is to search
for a concatenation (¢; o m;) which among all double-matches, have the largest size
|¢;|+|m;|. We have implemented one version of a double-match/double-tree procedure
and analysed their performance by computer simulations. The algorithm, which will
be, abreviatedly, referred to as dt-L.Z, is presented next.
Algorithm dt-LZ

i = 0 (Initialization step)

® ZOZZL'(])Vil
L4 ,C():M()ZA

o my = [I[zo| My,

o Ky= X[my|My);

o Cy = Piog |Mmo|] [Ko]

® 7z, =7y — my;

o My = MyU{mgo Flz]}
1 < i <t (Generic step)

1. Segmentation:
(a) € = lz;|L;],
Ziemp = 24 — gi:
m; = H[Ztemp|Mifl]v
T = |4 + |my;
u= gz
(b) i. u= Su]
Ziemp — Z; — U
v = [Ztemp | Mi1].
i. If (Ju|+ |v| >7): (6iymy) = (u,v), 7= |{;| + |my|.
iii. If Ju] > 0 return to step (i).

(C) z;, = (Zi — gz) —m;
2. Update Dictionaries:
,Ci = 'Cifl U {gl e} f[mz]}
M; = M; 1 U{m,; o Flz;]}
3. Map to Integer
(/i K;) = (X[G] L], X[my[M;4])
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4. Integer Code:
(Bi, Ci) = (Siog 1ci—in[Jil: Prioglmti—i [K])

Example IV

Let 23> = aacabadababaacadabacabadadababaaaba. A = {a,b,c,d}. The pars-
ing for the procedure dt-LZ yields is
(-,a), (a,c), (a,b), (a,d), (a,ba), (b,aa), (c,a), (d,a), (ba,ca),
(ba,da), (da,bab), (a,aa),(b,a).
where we show the double-matches displayed in parenthesis.

5 Some Computer Simulation Results

The algorithms discussed have been implemented as computer programs which were
used to compress some sample sequences. Although the performance of all these
algorithms are optimum in the sense that their compression rate asymptotically con-
verges to the entropy of the information source or to the Lempel-Ziv complexity of
the individual sequence, they perform quite differently when finite sequences and the
rate of convergence to the asymptotic optimum are considered. Table 2 displays some
of the simulation results exhibiting the performance of the algorithms. We have not

Sequence | LZW | 1g-LZ | dt-LZ
(size) (size) | (size) | (size)
SampleO 289 | 257 311
(280) 81) | (72) | (87)
Samplel 089 | .099 | .097
(576) (61) | (57) | (56)
Sample2 | .077 | .086 | .103
(544) (42) | (47) | (56)
Sample3 | .357 | .371| .335
(672) | (240) | (249) | (225)
Sampled | .258 | .113| .320
(256) (66) | (29) | (82)

Table 2: Compression rate of algorithms LZW, 1g-LZ and dt-LZ (all sequence sizes,
in parenthesis, are in bits)

presented results for the LZ78 algorithm. As the other versions this algorithm is
asymptotically optimum but has an inferior perfomance as compared to the LZW.
As it can be noticed from the results presented in Table 2 the behavior of the algo-
rithms are sequence dependent. For some sequences the LZW can achieve a better
result than the lg-LZ — this gain is basically due to the penalty paid by the lg-LZ
for expanding the first tree with A nodes to build the dictionary, instead of the one
node expansion done by the LZW. This gain in performance tend to disappear as
the sequence length grows larger. Examining the line on Table 2 corresponding to
Sample4 one can see that the performance of 1g-LZ can converge considerably fast



Proceedings of the Prague Stringology Club Workshop 99

to the optimum, as compared to LZW, for certain types of sequences. These are
sequences constructed to benefit the performance of 1g-LZ (no such construction can
be done, we conjecture, to benefit LZW).

Conclusion

We have proposed algorithms which are based on the idea of string matches with
respect to two sets or, equivalently, string match with respect to two trees. Many
implementations variations of these algorithms are possible — a double-string match
with respect to two trees version (called dt-LZ) was implemented.

In our preliminary investigation we exam the behavior of these algorithms and
analyse its performance by computer simulation. Also we stated the well known
LZ78 algorithm [LZ78] in the framework of string match with respect to two trees, as
well as the LZW [W84]. A simple modification of the LZ78 was also proposed (this
was called 1g-LZ).

It is our expectation that higher compression can be achieved with double-string
match with respect to two trees procedures. This is based on the argument that
the use of two trees allows the construction of concatenated trees with more general
structures, leaving more room for optimizing the search. It is also based on results we
have obtained with multiple-string matches algorithms [PFP99] — which achieve a
better compression than single-matches ones. These multiple-string match algorithms
are based on the double-tree idea yet the two trees involved in the process are kept
equal.

The results presented in this work do not single out a definite better double-
match/double-tree algorithm — if one can be found — but bring to our attention
that there are many variations. Our investigations will be further pursued by exam-
ining other double-match /double-tree implementations. An extension of the multiple-
match described in [PFP99] will also be sought.
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