
A Fast String Mathing Algorithm and

Experimental Results

T. Berry and S. Ravindran

Department of Computer Siene

Liverpool John Moores University

Liverpool L3 3AF

United Kingdom

e-mail: fT.BERRY,S.RAVINDRANg�livjm.a.uk

Abstrat. In this paper we present experimental results for string mathing

algorithms whih have a ompetitive theoretial worst ase run time omplexity.

Of these algorithms a few are already famous for their speed in pratie, suh

as the Boyer-Moore and its derivatives. We hose to evaluate the algorithms by

ounting the number of omparisons made and by timing how long they took

to omplete a given searh. Using the experimental results we were able to

introdue a new string mathing algorithm and ompared it with the existing

algorithms by experimentation. These experimental results learly show that

the new algorithm is more eÆient than the existing algorithms for our ho-

sen data sets. Using the hosen data sets over 1,500,000 separate tests were

onduted to determine the most eÆient algorithm.

Key words: string mathing, pattern mathing, algorithms on words.

1 Introdution

Many promising data strutures and algorithms disovered by the theoretial ommu-

nity are never implemented or tested at all. Moreover, theoretial analysis (asymp-

toti worst-ase running time) will show only how algorithms are likely to perform in

pratie, but they are not suÆiently aurate to predit atual performane. In this

paper we show that by onsiderable experimentation and �ne-tuning of the algorithms

we an get the most out of a theoretial idea.

The string mathing problem [CR94℄ has attrated a lot of interest throughout the

history of omputer siene, and is ruial to the omputing industry. String mathing

is �nding an ourrene of a pattern string in a larger string of text. This problem

arises in many omputer pakages in the form of spell hekers, searh engines on the

internet, �nd utilities on various mahines, mathing of DNA strands and so on.

Setion 2 desribes string mathing algorithms whih are known to be fast. Se-

tion 3 gives experimental results for these algorithms. From the �ndings of the exper-

imental results disussed in Setion 3, we identify two fast algorithms to produe a

new algorithm. The new algorithm is desribed in Setion 4. In Setion 5 we ompare

the new algorithm with the existing algorithms.

16



A Fast String Mathing Algorithm and Experimental Results

2 The String Mathing Algorithms

String mathing algorithms work as follows. First the pattern of length m, P [1::m℄,

is aligned with the extreme left of the text of length n, T [1::n℄. Then the pattern

haraters are ompared with the text haraters. The algorithms an vary in the

order in whih the omparisons are made. After a mismath is found the pattern

is shifted to the right and the distane the pattern an be shifted is determined

by the algorithm that is being used. It is this shifting proedure and the speed at

whih a mismath is found whih is the main di�erene between the string mathing

algorithms.

In the Naive or Brute Fore (BF) algorithm, the pattern is aligned with the

extreme left of the text haraters and orresponding pairs of haraters are ompared

from left to right. This proess ontinues until either the pattern is exhausted or a

mismath is found. Then the pattern is shifted one plae to the right and the pattern

haraters are again ompared with the orresponding text haraters from left to

right until either the text is exhausted or a full math is obtained. This algorithm an

be very slow. Consider the worst ase when both pattern and text are all a's followed

by a b. The total number of omparisons in the worst ase is O(nm). However, this

worst ase example is not one that ours often in natural language text.

An improved version of the BF algorithm, the Not So Naive (NSN) algorithm

[HA93℄, hanges the order of the omparisons. Suppose the pattern is aligned with the

text haraters, �rst the seond pattern harater is ompared with the orresponding

text harater followed by omparisons of the rest of the pattern with orresponding

text haraters, and then the last haraters to be ompared are the �rst harater

of the pattern and the text harater it is aligned with. A shift of two is made if a

mismath is made with the seond harater of the pattern and the �rst two haraters

of the pattern are the same, or if the seond harater of the pattern mathes the

text but a mismath ours and the �rst two haraters are not equal.

The number of omparisons an be redued by moving the pattern to the right

by more than one position when a mismath is found. This is the idea behind the

Knuth-Morris-Pratt (KMP) algorithm [KMP77℄. The KMP algorithm starts and

ompares the haraters from left to right the same as the BF algorithm. When a

mismath ours the KMP algorithm moves the pattern to the right by maintaining

the longest overlap of a pre�x of the pattern with a suÆx of the part of the text

that has mathed the pattern so far. After a shift, the pattern harater ompared

against the mismathed text harater has to be di�erent from the harater that

mismathed. The KMP algorithm takes at most 2n harater omparisons. The

KMP algorithm does O(m+ n) operations in the worst ase.

The Colussi (COL) [CO91℄ algorithm is an improvement of the KMP algorithm.

The number of harater omparisons is 1.5n in the worst ase. The set of pattern

positions is divided into two disjoint subsets due to the ombinatorial properties

of their positions. First the omparisons are performed from left to right for the

haraters at positions in the �rst set. If there is no mismath, the haraters at

positions in the seond set are ompared from right to left. This strategy redues the

number of omparisons.

Galil and Gianarlo (GG) [GG92℄ improved the COL algorithm by reduing the

number of harater omparisons in the worst ase to

4

3

n. In these algorithms the

17



Proeedings of the Prague Stringology Club Workshop '99

preproessing takes O(m) time.

The Boyer-Moore (BM) algorithm [BM77℄ di�ers in one main feature from the

algorithms already disussed. Instead of the haraters being ompared from left to

right, in the BM algorithm the haraters are ompared from right to left starting with

the rightmost harater of the pattern. In a ase of mismath it uses two funtions, last

ourrene funtion and good suÆx funtion and shifts the pattern by the maximum

number of positions omputed by these funtions. The good suÆx funtion returns

the number of positions for moving the pattern to the right by the least amount, so

as to align the already mathed haraters with any other substring in the pattern

that are idential. The number of positions returned by the last ourene funtion

determines the rightmost ourrene of the mismathed text harater in the pattern.

If the text harater does not appear in the pattern then the last ourene funtion

returns m. The worst ase running time of the BM algorithm is O(mn).

The Turbo Boyer-Moore (TBM) algorithm [CC94℄ and the Apostolio-Gianarlo

(AG) algorithm [AG86℄ are ameliorations of the BM algorithm. When a partial math

is made between the pattern and the text these algorithms remember the haraters

that mathed and do not ompare them again with the text. The TBM algorithm

and the Apostolio-Gianarlo algorithm perform in the worst ase at most 2n and

1.5n harater omparisons respetively [CL97b℄.

The Horspool (HOR) algorithm [HO80℄ is a simpli�ation of the BM algorithm. It

does not use the good suÆx funtion, but uses a modi�ed version of the last ourrene

funtion. The modi�ed last ourrene funtion determines the right most ourrene

of the (k +m)th text harater, T [k +m℄ in the pattern, if a mismath ours when

a pattern is aligned with T [k::k + m℄. This algorithm hanges the order in whih

haraters of the pattern are ompared with the text. It ompares the rightmost

harater in the pattern �rst then ompares the leftmost harater, then all the other

haraters in asending order from the seond position to the m� 1th position.

The Raita (RAI) algorithm [RA92℄ again hanges the order in whih haraters of

the pattern are ompared with the text. The proess used to ompare the rightmost

harater of the pattern, then the leftmost harater, then the middle harater and

then the rest of the haraters from the seond to the (m � 1)th position. If at any

time during the proedure a mismath ours then it performs the shift as in the

HOR algorithm.

The Quiksearh (QS) algorithm [SU90℄ is similar to the HOR algorithm and the

RAI algorithm. It does not use the good suÆx funtion to ompute the shifts. It

uses a modi�ed version of the last ourrene funtion. Assume that a pattern is

aligned with the text haraters T [k::k+m℄. After a mismath the length of the shift

is at least one. So, the harater at the next position in the text after the alignment

(T [k+m+1℄) is neessarily involved in the next attempt. The last ourrene funtion

determines the right most ourrene of T [k+m+ 1℄ in the pattern. If T [k+m+ 1℄

is not in the pattern the pattern an be shifted by m+1 positions. The omparisons

between text and pattern haraters during eah attempt an be done in any order.

The Maximal Shift (MS) algorithm [SU90℄ is another variant of the QS algorithm.

The algorithm is designed in suh a way that the pattern haraters are ompared in

the order whih will give the maximum shift if a mismath ours.

The Smith (SMI) algorithm [SM91℄ uses HOR and Quik Searh last ourrene

funtions. When a mismath ours, it takes the maximum values between these

18



A Fast String Mathing Algorithm and Experimental Results

funtions.

The Zhu and Takaoka (ZT) algorithm [ZT87℄ is another variant of the BM algo-

rithm. The omparisons are done in the same way as BM (i.e. from right to left)

and it uses the good suÆx funtion. If a mismath ours at T [i℄, the last ourrene

funtion determines the right most ourrene of T [i � 1::i℄ in the pattern. If the

substring is in the pattern, the pattern and text are aligned at these two haraters

for the next attempt. The shift is m, if the two harater substring is not in the

pattern.

Searhing an be done in O(n) time using a minimal Deterministi Finite Automa-

ton (DFA) [SI93℄. This algorithm uses O(�m) spae and O(� + m) pre-proessing

time, where � is the size of the alphabet. The Simon (SIM) algorithm [SI93℄ redues

the pre-proessing time and the spae to O(m).

The pre-proessing is needed for the algorithm to alulate the relevant shifts upon

a mismath/math exept for the BF algorithm whih has no pre-proessing. The

pre-proessing ost of the algorithms does not e�et the eÆieny of the algorithms

as they are relatively very small and all are approximately the same.

3 Experimental Results of the Existing

Algorithms

Monitoring the number of omparisons performed by eah algorithm was hosen as a

way to ompare the algorithms. All the algorithms were oded in C and their C ode

are taken from [CL97a℄ and animations of the algorithms an be found at [CL98℄.

This olletion of string mathing algorithms were easy to implement as funtions

into our main ontrol program. The algorithms were oded as their authors had

devised them in their papers. The main ontrol program read in the text and pattern

and had one of the algorithms to be tested inserted into it for the searhing proess.

The main ontrol program was the same for eah algorithm and so did not a�et the

performane of the algorithms. Eah algorithm had an integer ounter inserted into

it, to ount the number of omparisons made between the pattern and the text. The

ounter was inremented by one eah time a omparison was made.

A random text of 200,000 words from the UNIX English ditionary was used for

the �rst set of experiments. The random text was onstruted so as to simulate an

atual English text. All the letters in the UNIX ditionary were made lower ase

to inrease the probability of a math. In English text roughly only every 1 in 10

words begin with a apital letter. We deided to number eah of the words in UNIX

ditionary from 1 to 25,000. Then we used a pseudo random number generator to pik

words from the UNIX ditionary and plae them in the random text. Separating eah

word by a spae harater. Puntuation was also removed as we were onerned with

�nding words and the puntuation would not e�et the results obtained. The reason

for using a large text (200,000 words) was to ensure that as many of the 25,000 words

in the UNIX English ditionary ourred somewhere in the random text generated.

For eah pattern in the ditionary, we searhed the text (of 200,000 words) for the

�rst ourrene of the pattern.

The text was searhed for eah word in the UNIX ditionary and the results are

given in Table 1. The �rst olumn in Table 1 is the length of the pattern. The seond

19



Proeedings of the Prague Stringology Club Workshop '99

olumn is the number of words of that length in the UNIX English ditionary. For

example, for a pattern length of 7, 4042 test ases were arried out and the average

number of harater omparisons made by the KMP algorithm was 197,000 (to the

nearest 1000). The average was alulated by taking the total number of omparisons

performed to �nd all 4042 ases and dividing this number by 4042. These olumns

are arranged in desending order of the average of the total number of omparisons

of the algorithms. An interesting observation is that for (almost) eah row the values

are in desending order exept for the last two olumns.

p. len num. BF KMP DFA SIM NSN COL GG BM AG HOR RAI TBM MS QS ZT SMI

2 133 7 7 7 7 6 6 6 3 3 3 3 3 2 2 3 2

3 765 38 38 37 37 37 37 37 13 13 13 13 13 11 10 13 10

4 2178 82 82 80 80 80 79 79 23 23 23 23 22 19 19 22 18

5 3146 151 150 145 145 145 145 145 34 34 34 34 34 30 30 32 28

6 3852 186 185 179 179 179 178 178 36 36 36 36 36 33 32 33 30

7 4042 198 197 191 191 191 190 190 34 34 34 34 34 32 31 30 28

8 3607 205 204 197 197 197 196 196 32 32 31 32 31 30 29 27 26

9 3088 212 211 204 204 204 203 203 30 30 30 30 30 29 28 25 24

10 1971 220 219 212 212 212 210 210 29 29 29 29 29 28 27 24 23

11 1120 209 207 201 201 200 198 198 26 26 26 26 25 25 24 21 21

12 593 218 217 210 210 209 207 207 25 25 25 25 25 24 24 21 20

13 279 224 222 215 215 213 212 212 24 24 24 24 24 23 23 19 19

14 116 228 227 220 220 219 217 217 23 23 23 23 23 23 23 19 19

15 44 151 150 144 144 143 142 142 15 15 15 15 14 14 14 11 12

16 17 227 225 217 217 215 214 214 20 21 21 21 20 20 20 18 16

17 7 233 231 222 222 221 218 218 20 20 20 20 19 19 20 15 16

18 4 236 234 225 225 223 221 221 19 20 20 20 19 19 20 14 16

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 1 132 131 122 122 121 119 119 10 10 10 10 10 10 10 7 8

21 2 311 309 295 295 290 288 288 24 24 25 25 23 23 24 15 18

22 1 491 486 455 455 451 445 445 33 33 33 33 33 31 34 22 27

total 24966 180 179 174 174 173 172 172 31 31 30 30 30 28 28 27 25

Table 1: Results of searhing a text of 200,000 words for eah word in the UNIX ditionary.

The algorithm with the largest number of omparisons is the BF algorithm. This

is beause the algorithm shifts the pattern by one plae to the right when a mismath

ours, no matter how muh of a partial/full math has been made. This algorithm

has a quadrati worst ase time omplexity. But the KMP algorithm whih has a lin-

ear worst ase time omplexity, does roughly the same number of omparisons as the

BF algorithm. The reason for this is that in a natural language a multiple ourrene

of a substring in a word is not ommon. For the same reason, the KMP variants,

COL and GG algorithms have only a small improvement over the KMP algorithm.

Other linear time algorithms, DFA and SIM, also have roughly the same number of

omparisons as the BF algorithm. We will see below that the other quadrati worst

ase time omplexity algorithms perform muh better than these linear worst ase

time algorithms. This is a good example showing that asymptoti worst-ase running

time analysis an be indiative of how algorithms are likely to perform in pratie,

but they are not suÆiently aurate to predit atual performane.

The BM algorithm uses the good suÆx funtion to alulate the shift whih de-

pends on a reourrene of a substring in a word. But, it also uses the last ourrene

funtion. It is this last ourrene funtion that redues the number of omparisons

signi�antly. In pratie, on an English text, the BM algorithm is three or more times

faster than the KMP algorithm [SG82℄. >From Table 1 one an see that the KMP

algorithm is takes six times more omparisons than the BM algorithm on average.

The other algorithms, TBM, AG, HOR, RAI, QS, MS, SMI and ZT, are variants of

the BM algorithm. The number of omparisons for these algorithms is roughly the

same number as in the BM algorithm.

The SMI algorithm and the ZT algorithm do the least number of omparisons for

pattern lengths less than or equal to twelve and greater than twelve respetively.

20



A Fast String Mathing Algorithm and Experimental Results

4 The New Algorithm - the BR algorithm

>From the �ndings of the experimental results disussed in setion 3, it is lear that

the SMI and ZT algorithms have the lowest number of omparisons among the others.

We ombined the alulations of a valid shift in SMI and ZT algorithms to produe

a more eÆient algorithm. If a mismath ours when the pattern P [1::m℄ is aligned

with the text T [k + 1::k +m℄, the shift is alulated by the rightmost ourrene of

the substring T [k+m+1::k+m+2℄ in the pattern. If the substring is in the pattern

then the pattern and text are aligned at this substring for the next attempt. This

an be done shifting the pattern as shown in the table below. Let � be a wildard

harater that is any harater in the ASCII set. Note that if T [k+m+1::k+m+2℄

is not in the pattern, the pattern is shifted by m+ 2 positions. The total number of

omparisons in the worst ase is O(nm).

T [k +m+ 1℄ T [k +m+ 2℄ Shift

� P [1℄ m+ 1

P [i℄ P [i+ 1℄ m� i+ 1, 1 � i � m� 1

P [m℄ � 1

Otherwise m+ 2

For example, the following shifts would be assoiated with the pattern, onion.

T [k +m+ 1℄ T [k +m+ 2℄ Shift

� o 6

o n 5

n i 4

i o 3

o n 2

n � 1

Otherwise 7

After a mismath the alulation of a shift in our BR algorithm takes O(1) time.

Note that for the substrings ni and n* have a value of 4 and 1 respetively. This

ambiguity an be solved by the higher shift value being overwritten with the lower

value. We will explain this later in this setion. For a given pattern P [1::m℄ the

preproessing is done as follows, and it takes O(�

2

) time.

There are 128 haraters in the ASCII set and (128)2 = 16384 distint pairs. We

de�ne an array Shift Array (SA) of length 16384 and initialise it to m + 2. Using a

hash funtion we insert the values for eah pair and the hash funtion we use is:

T [m+k+1℄� 127+T [m+k+2℄ where for P [m+k+1℄ and P [m+k+2℄ we use

their ASCII values. This gives eah pair of harater a distint value in SA and we

insert into the SA the shift for the pair. If the same pair ours more than one then

the lower shift value overwrites the higher value. So for example for the pair [i℄[o℄ we

would insert the value 3 at the [105� 127℄ + 111 = 13446th position in SA.

[wildard℄[o℄ = 6 all array positions that satisfy x[0℄mod127 = 111mod127 = 6

[o℄[n℄ = 5 position 111� 127 + 110 = 14207

[n℄[i℄ = 4 position 110� 127 + 105 = 14075

[i℄[o℄ = 3 position 105� 127 + 111 = 13446

[o℄[n℄ = 2 position 111� 127 + 110 = 14207

[n℄[wildard℄ = 1 position 110� 127 + 0::127 = 13970::14097

The order of performing the steps is important in ensuring the orret values

appear in the array. Note that the higher values have been over written by the lower

21



Proeedings of the Prague Stringology Club Workshop '99

values.

In the RAI algorithm the �rst and last haraters of the pattern are made variables.

This uts down the number of array look ups performed during a searh. We adapted

this idea to our algorithm and ompared the least frequent pattern harater with

its orresponding text harater. We then repeated the proess for the seond least

frequent harater and then the rest of the haraters in order from right to left.

The UNIX ditionary used in the tests was used to see how many times eah letter

ourred in the ditionary. The frequeny of eah letter is given in the following hart.

letter frequeny ranking letter frequeny ranking letter frequeny ranking

a 16395 25 j 432 3 s 10167 19

b 4110 10 k 1923 6 t 12789 22

 8209 17 l 10013 18 u 6476 16

d 5763 14 m 5822 15 v 1890 5

e 20083 26 n 12062 20 w 1950 7

f 2660 8 o 12696 21 x 616 4

g 4125 11 p 5514 13 y 3618 9

h 5179 12 q 377 1 z 429 2

i 13963 24 r 13409 23

Note that we hoose the haraters in the pattern that have the lowest ranking.

If the harater is not in the pattern then it has a ranking of 0 and is hosen as the

least frequent harater.

We now give an example of our BR algorithm in ation to �nd the pattern onion.

The SA array for the pattern onion were used to alulate the shift after a mismath.

P [2℄ is the least frequent and P [5℄ is the next least frequent harater.

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismath shift on SA([n℄[t℄) = 110 � 127 + 116 = SA[14086℄ = 1

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismath shift on SA([t℄[℄) = 116 � 127 + 32 = SA[14764℄ = 7.

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismath shift on SA([s℄[t℄) = 115 � 127 + 116 = SA[14721℄ = 7

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismath shift on SA([℄[o℄) = 32 � 127 + 111 = SA[4175℄ = 6.

w e w a n t t o t e s t w i t h o n i o n

= = = = =

5 1 4 3 2

o n i o n

So the word onion is found in 9 omparisons in a text of length 26. On the above

full math the order in whih the omparisons are onduted is shown on the third

row.

22



A Fast String Mathing Algorithm and Experimental Results

5 Experimental Results and Comparisons with the

BR Algorithm

We selet the best nine algorithms from the results in Table 1 and the KMP algorithm,

and ompare with our BR algorithm. Experiments were arried out for di�erent

random texts as desribed in Setion 3. The texts were onstruted by randomly

hoosing words from the UNIX English ditionary. There were 2 di�erent texts of

10,000 words, a text of 50,000 words and a text of 100,000 words. The results are

desribed in Tables 3-6 (see appendix) respetively. Tables 3-6 (whih an be found

in the appendix at the bak of this paper) show the average number of omparisons

required for a searh for the given pattern length. They are based on taking the total

number of omparisons for the searh for all the patterns of a length and dividing the

number by the number of patterns of that size to give the average. So for example,

in Table 3 the BM algorithm takes 12,000 omparisons (to the nearest thousand) on

average if the pattern length is 7. From these tables one an observe that the relative

order of their performane is the same as in Table 1. The main observation is that

the BR algorithm performs better than the other algorithms for all pattern lengths

and for all texts used in the experiments.

p. len. num. KMP AG BM HOR RAI TBM MS QS ZT SMI

2 133 199.98 93.96 93.96 94.00 93.96 93.89 35.94 32.92 93.96 31.48

3 765 366.02 64.09 64.18 64.20 64.19 63.70 28.78 28.21 60.03 24.93

4 2178 449.02 50.97 51.11 50.86 50.90 50.77 28.25 25.77 43.19 19.73

5 3146 540.11 44.91 45.02 44.58 44.46 44.72 28.33 26.47 33.91 18.13

6 3852 626.30 42.58 42.42 41.83 41.68 41.91 30.02 27.32 27.71 16.42

7 4042 719.01 42.07 41.38 40.92 41.00 40.72 31.49 28.83 24.94 16.08

8 3607 807.61 40.76 40.58 40.28 40.35 39.95 32.27 30.10 21.67 15.49

9 3088 896.18 41.85 41.52 40.92 40.84 40.69 34.75 32.19 19.29 15.45

10 1971 982.63 42.38 42.19 41.69 41.79 41.16 36.62 34.37 17.75 15.64

11 1120 1067.87 44.91 44.14 43.67 43.79 42.97 38.57 37.18 17.06 16.32

12 593 1164.14 45.36 45.28 44.58 44.68 44.20 40.06 39.28 16.14 17.34

13 279 1245.53 48.85 47.88 47.22 47.32 46.36 42.26 41.61 12.65 17.54

14 116 1322.70 46.46 46.74 46.46 46.60 45.16 42.62 42.26 11.32 17.03

15 44 1426.02 50.78 51.20 51.51 51.59 49.23 44.73 45.29 8.72 19.00

16 17 1527.28 48.99 49.34 50.44 50.60 47.37 46.60 49.06 24.80 20.02

17 7 1598.50 45.09 45.29 44.51 44.58 43.42 40.22 45.01 6.72 16.95

18 4 1700.81 50.34 50.58 53.96 54.06 48.54 50.12 53.59 6.09 22.21

19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 1 1948.74 58.37 58.37 58.12 58.07 58.37 52.25 63.51 3.01 29.43

21 2 1947.96 58.13 57.38 63.98 63.99 56.32 57.59 57.50 2.22 21.84

22 1 2129.14 50.97 50.97 49.87 49.89 50.97 45.07 55.43 1.04 25.09

total 24992 737.56 43.54 43.29 42.83 42.82 42.65 32.00 29.72 26.09 16.66

Table 2: The average di�erene between eah of the existing algorithms and our BR algorithm as a perentage.

Table 2 summarises the results of Tables 3-6. The entries in Table 2 are in per-

entage form and desribe how many fewer omparisons our BR algorithm uses, when

ompared with the existing algorithms. The �gures are an average of the four di�er-

ent texts used. To alulate the di�erene as a perentage between our BR algorithm

and the existing algorithms we used the following formula. The average number of

omparisons was taken from the relevant ell in Tables 3-6 and divided by the value

for that pattern length for our BR algorithm. This value was then deduted by 1

and multiplied by 100 to give the perentage di�erene between the two algorithms.

An interesting observation of the existing algorithms when ompared with the BR

algorithm, is that for eah individual text the perentages were within 1% for eah

spei� algorithm. Eah value in Table 2 is alulated by taking the di�erene as a

perentage between eah algorithm and our BR algorithm for eah pattern length,

adding them together and dividing by 4. For example, for a pattern length of 4 the

BM algorithm takes on average 51.11% more omparisons than our BR algorithm.

The result of a full searh for the ditionary over all four texts is given in the last

23



Proeedings of the Prague Stringology Club Workshop '99

row of Table 2. From this we an see that the BM algorithm took on average 43.54%

more omparisons than our BR algorithm (see 5th olumn, last row) for a omplete

searh for all the words in the ditionary.

Further to ounting the number of omparisons we time the algorithms. The

saving in the number of omparisons may be paid for by extra overhead due to

aessing the preomputed shift table. We timed the searh of the medium text of

50,000 words for all ourrenes of the words in the UNIX ditionary. We used a 486-

DX66 with 8 megabytes of RAM and a 100 megabyte hard drive running SUSE 5.2.

In Table 7, the total number of omparisons for the searh are given along with the

time taken by eah algorithm for the searh, inluding any preproessing performed

by the algorithm. The number of omparisons are redued by a fator of 1000. i.e.

for BF 10911786 means 10911786000 omparisons.

medium1 book1 book2 papers

number time % dif BR num. omp. time se. % dif. BR time % dif. BR time % dif. BR

BF 10911786 1315m 13s 528.54

KMP 10433340 1341m 25s 541.06

DFA 10433340 892m 59s 326.75

SIM 10433340 1688m 18 706.83

NSN 10482487 777m 52s 271.74

BM 2002822 371m 51s 77.71 3602739 674m 79.73 663s 69.57 264s 58.08

AG 2005310 972m 10s 364.60

HOR 1985219 244m 41s 16.93 3580863 442m 17.87 446s 14.07 249s 49.10

RAI 1998657 238m 27s 13.95 3601251 431m 14.93 434s 11.00 173s 3.59

MS 1815486 318m 49s 52.36

QS 1785730 245m 58s 17.55 3189368 444m 18.40 452s 15.60 180s 7.78

ZT 1761716 420m 55s 101.15

TBM 1683516 1166m 4s 457.26

SMI 1621591 280m 41s 34.14 2930285 513m 36.80 514s 31.46 207s 23.95

BR 1489839 209m 15s n/a 2682916 375m n/a 391s n/a 167s n/a

Table 7: Timing for a omplete searh for the ditionary in the given texts.

>From this table we an see that the algorithms that take a high number of

omparisons are quite slow as well. The lower the number of omparisons the better

the time. Although putting the algorithms in order of how many omparisons they

take from highest to lowest starting at the BM we get the list: BM, RAI, AG, HOR,

MS, QS, ZT, TBM, SMI and the BR. If we do the same for the timings we get ZT,

BM, MS, SMI, QS, RAI and the BR. The reason for the di�erene in the lists is due

to overheads in traversing the data strutures whih are present in the algorithms

for the alulation of the orret shift value. Also the pre-proessing of some of the

algorithms are expensive. So we an not assume that beause an algorithm takes a

fewer number of omparisons that it will be more eÆient than another.

We an also save time by performing the omparisons as in the RAI algorithm.

This is done by making the least and seond least likely haraters variables instead

having to look them up in the pattern array. Although ounting the omparisons is

a good estimate of whih algorithm is the best to use we have to atual time the

algorithms to �nd the best algorithm for the task of string mathing.

We repeated the tests for the medium text for the book1 text for the 5 algorithms

with the best times and our BR algorithm. From Table 7 we an see that our BR

algorithm is still the quikest and the other algorithms are still over 14% more time

than our algorithm. So our �ndings for a random text hold for this real English

text. We then onsidered two other texts, book2 and the six papers onatenated

together from the Calgary orpus [CAL℄. We searhed for 500 random words from the

UNIX ditionary again for the best 5 algorithms and our BR algorithm. The results

doumented in Table 7 show that algorithm is the fastest algorithm for these tests.

The main reason for the speed of our BR algorithm is the improved maximum shift

24



A Fast String Mathing Algorithm and Experimental Results

of m+ 2 and the searhing on the least likely to our haraters.

Conlusions

The experimental results show that the BR algorithm is more eÆient than the exist-

ing algorithms in pratie for our hosen data sets. Over our 4 random texts and 3 real

texts where the BR algorithm is ompared to the existing algorithms, our algorithm

is omfortably more eÆient over eah text. With the addition of puntuation and

apital letters it does not a�et the BR algorithm. If the pattern to be searhed for

began with a apital letter then this would make the apital letter the least frequent

harater and so it would be searhed for �rst. We would expet the probability of

a mismath to rise and so the algorithm would speed up onsiderably. So in the real

world we would expet our savings to remain and make our BR algorithm ompetitive

with the existing algorithms. It is also possible to apply some of our �nding to what

makes a fast algorithm to the existing algorithms. This may make them faster but

we were onerned with the original algorithms that were devised by their authors.

Aknowledgments

We wish to thank Carl Bamford for omments and suggestions made to us during the

writing of this paper.

Referenes

[AG86℄ Apostolio A., Gianarlo R., "The Boyer-Moore-Galil string strategies re-

visited", SIAM Journal of Computing, 15(1), pages 98-105, 1986.

[BM77℄ Boyer R. S., Moore J. S., "A fast string searhing algorithm", Communi-

ations of the ACM, 23(5), pages 1075-1091, 1977.

[CAL℄ Calgary Corpus available at:

ftp://ftp.ps.ualgary.a/pub/projets/text.ompression.orpus/

[CL97a℄ Charras C., Leroq T., Exat string mathing available at:

HTTP://www.dir.univ-rouen.fr/ leroq/string.ps, 1997.

[CL98℄ Charras C., Leroq T., Exat string mathing animation in JAVA available

at: HTTP://www. dir.univ-rouen.fr/ harras/string/, 1998.

[CO91℄ Colussi L., "Corretness and eÆieny of the pattern mathing algo-

rithms", Information Computing, 95(2), pages 225-251, 1991.

[CC94℄ Crohemore M., Czumaj A., G�asienie L., Jarominek T., Leroq T.,

Plandowski W., Rytter W., "Speeding up two string mathing algorithms",

Algorithmia, 12(4), pages 247-267, 1994.

[CL97b℄ Crohemore M., Leroq T., "Tight bounds on the omplexity of the

Apostolio-Gianarlo algorithm", Information Proessing Letters, 63(4),

pages 195-203, 1997.

25



Proeedings of the Prague Stringology Club Workshop '99

[CR94℄ Crohemore M., Rytter W., "Text algorithms", Oxford University Press,

1994.

[GG92℄ Galil Z., Gianarlo R., "On the exat omplexity of string mathing: upper

bounds", SIAM Journal of Computing, 21(3), pages 407-437, 1992.

[HA93℄ Hanart C., "Analyse exate et en moyenne d'algorithmes de reherhe

d'un motif dans un texte". Th�ese de dotorat de l'Universit�e de Paris 7,

Frane, 1993.

[HO80℄ Horspool R. N., "Pratial fast searhing in strings". Software Pratie

and Experiene. 10(6), pages 501-506, 1980.

[KMP77℄ Knuth D. E., Morris Jr J. H., Pratt V. R., "Fast pattern mathing in

strings", SIAM Journal of Computing, 6(1), pages 323-350, 1977.

[RA92℄ Raita T., "Tuning the Boyer-Moore-Horspool string searhing algorithm",

Software Pratie and Experiene, 22(10), pages 879-884, 1992.

[SI93℄ Simon I., "String mathing algorithms and automata", First Amerian

Workshop on String Proessing, ed. Baeza-Yates and Ziviani, pages 151-

157. Universidade Federal de Minas Gerais, 1993.

[SM91℄ Smith P. D., "Experiments with a very fast substring searh algorithm",

Software Pratie and Experiene, 21(10), pages 1065-1074, 1991.

[SG82℄ de Smit G. V., "A Comparison of Three String Mathing Algorithms",

Software Pratie and Experiene, 12(1), pages 57-66, 1982.

[SU90℄ Sunday D. M., "A very fast substring searh algorithm", Communiations

of the ACM, 33(8), pages 132-142, 1990.

[ZT87℄ Zhu R. F., Takaoka T., "On improving the average ase of the Boyer-

Moore string mathing algorithm", Journal of Information Proessing,

10(3), pages 173-177, 1987.

26



A Fast String Mathing Algorithm and Experimental Results

Appendix

p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 6 3 3 3 3 3 2 2 3 2 2

3 765 20 7 7 7 7 7 6 6 7 5 4

4 2178 41 11 11 11 11 11 10 10 11 9 7

5 3146 60 14 14 13 13 13 12 12 12 11 9

6 3852 67 13 13 13 13 13 12 12 12 11 9

7 4042 68 12 12 12 12 12 11 11 10 10 8

8 3607 69 11 11 11 11 11 10 10 9 9 7

9 3088 70 10 10 10 10 10 9 9 8 8 7

10 1971 71 9 9 9 9 9 9 9 8 8 6

11 1120 70 9 9 9 9 9 8 8 7 7 6

12 593 70 8 8 8 8 8 8 8 6 7 5

13 279 72 8 8 8 8 8 8 8 6 6 5

14 116 69 7 7 7 7 7 7 7 5 6 5

15 44 72 7 7 7 7 7 7 7 5 6 5

16 17 70 6 6 6 6 6 6 6 5 5 4

17 7 75 7 7 7 7 6 6 6 5 5 4

18 4 87 7 7 7 7 7 7 7 5 6 5

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 89 7 7 7 7 7 7 7 4 5 4

21 2 88 7 7 7 7 7 6 7 4 5 4

22 1 89 6 6 6 6 6 6 6 4 5 4

total 24966 64 11 11 11 11 11 10 10 10 9 7

Table 3: Averages for random TEXT A of 10,000 words

p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 6 3 3 3 3 3 2 2 3 2 2

3 765 21 7 7 7 7 7 6 6 7 6 4

4 2178 42 12 12 12 12 12 10 10 11 9 8

5 3146 59 13 13 13 13 13 12 12 12 11 9

6 3852 66 13 13 13 13 13 12 12 11 11 9

7 4042 68 12 12 12 12 12 11 11 10 10 8

8 3607 69 11 11 11 11 11 10 10 9 9 8

9 3088 70 10 10 10 10 10 9 9 8 8 7

10 1971 71 9 9 9 9 9 9 9 8 8 7

11 1120 70 9 9 9 9 9 8 8 7 7 6

12 593 71 8 8 8 8 8 8 8 6 7 6

13 279 71 8 8 8 8 8 8 7 6 6 5

14 116 70 7 7 7 7 7 7 7 6 6 5

15 44 64 6 6 6 6 6 6 6 5 5 4

16 17 74 7 7 7 7 7 7 7 5 5 5

17 7 64 6 6 6 6 6 5 6 4 4 4

18 4 87 7 7 7 7 7 7 7 5 6 5

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 41 3 3 3 3 3 3 3 2 3 2

21 2 72 5 5 6 6 5 5 5 4 4 3

22 1 89 6 6 6 6 6 6 6 4 5 4

total 24966 63 11 11 11 11 11 10 10 10 9 8

Table 4: Averages for random TEXT B of 10,000 words

27



Proeedings of the Prague Stringology Club Workshop '99

p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 9 6 6 6 6 6 4 4 6 4 3

3 765 37 13 13 13 13 13 10 10 13 10 8

4 2178 77 21 21 21 21 21 18 18 20 17 13

5 3146 133 30 30 30 30 30 27 26 28 25 20

6 3852 159 31 31 31 31 31 29 28 28 26 21

7 4042 170 29 29 29 29 29 27 27 26 24 20

8 3607 176 27 27 27 27 27 26 25 24 22 19

9 3088 181 26 26 26 26 26 25 24 22 21 18

10 1971 185 24 24 24 24 24 23 23 20 20 17

11 1120 184 23 23 23 23 23 22 22 18 18 15

12 593 186 21 21 21 21 21 21 20 17 17 14

13 279 183 20 20 20 20 20 19 19 15 16 13

14 116 194 20 20 20 20 20 19 19 15 16 13

15 44 164 16 16 16 16 16 16 16 12 13 10

16 17 217 20 20 20 20 20 20 20 17 16 13

17 7 172 15 15 15 15 14 14 15 11 12 10

18 4 147 12 12 13 13 12 12 13 9 10 8

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 41 3 3 3 3 3 3 3 2 3 2

21 2 221 17 17 18 18 17 17 17 11 13 10

22 1 397 27 27 27 27 27 26 28 18 22 17

total 24966 155 27 27 26 26 26 24 24 23 22 18

Table 5: Averages for random text of 50,000 words

p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 13 7 7 7 7 7 5 5 7 5 3

3 765 37 13 13 13 13 13 10 10 13 10 8

4 2178 80 22 22 22 22 22 19 18 21 17 15

5 3146 149 34 34 34 34 34 30 29 31 28 23

6 3852 182 36 36 36 36 36 33 32 33 29 25

7 4042 193 33 33 33 33 33 31 30 29 27 24

8 3607 201 31 31 31 31 31 29 29 27 26 22

9 3088 198 28 28 28 28 28 27 26 24 23 20

10 1971 198 26 26 26 26 26 25 25 22 21 18

11 1120 199 25 25 25 24 24 24 23 20 20 17

12 593 217 25 25 25 25 25 24 24 20 20 17

13 279 207 23 23 23 23 22 22 22 18 18 15

14 116 180 20 19 19 19 19 18 18 14 15 13

15 44 218 22 22 22 22 21 21 21 17 17 14

16 17 162 15 15 15 15 15 15 15 12 12 10

17 7 220 20 20 20 20 19 19 19 14 15 13

18 4 208 17 17 17 17 17 17 18 12 14 11

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 157 12 12 12 12 12 12 13 8 10 8

21 2 89 7 7 7 7 7 7 7 11 5 4

22 1 315 21 21 21 21 21 20 22 14 18 14

total 24966 173 30 30 30 30 29 27 27 26 24 21

Table 6: Averages for random text of 100,000 words

28


