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1 Introdution

The motivation to the CCS Problems an be found in the typing of a text on the

keyboard. The following mistakes an be made in typing some string:

1. Typing a di�erent harater, usually from the neighbour area of the given har-

ater.

2. Inserting a single harater into the soure string.

3. Omiting (skipping) any single soure harater.

In the most frequent mistakes, a harater from the area on the keyboard adjaent

to the required harater was typed instead of the required harater. For example,

the neighborhood of the harater f is the set f = ff,d, g, r, t, , vg. The sequene of

sets A = f, r, e, s, , o belongs to the word freso. In this ase (typing mistakes)

let us assign ompetene value (.v.) to eah element of the neighborhood in suh

way that the harater itself has .v. 1 and the .v.'s of "more erroneous" harater

are smaller than those of the "better one". For example, for set f we have �(f) =

1; �(d) = 0:4; �(g) = 0:4; �(r) = 0:2; �(t) = 0:4; �() = 0:3; �(v) = 0:3. We onsider

that in the text, it is neessary to �nd the words whih are very lose to the word

freso. We onsider the sum of .v.'s of a given string as a measure of its similarity of

the string to the given word freso. The lengths of the found words an be di�erent

to the length of the given word freso. For example, if the word freso is found in the

text then the measure of the similarity to the given word freso is the length of the

word freso (6), if the word tres is found then the measure of the similarity is 4.4

beause the symbol t is very lose to the symbol f and symbol o is omitted.
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It is possible to onsider the desribed problem as the losest ommon subsequene

problem of the two similar strings and its repetition for text of strings.

The ommon subsequene problem of two strings is to determine one of the sub-

sequenes that an be obtained by deleting zero or more symbols from eah of the

given strings. It is possible to demand some additional properties for the ommon

subsequene. Usually, it is the greatest length of the ommon subsequene, but we

an onsider some di�erent measures for the ommon subsequene.

The longest ommon subsequene problem (LCS Problem) of two strings is to de-

termine the ommon subsequene with the maximal length. For example, the string

AGI is a ommon subsequene and the string ALGI is the longest ommon subse-

quene of the strings ALGORITHM and ALLEGATION. Algorithms for this problem

an be used in hemial and geneti appliations and in many problems onerning

data and text proessing [15℄, [12℄, [3℄. Further appliations inlude the string-to-

string orretion problem [12℄ and determining the measure of di�erenes between

text �les [3℄. The length of the longest ommon subsequene (LLCS Problem) an

determine the measure of di�erenes (or similarities) of text �les. The simulation

method for the approximate strings and sequene mathing using the Levenstein

metri an be found in J. Holub [9℄ and the algorithm for the searhing of the subse-

quenes is in Z. Tron���ek and B. Melihar [16℄.

D. S. Hirshberg and L. L. Larmore [7℄ have disussed a generalization of LCS

Problem, whih is alled Set LCS Problem (SLCS Problem) of two strings where

however the strings are not of the same type. The �rst string is a sequene of symbols

and the seond string is a sequene of subsets over an alphabet 
. The elements of

eah subset an be used as an arbitrary permutation of elements in the subset. The

longest ommon subsequene in this ase is a sequene of symbols with maximal

length. The SLCS Problem has an appliation to problems in omputer driven musi

[7℄. D. S. Hirshberg and L.L. Larmore have presented O(m � n)-time and O(m+ n)-

spae algorithm,m;n are the lengths of the strings. The Set-Set LCS Problem (SSLCS

Problem) is disussed by D. S. Hirshberg and L. L. Larmore [8℄. In this ase both

strings are strings of subsets over an alphabet 
. In the paper [8℄ is presented the

O(m � n)-time algorithm for the general SSLCS Problem.

In this paper we present algorithms for general ases of the Common Subsequene

Problem, it means Closest Common Subsequene Problems:CCS Problem (for two

strings of symbols), CCRS Problem (for two strings of symbols with restrited using

of the symbols), SCCS Problem (for one string of symbols and seond string of symbol

sets) and SSCCS Problem (for two strings of symbol sets).

2 Basi De�nitions

In this setion, some basi de�nitions and results onerning to CCS Problem, SCCS

and SSCCS Problem are presented.

Let 
 be a �nite alphabet, j
j = s; P (
) the set of all subsets of 
; jP (
)j = 2

s

.

Let A = a

1

a

2

: : : a

m

; a

i

2 
; 1 � i � m be a string over an alphabet 
, where

jAj = m is the length of the string A.

Let �

A

(a

i

) 2 (0; 1i; 1 � i � m; be some ompetene (membership) values of

elements in the string A.
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The pair (A; �

A

) is the string A with the ompetene funtion �

A

, f-string (A; �

A

)

for short. V al(A; �

A

) is a measure of (A; �

A

) de�ned by the (1).

V al(A; �

A

) = �

m

i=1

�

A

(a

i

) (1)

The string C 2 P (
); C = 

1

: : : 

p

is a subsequene of the string A = a

1

: : : a

m

, if

a monotonous inreasing sequene of natural numbers i

1

< : : : < i

p

exists suh that



j

= a

i

j

; 1 � j � p. The string C is a ommon subsequene of two strings A;B if C

is a subsequene of A and C is a subsequene of B. jCj is the length of the ommon

subsequene. The lassial problem to �nd the longest ommon subsequene is de�ned

and solved in Hirshberg [5℄.

The string (C; �

C

) is a subsequene with the ompetene funtion �

C

, f-subsequene

for short of the f-string (A; �

A

) if C is a subsequene of the string A and 0 < �

C

(

t

) �

�

A

(a

i

t

), for 1 � t � p. The f-subsequene (C; �

C

) is a losest f-subsequene if

V al(C; �

C

) = �

p

j=1

�

C

(

j

) = �

p

j=1

�

A

(a

i

j

).

The string (C; �

C

) is a ommon f-subsequene of two f-strings (A; �

A

) and

(B; �

B

) if (C; �

C

) is a f-subsequene of (A; �

A

) and (C; �

C

) is a f-subsequene of

(B; �

B

).

The string (C; �

C

) is a losest ommon f-subsequene of the f-strings (A; �

A

) and

(B; �

B

) if (C; �

C

) is a ommon f-subsequene with the maximal value V al(C; �

C

).

It means, if (D; �

D

) is a ommon f-subsequene of the strings (A; �

A

) and (B; �

B

)

then V al(D; �

D

) � V al(C; �

C

).

If (C; �

C

) is a losest ommon f-subsequene of the f-strings, (A; �

A

) and (B; �

B

)

then �

C

(

t

) = minf�

A

(a

k

t

); �

B

(b

l

t

)g, for 1 � t � p.

The CCS Problem: Let (A; �

A

) and (B; �

B

) be f-strings. To �nd a losest

ommon subsequene of the f-strings (A; �

A

) and (B; �

B

), CCS((A; �

A

); (B; �

B

))

for short.

The MCCS Problem is to �nd the measure of CCS f-string, MCCS for

short. It means, MCCS((A; �

A

); (B; �

B

)) = V al(CCS((A; �

A

); (B; �

B

))). �

m m m m m m m m m

m m m m m m m

a

b

a a

b

a  a

b

a

b



d b



b

A=

B=

Figure 1. The losest ommon subsequene of two f-strings A and B.
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Example 1. 
 = fa; b; g; A = abaabaab; m = 9; B = abdbb; n =

7, �

A

= (0:9; 0:9; 0:6; 0:5; 0:2; 0:8; 0:4; 0:6; 0:5), �

B

= (0:6; 0:6; 0:3; 0:4; 0:9; 0:5; 0:6).

The string C = abb is a subsequene, C

0

= abbb is the longest ommon subsequene

of the strings A and B, and (C"; �

C"

), C" = abb; �

C"

= (0:6; 0:9; 0:4; 0:5) is the

losest ommon subsequene of the f-strings (A; �

A

) and (B; �

B

); V al(C"; �

C"

) =

MCCS((A; �

A

); (B; �

B

)) = 2:4 as it is shown in the Figure 1.

Let (A; �

A

) be the string A with the ompetene funtion �

A

. A sequene of

indies, h

A

= h

A

0

h

A

1

h

A

2

: : : h

A

k

A

; 0 = h

A

0

< h

A

1

< h

A

2

< : : : < h

A

k

A

= m; 1 � k

A

� m is a

partition of the string (A; �

A

).
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The sequene h

A

divides the string (A; �

A

) in the following way:

A = ja

1

a

2

: : : a

h

A

1

ja

h

A

1

+1

: : : a

h

A

2

j : : : ja

h

A

k�1

+1

: : : a

h

A

k

A

j = subst

A

1

subst

A

2

: : : subst

A

k

A

,

where subst

A

i

= a

h

A

i�1

+1

: : : a

h

A

i

; 1 � i � k

A

. [(A; �

A

); h

A

℄ is alled the f-string with

the partition.

For example, 
 = fa; b; g, A = jabajabaajbabj; m = 12, �

A

= (0:4; :2; :8; :4; :7; :3;

:3; :7; :5; :4; :8; :6), h

A

= 0; 3; 9; 12; subst

A

1

= aba; subst

A

2

= abaa; subst

A

3

= bab.

A string C = 

1



2

: : : 

p

; 1 � p � m is a restrited subsequene of the f-string with

the partition [(A; �

A

); h

A

℄, if and only if

1. there exists a sequene of indies 1 � i

1

< i

2

< : : : < i

p

� m suh that

a

i

t

= 

t

; 1 � t � p, and

2. if h

A

r�1

< i

u

; i

v

� h

A

r

then 

u

6= 

v

, for all r, 1 � r � k

A

,

(eah element of an alphabet 
(subst

A

r

) an be used in C one at most).

The string (C; �

C

) is a ommon restrited f-subsequene of two f-strings with par-

tition [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄ if (C; �

C

) is a restrited f-subsequene of

[(A; �

A

); h

A

℄ and (C; �

C

) is a restrited f-subsequene of [(B; �

B

); h

B

℄ at one.

The string (C; �

C

) is a losest ommon restrited f-subsequene of two f-strings

with partition [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄ if (C; �

C

) is a ommon restrited f-

subsequene with maximal value de�ned by (1).

The CCRS Problem: Let [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄ be the f-strings. To

�nd the losest ommon subsequene of the f-strings [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄,

CCRS([(A; �

A

); h

A

℄; [(B; �

B

); h

B

℄) for short.

The MCCRS Problem is to �nd the measure of CCRS f-string,MCCRS

for short. It means,MCCRS([(A; �

A

); h

A

℄; [(B; �

B

); h

B

℄) = V al(CCRS([(A; �

A

); h

A

℄;

[(B; �

B

); h

B

℄)). �

m m m m m m m m m m m m

m m m m m m m m m m m

a

b

a a

b

a  a 

b

a

b

b

a

b
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Figure 2. Closest ommon restrited subsequene of two strings A and B.
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Example 2. 
 = fa; b; g, A = jabajabaajbabj; m = 12, �

A

= (0:4; 0:2; 0:8; 0:4;

0:7; 0:3; 0:3; 0:7; 0:5; 0:4; 0:8; 0:6), h

A

= 0; 3; 9; 12; B = jbabjajbbj; n = 11, �

B

=

(0:4; 0:3; 0:4; 0:5; 0:3; 0:5; 0:6; 0:3; 0:7; 0:6; 0:5). The string C = bab is a restrited sub-

sequene, C

0

= baab is the losest restrited ommon subsequene with measure 2.3

as it an be seen in Figure 2. The string C" = bababb is the longest ommon sub-

sequene of the strings A = abaabaabab and B = bababb if the partition does

not matter.

A string of sets, set-string for short, B over an alphabet 
 is any �nite sequene of

sets from P (
). Formally, B = B

1

B

2

: : : B

n

; B

i

2 P (
); 1 � i � n, n is the number of
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sets in B. The length of the symbol string desribed by B is N = �

n

i=1

jB

i

j. The pair

(B; �

B

) is the set-string B with the ompetene funtions �

B

, set-f-string for short.

A string of symbols C = 

1



2

: : : 

p

; 

i

2 
; 1 � i � p, is a subsequene of symbols

(subsequene, for short) of the set-string B if there is a noninreasing mapping F :

f1; 2; : : : ; pg ! f1; 2; : : : ; ng, suh that

1. if F (i) = k then 

i

2 B

k

, for i = 1; 2; : : : ; p

2. if F (i) = k and F (j) = k and i 6= j then 

i

6= 

j

.

The ombination of a string and a set-string and the �nding of their losest ommon

f-subsequene leads to the solution of problems in above motivation.

Let (A; �

A

), be f-string over 
 and (B; �

B

) be a set-f-string over P (
). The

f-string (C; �

C

) is a ommon f-subsequene of (A; �

A

) and (B; �

B

) if (C; �

C

) is a

f-subsequene of A and (C; �

C

) is a f-subsequene of the set-string B. A los-

est ommon f-subsequene of the f-string (A; �

A

) and the set-f-string (B; �

B

),

SCCS((A; �

A

); (B; �

B

)) is a ommon f-subsequene (C; �

C

) with the maximal value

V al(C; �

C

). Note that (C; �

C

) is not unique in general way.

The SCCS Problem: The Set losest Common Subsequene problem of the f-

string (A; �

A

) and the set-f-string (B; �

B

), SCCS((A; �

A

); (B; �

B

)) for short, onsists

of �nding a losest ommon f-subsequene (C; �

C

).

The MSCCS Problem onsists of �nding the measure of SCCS f-string,

MSCCS for short.

This means that MSCCS((A; �

A

); (B; �

B

)) = V al(SCCS((A; �

A

); (B; �

B

))), �

m m m m m m m m m

m m m m m m m

a

b

a a

b

a  a

b

a

b



b d b
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Figure 3. The losest ommon subsequene of two strings A and B.
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Example 3. Let A = abaabaab; �

A

= (0:9; 0:9; 0:6; 0:5; 0:2; 0:8; 0:4; 0:6; 0:5), B =

fa; b; gfb; dgfb; g, �

B

1

(a) = 0:6; �

B

1

(b) = 0:6; �

B

1

() = 0:3; �

B

2

(b) = 0:9; �

B

2

(d) =

0:4; �

B

3

(b) = 0:6; �

B

3

() = 0:5. Then MSCCS((A; �

A

); (B; �

B

)) = 2:4 as it is shown

in the Figure 3.

Let A = A

1

: : : A

m

;B = B

1

: : : B

n

; 1 � m � n, be two set-strings of sets over

an alphabet 
. The string of symbols C is a ommon subsequene of symbols of A

and B is C a subsequene of symbols of A and C is a subsequene of symbols of the

set-string B. The longest ommon subsequene problem of the set-strings A and B

(SSLCS(A;B) onsists of �nding a ommon subsequene of symbols C of the maximal

length. Note that C is not in general unique.

The SSCCS Problem: Let (A; �

A

); (B; �

B

) be two set-f-string.

The Set-Set Closest Common Subsequene problem of the set-f-strings (A; �

A

) and

(B; �

B

), (SSCCS((A; �

A

); (B; �

B

)) for short, onsists of �nding a losest ommon f-

subsequene (C; �

C

).
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The MSSCCS Problem onsists of �nding the measure of SSCCS set-f-

string, MSSCCS for short.

It means, MSSCCS((A; �

A

); (B; �

B

)) = V al(SSCCS((A; �

A

); (B; �

B

))), �

m m m m m m m m

m m m m m m m m m m m

a

d

 a

b

e

b

a

d

e  a

d

e

b d
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Figure 4. The losest ommon subsequene of two set-strings A and B.
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Example 4. Let A = fa; dg; f; a; dg; fe; b; ag; m = 3, �

A

1

= (0:7; 0:3); �

A

2

=

(0:6; 0:4; 0:5); �

A

3

= (0:6; 0:3; 0:8); B = fd; e; g; fa; d; eg; fb; d; g; fb; dg; n = 4: �

B

1

=

(0:4; 0:3; 0:5); �

B

2

= (0:7; 0:6; 0:8); �

B

3

= (0:9; 0:5; 0:7); �

B

4

= (0:5; 0:3). The ompe-

tene values are desribed aording to the named order in the set. For example,

�

A

1

(a) = 0:7; �

A

1

(d) = 0:3:

Then MSSCCS((A; �

A

); (B; �

B

)) = 2:4 as it is shown in the Figure 4.

3 Algorithm for MCCS Problem

From the de�nition of MSSC Problem it follows:

MCCS((A; �

A

); (B; �

B

)) = max

(C;�

C

)

fV al(C; �

C

) : (C; �

C

) is the ommon

f � subsequene of (A; �

A

) and (B; �

B

)g (2)

The expression (2) an be written in the following way

= max

(C;�

C

)

f�

p

t=1

�

C

(

t

) : 

t

= a

k

t

= b

l

t

; 1 � t � p; 1 � k

1

< : : : < k

p

� m;

1 � l

1

< : : : < l

p

� ng and 0 < �

C

(

t

) = minf�

a

(a

k

t

); �

B

(b

l

t

)g: (3)

It means

MCCS((A; �

A

); (B; �

B

)) = maxf�

p

t=1

minf�

A

(a

k

t

); �

B

(b

l

t

)g : a

k

t

= b

l

t

;

1 � t � p; 1 � k

1

< : : : < k

p

� m; 1 � l

1

< : : : < l

p

� ng (4)

Let M

min

be a matrix de�ned as follows:

M

min

[i; j℄ =

�

minf�

A

(a

i

); �

B

(b

j

); g; if a

i

= b

j

0; otherwise.

(5)

The expression (4) is the basis for the following algorithm and it should be written

now in the following way:

MCCS((A; �

A

); (B; �

B

)) = maxf�

p

t=1

M

min

[k

t

; l

t

℄ :

k

1

< : : : < k

p

� m; 1 � l

1

< : : : < l

p

� ng (6)
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The expression (6) an be used in the reursive algorithm or nonreursive algorithm

using the method of dynami programming.

Designation.

� A[i::k℄ = a

i

a

i+1

: : : a

k

, for 1 � i � k � m,

� MM [m;n℄ = MCCS((A; �

A

); (B; �

B

)),

� MM [i; j℄ = MCCS((A[1::i℄; �

A

); (B[1::j℄; �

B

)).

Reursive version of the algorithm is onstruted aording to the following idea:

If an element 

t

is in the CCS((A; �

A

); (B; �

B

)) then the strings an be split into two

parts and

MCCS((A; �

A

); (B; �

B

)) = �(

t

) +MCCS((A[1::k

t�1

℄; �

A

); (B[1::l

t�1

℄; �

B

))

+MCCS((A[k

t+1

::m℄; �

A

); (B[l

t+1

::n℄; �

B

)) (7)

The reursive version of the algorithm has exponential time omplexity. Some om-

putations are repeated and it means in the algorithm, it is possible to use the dynami

programming method to ompute the partial values MM [i; j℄ one only and to use

them in the following omputations.

In the algorithm, two funtions are used: The funtion Minim omputes mini-

mum of two values, the funtion Maxim omputes maximum of three values. The

i�th line of the matrix MM is omputed from two lines (i � 1)�th and the already

omputed part of i�th olumn. It means that the spae omplexity of the algorithm

an be redued to O(n), for m � n. The algorithm works in the O(m�n) time. It an

be written in the following simple form (without the onstrution of the matrixM

min

):

Algorithm MCCS:

for i:=0 to m do MM[i,0℄:=0;

for j:=1 to n do MM[0,j℄:=0;

for i:=1 to m do

for j:=1 to n do

begin

if a[i℄=b[j℄ then help:=MM[i-1,j-1℄ + Minim(miA[i℄,miB[j℄)

else help:=0;

MM[i,j℄:= Maxim(MM[i-1,j℄, help, MM[i, j-1℄);

end;

Example 5. The omputation ofMCCS((A; �

A

); (B; �

B

)) for the strings in Example

1 aording to the algorithm MCCS.

B= 0.6 0.6 0.3 0.4 0.9 0.5 0.6

a b  d b  b

A= -------------------------------------------

a 0.9 | 0.6 0.6 0.6 0.6 0.6 0.6 0.6

b 0.9 | 0.6 1.2 1.2 1.2 1.5 1.5 1.5

a 0.6 | 0.6 1.2 1.2 1.2 1.5 1.5 1.5
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a 0.5 | 0.6 1.2 1.2 1.2 1.5 1.5 1.5

b 0.2 | 0.6 1.2 1.2 1.2 1.5 1.5 1.7

a 0.8 | 0.6 1.2 1.2 1.2 1.5 1.5 1.7

 0.4 | 0.6 1.2 1.5 1.5 1.5 1.9 1.9

a 0.6 | 0.6 1.2 1.5 1.5 1.5 1.9 1.9

b 0.5 | 0.6 1.2 1.5 1.5 2.0 2.0 2.4

4 Algorithm for MCCRS Problem

The basi idea to the solution an be found in [1℄. The algorithm for LRCS Prob-

lem have to be modi�ed in the omputation of the the measure of losest ommon

restrited subsequene. In the algorithm, the Boolean funtion Candidate gives the

value true if the pair (a

i

; �(a

i

)); (b

j

; �(b

j

)) is a potential andidate to inrease the

losest ommon subsequene, false otherwise. The funtion Candidate is used in the

same form as in [1℄. The main part of the modi�ation is designed in the program

text. It ould be proved (similar as for LRCS Algorithm in [1℄) that the modi�ed

algorithm omputes orretly the losest ommon restrited subsequene of two f-

strings and it works in O(m � n � p)-time and O(n+ r)-spae, where r = jfhi; ji : a

i

=

b

j

; 1 � i � m; 1 � j � ngj and p � minfm;ng is the number of elements in losest

ommon restrited subsequene.

The following dynami data strutures are used in the algorithm:

type vertex=reord

x, y: indies;

p: pointer;

end;

pointerv=^vertex;

genseq=reord

val: real;

pt:pointer;

end;

The main phase of the algorithm is the following:

{Omega is an alphabet of strings}

{Input: [(A, mvA), hA℄, [(B,mvB), hB℄ - two f-strings of symbols

with partitions over alphabet;

mvA, mvB - ompetene funtions of A and B}

{Output: pptr is the pointer to the losest ommon restrited

subsequene of A and B;}

{Variables: Arrays C, D[0..m℄ of the type genseq.}

{C[1..i℄, D[1..i℄ ontain pointers to the losest ommon

subsequenes of A(1..i) and B(1..j);}

{hA[1..kA℄, hB[1..kB℄ - arrays of partitions of the strings A and B;}

{uA, uB - upper bounds of intervals in the partitions for urrent

positions i, j: uA\leq i, uB\leq j.}

{dA, dB - the numbers of intervals in the partitions,}

{pp - a pointer to the vertex.}
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Method:

begin

for j:=0 to n do

begin D[j℄.pt:=nil; D[j℄.val:=0; end;

C[0℄.pt:=nil; C[0℄.val:=0;

dA:=1; uA:=1;

for i:=1 to m do

begin if i>hA[dA℄ then begin in(dA); uA:=hA[dA-1℄+1 end;

dB:=1; uB:=1;

for j:=1 to n do

begin if j>hB[dB℄ then begin in(dB); uB:=hB[dB-1℄+1 end;

if a[i℄.el=b[j℄.el then

q:=Candidate(D[j-1℄.pt,a[i℄,uA,uB)

else q:=false;

if q then {***modified part***}

begin if a[i℄.mv<=b[j℄.mv then min:=a[i℄.mv

else min:=b[j℄.mv;

help:=D[j-1℄.val+min;

if (help>D[j℄.val) and (help>C[j-1℄.val) then

begin new(pp); pp^.p:=D[j-1℄.pt; pp^.x:=i; pp^.y:=j;

C[j℄.pt:=pp; C[j℄.val:=D[j-1℄.val+min;

end {***end of the modified part***}

end else

if D[j℄.val>=C[j-1℄.val then C[j℄:=D[j℄

else C[j℄:=C[j-1℄;

{Invariant1}

end; {Invariant2}

for j:=1 to n do D[j℄:=C[j℄;

end;

value := C[n℄.val; pptr:= C[n℄.pt;

{"value" ontains the value of the losest ommon restrited

subsequene and C[n℄.pt ontains pointer to the CCRS(A,B)}

end;

Example 6. The omputation ofMCCRS([(A; �

A

); h

A

℄; [(B; �

B

); h

B

℄) for the strings

in Example 2 aording to the algorithm MCCRS.

B |0.4 0.3 0.4 0.5 |0.3 0.5 0.6 |0.3 0.7 0.6 0.5|

A | b a b  |  a  |  b  b |

-------|--------------------------------------------------------

a 0.4 | 0.0 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4

b 0.2 | 0.2 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.4

_a_0.8_| 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6

a 0.4 | 0.2 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9 0.9 0.9

b 0.7 | 0.4 0.5 0.5 0.5 0.5 0.9 0.9 0.9 1.6 1.6 0.9

a 0.3 | 0.4 0.7 0.7 0.7 0.7 0.9 0.9 0.9 1.6 1.6 1.6

 0.3 | 0.4 0.7 0.7 1.0 0.7 0.9 1.2 0.9 1.6 1.9 1.9
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a 0.7 | 0.4 0.7 0.7 1.0 1.0 1.0 1.2 1.2 1.6 1.9 1.9

__0.5_| 0.4 0.7 0.7 1.2 1.2 1.2 1.2 1.2 1.6 2.1 2.1

b 0.4 | 0.4 0.7 0.7 1.2 1.2 1.2 1.2 1.2 1.6 2.1 2.1

a 0.8 | 0.4 0.7 0.7 1.2 1.2 1.7 1.7 1.7 1.7 2.1 2.1

_b_0.6_| 0.4 0.7 0.7 1.2 1.2 1.7 1.7 1.7 2.3 2.3 2.3

5 Algorithm for MSCCS Problem

The basi idea of the algorithm starts from the de�nition of the MSCCS Problem.

MSCCS((A; �

A

); (B; �

B

)) = max

(C;�

C

)

fV al(C; �

C

) : (C; �

C

) is the ommon

f-subsequene of (A; �

A

) and (B; �

B

)g = (8)

max

p

f�

p

t=1

�

C

(

t

) : 

t

= a

k

t

= b

F (t)

i

and 0 < �

C

(

t

) = minf�

A

(a

k

t

); �

B

(b

F (t)

i

)g;

1 � t � p; 1 � k

1

< : : : < k

p

� m; 1 � i � n

F (t)

; 1 � F (1) � : : : � F (p) � ng (9)

The reursive version of the algorithm is onstruted aording to the following idea

(Figure 5.):

A

B

a

k

t

b

F (t)

i

1B

F (t)

�i

2B

F (t)

�i

Figure 5. The idea for the onstrution of algorithm

J

J

J

J

Designation.

� A = a

1

: : : a

m

; m � 1;B = B

1

: : : B

n

; n � 1; B

l

= fb

l

1

; b

l

2

; : : : ; b

l

n

l

g,

� MM [m;n℄ =MSCCS((A; �

A

); (B; �

B

)),

� MM [i; j℄ = MSCCS((A[1::i℄; �

A

); (B[1::j℄; �

B

)).

If an element 

t

is in the SGCD((A; �

A

); (B; �

B

)) then

MSCCS((A; �

A

); (B; �

B

)) = �(

t

) +

maxfMSCCS((A[1::k

t�1

℄; �

A

); (B[1::F (t� 1)℄1B

F (t)

�i

; �

B

)) +

MCCS((A[k

t+1

::m℄; �

A

); (B[F (t+ 1)::n℄2B

F (t)

�i

; �

B

))g (10)

where 1B

F (t)

�i

= (B

F (t)

� fb

F (t)

i

g)

1

and 2B

F (t)

�i

= (B

F (t)

� fb

F (t)

i

g)

2

are the disjoint

subsets 1B

F (t)

�i

and 2B

F (t)

�i

of the set (B

F (t)

� fb

F (t)

i

g) = 1B

F (t)

�i

[ 2B

F (t)

�i

and the

maximum is the maximal value over all disjoint partitions. The idea is shown in the

Figure 6. The time omplexity of the reursive version is exponential.

A attening of a sequene of sets is de�ned as a onatenation, in order of the

sequene, of strings formed by some permutation of individual elements of the sets in

10
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the sequene. For example, the attening of the set-string A in example 3 is dadaabe

and so is adadeba.

The very simple algorithm for MSCCS Problem an use Algorithm for MCCS

Problem for all pairs of the f-string A and the attening of the set-f-string B. The

algorithm have to ompute and ompare results of �

n

j=1

jB

j

j pairs.

It is possible to represent the sets in the string B as the strings of symbols with all

permutations of elements (the method will be applied in the MSSCCS Algorithm).

Eah element of the string of symbols has the ompetene value the same as it has

in the set. Then it is possible to apply the algorithm for ommon subsequene with

a restrited use of elements [1℄.

The nonreursive algorithm is onstruted by the dynami programming method

and it has the following idea:

MM [i; j℄ = maxf MM [k � 1; j � 1℄ + V al(SCCS((A[k::i℄; �

A

); (B

j

; �

B

j

)));

MM [k; j � 1℄; k = 1; 2; : : : ; ig: (11)

The values of the matrixMM [�; �℄ an be omputed aording to olumns, the input

for j-th olumn is the matrix (j � 1)-th olumn. The set B

j

an math better some

elements in the string A than the sets B

1

; : : : ; B

j�1

and it is neessary to ompute

these mathing values and to �nd the maximal value.

The following algorithm has a motivation in Hirshberg's and Larmore's method

[7℄ for SLCS Problem. We use the a data struture U , whih is alled unique stak

(for ontrol of elements from the sets), but our unique stak works in a di�erent way.

It has the ondition that no member an our twie or more in the stak. When

Push(U, x, k) is exeuted for some element x, x is �rst ompared to the elements in

the stak. If x is in the stak in the position l then the ompetene values of the both

ourrenes are ompared. If the ompetene value of the element x in the position

l is greater than the ompetene value of the new element x then the unique stak

is not modi�ed else the element in the position l is deleted and the new element x is

pushed on the top of the unique stak. In the stak are the elements of the string A

whih have best mathing to the some set in the string of sets B.

proedure Push(var U:Ustak; x:Element; k:integer);

{Push the element x on the top of the unique stak U;

k is the index of x in the string A;

Competene values are less than Maxi1000;}

var Upom: Ustak;

tophlp: integer;

kk: integer;

begin

kk:=top;

tophlp:=0;

Maxi:=Max1000;

while kk>=1 do

begin if (x.p<>U[kk℄.p) then

begin in(tophlp); Uhlp[tophlp℄:=U[kk℄;

end else begin

11



Proeedings of the Prague Stringology Club Workshop '99

Maximum:=U[kk℄.mi;

if Maximum<x.mi then Maximum:= x.mi;

if Maximum>x.mi then

begin in(tophlp);

Uhlp[tophlp℄:=U[kk℄;

Maxi:=Maximum;

end;

end;

de(kk);

end;

top:=0;

for kk:=tophlp downto 1 do

begin in(top); U[top℄:=Uhlp[kk℄; end;

if (Maxi<x.mi) or (Maxi=Max1000) then

begin in(top); U[top℄:= x; best[x.p℄:=k;

end;

end; {Push}

The proedure Findpeaks searhes for the values peak[k℄; : : : ; peak[0℄ whih an

represent measures of the new andidates for SCCS. In Findpeak, as k dereases,

U is the list of all elements in B

j

whih are found in the substring A[k+ 1::m℄ in the

order in whih they �rst our and aording to their ompetene funtion. For any

x 2 U , first[x℄ is the index of that best ourrene.

proedure Findpeak(j: integer);

{ j - index of j-th set in the set-string B;

m - the length of the symbol string A;

top- global variable for the top of Unique stak.}

begin

top:=0;

for k:=m downto 0 do

begin measure:=Mi[k,j-1℄;

peak[k℄:=measure;

for x:=top downto 1 do

begin xx:=U[x℄.p;

Minimum:= Minim(U[x℄,B[j℄);

measure:=measure+Minimum;

peak[best[xx℄℄:= Maxim{measure,peak[best[xx℄℄};

end;

if k>0 then

if A[k℄.p in B[j℄.pp then Push(U,A[k℄,k);

end;

end;

The main algorithm has the following form:

Algorithm MSCCS:

12
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for i:=0 to m do MM[i,j℄:=0;

for j:=1 to n do

begin Findpeak(j);

MM[0,j℄:=0;

for i:=1 to m do

MM[i,j℄:= Maxim{peak[i℄,MM[i-1,j℄};

end;

Example 7. Let A = abaabaab; �

A

= (0:9; 0:9; 0:6; 0:5; 0:2; 0:8; 0:4; 0:6; 0:5), B =

fa; b; gfbdgfbg, �

B

1

(a) = 0:6; �

B

1

(b) = 0:6; �

B

1

() = 0:3; �

B

2

(b) = 0:9; �

B

2

(d) =

0:4; �

B

3

(b) = 0:6; �

B

3

() = 0:5 then MCCS(A;B) = 2:4 as it is omputed in the

following matrix.

B B1 B2 B3

a 0.6

b 0.6 b 0.9 b 0.6

A  0.3 d 0.4  0.5

---------------------

a 0.9 | 0.6 0.6 0.6

b 0.9 | 1.2 1.5 1.5

a 0.6 | 1.2 1.5 1.5

a 0.5 | 1.2 1.5 1.5

b 0.2 | 1.2 1.5 1.5

a 0.8 | 1.2 1.5 1.5

 0.4 | 1.5 1.5 1.9

a 0.6 | 1.5 1.5 1.9

b 0.5 | 1.5 2.0 2.4

The subsequene an be reovered after the algorithm is �nished if an array of a

bakpointers to the best mathing elements is maintained. Corretness of the algo-

rithm follows from the following invariants:

(1) After the j-th iteration of main algorithm all values MM [i; j℄; 0 � i � m are

omputed. After the n-th iteration we have all values MM [i; n℄; 0 � i � m and

MM [m;n℄ = MCCS((A; �

A

); (B; �

alB

).

(2) Findpeak(j) omputes the best mathing of the j-th set B

j

, peak[j℄ �MM [i; j℄

and there exist some j

0

� j suh that peak[j

0

℄ �MM [i; j℄.

Time omplexity. The main algorithm has the yle for i and the all of proedure

Findpeak inside of the yle for j. It means O(m � n � N)-time omplexity, where

N = �

n

j=1

; jB

j

j.

Spae omplexity. The presented algorithm requires O(m � n)-spae for the array

MM and O(m)-spae for the unique stak.

6 Algorithm for MSSCCS Problem

The basi idea of the algorithm is very similar to the previous algorithm for MSCCS.

It starts from the de�nition of MSSCCS Problem.

MSCCS((A; �

A

); (B; �

B

)) = max

(C;�

C

)

fV al(C; �

C

) : (C; �

C

) is the ommon

13



Proeedings of the Prague Stringology Club Workshop '99

f � subsequene of (A; �

A

) and (B; �

B

)g (12)

If we have some attenings of both set-strings then it is possible to apply the

MCCS algorithm. It is neessary to ompute MCCS values of all pairs of all at-

tenings both set-strings but that is too time onsuming.

If we have the attening of one set-string and the seond is as set-string then it

is possible to use the MSCCS algorithms. But it is neessary to ompute MSCCS

value for all attenings of one string. This is also too time onsuming. Both algo-

rithms have exponential time omplexity.

It is possible to use the following algorithm of polynomial time omplexity. The

algorithm works in two steps:

1. to reate the string of symbols for eah of set-string; eah set an be enoded

as the string of all permutations of its elements (the length of suh string is

k

2

� 2 � k + 4, k is the number of elements in set [13℄);

2. to apply the MCCRS algorithm for the two onstruted strings (eah element

of the set an be used one at most);

The algorithm works in polynomial time: O(M

2

�N

2

�K), where M = �

m

i=1

jA

i

j; N =

�

n

j=1

jB

j

j, and K is the number of elements in losest ommon restrited subsequene.

7 Conluding Remarks

Polynomial algorithms for the solutions of the MCCS Problem, MCCRS Problem and

MSCCS Problem with a ompetene funtions have been presented. The MSSCCS

Problem was formulated and the polynomial time algorithm for its solution was de-

veloped. However, we are onvined of the existene of an algorithm with better time

omplexity.
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