
An Early-Retirement Plan for the States

Bruce W. Watson

1;2

and Richard E. Watson

2

1

Department of Computer Science

University of Pretoria

Hillcrest 0083, Pretoria

South Africa

2

Ribbit Software Systems Inc.

IST Technologies Research Group

Box 24040, 297 Bernard Ave., Kelowna

British Columbia, V1Y 9P9, Canada

e-mail: watson@cs.up.ac.za, fwatson, rwatsong@RibbitSoft.com

Abstract. New applications of �nite automata, such as NLP and asynchronous

circuit simulation, can require automata of millions or even billions of states. All

known construction methods (in particular, the interesting reachability-based

ones that save memory, such as the subset construction, and simultaneously

minimizing constructions, such as Brzozowski's) have intermediate memory us-

age much larger than the �nal automaton, thereby restricting the maximum size

of the automata which can be built. In this paper, we present a reachability-

based optimization which can be used in any one of the construction algorithms

to reduce the intermediate memory requirements. The optimization is pre-

sented in conjunction with an easily understood (and implemented) canonical

automaton construction algorithm.

Key words: �nite automata, very large automata, automata construction,

memory constraints, reachability algorithms

1 Introduction

Automata (in the form of acceptors or transducers) are now being heavily used in com-

putational linguistics applications, hardware simulation, text indexing and searching

applications. In contrast to their traditional use in compilers, these newer applica-

tions make use of automata that are several orders of magnitude larger (in terms

of both states and transitions, and therefore memory consumption) than previously

contemplated. This can lead to memory problems with constructing the automata

and also to runtime ine�ciencies

1

.

Automata can be constructed in a number of ways, however, in this paper we

restrict ourselves to building them from regular expressions (REs). Constructing an

automaton from an RE proceeds (conceptually) in three phases:

1

Addressing some of the runtime ine�ciencies is the subject of [4].

119

Proceedings of the Prague Stringology Club Workshop '98

1. An abstract state automaton is built, in which each state contains additional

information (it is an object in memory), for example a position within the reg-

ular expression. This additional information allows us to determine the out-

transitions from the state and whether the state is �nal or not. The additional

information is typically encoded as one of the following:

� a set of items (dots) representing positions in the RE (this is used in all of

the item-set constructions [3] and these are used in this paper);

� a set of symbol-positions representing the speci�c symbols (within the RE)

which can be seen next (this is used in the Berry-Sethi, McNaughton-

Yamada-Glushkov and Aho-Sethi-Ullman constructions [3]); or

� an RE representing a derivative of the original RE (this is used in An-

timirov's and Brzozowski's constructions [3]).

2. From the abstract state automaton, we build a concrete automaton (isomorphic

to the abstract state automaton) in which each state is represented only as an

integer, with a single bit devoted to indicating whether it is �nal or not.

3. The abstract state automaton is retired, freeing up the memory, leaving only

the concrete one.

Of course, a real implementation would not directly implement this conceptual model.

As we see in x2, the construction of the �nal automaton representation could be done

incrementally as parts of the underlying abstract state automaton are built. Still,

all of the abstract states are kept in memory until the whole of the �nal automaton

is built, after which they are freed. In the case of a deterministic automaton of a

million states, the concrete representation may require less than 32MB. Unfortunately,

each abstract state can take up a lot more memory as its concrete counterpart, so

the intermediate data-structures could have a peak memory requirement of up to

2GB. Clearly, this is beyond even the realistic virtual memory capacity of an average

processor and operating system. In this paper, we present Ribbit's solution to the

problem.

All of the abstract states are usually kept in memory throughout the construction

process since a transition (from the state under construction) can go to any one of the

other abstract states. In the optimization, we use a reachability relation to determine

which abstract states are no longer reachable during the construction phase. Those

abstract states may then be removed from memory (retired).

This optimization technique is quite di�erent from the obvious (and well-under-

stood) optimization of removing unreachable states | which yields smaller automata.

In our later discussion, that optimization happens to be included (simply by our use

of reachability during automata construction), but the new optimization goes much

further | reducing the memory used during the construction process.

2 A canonical automata construction method

In this section, we brie
y outline a canonical

2

construction method for deterministic

automata. The algorithm is essentially a reachability-based version of the traditional

2

It is a canonical construction because it is used as the starting point of a taxonomy in [3].

120

An Early-Retirement Plan for the States

three-step algorithm outlined in x1. Since the construction will only be used to

illustrate the retirement plan, we will not present it formally. See [3] for a more

in-depth discussion of various construction algorithms.

In the construction method, each abstract state consists of a set of items where an

item is a dot

3

placed within the input RE (in much the same way as the LR parsing

item appears within grammar production right-hand sides). A relation, called `dot

closure', takes an item set and propagates each item through the RE without jumping

over alphabet symbols within the RE. More precisely, it is the re
exive and transitive

closure of the following relation:

1. A dot before the empty string (�) RE yields the dot after the empty string RE.

Symbolically, �� is mapped to ��.

2. A dot before an alternation (union) yields dots in front of each branch of the

alternation. Likewise, a dot after either branch of an alternation yields a dot

after the entire alternation. Symbolically, �(E [F) is mapped to (�E [�F),

(E � [F) is mapped to (E [F)� and (E [F�) is mapped to (E [F)�.

3. A dot before a concatenation yields a dot in front of the �rst operand. A

dot after the left part of a concatenation yields a dot in front of the second

part. A dot after the second part yields a dot after the entire concatenation.

Symbolically, �(EF) is mapped to (�E)F , (E�)F is mapped to E(�F), and

E(F�) is mapped to (EF)�.

4. A dot before a Kleene closure yields a dot after the entire Kleene closure and

a dot before the (single) operand of the closure. A dot after the operand of a

Kleene closure yields a dot before the same operand and a dot after the entire

Kleene closure. Symbolically, �(E

�

) is mapped to ((�E)

�

)� and (E�)

�

is mapped

to ((�E)

�

)�.

(For simplicity in this paper, we omit the other possible RE operators such as inter-

section.) In the algorithm, we maintain the invariant that all of our abstract states

already have the dot closure operation applied to them.

To compute the destination abstract state of a transition from an abstract state

on a symbol a, do the following:

1. For every dot in front of an a in the abstract state, place a dot behind the

corresponding a in the destination abstract state. Include no other dots in the

destination.

2. Perform the dot closure operation on the destination abstract state.

For example, abstract state

�(�a [(�a)b)

has a transition on a to

(a � [(a�)(�b))�

The closure of the union of the transition relation (over all alphabet symbols) with

the dot closure relation constitutes a reachability relation over abstract states. This

reachability relation plays an important role in the optimization.

3

We speak of `dots' and `items' interchangeably.

121

Proceedings of the Prague Stringology Club Workshop '98

To determine the start abstract state, place the dot before the entire RE and

perform the dot closure operation. A state is �nal if a dot appears after the main

RE.

During the construction, we use a bijective data-structure (which we call the

namer), which maps abstract states to concrete ones. We also use either a queue or a

stack of abstract states

4

, called the ready pool. For the actual construction algorithm,

we perform the following steps:

1. Create the start abstract state and the corresponding new concrete state; place

the abstract state in the ready pool and use the namer to map the start state

to it.

2. While the ready pool is not empty: select the next state (call it the current

state), remove it from the pool and do the following:

(a) Lookup the corresponding abstract state in the namer. If it is a �nal state,

mark the current state as �nal too.

(b) For each alphabet symbol a such that �a appears as a subitem in the

abstract state, do the following:

i. Construct the destination abstract state for the alphabet symbol, using

the transitions explained earlier.

ii. Check if the destination abstract state is in the namer. If not, create a

new concrete state and map the destination to it in the namer, while

placing the destination abstract state in the ready pool (so that its

out-transitions will eventually be constructed).

iii. Construct a concrete transition on the alphabet symbol from the cur-

rent concrete state to the concrete state which the destination is

mapped to.

3. Delete the abstract states, the namer and the ready pool.

Clearly, the contents of the namer grow to include all of the abstract states mapped

to their corresponding concrete states and none of these pairs are removed until the

�nal step. Since this is the source of the memory problem, in the next section we

consider how to retire as many as possible of the abstract states on-the-
y in the

second step.

3 An early-retirement plan

Some of the abstract states (appearing in the namer) may be unreachable, regardless

of the sequence of transitions, from any of the abstract states still in the ready pool.

Indeed, the only abstract states which will be needed in the namer are those reachable

(directly or indirectly) from an abstract state whose concrete state is in the ready

pool. This follows directly from our use of a reachability algorithm.

4

Using a queue for the ready pool leads to constructing the automaton transition graph breadth-

�rst, while a stack leads to a depth-�rst construction. The data-structure could just as easily contain

concrete states, since we have a bijection between abstract and concrete states.

122

An Early-Retirement Plan for the States

Conceptually, our solution is to compute the reachability relation (or some ap-

proximation containing it) for abstract states. After we have removed a state from

the ready pool and built its out-transitions (in step two), we traverse the namer

and purge any abstract states (and corresponding concrete ones) which are no longer

reachable from an element of the ready pool.

Our implementation maintains the set of abstract states which are reachable from

any of the states in the ready pool. Using the canonical construction, we can maintain

this set, R, particularly cheaply: it is the � and letter transition closure of the set of

all items present in the ready pool abstract states. For example, if the ready pool

contains two states (�a) [b and a [(b�), we have R = ((�a�) [(b�))�. An abstract

state, q, in the namer is reachable from one in the ready pool if q's constituent items

are entirely contained in the set of possibly reachable items, R. In our example, the

start state would be �((�a) [(�b)) (the dot closure of �(a [b)), which is not wholly

contained in R, is therefore unreachable by either of the states in the ready pool and

can be removed from the namer.

For e�ciency, we implement a set of items by numbering all of the possible item

positions within the input RE (there are a �nite number of them) and using bit-

vectors to represent the sets of items. Consequently, the closure and set containment

operations can be performed extremely quickly on most computer hardware using

bitwise instructions.

4 Observations and performance

Benchmarking data are still being collected as this paper is submitted. Preliminary

data, collected while constructing a number of very large automata, shows a reduction

of required working memory by a factor of roughly two. There is also a signi�cant

running time penalty of up to a factor of ten for constructing the automata, even

discounting the obvious memory paging time.

There are other variants of the reachability algorithm which are being explored.

One of the most interesting possibilities is to determine the number of in-transitions

to each abstract state. Once the in-transitions of the corresponding concrete state

have all been built, the abstract state can immediately be purged from the namer.

Unfortunately, it is di�cult to e�ciently count a state's in-transitions before they

have all been built. It is not yet clear whether this approach will improve e�ciency.

Conclusions and comments

A number of conclusions can be drawn about the approach presented here:

� This technique serves only to minimize the amount of memory consumed during

the construction of the automaton. It does not optimize the running time of the

automaton, or even the memory consumed by the �nal automaton. As such,

it is only applicable to the massive automata which occur in applications such

as NLP or hardware simulation. In that role, the technique is not only very

e�ective, but it is also the only known technique available.

123

Proceedings of the Prague Stringology Club Workshop '98

� The technique presented in this paper can signi�cantly slow the construction

process by having to evaluate the reachability relation on abstract states. This

tradeo� is necessary when constructing very large automata.

� This technique has become necessary because even virtual memory has its limits.

The current generation of programmers thinks in terms of a 32-bit address space

(4GB), which appears boundless. Not only is the virtual address space not large

enough for the construction of some automata using the older algorithms, but

most systems do not have 4GB of virtual memory available (due to limited

physical swap space).

� Algorithms for minimizing deterministic �nite automata have a similar memory

constraint. During the minimization process, the set of states are grouped into

equivalence classes, which will each represent a new state in the minimized

automaton. (The equivalence classes are essentially abstract states.) If the

input automaton is already nearing the limits of the available memory, any

reasonable representation of the equivalence classes is unlikely to �t within the

memory. It appears that some of the same techniques could be applied, using an

incremental minimization algorithm such as Watson's [3]. In the case of acyclic

automata, this would yield an algorithm similar to the one presented in [2].

� This technique minimizes the number of abstract states present in the mapping

from abstract states to concrete states. There are many potential speed op-

timizations which can be applied, such as minimizing the number of times an

abstract state is copied. These possibilities have not yet been explored.

Acknowledgements:

We would like to thank Nanette Saes for proofreading this paper.

References

[1] Aho, A.V., R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, Reading, MA, 1988.

[2] Daciuk, J., B.W.Watson and R.E. Watson. \Incremental Construction of Minimal

Acyclic Finite State Automata and Transducers," also submitted to FSMNLP 98.

[3] Watson, B.W. Taxonomies and Toolkits of Regular Language Algorithms. Ph.D

dissertation, Eindhoven University of Technology, The Netherlands, 1995.

[4] Watson, B.W. \Practical Optimizations for Automata," Second Annual Work-

shop on Implementing Automata, London, Canada, 1997. Also available from

www.RibbitSoft.com/research/watson/.

124

