
The Factor Automaton

1

Milan

�

Sim�anek

Department of Computer Science & Engineering

Faculty of Electrical Engineering

Czech technical University

Karlovo n�am. 13, 121 35 Prague 2

e-mail: simanek@fel.cvut.cz

Abstract. The direct acyclic word graph (DAWG) is a good data structure

representing a set of strings related to some word with very small space com-

plexity. The famoust DAWG is the factor DAWG which is representing the

set Fac(text) of all factors (substrings) of the string text . Bellow we call factor

DAWG as DAWG. Finite automaton implementing this data structure is able

to make out any substring of string text in time proportional only to length

of the substring while its space complexity is linear to the length of the string

text . We can de�ne several operations on DAWG. Operations are usefull for

fast derivating of the DAWG automaton from a similar one. This paper con-

cern operation L-delete on factor graph DAWG and the relationship between

deterministic and nondeterministic factor automaton.

Key words: DAWG, factor automaton, substring, pattern matching, fast search-

ing

1 Introduction

The factor automaton is a �nite automaton which accepts the set of all substrings

of the string [1, chapter 6]. The set of all substrings (factors) of the string text is

Fac(text).

This factor automaton can be formulated as a deterministic one or a nondeter-

ministic one. The nondeterministic factor automaton is a good abstraction for formal

description of its behaviour and of operations performed on it. On the other hand

the deterministic one is used for implementation and practical use. This version is

sometimes called direct acyclic word graph, DAWG, because it has no transition

loop.

The main advantage of the DAWG is very fast substrings searching while it keeps

small memory requirments. Any matching string can be found in time equal to the

length of the pattern looking for. The size of the factor automaton DAWG(text ) is

linear with respect to the length of the string text . Total number of the nodes is less

then double length of the input string text . The proof is in [1, Theorem 6.1].

1

This research has been supported by GA

�

CR grant No. 201/98/1155

102



The Factor Automaton

2 Construction

2.1 Nondeterministic factor automaton

The nondeterministic factor automaton, which accepts all substrings of the string

text , has N + 1 states and 2N � 1 transitions, where N is the length of the string

text . The structure of this automaton for string text= a

1

a

2

a

3

a

4

:::a

N

is shown on the

next picture.

2.2 Deterministic factor automaton

The deterministic factor automaton DAWG can be obtained from nondeterministic

one [3] or we can construct it step by step using an incremental construction algorithm

[1, 6.3 On-line construction]. Although we have a construction algorithm, in general,

we cannot say anything about the structure of transitions except nonexistence of the

circle and an estimate bounds of the number of states. The pattern matching using

this automaton has optimal speed. The number of comparations (or other elementar

operations) is linear to the length of the searching pattern.

2.3 Relation between deterministic and nondeterministic

automata

It appears that every construction method produces equivalent (isomorphic) deter-

ministic factor automaton. We can say the deterministic factor automaton is the best

simulation of the nondeterministic one. In this simulation every state in determinis-

tic automaton corresponds to a set of active states in nondeterministic automaton.

This relationship can by very usefull for discovering and proving new algorithms for

deterministic automata.

3 Operations on factor automaton

We can de�ne a number of operations on factor automaton. Each operation modify

given factor automaton representing string text to a new factor automaton represent-

ing another string text' while strings text and text' are very similar. It is important

that both new and old factor automaton will be similar too and therefore performing

the operation spend a little amount of time.

We will deal with this operations on a factor automaton:

103



Proceedings of the Prague Stringology Club Workshop '98

operation action text'

Append the string text' will be longer by a character

Insert inserts a character before the �rst character

of the string text'

R� delete text' is the string text without the last character

L� delete text' is the string text without the �rst character

Replace replaces one character in string text by another one

The algorithms for some operations have been yet discovered (Append;R�delete),

but the algorithms of Insert and Replace are not known. This article concern about

the algorithm of the L� delete operation.

This operation modi�es DAWG(a

0

a

1

a

2

a

3

:::a

n

) to another factor automaton ac-

cepting all substrings of the string a

1

a

2

a

3

:::a

n

which is by a �rst character a

0

shorter

then the original string a

0

a

1

a

2

a

3

:::a

n

. The algorithm is shown bellow.

The combination of operations Append and L-delete enables fast searching in the

compression method known as LZ77 which use so called sliding window. Sliding

window contains a part of source text with constatnt length. The window is moving

through the text so at the begining it contains the �rst k characters of the text and

at the end operating it contains the last k characters of the source text.

4 DAWG in details

To enable incremental construction of this factor automata (append operations) re-

quires to keep a bit more information about the DAWG working on. In every step we

should know the set of states (a state of �nite automaton per a node of the DAWG),

transitions between the states (representing edges of the DAWG), and the fail func-

tion. The fail function is used for creating and extending DAWG. We will need know

which is the next character for each state for the L-delete operation.

Before we will show the algorithm we should make some denotation. Next(q)

is a following character in source string text for each state q in the DAWG factor

automaton. Concatenation of Next(q

0

) + Next(Next(q

0

)) + ::: gives the string text

for DAWG(text). There is de�ned the fail function Fail(q) for each state q of DAWG

automaton. If the automaton is in the state q

1

after reading substring uv and in

the state q

2

after reading substring v which is the longest possible then Fail(q

1

)=q

2

.

Factor automaton being in state q

2

accepts each su�x which is accepted in state q

1

.

Skip(q) is the set of states p

i

which Fail(p

i

) is equal to state q. Function Skip is the

inverse function of function Fail: p 2 Skip(q) i� q = Fail(p).

5 The algorithm of L-delete operation

Let main chain is a sequence of states q

0

, q

1

=�(q

0

, Next(q

0

)), . . ., q

i

=�(q

i�1

, Next(q

i�1

),

. . ., q

n

. The idea of this algorithm is to disable passing only through a part of the

main chain but to protect passing anyway through at least one skip transition.

This algorithm duplicates the starting part of main chain of states. One copy

(original) of begin of main chain is used for processing these substrings which will pass

through some skip transition later. Second copy (duplicated) is used for processing

these states which have passed some skip transition before.

104



The Factor Automaton

Not all main chains will be duplicated. The duplication process stops at the state

where is obvious which shift transition will be pass. This stop state is determined by

a value of Skip function. Assume last duplicated state is r. Next state to be duplicate

is s. Let state t = �(s;Next(s)) is the next state after s. If the set of states Skip(t)

is empty then duplication process stops, because no shift transition can be pass. If

the set of states Skip(t) contain only one state, then duplication process stops too,

because only one shift transition is possible and therefore it can be done immediately.

Otherway if the number of states Skip(t) is greater then one then duplication process

continue.

INPUT: DAWG(aw)

OUTPUT: DAWG(w)

LOCAL VARIABLES: a { a character

q

0

, q

1

, r, s, t, d { states

q

0

{ the initial state

a:=Next(q

0

)

q

1

:=�(q

0

,a)

if jSkip(q

1

)j = 0 then

�(q

0

; a) := nil

delete(q

1

) possible recursive delete

else if jSkip(q

1

)j = 1 then

�(q

0

; a) := Skip(q

1

)

delete(q

1

) possible recursive delete

else

r:=q

0

s:=q

1

loop

a:=Next(s)

t:=�(s,a)

if jSkip(t)j < 2 then break

d:=duplicate(t)

�(r,a):=d

Fail(t):=d

r:=d

s:=t

endloop

if jSkip(t)j = 1 then

�(s,a):=Skip(t)

else

�(s,a):=nil

endif

endif

105



Proceedings of the Prague Stringology Club Workshop '98

6 Time and memory complexity

It seems that the time complexity of one L-delete operation is at least constant or in

the worst case linear to length of the text text . The DAWG(text) for string text of

length N has at most 2 �N states [1]. Therefore the time complexity of sequence of

N L-delete operations is linear to N .

The number of states of DAWG(text) is limited by 2:N where N is number of

characters in source string text . Moreover, DAWG(text) has less than 3:N edges.

This is independent of the size of the alphabet [1, Theorem 6.1].

7 Conclusion

The power of operation L-delete grows up in conjunction with the operation append.

We can apply k-times operation append which constructs the base DAWG for �rst

k characters of the text. Then we will apply repeatively a couple of operations L-

delete and append. We will get a moving window for fast searching in this part of

the text. The speed of searching is independent of size of the searching window

and depends only on the size of pattern looking for. The main application can be

LZ77 compression algorithm. The part consuming the largest amount of time is just

the algorithm searching for a pattern in a searching window. Using this searching

algorithm should speed up compression.

References

[1] Crochemore, M., Rytter, W.: Text Algorithms, chapter 6, Subword

graphs, Oxford University Press, 1994

[2] Chen, M. T., Seiferas, J.: E�cient and elegant subword tree con-

struction, Combinatorial Algorithms on Words, NATO Advanced Science

Institutes, Series F, vol. 12, Springer-Verlag, Berlin, 1985, 97{107

[3] Melichar, B.: The construction of factor automaton, Workshop 98,

Czech Technical University, Prague 1998, 189{190

106


