
Validating and Decomposing Partially Occluded

Two-Dimensional Images (Extended Abstract)

1

Costas S. Iliopoulos

1;2

and James F. Reid

1;3

1

Algorithm Design Group, Department of Computer Science

King's College London, London WC2R 2LS, UK.

2

School of Computing, Curtin University of Technology

Perth, WA 6102, Australia.

3

Dipartimento di Elettronica e Informatica

Universit�a degli Studi di Padova

Via Gradenigo 6/a, 35131 Padova, Italy.

e-mail: fcsi,jfrg@dcs.kcl.ac.uk

Abstract. A partially occluded scene in an image consists of a number of ob-

jects that are partially obstructed by others. Validating a partially occluded

image consists of generating a sequence of concatenated and possibly overlap-

ping objects that corresponds to the input image. The algorithm presented

here validates a two-dimensional image X of size r � s over a set of k objects

of identical size m�m in O(mrs) time.

Key words: String algorithms, image processing, occlusion analysis, pattern

recognition.

1 Introduction

The study of repetitive structures in sequences (strings) plays a key role in information

processing and more generally in computer science. This has lead to a generaliza-

tion of notions concerning repetitions in sequences. The periodicity of a string was

the key element in the design of the famous pattern matching algorithm by Knuth,

Morris and Pratt, [KMP-77]. A related notion is the one of a cover of a string. A

substring w of a string x is called a cover of x if x can be constructed by concatena-

tions and superpositions of w. As a result, many sequential and parallel algorithms

have been developed concerning the covering of a string. Among the sequential algo-

rithms, Apostolico, Farach and Iliopoulos [AFI-91] solved the problem of computing

the shortest cover of a given string, similarly Moore and Smyth [MS-95] solved the

problem of computing all the covers of a given string both in linear time. These

1

C.S. Iliopoulos was partially supported by EPSRC grants GR/F 00898, GR/L 19362 and GR/J

17844, NATO grant CRG 900293, and MRC grant G9115730. J.F. Reid was supported by a

Marie Curie fellowship of the European Commission Training and Mobility of Researchers (TMR)

Programme.

83

Proceedings of the Prague Stringology Club Workshop '98

e�cient solutions for string covering problems have applications to DNA sequencing

by hybridization, see [DS-96] and [PL-94].

This paper focuses on an application of the string covering techniques to image

processing and the analysis of images composed of know objects obstructing each

other. Decomposing partially occluded images is a classical problem in computer

vision and its computational complexity is exponential. There are many arti�cial

intelligence and neural network solutions to this problem, see for example [BC-94].

Here we present a theoretical study on the analysis of images composed from a given

set of objects, where some of the appearing objects may be partially occluded by

other ones. Thus we restrict our attention on the occlusion problem by focusing only

on discrete images and convex objects, and their e�cient solutions are based on the

study of the repetitive structures of the input. The results and solutions presented

here provide the foundations for practical solutions to this problem. This problem

was �rst approached by only considering one-dimensional images (strings). A linear

sequential on-line algorithm was produced by Iliopoulos and Simpson [IS-97] and an

optimal parallel version was also produced, see [IR-97].

In the following, we will consider the family of two dimensional images (considered

as two-dimensional arrays of strings), that we call valid images; given a set of objects

fS

1

; : : : ; S

k

g and a special \background" symbol denoted #, an image X of size r� s

is a valid image, if X is iteratively obtained from an initial string Z of size r � s

consisting only of #'s by substituting substrings of Z by some objects S

i

, for some

i. We will be focusing in designing algorithms for testing two-dimensional images for

validity, under restricted sets of objects, i.e. square objects of the same size.

Here we present an algorithm for validating a two-dimensional image X of size

r � s over a �xed number k of objects S

i

of equal size m�m in O(mrs) time.

The paper is organised as follows. In the next section we present the basic de�-

nitions for strings and partially occluded images. In Section 3 we describe the data

structures and the main techniques used in the algorithm and �nally in Section 4 we

present our conclusions and open problems.

2 Preliminaries

2.1 String de�nitions in one and two dimensions

A string (or word) is a sequence of zero or more symbols drawn from an alphabet �,

which consists of a �nite number of symbols. The set of all strings over � is denoted

by �

�

. The string of length zero is the empty string � and a string x of length n > 0

is represented by x

0

x

1

� � �x

n�1

, where x

i

2 � for 0 � i � n � 1. A string w is said

to be substring of x if and only if x = uwv for some u; v 2 �

�

. A string w is a

pre�x of x if and only if x = wu for some u 2 �

�

; if u is not empty then w is a

called a proper pre�x of x. Similarly, w is a su�x of x if and only if x = uw for some

u 2 �

�

; if u is not empty then w is called a proper su�x of x. Additionally prefix

k

(x)

denotes the �rst k symbols of x and suffix

k

(x) denotes the last k symbols of x. The

string xy is a concatenation of two strings x and y. The concatenation of k copies

of x is denoted by x

k

. For two strings x = x

0

� � �x

n�1

and y = y

0

� � � y

m�1

such that

x

n�i

� � � x

n�1

= y

0

� � � y

i

for some i � 1 (that is, such that x has a su�x equal to a

pre�x of y), the string x

0

� � �x

n�1

y

i

� � � y

m�1

is said to be a superposition of x and y.

84

Validating and Decomposing Partially Occluded Two-Dimensional Images

Alternatively, we may say that x overlaps with y. A substring w of x is called a cover

of x if x can be constructed by concatenations and superpositions of w.

A two-dimensional string is an r�s array of symbols drawn from �. We will refer

to a two-dimensional string as a two-dimensional array or a two-dimensional image in

the sequel. We represent an r� s array X by X[0::r� 1; 0::s� 1]. A two-dimensional

p� q array Y is said to be a sub-array or a sub-image of X if the upper left corner of

Y can be aligned with X[i; j], i.e. Y [0::p� 1; 0::q � 1] = X[i::i+ p � 1; j::j + q � 1],

for some 0 � i � r � p and 0 � j � s� q. A square m�m sub-array Y is said to be

a pre�x of X, if Y occurs at position X[0::m� 1; 0::m� 1]. Similarly, Y is said to a

su�x of X if, Y occurs at position X[r �m::r� 1; s�m::s� 1].

2.2 De�nitions and properties of partially occluded images

In the following we assume that � is a �nite alphabet of symbols. We denote the

symbol # 62 � to be a special symbol called the background symbol.

De�nition 2.1 Let X be a r � s array called the image over the alphabet � and

let O = fS

1

; : : : ; S

k

g be a set of m �m arrays called the objects also over �. Then

the image X is said to be a valid image over O if and only if X = Z

i

for some

1 � i � rs� 1, where

Z

0

=

0

B

B

@

� � �

.

.

.

.

.

.

.

.

.

� � �

1

C

C

A

;

Z

i+1

=

0

B

B

B

B

B

B

B

B

B

B

B

@

pref(Z

i

) sub(Z

i

) sub(Z

i

)

sub(Z

i

) S

t

sub(Z

i

)

sub(Z

i

) sub(Z

i

) su�(Z

i

)

1

C

C

C

C

C

C

C

C

C

C

C

A

where S

t

2 O for some t 2 f1; : : : ; kg.

The recurrence equalities de�ned above are said to be the substitution rules and

the sequence Z

0

; Z

1

; : : : ; Z

i

is said to be the generating sequence of the image X over

the set of objects O = fS

1

; : : : ; S

k

g. We now construct such a generating sequence

for a partially occluded image in the following example.

Example 2.1 LetO =

�

S

1

=

�

c c

d b

�

; S

2

=

�

a b

b c

�

; S

3

=

�

a d

b c

�

; S

4

=

�

b b

c c

��

be the set of objects and let the image be

X =

0

B

B

B

B

B

B

B

B

@

a b a d

b c b c

c a b b

d b c c

a b d b

b c b c

1

C

C

C

C

C

C

C

C

A

85

Proceedings of the Prague Stringology Club Workshop '98

Then X is a valid image over O with the following generating sequence:

Z

0

=

0

B

B

B

B

B

B

B

B

@

#

#

#

#

#

#

1

C

C

C

C

C

C

C

C

A

; Z

1

=

0

B

B

B

B

B

B

B

B

@

a b # #

b c # #

#

#

#

#

1

C

C

C

C

C

C

C

C

A

; Z

2

=

0

B

B

B

B

B

B

B

B

@

a b # #

b c # #

c c # #

d b # #

#

#

1

C

C

C

C

C

C

C

C

A

;

Z

3

=

0

B

B

B

B

B

B

B

B

@

a b # #

b c # #

c a b #

d b c #

#

#

1

C

C

C

C

C

C

C

C

A

; Z

4

=

0

B

B

B

B

B

B

B

B

@

a b # #

b c # #

c a b #

d b c #

a b # #

b c # #

1

C

C

C

C

C

C

C

C

A

; Z

5

=

0

B

B

B

B

B

B

B

B

@

a b a d

b c b c

c a b #

d b c #

a b # #

b c # #

1

C

C

C

C

C

C

C

C

A

;

Z

6

=

0

B

B

B

B

B

B

B

B

@

a b a d

b c b c

c a b #

d b c #

a b a b

b c b c

1

C

C

C

C

C

C

C

C

A

; Z

7

=

0

B

B

B

B

B

B

B

B

@

a b a d

b c b c

c a b #

d b c c

a b d b

b c b c

1

C

C

C

C

C

C

C

C

A

; Z

8

=

0

B

B

B

B

B

B

B

B

@

a b a d

b c b c

c a b b

d b c c

a b d b

b c b c

1

C

C

C

C

C

C

C

C

A

:

The occurrence of the possibly occluded objects in X are underlined. From this

construction, it is obvious that the generating sequence of a partially occluded image

may not be unique. The decomposition of X into objects is not unique due to the

fact that some objects may be partially or totally occluded by others. For example,

since S

2

and S

3

share identical �rst rows, if the second column of S

2

or S

3

is occluded

in the image X then there is no way to di�erentiate between the two objects.

From the above example we can see that there exists many possible generating

sequences for a given image, since it's decomposition is not unique. In fact, it can be

shown that the number of distinct generating sequences may be exponential in the

size of the input image, see [IS-97]. This fact complicates the design of an iterative

algorithm for decomposing or even validating a two-dimensional image since it is

imperative not to inspect all possible generating sequences for a given image. The

de�nition of a valid image implies trivially that the objects are contained within the

image X. That is, we assume that there is no S

i

for all i 2 f1; : : : ; kg that is \cut

o�" on the edges of the image.

To analyse in more detail a partially occluded image we need to extend the notion

of a pre�x in two dimensions, which is not as clear and well de�ned as in the one

dimensional case.

De�nition 2.2 Let X be an array of size r � s. Then we de�ne a row-pre�x of X

as a rectangular sub-array of X occurring at positions X[i

1

::i

2

; 0::j] for some 0 �

i

1

� i

2

� r � 1 and 0 � j � s � 1. If i

1

= 0 then the sub-array X[0::i

2

; 0::j] is

called a proper row-pre�x of X. Similarly for columns, let a column-pre�x of X be

a rectangular sub-array of X occurring at X[0::i; j

1

::j

2

] for some 0 � i � r � 1 and

86

Validating and Decomposing Partially Occluded Two-Dimensional Images

0 � j

1

� j

2

� s�1. If j

1

= 0 then we say that the sub-array is a proper column-pre�x

of X. See Figure 1(i) for an example of a row-pre�x and a column-pre�x of X.

We can de�ne a row-su�x and a column-su�x in a similar way.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

column-prefix(X)

row-prefix(X)

(i)

8

7

6

5

0

1

2

3

4

0 1 2 3 4 5 6

extended-prefix(X)

(ii)

X = X =

(CP)

(RP)

(CP)

(RP)

(EP)

(EP)

Figure 1: (i) The rectangular sub-array X[3::6; 0::1] is a row-pre�x of X and

X[0::1; 2::4] is a column-pre�x of X. (ii) The staircase like array of points P =

fX[0::5; 0::`

i

� 1] : 0 � i � 5; `

i

= [5; 3; 3; 2; 1; 1]g is a decreasing extended-pre�x of

X since `

i

� `

i�1

8 0 � i � 5.

This leads to four basic resulting facts if X is a valid image over the set of objects

O = fS

1

; : : : ; S

k

g:

Fact 1: For some i 2 f1::kg there exists a pre�x of S

i

that is also a pre�x of X.

Fact 2: For some i 2 f1::kg there exists a row-pre�x and a column-pre�x of S

i

occur-

ring at positions X[l

1

::l

2

; 0::j] and X[0::l; j

1

::j

2

] respectively with 0 � l

1

; l

2

; l �

r � 1 and 0 �; j

1

; j

2

; j � s� 1.

Fact 3: For some i 2 f1::kg there exists a su�x of S

i

that is also a su�x of X.

Fact 4: For some i 2 f1::kg there exists a row-su�x and a column-su�x of S

i

occurring at positions X[l

1

::l

2

; s � j � 1::s � 1] and X[r � l � 1::r � 1; j

1

::j

2

]

respectively with 0 � l

1

; l

2

; l � r � 1 and 0 � j

1

; j

2

; j � s� 1.

This follows from the fact that some of the S

i

's must occur on the four edges, the

top left hand corner and bottom right hand corner of the image X for it to be valid.

In an analogue extension from the paper on one-dimensional occluded strings [IS-97],

we now break down the validity of a given image into three families of representations

of a valid image.

Proposition 2.1 Let X be an r � s array over � which contains no background

symbols #'s. Let O = fS

1

; : : : ; S

k

g be a set of objects all being m�m square arrays.

87

Proceedings of the Prague Stringology Club Workshop '98

The array X is a valid image over O if and only if one of the following conditions

holds:

X =

0

B

B

B

@

proper

pref(S

i

) Y

1

Y

2

Y

3

1

C

C

C

A

(7)

X =

0

B

B

B

B

B

B

@

Y

1

Y

2

proper

Y

3

su�(S

i

)

1

C

C

C

C

C

C

A

(8)

X =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

Y

1

Y

2

Y

3

Y

4

sub(S

i

) Y

5

Y

6

Y

7

Y

8

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(9)

where the following applies for each equation:

The image resulting from the superposition of an m�m array of symbols # on top

of properpref(S

i

), propersuff(S

i

) or sub(S

i

) together with the resulting sub-arrays

Y

j

, j 2 f1; 2; 3g for equation (7) and (8) and Y

j

, j 2 f1; : : : ; 8g for equation (9) must

be valid images over O.

By using the above classi�cation on valid images together with Facts 1 to 4, we

aim to achieve a method for e�ciently detecting invalid images as a primary task in

the design of the algorithm. However before doing so, we need to re�ne further the

notion of a pre�x and a su�x of a two-dimensional array.

De�nition 2.3 LetX be an array of size r�s. Then we denote by an extended-pre�x

or staircase pre�x of X a subset of points of X such that:

P = fX[0::r

0

; 0::`

i

� 1] : 0 � i � r

0

� r � 1; 0 � `

i

� sg

where `

i

is either an increasing or decreasing monotone sequence. If `

i

� `

i�1

8i 2

f0::r

0

g then P is a decreasing extended-pre�x and an increasing extended-pre�x oth-

erwise. See Figure 1 (ii) for an example of an decreasing extended-pre�x of X. If

r

0

< r � 1 and `

i

< s; 8i 2 f0::r

0

g then we say that P is a proper extended-pre�x of

X

We can de�ne an extended-su�x of X in a symmetrical way.

88

Validating and Decomposing Partially Occluded Two-Dimensional Images

Following the decomposition that was achieved in Proposition 2.1, we de�ne the

validity of a partially occluded image using extended-pre�xes.

Proposition 2.2 Let X be an r � s image over � which contains no background

symbols #'s. Let O = fS

1

; : : : ; S

k

g be a set of m � m square arrays called the

objects. Let P(S

j

) = fS[0::m

0

; 0::`

i

� 1] : 0 � i � m

0

� m � 1; 0 � `

i

� mg be a

decreasing extended-pre�x of some object S

j

2 O occurring at position X[p; q]. Then

the image X is valid over the set of objects O if and only if the following occurs for

any extended-pre�x P(S

j

) of X.

Lets assume �rst that P(S

j

) is a proper extended-pre�x of S

j

. Then we claim that

every neighbour to the right of the perimeter of the extended-pre�x is the occurrence

of a row-pre�x or a column-pre�x of some object in O for the image X to be valid.

If P(S

j

) is a non-proper extended-pre�x of S

j

then we can only claim that the neigh-

bouring point must be a member of a pre�x, a su�x or a substring of some object in

O for the image X to be valid.

A similar breakdown can be achieved for increasing extended-pre�xes and both

increasing and decreasing extended-su�xes.

3 Data Structures and Main Techniques

The algorithm presented here checks the validity of a given partially occluded image

according to the de�nition of a valid image in De�nition 2.1. The aim of the algorithm

is to decompose the occluded image into a �nite set of obstructed objects. If X is

valid over the set of objects O then the algorithm returns a (possible) generating

sequence for X, as described in Example 2.1. One can easily extend the case of a

rectangular image to that of a square image. In the following, we decompose a square

image with a set of square objects. Let X be a n � n array of symbols drawn from

some alphabet � called the image. Let a dictionary O = fS

1

; : : : ; S

k

g consist of a

�nite set of distinct objects representing m�m arrays of symbols drawn from �.

The main methods used in the algorithm rely upon the computation of the occur-

rences in X of the longest extended-pre�xes and extended-su�xes of the objects in

O and in particular chains of longest extended-pre�xes and extended-su�xes in X.

In order to achieve this we need to maintain and update several data structures.

Each extended-pre�x occurring in X has an associated pre�x-head at the start of

each row and an associated pre�x-tail at the end of each row. During the iterations

of the algorithm we aim to concatenate overlapping extended-pre�xes resulting in

extended-pre�x-chains. Every chain is given a head for the �rst extended-pre�x and

a tail for the last extended-pre�x at every row. All data structures mentioned above

also apply in a symmetrical way to deal with su�xes. These data structures will be

described in detail in the full version of this paper.

So as to perform queries concerning the longest pre�xes of each row of any object

occurring in the image X we need to use a trie representing common pre�xes.

De�nition 3.1 The common pre�x tree of k strings r

i

of length m is a rooted trie

(digital search tree) with k leaves such that:

89

Proceedings of the Prague Stringology Club Workshop '98

1. Each edge of the tree is labelled with a symbol from the alphabet � and is

directed away from the root.

2. No two edges emanating from the same node have the same label.

3. Each leaf u is uniquely identi�ed with a string r

i

, in the sense that the concate-

nation of the labels on the path from the root to u is r

i

.

4. Each internal node v of height 1 � h � m� 1 in the tree represents a subset of

strings having a common pre�x of length h.

3.1 Preprocessing

Step 1:

Construct the Aho-Corasick [AC-75] automata for the rows of each objects in the

dictionary O = fS

1

; : : : ; S

k

g. Let r

(j)

i

= S

j

[i; 0::m� 1] denote the ith row of the jth

object in the dictionary. Let R = fr

(1)

0

; : : : ; r

(1)

m�1

; : : : : : : ; r

(k)

0

; : : : ; r

(k)

m�1

g.

Building the Aho-Corasick automata for R takes O(km

2

log j�j) time, since there

are m rows each of length m for each of the k objects in the dictionary and the

Aho-Corasick depends on the alphabet �.

Step 2:

Construct a common pre�x tree �

i

for each of the rows of the objects in the dictionary.

Given a �xed row i, we build �

i

by re�ning �

i�1

. First, we set up a �rst path of

length m for the ith row of the �rst object S

1

[i; 0::m� 1]. Now we do a character

comparison for each of the remaining rows by walking down the tree that is being built

by querying the automata build in Step 1 and branching out when the symbols are

not equal. However the procedure of walking down the tree must be pre�x conserving

according to �

i�1

.

Once the tree is constructed, we order the internal nodes of the tree by assigning

indices to each of internal node. Each such index will represent a subset of objects

having a common pre�x.

Building a common pre�x tree for the k objects and a given row takes O(km log k)

time. To build m such trees (i.e for each row) will take O(km

2

log k) time.

Step 3:

Preprocess the trees build in Step 2 for answering Lowest Common Ancestor (LCA)

queries. By using the algorithm by Harel and Tarjan [HT-84] we can perform this

type of query in constant time allowing linear time, in the size of the input, for

preprocessing. This will help us answer constant time queries in the pre�x tree

concerning the longest pre�xes of objects.

Step 4:

Create a linked list from the �nal states in the Aho-Corasick automata of Step 1

pointing to the index of the node they belong to in the associated common pre�x

tree.

90

Validating and Decomposing Partially Occluded Two-Dimensional Images

Step 5:

Build a n � n table START , which stores the occurrence of the longest pre�x of

the �rst row among the objects for each position in X. Initialize a bulletin board of

size n � n corresponding to each position in X. Each position in the bulletin board

START stores the following values:

START [i; j] = (`; �); 0 � ` � m� 1; 1 � � � k;

where ` represents the length of the longest pre�x of the �rst row of any object in O.

The unique identi�er � represents the index found in the pre�x tree corresponding to

a subset of objects that share a common pre�x of length ` in their �rst row. This

table of size n

2

can be computed by using the common pre�x tree for the �rst row

(�

0

) of the objects in O(mn

2

log k) time.

The values computed in the table START identify the starting position of an

extended-pre�x. After these preprocessing steps we claim that the following can be

achieved during the computation of the main algorithm:

Corollary 3.1 Given the Aho-Corasick automaton AC(R) computed above for all

the km rows of the objects the query of testing whether

pre�x

l

(X[i; j

0

::j

0

+m]) = pre�x

l

(r

(j)

i

)

requires constant time for a �xed row i.

This fact will allow us to perform O(m) constant time queries for each position in

X, yielding a total time complexity of O(mn

2

) in the main algorithm.

Step 6:

Do all previous steps (1{5) for dealing in a symmetrical way with su�xes. That is,

we reverse all the rows of the objects and compute the AC automata for these rows.

Computing the longest common row pre�x trees and preprocessing these for an-

swering LCA queries is straightforward. Then we need to add to the START table

the additional su�x values (`; �), for the longest pre�xes of the last row of the objects.

3.2 Main Algorithm and Sub-procedures

The main ideas of the algorithm are outlined below. The algorithm iterates over the

points of X by sweeping from left to right over the rows of X. During the iterations

we will use the Aho-Corasick automaton and the pre�x trees from the preprocessing

to answer queries concerning the occurrence of longest row pre�xes and su�xes of

objects appearing in X. Additionally, we will use a data structure called a \window"

of size 2m�n which stores the information of extended-pre�xes and extended-su�xes

of objects occurring for each position in X. The process of building a decreasing

extended-pre�x at an arbitrary point X[p; q] with (`; �) from START [p; q] is done in

the following way:

procedure build extended pre�x(`; �;X[p; q::q+m� 1])

begin

(`

0

; �

0

) := (`; �);

91

Proceedings of the Prague Stringology Club Workshop '98

i := 1 ;

while `

i�1

6= 0 do

`

i

:= length of longest pre�x of the ith row ;

�

i

:= index of node at height `

i

in pre�x tree ;

Comment: feed X[p; q::q+m� 1] to the pre�x tree �

i

.

if �

i

6= �

i�1

then (`

i

; �

i

) LCA(�

i�1

; �

i

);

else `

i

:= minf`

i�1

; `

i

g;

W [i] := `

i

;

i := i+ 1;

return array W and the �nal �

i

end

One can extend this construction to the one of building increasing extended-

pre�xes and extended-su�xes in a symmetrical way.

The aim of this sweeping technique is to create extended-pre�xes and extended-

su�xes and chain them together to create valid sub-images. For each point that

needs to be validated we use the following decomposition principles which are based

on Proposition 2.2:

(i) The occurrence of an extended-pre�x of an object in a valid image must be

followed by a (not necessarily proper) row/column pre�x of an object.

(ii) If an occurrence of a extended-pre�x of an object in an image is followed by

an occurrence of a proper extended-su�x of an object, then the image is not

valid. In a valid image, the occurrence of a proper extended-su�x of an object

is always preceded by the extended-su�x of an object.

(iii) The occurrence of a extended-su�x of an object in a valid image can be followed

by either a pre�x, a su�x or a proper substring of an object.

(iv) The occurrence of a sub-array of an object in a valid image is preceded and

followed by valid images.

3.2.1 Step 0: Initialization of data structures

Initialization: Validate position X[0; 0]

begin

Initialize a 2m� n array called the \window" W .

(1) validate current row X[0; 0::m� 1].

if ` 2 START [0; 0] then (`; �) START [0; 0] ;

mark W [0; 0::`� 1] with X[0; 0] as pre�x-chain-head

else return 'image not valid'. Stop.

(2) Validate next row X[1; 0::`� 1].

(`

0

; �

0

) START [1; 0] ;

if `

0

2 START [1; 0] then Stop.

Comment: start of a new extended-pre�x on next iteration ;

else expand the extended-pre�x starting at X[0; 0].

Comment: looking recursively for an extended-pre�x down the rows

92

Validating and Decomposing Partially Occluded Two-Dimensional Images

at most m� 1 times using procedure build-extended-pre�x.

end

3.2.2 Main algorithm

The main steps of the algorithm are as follows:

1. Building chains of extended-pre�xes and extended-su�xes using the procedures

for augmenting them row by row and the decomposition principles.

2. Creating valid sub-images by concatenating adjacent extended-pre�x-chains and

extended-su�x-chains.

3. Two-dimensional pattern matching on the remaining blocks of substrings.

The full details of the algorithm will appear in the forthcoming full version of this

paper.

4 Conclusion and open problems

The algorithm presented here can be extended to handle variable length objects. An

interesting open practical problem is the validation of images with sets of objects that

are concave or non-continuous; of particular interest is the variant of the problem with

objects over �[f�g, where � is a transparent symbol and this alphabet de�nes a set

of strings with holes. Another interesting problem is the computation of the depth

of an object in an image, i.e. the number of objects applied onto an object after

the placement of an object in an image. Finally, approximate occlusion analysis is

of practical importance and therefore all the above mentioned problems need to be

extended to handle errors.

References

[AFI-91] A. Apostolico, M. Farach and C.S. Iliopoulos, Optimal superprimitivity

testing for strings, Information Processing Letters, (1991), 39, 17{20.

[AC-75] A.V. Aho and M.J. Corasick, E�cient string matching: an aid to bib-

liographic search, Comm. ACM, (1975), 18(6), 333{340.

[BC-94] W. Bischof and T. Caelli, Learning structural descriptions of patterns:

a new technique for conditional clustering and rule generation, Pattern

Recognition, (1994), 27(5), 689{699.

[CIK-98] M. Crochemore, C.S. Iliopoulos and M. Korda, Two-dimensional pre�x

string matching and covering on square matrices, Algorithmica, (1998),

20, 353{372.

[DS-96] A.M. Duval and W.F. Smyth, Covering a circular string with substrings

of �xed length, Int. J. of Foundations of Computer Science, (1996),

7(1), 87{93.

93

Proceedings of the Prague Stringology Club Workshop '98

[HT-84] D. Harel and R.E. Tarjan, Fast algorithms for �nding nearest common

ancestors, SIAM J. Comput., (1984), 13(2), 338{355.

[IR-97] C.S. Iliopoulos and J.F. Reid, An optimal parallel algorithm for

analysing occluded images, In Proc. 4th Annual Australasian Confer-

ence on Parallel And Real-Time Systems, (1997), University of Newcas-

tle, Australia. N. Sharda and A. Tam (eds), Springer-Verlag, 104{113.

[IS-97] C.S. Iliopoulos and J. Simpson, On-line validation and analysis of oc-

cluded images, In Proc. 8th Australasian Workshop on Combinatorial

Algorithms, (1997), Research on Combinatorial Algorithms, Queens-

land University of Technology, Australia, V. Estivill-Castro (ed), 25{

36.

[KMP-77] D.E. Knuth, J.H. Morris and V.R. Pratt, Fast pattern matching in

strings, SIAM J. Comput., (1997), 6, 322-350.

[MS-94] D.W.G. Moore and W.F. Smyth, An optimal algorithm to compute all

the covers of a string, Inform. Process. Lett., (1994), 50(5), 239{246.

[MS-95] D.W.G. Moore and W.F. Smyth, A correction to: An optimal algorithm

to compute all the covers of a string, Inform. Process. Lett., (1995), 54,

101{103.

[PL-94] P.A. Pevzner and R.J. Lipshutz, Towards DNA sequencing chips, In

Proc. 19th Int. Symp. on Mathematical Foundations of Computer Sci-

ence, (1994), Lecture Notes in Computer Science, Springer-Verlag, 841,

143{158.

94

