
Simulation of NFA in Approximate String and

Sequence Matching

1

Jan Holub

Department of Computer Science and Engineering

Faculty of Electrical Engineering

Czech Technical University

Karlovo n�am�est�� 13

121 35 Prague 2

Czech Republic

e-mail: holub@cs.felk.cvut.cz

Abstract. We present detailed description of simulation of nondeterministic

�nite automata (NFA) for approximate string matching. This simulation uses

bit parallelism and used algorithm is called Shift-Or algorithm. Using knowledge

of simulation of NFA by Shift-Or algorithm we design modi�cation of Shift-

Or algorithm for approximate string matching using generalized Levenshtein

distance and modi�cation for exact and approximate sequence matching.

Key words: �nite automata, approximate string matching, simulation of non-

deterministic �nite automata, bitwise parallelism

1 Introduction

Approximate string matching is de�ned as a searching for all occurrences of pattern

P = p

1

p

2

: : : p

m

in text T = t

1

t

2

: : : t

n

with at most k errors allowed. The number

of errors allowed in a found substring is determined by a distance which is de�ned

as a minimal number of edit operations needed to convert pattern P to the found

substring. In the Hamming distance, the allowed edit operation is replace (replacing

a character by another character). In the Levenshtein distance, the allowed edit

operations are replace, delete (deletion of a character from the pattern) and insert

(insertion of a character into the pattern). In the generalized Levenshtein distance,

there is, besides edit operations replace, delete and insert, a new operation transpose

(two adjacent characters are exchanged). This new edit operation represents situation

when one types two characters in reversed order.

Sequence matching is de�ned as a searching for all occurrences of pattern P =

p

1

p

2

: : : p

m

in text T = t

1

t

2

: : : t

n

such that between symbols p

i

and p

i+1

, 0 < i < m,

in text T can be located any number of input symbols. For approximate sequence

matching we can also use Hamming, Levenshtein and generalized Levenshtein dis-

tance.

Nondeterministic �nite automaton (NFA) is a quintuple (Q;A; �; q

0

; F ), where Q

is a set of states, A is a set of input symbols, � is a mapping Q� (A[f"g) 7! subsets

of Q, q

0

is an initial state and F is a set of �nal states.

1

This work was supported by grant FRV

�

S 0892/97.

39



Proceedings of the Prague Stringology Club Workshop '97

2 Exact String Matching

NFA for exact string matching is shown in Figure 1, wherem = 4. Shift-Or algorithm

[BG92], [WM92] for exact string matching uses one m-bit vector R in which l

th

bit,

1 � l � m corresponds to l

th

state of NFA. If l

th

state is active then l

th

bit is set to

0 and if l

th

state is not active then l

th

bit is set to 1.

A

p1 p2 p3 p4

0 1 2 3 4

Figure 1: NFA for exact string matching.

In this NFA each non�nal and noninitial state has transition to its right-hand

neighbour. Hence transitions of all active states can be performed at once by bitwise

operation shift. Now, it is necessary to select only those transitions that correspond

to the input symbol t. It is handled by bitwise operation or with mask vector corre-

sponding to the input symbol. These mask vectors are stored in mask table D. For

each symbol a of input alphabet A there is one vector in which 0 is located in the

same positions in which symbol a is located in the pattern P . The self-loop of the

initial state is implemented by operation shift which inserts 0 at the beginning of

the vector R. Before reading the �rst symbol of the input text the vector R is �lled

up by 1. The formula for computing the vector when reading (i+ 1)

th

input symbol

is (1)

2

. Shift-Or algorithm reports \pattern found" when m

th

bit of the vector is set

to 0.

R

i+1

= (shl(R

i

) orD[t

i+1

]) (1)

Each version of Shift-Or algorithm described in this paper needs space O(d

m

w

e �

min(jAj;m+1)) for mask table D, where jAj denotes size of input alphabet A and w

denotes length of computer word in bits. For exact string matching, space complexity

of vector R is O(d

m

w

e) and time complexity is O(d

m

w

e � n), where n is a length of the

input text. Moreover at the beginning of searching we can use faster trivial searching

for the �rst character of the pattern and when it is found then we start Shift-Or

algorithm.

3 Approximate String Matching

3.1 Hamming Distance

NFA for approximate string matching using Hamming distance was shown in [Me95].

Such NFA for m = 4 and number of errors allowed k = 3 is shown in Figure 2

where symbol p

i

represents any symbol of input alphabet A except symbol p

i

. Each

2

In Shift-Or algorithm, transitions from states in our �gures are implemented by operation shl

(shift to the left) because of easier implementation in case that number of states of NFA is greater

than length of computer word and vector R has to be divided into two vectors.

40



Simulation of NFA in Approximate String and Sequence Matching

level of states represents number of errors allowed. Operation replace is represented

by transition that leads to the following state of the level of one more errors. This

transition has the same direction for all states so we can use also operation shift

applied to previous value of vector for one lower number of errors.

A

p2

p2

p1 p3

p3

p3

p4

p4

p4

p1 p2

p2

p3

p3

p3

p4

p4

p4

p4

Figure 2: NFA for approximate string matching using Hamming distance.

Shift-Or algorithm uses for each level j, 0 � j � k, of states one vector R

j

.

Vector R

0

is computed using formula (1). Vectors R

j

, j > 0, allowing errors have

to be computed with respect to transitions representing edit operation replace. They

are computed using formula (2).

R

j

i+1

= (shl(R

j

i

) orD[t

i+1

]) and (shl(R

j�1

i

) (2)

This formula does not correspond exactly to the NFA because transition represent-

ing edit operation replace is performed for both unmatching and matching symbols.

Vector of states in previous level is only shifted but it should be also masked by nega-

tion of D[t

i+1

] in order to select only the transitions for unmatching symbols. Since

we always search for minimal number of errors this simpli�cation does not inuence

result.

In this case vectors R

j

need space O(d

m

w

e� (k+1)) and the algorithm runs in time

O(d

m

w

e � n � (k + 1)).

3.2 Levenshtein Distance

NFA for approximate string matching using Levenshtein distance was shown in [Me96-

1] and reduced in [Ho96]. Such NFA for m = 4 and number of errors allowed k = 3

is shown in Figure 3. There we can see edit operation insert which is represented

by vertical transition | unmatching character inserted into the pattern. In Shift-Or

41



Proceedings of the Prague Stringology Club Workshop '97

algorithm, this transition is implemented by adding previous value of the vector for

one lower number of errors. It is located at the end of formula (3) for computing

the vector. Like for edit operation replace, this transition is also made for both

unmatching and matching symbols but it also does not inuence the result.

ε

A

p2

p2

p2

p1 p3

p3

p3

p3

p3

p4

p4

p4

p4

p4

p4

p1 p2

p2

p3

p3

p3

p4

p4

p4

p4

ε

ε ε

ε ε

ε

ε ε

A

p2 p3

p2

p1

p3

p3

p4

p4

p1 p2

p2

p3

p3

p3

p4

p4

p4

p4p4

Figure 3: NFA for approximate string matching using Levenshtein distance.

R

j

i+1

= (shl(R

j

i

) orD[t

i+1

]) and (shl(R

j�1

i

andR

j�1

i+1

)) and (R

j�1

i

) (3)

In the NFA the edit operation delete is represented by "-transition | any symbol

deleted from the pattern. In Shift-Or algorithm, matching transitions are made for

all active states and then resulting active states are moved to their right neighbours

in the level for one higher number of errors. In formula (3) it is implemented by

shl(R

j�1

i+1

).

In this case vectors R

j

need space O(d

m

w

e� (k+1)) and the algorithm runs in time

O(d

m

w

e � n � (k + 1)).

3.3 Generalized Levenshtein Distance

In approximate string matching using generalized Levenshtein distance we have new

edit operation transpose that represents the situation when two adjacent symbols

p

i

p

i+1

, 0 < i < m, of the pattern P are placed in the found string in reversed

order p

i+1

p

i

. In case of this edit operation we read two characters therefore this edit

operation has to be represented by auxiliary state such that transition labeled by

p

i+1

leads to this state and transition labeled by p

i

leads from this state. NFA for

approximate string matching using generalized Levenshtein distance for m = 4 and

k = 3 is shown in Fig. 4.

42



Simulation of NFA in Approximate String and Sequence Matching

p4

p4

p4

p4p3

p3

p4

p4

p3

p3

p2

p2

A

p2

p1

p3

p1 p2

p2

p3

p3

p3

p4

p4

p4

p4

ε ε

ε ε

ε ε

ε

ε ε

p2 p3

p3

p4

p4

p4

p1 p2

p2

p3

p3

p3

Figure 4: NFA for approximate string matching using generalized Levenshtein dis-

tance.

In Shift-Or algorithmwe have to introduce new vectors S

j

, 0 � j < k, for auxiliary

states. For each state q

i

, whose right-hand neighbour q

i+1

is not �nal state, holds

that transition leading from this state to an auxiliary state q

s

i

is labeled by matching

symbol of state q

i+1

and transition leading from the auxiliary state q

s

i

is labeled by

matching symbol of state q

i

.

R

j

i+1

= (shl(R

j

i

) orD[t

i+1

]) and (shl(R

j�1

i

andR

j�1

i+1

)) and (R

j�1

i

)

and (shl(S

j�1

i

orD[t

i+1

])) (4)

S

j

i+1

= shl(R

j

i

) or(shr(D[t

i+1

)) (5)

Vectors R

j

, 0 < j � k, are computed by using formula (4) and vectors S

j

,

0 � j < k, are computed by using formula (5). At the beginning vectors S

j

are �lled

up by 1.

In this case vectors R

j

and S

j

both together need space O(d

m

w

e � (2k + 1)) and

the algorithm runs in time O(d

m

w

e � n � (2k + 1)).

4 Sequence Matching

In previous sections we have shown simulation of NFAs for exact and approximate

string matching. Since NFAs for exact and approximate sequence matching are very

similar to corresponding NFAs for string matching we can use Shift-Or algorithm for

sequence matching as well.

43



Proceedings of the Prague Stringology Club Workshop '97

p2 p3 p4A

p1 p2 p3 p4

0 1 2 3 4

Figure 5: NFA for exact sequence matching.

NFA for sequence matching can be constructed from corresponding NFA for string

matching by adding self-loop for mismatching symbols into all noninitial and non�nal

states. Such NFA for m = 4 is shown in Fig. 5. When constructing formula for

computing vector R we use fromula for exact string matching (1) to which we have to

add the part which represents self-loops for mismatching symbols. Self-loop expresses

that a state is active even in the next step if mismatching symbol appears in the input.

We implement it by adding previous value of vector R which is masked by negation

of D[t

i+1

]. The resulting formula is (6). This formula does not exactly correspond to

NFA because it gives self-loop also into �nal state. Therefore when any �nal state

reports \pattern found" the bit corresponding to this �nal state has to be set to 1.

It is faster than reseting the bit in formula (6) which is performed for each input

symbol t

i

.

R

i+1

= (shl(R

i

) orD[t

i+1

]) and (R

i

or shr(not D[t

i+1

])) (6)

NFA for approximate sequence matching using Hamming distance is shown in

Fig. 6 and formula for computing vector R is (7), for Levenshtein distance it is shown

in Fig. 7 and formula is (9) and for generalized Levenshtein distance it is shown in

Fig. 8 and formulae are (10) and (11).

A

p2

p2

p2

p3

p3

p3

p4

p4

p4

p4

p2

p1 p3

p3

p3

p4

p4

p4

p1 p2

p2

p3

p3

p3

p4

p4

p4

p4

Figure 6: NFA for approximate sequence matching using Hamming distance.

44



Simulation of NFA in Approximate String and Sequence Matching

R

j

i+1

= (shl(R

j

i

) orD[t

i+1

]) and (shl(R

j�1

i

)) and (R

i

or shr(not D[t

i+1

])) (7)

R

j

i+1

= (shl(R

j

i

) orD[t

i+1

]) and (shl(R

j�1

i

andR

j�1

i+1

)) and (R

j�1

i

) (8)

and (R

i

or shr(not D[t

i+1

])) (9)

R

j

i+1

= (shl(R

j

i

) orD[t

i+1

]) and (shl(R

j�1

i

andR

j�1

i+1

)) and (R

j�1

i

)

and (shl(S

j�1

i

orD[t

i+1

])) and (R

i

or shr(not D[t

i+1

])) (10)

S

j

i+1

= shl(R

j

i

) or(shr(D[t

i+1

)) and (S

i

or shr(shr(not D[t

i+1

]))) (11)

ε

A

p2

p2

p2

p1 p3

p3

p3

p3

p3

p4

p4

p4

p4

p4

p4

p1 p2

p2

p3

p3

p3

p4

p4

p4

p4

ε

ε ε

ε ε

ε

ε ε

A

p2

p2 p3

p3

p4

p4

p4

p3

p2 p3 p4

p2

p1

p3

p3

p4

p4

p1 p2

p2

p3

p3

p3

p4

p4

p4

p4p4

Figure 7: NFA for approximate sequence matching using Levenshtein distance.

Conclusions

We have presented detailed description of Shift-Or algorithm that runs in timeO(d

m

w

e�

n�k) and needs spaceO(d

m

w

e�(2k+1)). Besides simulation of NFAs we can transform

them to corresponding deterministic �nite automata (DFAs) that run in time O(n).

In case of exact string matching the number of states of DFA for pattern P is the

same as the number of states of NFA for pattern P so except for very short text it is

faster to use DFA.

In case of approximate string and sequence matching the number of states of DFA

unfortunately seems to be exponential but exact bounds have not been determined.

Some estimations were presented in [Me96-2] but they also seem to be pessimistic.

In case that we do not want to know the number of errors in the found string we can

reduce NFA, shorten vectors R

j

and simplify formulae as shown in [Ho96].

45



Proceedings of the Prague Stringology Club Workshop '97

p4

p3

p4

p4

p3

p4p3

p2

p3

p4

p3

p4

p3

p2

p3

p2

p1

p2

A

p2 p3

p3

p4

p4

p4

p2 p3 p4

p2

p1

p3

p1 p2

p2

p3

p3

p3

p4

p4

p4

p4

ε ε

ε ε

ε ε

ε

ε ε

p2 p3

p3

p4

p4

p4

p1 p2

p2

p3

p3

p3

Figure 8: NFA for approximate sequence matching using generalized Levenshtein

distance.

When searching it is necessary to consider length of the input text, length of the

pattern and memory space available in order to choose optimal searching method |

DFA or simulation of NFA.

References

[BG92] Baeza-Yates, R., Gonnet, G.H.: A New Approach to Text Searching. Com-

munications of the ACM, October 1992, Vol. 35, No. 10, pp. 74{82.

[Ho96] Holub, J.: Reduced Nondeterministic Finite Automata for Approximate

String Matching. Proceedings of the Prague Stringology Club Work-

shop '96, Czech Technical University, August 1996, pp. 19{27.

[Me95] Melichar, B.: Approximate String Matching by Finite Automata. Com-

puter Analysis of Images and Patterns, LNCS 970, Springer-Verlag, Berlin

1995, pp. 342{349.

[Me96-1] Melichar, B.: String Matching with k Di�erences by Finite Automata.

Proceedings of the 13

th

ICPR, Vol. II, August 1996, pp. 256{260.

[Me96-2] Melichar, B.: Space Complexity of Linear Time Approximate String

Matching. Proceedings of the Prague Stringology Club Workshop '96,

Czech Technical University, August 1996, pp. 28{36.

[WM92] Wu, S., Manber, U.: Fast Text Searching Allowing Errors. Communications

of the ACM, October 1992, Vol. 35, No. 10, pp. 83{91.

46


