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Abstract. In many applications, information retrieval is a very important re-

search �eld. In several key strategies, the binary trie is famous as a fast access

method to be able to retrieve keys in order. However, if the binary trie struc-

ture is implemented, the greater the number of the registered keys, the larger

storage is required, as a result, the binary trie can not be stored into the main

memory. In order to solve this problem, the method to change the binary trie

into a compact bit stream have been proposed, however, searching and updat-

ing a key takes a lot of time in large key sets. This paper proposes the method

to improve the time e�ciency of each process by introducing a new hierarchi-

cal structure. The theoretical and experimental results show that this method

provides faster access than the traditional method.

Key words: information retrieval, trie hashing, binary trie, data structures,

pre-order bit stream

1 Introducion

In many natural language processing and information retrieval systems, it is necessary

to be able to adopt a fast digital search, or trie search for looking at the input character

by character. In digital search methods, trie method [1], [2], [3], [4] is famous as

one of the fastest access methods, and trie searching is frequently used as a hash

table of trie hashing [5] indices in information retrieval systems and dictionaries in

natural language processing systems. Although hash and B-tree strategies are based

on comparisons between keys, a trie structure can make use of their representation

as a sequence of digits or alphabetic characters. A trie can search all keys made up

from pre�xes in an input string, in only one time scanning, since a trie advances the

retrieval character by character, which makes up keys. From this reason, the trie is

called the Digital Search-tree (DS-tree). Especially, DS-tree whose nodes have only

two arcs labelled with 0 and 1 is called a Binary Digital Search-tree (BDS-tree) [5],

[6].
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In the case when the binary trie, that is BDS-tree, is implemented as the index of

information retrieval application, if the key sets to be stored are large, it is too big

to store into main memory. Therefore, it is very important to compress the binary

trie into a compact data structure. Then, Jonge et al. [5] proposed the method to

compress the binary trie into a compact bit stream, which is called the pre-order bit

stream, by traversing the trie in pre-order. However, the bigger the binary trie, the

longer the pre-order bit stream is, as a result, the time cost to retrieve keys located

toward the end of the bit stream is high.

This paper proposes a new method able to avoid the increase of the time-cost

even if the dynamic key sets become very big. The data structures compressed by

this method have two distinctive features: (1) they store no pointers and require one

bit per node in the worst case, and (2) they are divided into the small binary tries,

and their small tries are connected by pointers.

2 A Compact Data Structure for Binary Tries

In the BDS-tree, the binary sequence, which is obtained from the translation of the

characters into their binary code, is used as the value of the key, namely, the left arc

is labeled with the value `0' and the right arc with the value `1'. If each of leaves in

the BDS-tree points the record of only one key, the depth of the BDS-tree becomes

very deep. So, each leaf has the address of the bucket, where some corresponding

keys to the path are stored. We will use B SIZE to denote the number of keys and

their records that can be stored in one bucket. For example, let us suppose that the

following key set K is inserted into the BDS-tree.

K = fair, art, bag, bus, tea, try, zoog

If the binary sequence, obtained from the translation of the internal code of each

character, where internal codes of a, b, c, z are 0, 1, c, 25 respectively, into binary

numbers of 5 bits, is used, the corresponding bit strings to be registered are below.

air ! 0/ 8/ 17 ! 00000 01000 10001

art ! 0/ 17/ 19 ! 00000 10001 10011

bag ! 1/ 0/ 6 ! 00001 00000 00110

bus ! 1/ 20/ 18 ! 00001 10100 10010

tea ! 19/ 4/ 0 ! 10011 00100 00000

try ! 19/ 17/ 24 ! 10011 10001 11000

zoo ! 25/ 14/ 14 ! 11001 01110 01110

If B SIZE is 2, the corresponding BDS-tree for the key set K is shown in Figure 1.

In order to compress the BDS-tree, we applied the particular leaf which does not have

any addresses for the bucket. This leaf will be called dummy leaf. Using the dummy

leaf, the following advantages are derived. First, it satis�es the property of binary

trees that the number of leaves is one more than the number of internal nodes. This

property underlies the search algorithm using the compact data structure. Next, if

the search terminates in a dummy leaf, the search key is regarded as a key that does

not belong to the BDS-tree, and no disk access at all will be needed.
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Figure 1: An Example of the BDS-tree.

When the BDS-tree is implemented, the larger the number of the registered keys,

the greater the number of the nodes in the tree is, and more storage space is required.

So, Jonge et al. [5] proposed the method to compress the BDS-tree into a very compact

bit stream. This bit stream is called pre-order bit stream. The pre-order bit stream

consists of 3 elements: treemap, leafmap and B TBL. The treemap represents

the state of the tree and can be obtained by a pre-order tree traversal, emitting

a `0' for every internal node visited and a `1' for every bucket visited. The leafmap

represents the state (dummy or not) of each leaf and by traversing in pre-order the

corresponding bit is set to a `0' if the leaf is dummy, otherwise the bit is set to a `1'.

The B TBL stores the addresses of each bucket. Figure 2 shows the pre-order bit

stream corresponding to the BDS-tree of Figure 1. Then, in order to understand

the relation between the BDS-tree and the pre-order bit stream easily, we indicate

above the treemap the corresponding internal node and leaf number (in the case of

the dummy leaf, the symbol is a \d") within the round \()" and square \[ ]" brackets,

respectively.

The search using the pre-order bit stream proceeds bit by bit from the �rst bit

of treemap, so that the search is traversed the BDS-tree in pre-order. The search

algorithm using the pre-order bit stream is presented below, where it uses the following

variables and functions:

s key: The bit string of the key to be searched.

keypos: A pointer to the current position in s key.

treepos: A pointer to the current position in treemap.

leafpos: A pointer to the current position in leafmap.

bucketnum: The corresponding bucket number.

SKIP COUNT(): Skips the left partial tree, and returns the number of the leaf

within the partial tree.

FIND BUCKET(): Returns the corresponding bucket number of s key.

[An Algorithm to search in the BDS-tree]

Input: s key;

Output: If s key can be found, then the output is TRUE, otherwise FALSE;

Step(S-1): fInitializationg

keypos  1, treepos  1, leafpos  1;
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B_TBL : address of bucket 1

address of bucket 2

address of bucket 3

address of bucket 4

1

2

3

4

treemap :
(1) (3)(2) (4) (5) [1] [2] [d] [d] [d] (6)

0 0 0 1 10 0 1 1 1 0

Internal
nodes

Leaves

1 1

[3] [4]

leafmap : 1 1 0 0 10

Dummy leaves

Non dummy
leaves

1

Figure 2: An example of the pre-order bit stream.

Step(S-2): fSkipping the left subtreeg

If the bit of s key pointed to by keypos is a `1',

then leafpos  leafpos+SKIP COUNT();

Step(S-3): fAdvance to the right subtreeg

keypos  keypos+1; treepos  treepos+1;

Step(S-4): fLoop invariant until reaching the leafg

If the bit of treemap pointed to by treepos is a `0', return to Step(S-2);

Step(S-5): fVeri�cation of leafmapg

If the bit of leafmap pointed to by leafpos is a `0', FALSE is returned;

Step(S-6): fVeri�cation of B TBLg

bucketnum FIND BUCKET();

If the bucket indicated by bucketnum contains the key, return TRUE, otherwise

return FALSE;

Regarding the above algorithm, since a left subtree in treemap is represented

following the 0 bit of its parent node, when advancing to the left subtree, the Step(S-

2) is not executed, however when advancing to the right subtree, the Step(S-2) to skip

the left subtree is added. This skipping process utilizes the binary tree's property

that the number of leaves is one more than the number of internal nodes in any binary

subtree. Using this property, the function SKIP COUNT() can search for the end

position of the left subtree and get the number of leaves in the left subtree. Namely,

this function advances treepos until the number of 1 bits is one more than the number

of 0 bits, and returns the number of 1 bits (leaves). Moreover, the value obtained by

counting the number of 1 bits in leafmap from the �rst bit to the one pointed to by

leafpos indicates which slot in B TBL contains the required bucket address.

For example, to retrieve key=\zoo" (s key=\11c") in Figure 2, the following steps

are performed:
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Step(S-1): keypos=treepos=leafpos=1; Since the �rst bit of s key is a `1', the

subtree whose root is node 2 is skipped by SKIP COUNT().

Step(S-2): leafpos=leafpos+SKIP COUNT()=6;

Step(S-3): keypos=2; treepos=11;

Step(S-4): Since the 11-th bit of treemap is a `0', return to Step(S-2);

Step(S-2`4): Since the 2-th of s key is a `1', the subtree whose root is node 6 is

skipped; leafpos=leafpos+SKIP COUNT()=7; treepos=13;

Step(S-5): Since the 7-th bit of leafmap is a `1', B TBL is veri�ed;

Step(S-6): Since key \zoo" is stored in the bucket 4, TRUE is returned;

3 Improvement by Using Hierarchical Structures

The BDS-tree represented by the pre-order bit stream is a very compact binary trie,

however, the more keys are stored in the tree, the longer the bit strings (treemap and

leafmap) are. As a result, the time-cost for each process is high. For example, as

for the retrieval, the worst case is when search process is done toward the rightmost

leaf in the BDS-tree as shown in Figure 3. In this case, if the rightmost leaf keeps

the address of the bucket of the searching key, all bits in treemap (leafmap also) of

the pre-order bit stream must be scanned. Similarly, in the case when an arbitrary

key is inserted in the bucket corresponding to the leftmost leaf, suppose the bucket is

divided and merge, all bits after the bit corresponding to the leftmost leaf in treemap

of the pre-order bit stream have to be shifted. In this paper, the method to solve the

problem stated above is proposed.

This method separates the BDS-tree into smaller BDS-trees of a certain depth.

This depth is called the separation depth, and these small trees are called separated

trees. These separated trees are numbered and connected by pointers. The BDS-tree

separated in this way is called a Hierarchical Binary Digital Search tree (HBDS-tree).

The HBDS-tree obtained based on the BDS-tree of Figure 4 -(a), with a separation

depth of 2, is shown in Figure 4 -(b). In this case when rightmost leaf is searched, if

we use the BDS-tree as shown in Figure 4 -(a), all internal nodes and leaves must be

scanned in pre-order traversal. On the other hand, in the case of the HBDS-tree as

shown in Figure 4 -(b), we can search the rightmost leaf by scanning all nodes and

leaves of the only separated tree 1.

The algorithm to retrieve a key in the HBDS-tree uses the pre-order bit stream.

The binary sequence H(k) of the key is divided into the following binary sequence:

H(k) = H1(k) H2(k) c Hj(k) c Hn(k)

Supposing that the separation depth is denoted by L, the lengths of H1(k)`Hn-1(k) are L

bits and the length of Hn(k) is less than L bits. The HBDS-tree can be compressed into

a very compact data structure named the pre-order bit stream as well as the BDS-

tree. The pre-order bit stream is created and controlled for each of the separated

trees. The pre-order bit stream that corresponds to the i-th separated tree in the
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Figure 3: Retrieval of the BDS-tree in the worst-case.

HBDS-tree consists of treemap

i

, leafmap

i

and B TBL

i

, but the leaf which becomes

the pointer to the next separated tree is regarded as a especial leaf and B TBL

i

contains the number of the next separated tree preceded by a minus sign in the

slot corresponding to the leaf. The HBDS-tree obtained based on the BDS-tree of

Figure 1, with a separated depth of 2, is shown in Figure 5, and the pre-order bit

stream for the HBDS-tree of Figure 5 is shown in Figure 6, where, as can be seen

above the treemap, the leaves which became the pointer to the separated tree are

marked by \hi". By using this improved method, each process can be sped up,

because unnecessary scanning of the pre-order bit stream for each separated tree can

be omitted.

The algorithm for retrieval of the HBDS-tree represented by the pre-order bit

stream is shown below, where it uses the following variables:

i: The current separated tree number.

s key: The key to be searched.

keypos: A pointer to the current position in s key.

treepos: A pointer to the current position in treemap

i

.

leafpos: A pointer to the current position in leafmap

i

.

bucketnum: The corresponding bucket number.

Moreover, each of the functions performs the same process as the functions explained

in Section 2 toward the i-th separated tree, when i is initialized with 1.

[An Algorithm to search in the HBDS-tree]

Input: s key;

Output: If s key can be found, then the output is TRUE, otherwise FALSE;

Step(S'-1)�Step(S'-5): The same procedures as the Step(S-1)`Step(S-5) are per-

formed, however their treemap, leafmap are changed into treemap

i

, leafmap

i

;

Step(S'-6): fVeri�cation of bucketnumg
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Figure 4: Improvement of the BDS-tree by using hierarchical structures.

bucketnum FIND BUCKET(i);

If bucketnum � 0, proceed to Step(S'-7), otherwise proceed to Step(S'-8);

Step(S'-7): fObtaining the separated tree numberg

i = �1� bucketnum; Return to Step(S'-1);

Step(S'-8): fVeri�cation of B TBLg

If the bucket indicated by bucketnum contains the key, return TRUE, otherwise

return FALSE;

For example, in the case of retrieval the key = zoo (s key = \11c") in the pre-

order bit stream of the HBDS-tree as shown in Figure 6, s key can be retrieved in

the HBDS-tree by using the pre-order bit stream of the only separated tree 1, so that

the time-cost of retrieval becomes better than the case by using the BDS-tree's one.
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Figure 5: HBDS-tree based of the BDS-tree of Figure 1.

4 An Insertion Algorithm

The method for inserting the new key into the HBDS-tree is divided into the following

three cases as well as the BDS-tree.

1) the required bucket is partially �lled.

2) the required bucket is a dummy bucket.

3) the required bucket is full.

In this chapter, the third case, when the required bucket is full, that is, the method

for dividing the full bucket into the new two buckets is explained. An explanation of

the other cases is omitted, because they are very simple.

When there is an overow in the required bucket, in the BDS-tree, the following

processes are repeated until the overow of the bucket does not happen. First, the

corresponding leaf to the full bucket is changed into a tree which consists of a node

and two dummy leaves. This tree is called a unit tree. Next, all the keys in the full

bucket and an insertion key are distributed between the corresponding two buckets

to dummy leaves of the unit tree. On the HBDS-tree, when the unit tree is made,

a new separated tree must be created every time the depth of each separated tree

exceeds the separation depth. As for the insertion process which uses the pre-order

bit stream, a bit line \011", which represents the unit tree in treemap, and a bit

line \00", which represents the two dummy leaves of the unit tree in leafmap, are

inserted into treemap and leafmap respectively.
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(5) [2][1]
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Figure 6: The pre-order bit stream for the HBDS-tree of Figure 5.

5 Evaluation

5.1 Theoretical Evaluation

In this section, the worst-case time complexities of each algorithm for the BDS-tree

and HBDS-tree are theoretically analyzed. And the space complexities of each pre-

order bit stream for the BDS-tree and HBDS-tree also are calculated. Let the tree

structure to be analyzed be the complete tree. The following parameters are used:

n: The depth of the complete tree;

m: The separation depth;

�: The number of layers in the HBDS-tree. It is obtained by [n=m], where [n=m]

indicates the minimum integer greater than or equal to n=m;

As for the time complexity, the worst-case time complexity for retrieval for the

BDS-tree is O(2

n

), because the whole of the complete tree must be scanned. However,

for the HBDS-tree it is O(�2

m

), since only � separate trees are scanned. Regarding

the insertion and deletion, the worst case is when each process is done toward the

leftmost bucket in the tree. In this case, suppose the bucket is divided and merged, the

BDS-tree has a time complexityO(2

n

�n), because all bits after the bit corresponding

to the bucket in the pre-order bit stream have to be shifted, however for the HBDS-

tree it is O(2

m

� m), because the same operations are performed toward only one

separated tree. Generally, for n � 2

n

and m � 2

m

, the worst-case time complexity

for insertion and deletion in the BDS-tree is O(2

n

) and for the HBDS-tree it is O(2

m

).

As for the space complexity, on the BDS-tree, the number of bits used for the

treemap is equal to the total number of nodes (internal nodes and leaves) of the

complete tree, that is, it is 2

n+1

� 1. And the leafmap needs 2

n

bits which is the

number of leaves in the complete tree. As for the sizes of the treemap and leafmap
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for the HBDS-tree, they are calculated as shown below :

Number of bits required for treemap

= (number of all nodes of the separated tree)�(number of the separated trees within the complete tree)

=

m

X

k=0

2

k

�

�

X

k=1

2

m(k�1)

= (2

m+1

� 1)

2

m�

� 1

2

m

� 1

= f2(2

m

� 1) + 1g

2

m�

� 1

2

m

� 1

= (2

m�+1

� 2) +

2

m�

� 1

2

m

� 1

= (2

n+1

� 1) +

2

n

� 1

2

m

� 1

� 1

Number of bits required for leafmap

= (number of leaves of the separated tree)�(number of the separated trees within the complete tree)

= 2

m

�

�

X

k=1

2

m(k�1)

= 2

m

2

m�

� 1

2

m

� 1

= (2

m

� 1 + 1)

2

m�

� 1

2

m

� 1

= (2

m�

� 1) +

2

m�

� 1

2

m

� 1

= 2

n

+

2

n

� 1

2

m

� 1

� 1

From the above results, if the BDS-tree is separated, the storage requirement for both

the treemap and the leafmap increases only (2n � 1)=(2m � 1) � 1 bits.

5.2 Experimental Evaluation

This method was written in about 2,000 lines of code in C, and implemented on a Sun

Microsystems Sparc Station 2 (28 MIPS).

Key sets Japanese nouns English words

Kinds of trees BDS-tree HBDS-tree BDS-tree HBDS-tree

Number of

non dummy leaves 6,002 6,159

dummy leaves 3,649 8,411

Internal nodes 9,650 14,569

depth 82 70

separated tree 2,060 2,940

Time (Second)

Registration 870 146 1875 164

Time (Milli-Second)

Retrieval 8.68 0.48 11.26 0.56

Insertion 38.00 3.00 37.50 3.28

Storage (K-byte)

treemap 2.41 2.67 3.64 4.00

leafmap 1.21 1.46 1.82 2.19

B TBL 12.00 16.12 12.32 18.20

Table 1: Experimental results.

In order to observe the e�ect of this method, we compare the cost time of each

process and storage requirement for the BDS-tree and the HBDS-tree. 50,000 nouns

in Japanese and 50,000 English words with an average length of 6 and 9 bytes respec-

tively are used as the key sets. Table 1 shows the experimental results for the each
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of key sets, where the separation depth is 5 and B SIZE is 16. Retrieval time is

the average time required for a key when all registered keys are searched and deleted,

respectively. Insertion time is the average time required for a key when 1000 unregis-

tered keys are added to the key set. Storage in Table 1 shows the memory required

for the registration of the each key set.

From the experimental results, the retrieval in the HBDS-tree is 18`20 times

faster than in the BDS-tree, the insertion is 11`13 times faster. Thus, it can be

concluded that the time each of the processes requires is signi�cantly less when us-

ing this method. As for the storage space required by the HBDS-tree, the sizes of

treemap, leafmap and B TBL are 1.11, 1.21 and 1.34 times the size of the ones

used by the BDS-tree. However, by nature, the pre-order bit stream is very compact

in size, thus their sizes are good enough for practical applications. Moreover, for

the BDS-tree and the HBDS-tree, both represented by the pre-order bit stream, the

storage requirement to register one key is of 2.50 and 3.24 bits, respectively. Thus,

these methods can be operated with more compact storage than the B-tree, B

+

-tree,

etc.

6 Conclusions

The Binary trie represented by the pre-order bit stream can search a key in order,

however, the time-cost of each process becomes high for large key sets. So, the method

for solving the above problem by separating the tree structure has been presented in

this paper. The time and space e�ciency of the proposed method is theoretically

discussed, and the validity of this method has been supported by empirical observa-

tions. As future improvements, an e�cient method to improve the space e�ciency of

the bucket should be designed.
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