
Approximate Regular Expression Matching

Pavel Mu¾átko

Department of Computer Science and Engineering,

Faculty of Electrical Engineering,

Czech Technical University,

Karlovo n�am. 13,

121 35 Prague 2,

Czech Republic

Abstract. We extend the de�nition of Hamming and Levenshtein distance

between two strings used in approximate string matching so that these two

distances can be used also in approximate regular expression matching. Next,

the methods of construction of nondeterministic �nite automata for approx-

imate regular expression matching considering both mentioned distances are

presented.

Key words: regular expression, �nite automata, approximate string matching

1 Introduction

The notions from the theory of approximate string matching will be used for describ-

ing the problem of approximate regular expression matching. Approximate string

matching is de�ned as follows: A text T , a pattern P , and an integer k are given.

All occurrences of a substring X should be found such that the distance D(P;X)

between the string X and the pattern P is less or equal to k.

There are two basic types of distances called Hamming distance and Levenshtein

distance. The Hamming distance (notation D

H

) between two strings of equal length

is the number of positions with mismatching symbols in this two strings. The Leven-

shtein or edit distance (notation D

L

) between two strings P and X, not necessarily of

equal length, is the minimal number of editing operations insert, delete, and replace

needed to convert P into X.

If the Hamming distance is used then the approximate string matching is referred

as string matching with k mismatches. If the Levenshtein distance is used then

the approximate string matching is referred as string matching with k di�erences.

Similarly, the notions regular expression matching with k mismatches and regular

expression matching with k di�erences will be used.

2 De�nition of Regular Expressions

De�nition 1

A regular expression V over an alphabet A is de�ned as follows:

37

Proceedings of the Prague Stringologic Club Workshop '96

1. ;; "; a are regular expressions for all a 2 A.

2. If x; y are regular expressions over A then:

(a) (x+ y) (union)

(b) (x:y) (concatenation)

(c) (x)

�

(closure)

are regular expressions over A.

De�nition 2

A value h(x) of a regular expression x is de�ned as follows:

1. h(;) = ;; h(") = f"g; h(a) = fag;

2. h(x+ y) = h(x) [h(y),

h(x:y) = h(x):h(y),

h(x

�

) = (h(x))

�

.

The value of a regular expression is a regular language, a set of patterns. Un-

necessary parentheses in regular expressions can be avoided by the convection for

precedence of regular operations. The highest precedence has the closure operator,

the lowest precedence has the union operator.

3 Regular Expression Matching with k Mis-

matches

The Hamming distance D

R

H

between a regular expression V with a value h(V) and

a string X can be de�ned by using the Hamming distance D

H

between two strings

as follows:

D

R

H

= min

w2h(V)^jwj=jX j

D

H

(w;X)

Now, the construction of a nondeterministic �nite automaton accepting patterns

with the post�x generated by a given regular expression with k mismatches is pre-

sented.

Let a regular expression V over an alphabet A is given, andM = (Q

0

; A; q

0

; �

0

; F

0

)

is a nondeterministic �nite automaton accepting the language L = h(V). Let the

automatonM has m states. The automatonM

R

H

= (Q;A; q

0

; �; F) accepting patterns

with the post�x from h(V) with k mismatches will be constructed by interconnecting

the k + 1 clones M

0

; :::;M

k

of the automaton M .

Each state of the automatonM

R

H

is labeled by q

i;j

, where i is the number of the clone,

0 � i � k, j is the number of the state inside the clone M

i

, 0 � j � m � 1. The

mapping � of the automaton M

R

H

will be de�ned in the following way:

1. All transitions de�ned in the automata M

0

; :::;M

k

will be also included in the

automaton M

R

H

.

38

Approximate Regular Expression Matching

Figure 1: Nondeterministic automaton H

1

.

2. Error transitions will be added. For each state q

i;j

(0 � i � k � 1, 0 � j �

m� 1) and for each such a symbol a 2 A, for which �(q

i;j

; a) is de�ned, de�ne

�(q

i;j

; a) = �(q

i+1;j

; a), where a denotes all symbols from the alphabet A except

the symbol a.

3. A self loop for all symbols from the alphabet A will be added for the state q

0;0

.

The initial state of the automaton M

R

H

is the state q

0;0

. The set of �nal states

F = F

0

[F

1

[::: [F

k

.

The number of states of the automaton M

R

H

is m(k + 1).

Example 1

A transition diagram of a nondeterministic automaton H

1

accepting with 1 mismatch

patterns with the post�x described by the regular expression V = ab

�

ab

�

a(bab

�

ab

�

a)

�

over the alphabet A = fa; b; xg can be found in Fig. 1. This automaton accepts

all strings with a post�x X such that D

R

H

(V;X) � 1. The result of searching in

the text aabxabaa can be described as follows: aab

(1)

x

(1)

a

(1)

ba

(1)

a

(0;1)

. The number

in parentheses shows the number of mismatches occurred when a �nal state of the

automaton H

1

was reached.

4 Regular Expression Matching with k Di�er-

ences

The Levenshtein distance D

R

L

between a regular expression V with a value h(V) and

a string X can be de�ned by using the Levenshtein distance D

L

between two strings

39

Proceedings of the Prague Stringologic Club Workshop '96

as follows:

D

R

L

= min

w2h(V)

D

L

(w;X)

Let V be again a regular expression over an alphabet A and M is a nondetermin-

istic �nite automaton accepting the language L = h(V). We will construct a non-

deterministic �nite automaton M

R

L

accepting with k di�erences all patterns with the

post�x from h(V). This automaton will be as in the previous case constructed by

interconnecting the k + 1 clones M

0

; :::;M

k

of the automaton M .

Each state of the automaton M

R

L

is again labeled by q

i;j

, where i is the number of

the clone, 0 � i � k, j is the number of the state inside the cloneM

i

, 0 � j � m� 1.

The mapping � of the automaton M

R

L

is de�ned in the following way:

1. All transitions de�ned in the automata M

0

; :::;M

k

will be also included in the

automaton M

R

L

.

2. Replace transitions will be added. For each state q

i;j

(0 � i � k � 1, 0 � j �

m� 1) and for each such a symbol a 2 A, for which �(q

i;j

; a) is de�ned, de�ne

�(q

i;j

; a) = �(q

i+1;j

; a), where a denotes all symbols from the alphabet A except

the symbol a.

3. Delete transitions will be added. For each state q

i;j

and for each symbol a 2 A

(0 � i � k � 1, 0 � j � m� 1) �(q

i;j

; ") = �(q

i+1;j

; a).

4. Insert transitions will be added. For each state q

i;j

(0 � i � k�1, 0 � j � m�

1), and for each symbol a 2 A �(q

i;j

; a) = q

i+1;j

. All replace transitions between

states, where insert transitions are also de�ned (e.g. the replace transitions

between the states q

i;j

and q

i+1;j

), can be removed.

5. A self loop for all symbols from the alphabet A will be added for the state q

0;0

.

The initial state of the automaton M

R

L

is the state q

0;0

. The set of �nal states

F = F

0

[F

1

[::: [F

k

.

The number of states of the automaton M

R

L

is m(k + 1).

Example 2

A transition diagram of a nondeterministic automaton L

1

accepting with maxi-

maly 1 di�erence patterns with the post�x de�ned by the regular expression V =

ab

�

ab

�

a(bab

�

ab

�

a)

�

over the alphabet A = fa; b; xg can be found in Fig. 2. Delete

transitions are depicted as dashed lines. This automaton accepts all strings with

a post�x X such that D

R

L

(V; P) � 1.

The result of searching in the text abxaa can be described as follows:

abxa

(R)

a

(R;I)

.

The symbol in parentheses determines the operation needed to convert some pattern

from h(V) to the string read when a �nal state was reached.

The notation (R; I) has the following meaning:

The string abbaa 2 h(V) can be converted to the string abxaa by using one replace

operation. The string abaa 2 h(V) can be converted to the string abxaa by using one

insert operation.

Example 3

Let us consider the input text abbbabab. We are interested in �nding all occurrences of

40

Approximate Regular Expression Matching

Figure 2: Nondeterministic automaton L

1

.

strings with the post�x X such that D

R

L

(V;X) � 1, where V is the regular expression

from the previous example. The automaton L

1

will be used. The result can be

described as follows:

abbba

(R;D)

b

(R;D)

a

(0;R;D;I)

b

(R;D;I)

.

The symbol 0 denotes the occurrence of a string from h(V).

5 Conclusion

Both the nondeterministic automata M

R

H

and M

R

L

have to be deterministicaly sim-

ulated for practical purpose. But during the process of creating of equivalent deter-

ministic �nite automata the number of states can rise exponentialy, while the de-

terministic simulation of a nondeterministic automaton is of a high time complexity.

It seems that this problem can be solved by constructing of a hybrid deterministic-

nondeterministic �nite automaton, but the problem is still open.

References

[1] Aho, A., Ullman, J.: The Theory of Parsing, Translation, and Compiling. Vol. I:

Parsing, Prentice Hall, Englewood Cli�s, New York 1992.

[2] Melichar, B.: Approximate string matching by �nite automata. In: Computer

Analysis of Images and Patterns, LNCS 970, Springer 1995, pp. 132 { 137.

41

