
Collaborative Report DC{98{06

Proceedings

of the Prague Stringology Club Workshop '98

Edited by Jan Holub and Milan

�

Sim�anek

August 1998

Department of Computer Science and Engineering

Faculty of Electrical Engineering

Czech Technical University

Karlovo n�am. 13

121 35 Prague 2

Czech Republic

Program Committee

Jun-ichi Aoe, Maxime Crochemore, Jan Holub, Bo�rivoj Melichar, V�aclav Sn�a�sel,

Bruce W. Watson

Organizing Committee

Martin Bloch, Jan Holub, Martin R�yzl, Milan

�

Sim�anek, Zden�ek Tron���cek

ii

Table of contents

Preface v

A Fast Morphological Analysis Using the Extended AC Machine for

Oriental Languages by Kazuaki Ando, Kimihiro Iwasaki, Masao Fuketa and

Jun-ichi Aoe 1

The Longest Restricted Common Subsequence Problem by Gabriela An-

drejkov�a 14

Implementation of DAWG by Miroslav Bal��k 26

Exact String Matching Animation in Java by Christian Charras and Thierry

Lecroq 36

Local Prediction for Lossless Image Compression by Ahmad Daaboul 44

On the All Occurrences of a Word in a Text by O.C. Dogaru 51

A Highly Parallel Finite State Automaton Processor for Biological Pat-

tern Matching by Glen Herrmannsfeldt 58

Dynamic Programming for Reduced NFAs for Approximate String and

Sequence Matching by Jan Holub 73

Validating and Decomposing Partially Occluded Two-Dimensional Im-

ages (Extended Abstract) by Costas S. Iliopoulos and James F. Reid 83

Application of Sequence Alignment Methods to Multiple Structural

Alignment and Superposition by Arthur M. Lesk 95

Approximate String Matching by Fuzzy Automata by V�aclav Sn�a�sel 101

The Factor Automaton by Milan

�

Sim�anek 102

Directed Acyclic Subsequence Graph by Zden�ek Tron���cek and Bo�rivoj Me-

lichar 107

An Early-Retirement Plan for the States by Bruce W. Watson and Richard

E. Watson 119

iii

Preface

This collaborative report contains the proceedings of the Prague Stringology Club

Workshop '98 (PSCW'98), held at the Department of Computer Science and Engi-

neering of Czech Technical University in Prague on September 3{4, 1998. The work-

shop was preceded by PSCW'96 which was the �rst action of the Prague Stringology

Club and by PSCW'97. The proceedings of PSCW'96 and PSCW'97 were published

as collaborative reports DC{96{10 and DC{97{03, respectively, of Department of

Computer Science and Engineering and are also available in the postscript form at

Web site with URL: http://cs.felk.cvut.cz/psc. While the papers of PSCW'96

were invited papers, the papers of PSCW'97 and PSCW'98 were selected from the

papers submitted as a response to a call for papers. The papers in this proceedings

are alphabetically ordered by the authors.

The PSCW aims at strengthening the connection between stringology (the com-

puter science on strings and sequences) and �nite automata theory. The automata

theory has been developed and successfully used in the �eld of compiler construction

and can be very useful in the �eld of stringology too. The automata theory can facil-

itate the understanding of existing algorithms and the developing of new algorithms.

Jan Holub and Milan

�

Sim�anek, editors

v

A Fast Morphological Analysis Using the

Extended AC Machine for Oriental Languages

1

Kazuaki Ando, Kimihiro Iwasaki, Masao Fuketa and Jun-ichi Aoe

Department of Information Science & Intelligent Systems

University of Tokushima

2-1 Minami-Josanjima-Cho

Tokushima-Shi 770-8506

Japan

e-mail: fando,aoeg@is.tokushima-u.ac.jp

Abstract. This paper presents a fast morphological analysis for oriental lan-

guages by extending an Aho and Corasick's pattern matching machine. Our

method is a simple and e�cient algorithm to �nd all possible morphemes in an

input sentence and in a single pass, and it stores the relations of grammatical

connectivity of adjacent morphemes into the output functions. Therefore, the

costs of checking connections between the adjacent morphemes can be reduced

by using the connectivity relations. Furthermore, the construction method of

the relations of grammatical connectivity is described. Finally, the proposed

method is veri�ed by a theoretical analysis, and an experimental estimation is

supported by the computer simulation with a 100,267 words dictionary. From

the simulation results, it turns out that the proposed method was 49.9% faster

(CPU time) than the traditional trie approach. As for the number of candidates

for checking connections, it was 25.5% less than that of the original morpholog-

ical analysis.

Key words: morphological analysis, oriental language, dictionary lookup, trie

structure, AC machine, grammatical connectivity

1 Introduction

An intelligent natural language interfaces enable users to communicate with the

computer in English, Japanese or other human languages. Morphological analysis

[ABE86, AKI94, KUR94, LEE97, MAR94, MOR96, SAN94] is the �rst step of natural

language processing in the applications of natural language interfaces such as Infor-

mation Retrieval [AOE91], Database Queries [KAP84], Expert Systems and so on. In

general, the morphological analysis means segmentations of the input sentence into

words (morphemes) and attachments of part-of-speech to them. Therefore, although

morphological analysis for European languages, especially for English, plays only a mi-

nor role in a natural language processing system, in the analysis of oriental languages

1

This work was supported by the Grant-in-Aid of the Ministry of Education, Science and Culture,

Japan.

1

Proceedings of the Prague Stringology Club Workshop '98

such as Japanese, Chinese and Korean it plays an important role because oriental

languages are agglutinative languages, that is the language do not have explicit word

boundaries between the words [ABE86, AKI94, KUR94, MAR94, MOR96, SAN94].

The procedure of morphological analysis of oriental languages consists of two

steps. The �rst is to detect all possible morphemes, which are the smallest meaning-

ful units, in a given input sentence. The second is to �nd the possible connections

between adjacent morphemes by using a connection cost or probability based on the

grammaticality [ABE86, AKI94, SAN94]. In the �rst step, the morphological analy-

sis involves a large number of dictionary lookup. In general, a well-known technique

for dictionary lookup is to use a trie structure [AOE91, AOE96, KUR94]. The trie

is a tree structure in which each transition corresponds to a key character in the

given keys set and common pre�xes of keys can be shared. Therefore, the trie can

search all keys made up from pre�xes in an input string without the need of scanning

the structure more than once. However, it is not so e�ective to use the trie for the

morphological analysis [KUR94, MAR94, MOR96]. In order to detect all possible

substrings in a given input sentence, the dictionary access must be tried repeatedly

at each character position in the input sentence. Therefore, some characters may be

scanned more than once for di�erent starting positions and the number of dictionary

accesses is increased. In the second step, the morphological analysis checks gram-

matical connectivity between adjacent words in order to �nd all possible connections

[ABE86, SAN94]. This grammatical connectivity can be easily checked by using a

grammatical table [ABE86]. However, this process requires considerable cost to check

the grammatical connectivity, because it includes some checks of unnecessary connec-

tions, for example, checking connection between NOUN and CONJUGATION, since

many words as part of speech have di�erent grammatical interpretations. In order to

achieve a fast morphological analysis, the mentioned problems should be solved.

This paper proposes a high speed morphological analysis of oriental languages by

extending a pattern matching machine based on Aho and Corasick machine (called

AC machine) [AHO75]. The proposed method is a simple and fast algorithm to �nd

all possible substrings in an input sentence, and during only a single scan. Moreover,

since the proposed method stores relations of grammatical connectivity of adjacent

words into the output functions, the cost of checking connections between the adjacent

words can be reduced by using the connectivity relations.

In the following sections, our ideas are described in detail. In Section 2, we

describe the dictionary lookup method using a trie structure for the morphological

analysis. Section 3 presents the high speed morphological analysis by extending

the AC machine. Section 4 shows the theoretical analysis, and the experimental

evaluations veri�ed by the computer simulations with a 100,267 words dictionary.

Finally, the results are summarized and the future research is discussed.

2 Dictionary Lookup Method using Trie in the

Morphological Analysis

Morphological analysis of oriental languages is very di�erent from that of English

[ABE86, AKI94, KUR94, MAR94, MOR96, SAN94], because the languages do not

have explicit word boundaries between the words as shown Fig. 1. Therefore, in order

2

A Fast Morphological Analysis Using the Extended AC Machine for Oriental Languages

to �nd the most suitable word boundary, the morphological analysis must detect all

possible substrings in a given input sentence in the �rst place. This process is one of

the most important tasks of morphological analysis of oriental languages, since the

wrong segmentation causes serious errors in the later analysis such as syntactic and

semantic analysis [AKI94].

 English : How lucky you are.

 How / lucky / you / are / . /

 Japanese : anatahanantekouunnanda = How lucky you are.

 (a-na-ta-ha-na-n-te-ko-u-u-n-na-n-da)

 a / na / ta / ha / na / n / te / ko / u / u / n / na / n / da /

 ana / ta / ha / na / n / te / ko / u / u / n / na / n / da /

 anata / ha / na / n / te / ko / u / u / n / na / n / da /

 anata / ha / nante / kouun / na / n / da /

Figure 1: Di�erence in word boundary between English and Japanese.

In this process, the morphological analysis involves a large number of dictionary

accesses. In general, a well-known method for dictionary lookup is to use a trie struc-

ture [AOE91, AOE96, KUR94]. The trie is a tree structure in which each transition

corresponds to a character of the keys in the presented key set K. In the trie, a path

from the root (initial state) to a leaf corresponds to one key in K. This way, the states

of the trie correspond to the pre�xes of keys in K.

The following is introduced for formal discussions:

1) S is a �nite set of states, represented as a positive number.

2) I is a �nite set of input symbols, or characters.

3) goto is a function from S � I to S [ffailg, called a goto function.

4) output is a function from S to morphological information, called an output function.

5) The state number of the trie is represented as a positive number, where the initial

state in S is represented by the number 0.

A transition labeled with `a' (in I) from r to n indicates that goto(r, `a') = n.

The absence of a transition indicates failure (fail). Fig. 2 shows an example of a

trie for the set K = f\ana", \anata", \na", \nata", \nante", \nanda", \n", \ko",

\kouu", \kouun", \u", \un", \da", \dai", \daiku"g. In this paper, for convenience of

explanation, Japanese characters are described roman letters and a transition label is

represented by the characters corresponding to the Japanese syllables. For example,

retrieval of key \anata" is performed by traversing transitions goto(0, `a') = 1, goto(1,

`na') = 2 and goto(2, `ta') = 3, sequentially, and this time the key \ana"(=output(2))

and \anata"(=output(3)) are obtained.

In the morphological analysis, all possible substrings must be detected in order

to �nd the most suitable word boundary. The following shows a dictionary lookup

algorithm using a trie structure.

3

Proceedings of the Prague Stringology Club Workshop '98

 s output(s)

 2 {ana} (hole)

 3 {anata} (you)

 4 {na}(name)

 5 {nata}(hatchet)

 7 {nante}(how)

 8 {nanda}(what)

 9 {n}(auxiliary verb)

 10 {ko}(arc)

 12 {kouu}(rainfall)

 13 {kouun}(luck)

 14 {u}(auxiliary verb)

 15 {un}(destiny)

 16 {da}(auxiliary verb)

 17 {dai}(stand)

 18 {daiku}(carpenter)

(b) The output function.

0 321
a

na

na ta

(a) The goto function.

54
ta

6
n

7
te

8
da

10 131211
u u nko

1514
nu

9
n

16
da

1817
i ku

j

Figure 2: An example of TRIE.

Algorithm 1 : A dictionary lookup algorithm using a trie structure.

Input : A sentence TEXT = c

1

c

2

:::c

n

, where each c

i

, for 1 � i � n, is an input

character, a goto function goto and output function output.

Output : The morphological information of all possible substrings in a given input

sentence TEXT.

Method :

Step 1-1 : f Initialization g

i 1;

Step 1-2 : f Change of the starting position g

state 0; j i;

Step 1-3 : f State transitions g

state goto(state, c

j

);

if state = fail then goto Step 1-5;

if output(state) 6= � then print output(state);

Step 1-4 : f Operation control g

j j + 1;

if j � n then goto Step 1-3;

Step 1-5 : f Operation control g

i i+ 1;

if i � n then goto Step 1-2;

The trie is a very common structure for dictionary access. However, it is not so

e�ective to use the trie for morphological analysis of oriental languages, because the

dictionary access must be tried from every character position in the input sentence,

in order to detect all possible substrings in a given input sentence. Therefore, some

characters may be scanned more than once for di�erent starting positions and the

number of unnecessary dictionary accesses is increased.

Consider the following input sentence (see Fig.2).

4

A Fast Morphological Analysis Using the Extended AC Machine for Oriental Languages

TEXT = \kouunnanda (ko-u-u-n-na-n-da)" (It is lucky for me.)

The morphological analysis tries to �nd all possible words starting with \ko"(i=1).

Then, the starting position is advanced to the second character in TEXT and the

dictionary access is repeated. The dictionary access is executed repeatedly until the

end of input.

Step 1 : i = 1(\ko"); The goto function fails at the character \na"; Keys \ko", \kouu"

and \kouun" are found.

Step 2 : i = 2(\u"); The goto function fails at the next character \u"; A key \u" is

found.

Step 3 : i = 3(\u"); The goto function fails at the character \na". Keys \u" and

\un" are found.

Step 4 : i = 4(\n"); The goto function fails at the character \na". A key \n" is found.

Step 5 : i = 5(\na"); Keys \na" and "nanda\ are found.

Step 6 : i = 6(\n"); The goto function fails at the next character \da". A key \n" is

found.

Step 7 : i = 7(\da"); A key \da" is found and the process is �nished.

As shown above, the character \u"(i=2), \u"(i=3), \n"(i=4), \na"(i=5), \n"(i=6)

and \da"(i=7) were scanned two, three, three, four, two and three times, respectively,

that is, the dictionary lookup was repeated 7 times.

3 Morphological Analysis Using the AC Machine

3.1 Dictionary Lookup

It was observed in the preceding section that morphological analysis using the trie

involves a large number of dictionary accesses. In this section, in order to solve this

problem, an e�cient string pattern matching machine is used. Here a �nite state

string pattern matching machine based on the AC machine [AHO75, MAR94] locates

all occurrences of any of a �nite number of keywords in a text string.

Let KEY = fk

1

; k

2

; :::; k

k

g be a �nite set of strings which we shall call key and let

TEXT be an arbitrary string which we shall call the text string. The AC machine is

a program which takes as input the text string TEXT and produces as output the

morphological information and the locations in TEXT at which keys of KEY appear

as substrings. The AC machine is constructed as a �nite set of states S . Each state

is represented by a number. One state (usually 0) is designated as the initial state.

The behavior of the AC machine is de�ned by the next three functions:

goto function goto : S � I ! S [ffailg,

failure function f : S ! S,

output function output : S ! A, morphological information.

The function goto maps a set consisting of a state and a character into a state or

the message fail. The function f maps a state into a state. The failure function is

constructed whenever the goto function reports the message fail. Certain states are

designated as output states which indicate that a set of keys has been found. The

function output formalizes this concept by associating a set of keys (possible empty)

with each state.

5

Proceedings of the Prague Stringology Club Workshop '98

Fig. 3 shows the functions used by the ACmachine for the set of keysK = f\ana",

\anata", \na", \nata", \nante", \nanda", \n", \ko", \kouu", \kouun", \u", \un",

\da", \dai", \daiku"g. Here, : f`a',`na',`n',`ko',`u',`da'g denotes all input characters

other than `a',`na',`n',`ko',`u',`da'. The directed graph in Fig. 3(a) represents the

goto function and the dotted line represents the failure function. For example, the

transition labeled `a' from state 0 to state 1 indicates that goto(0, `a') = 1. The

absence of transition indicates fail . The AC machine has the property that goto(0,

`�') 6= fail for all input symbols �. A dictionary lookup algorithm using the AC

machine is summarized below.

 s output(s)

 2 {ana, na} (hole, name)

 3 {anata} (you)

 4 {na}(name)

 5 {nata}(hatchet)

 6 {n}(auxiliary verb)

 7 {nante}(how)

 8 {nanda,da}(what,auxiliary verb)

 9 {n}(auxiliary verb)

 10 {ko}(arc)

 11 {u}(auxiliary verb)

 12 {kouu,u}(rainfall,auxiliary verb)

 13 {kouun,un}(luck,destiny)

 14 {u}(auxiliary verb)

 15 {un,n}(destiny,auxiliary verb)

 16 {da}(auxiliary verb)

 17 {dai}(stand)

 18 {daiku}(carpenter)

(b) The output function.

0 321
a

na

na ta

(a) The goto function.

54
ta

6
n

7
te

8
da

10 131211
u u nko

1514
nu

9
n

16
da

1817
i ku

j

f(2)=4, f(6)=9, f(8)=16, f(11)=14, f(12)=14, f(13)=15, f(15)=9,

f(0)=f(1)=f(3)=f(5)=f(7)=f(9)=f(10)=f(14)=f(16)=f(17)=f(18)=0;

(c) The failre function.

{‘a’, ‘na’, ‘n’, ‘ko’, ‘u’, ‘da’}

Figure 3: An example of the AC machine.

Algorithm 2 : A dictionary lookup algorithm using the AC machine.

Input : A sentence TEXT = c

1

c

2

:::c

n

, where each c

i

, for 1 � i � n, is an input

character, an AC machine with goto function goto, failure function f, and output

function output.

Output : The morphological information of all possible substrings in a given input

sentence TEXT .

Method :

Step 2-1 : f Initialization g

state 0;

i 1;

Step 2-2 : f State transitions g

if goto(state, c

i

) 6= fail then goto Step 2-3;

state f(state);

goto Step 2-2;

Step 2-3 : f Output operation g

6

A Fast Morphological Analysis Using the Extended AC Machine for Oriental Languages

state goto(state, c

i

);

if output(state) 6= � then print output(state);

Step 2-4 : f Operation control g

i i+ 1;

if i � n then goto Step 2-2;

Consider the behavior of the AC machine that uses the functions in Fig. 3 to pro-

cess the text string \kouun"(lucky). Since goto(0, `ko') = 10, the AC machine enters

state 10, advances to the next input symbol and emits output(10), indicating that it

has found the key \ko". Similarly, since goto(10, `u') = 11, goto(11, `u') = 12, and

goto(12, `n') = 13, the AC machine �nds the output(11)(=\u"), output(12)(=\kouu"

and \u") and output(13)(\kouuni" and \un") respectively and enters state 13.

As shown above, the AC machine can �nd all possible substrings in an input

sentence, scanned only once. Therefore, the AC machine is the most advantageous

method for the morphological analysis.

3.2 Connection Check

In the second step of morphological analysis for oriental languages, the grammatical

connectivities between adjacent words which were obtained by the dictionary lookup

are checked in order to �nd the most suitable word boundary [ABE86, SAN94]. This

grammatical connectivity can be easily checked by using a grammatical table which

is described in a matrix of the connectivity between two words. However, this process

requires considerable cost, because it must check the relation of all parts of speech

which the preceding word and the following word have, and the unnecessary checks

are included in those checks since many words have di�erent kinds of parts of speech.

Let us now consider the Japanese words written in the syllabic alphabet called

Hiragana. For example, suppose that Hiragana character `ka' has 14 kinds of parts of

speech and `i' has 19 kinds of parts of speech in our dictionary for the morphological

analysis as shown Figure 4. As for checks of grammatical connectivities between

the preceding character `ka' and the following character `i' (\kai" means a shell�sh,

a oor etc.), it involves 266 (=14 � 19) kinds of checks. However, these checks

includes 126 (=14 � 9) kinds of unnecessary checks such as checking a grammatical

connectivity between NOUN and CONJUGATION. Such kinds of parts of speech,

represented as bold types in Fig. 4, are called unconnection candidates. In other

words, the unconnection candidate is a part of speech of the following word which is

not connectable to all parts of speech of the preceding word. The problem of how to

reduce the number of unnecessary checks should be solved in order to achieve a fast

morphological analysis.

Thus, we extend one of the features of the AC machine in which information of

substring are stored in one pass from initial state to terminal state by the failure

function. By using this feature, the grammatical connectivities between the adjacent

substrings which are included in one pass can be checked in advance, and the results

can be stored into each output function as the unconnection candidate when the

dictionary of morphological analysis is constructed. Therefore, if the unconnection

candidate is available throughout the execution of the morphological analysis, the

number of checking unnecessary connections can be reduced. For example, concerning

7

Proceedings of the Prague Stringology Club Workshop '98

‘ka’ (a preceding word)

Meisi (noun)

Fuku-Syuu Jyosi (inflection)

SettoGo (prefix)

SetubiGo (suffix)

SetubiJyosu (suffix)

SagyoGodan / Gokan (verb stem)

KagyoGodan / Mizen1 (conjugation)

KagyoGodan / Gokan (verb stem)

KagyoTokubetu / Mizen1 (conjugation)

AwagyoGodan / Gokan (verb stem)

TagyoGodan / Gokan (verb stem)

RagyoGodan / Gokan (verb stem)

GagyoGodan / Gokan (verb stem)

MagyoGodan / Gokan (verb stem)

‘i’ (a following word’)

Meisi (noun)

HojyoIchidan / Gokan1 (support verb stem)

HojyoKatoku / Gokan (support verb stem)

Jyodousi(Keiyou) / Syuusi (auxiliary verb inflection)

Jyodousi(Keiyou) / Rentai (auxiliary verb inflection)

SetubiJyosu (suffix)

KagyoGodan / Renyo2 (conjugation)

AwagyoGodan / Renyou1 (conjugation)

Ratoku / Meirei (conjugation)

Ratoku / Renyou3 (conjugation)

AwagyoGodan / Gokan (verb stem)

RagyoGodan / Gokan (verb stem)

KagyoTokubetu /Gokan (verb stem)

GagyoGodan / Renyou2 (conjugation)

MagyoGodan / Gokan (verb stem)

Itidan / Gokan (verb stem)

Keiyou /Syuusi (adjective inflection)

Keiyou / Rentai (adjective inflection)

Keiyou / Gokan (adjective inflection)

Success

Failure

Figure 4: The connection checking between `ka' and `i'.

a pass \ta-be-su-gi" in Fig. 5, the relation between `ta' and `be', `tabe' and `su', and

`tabe' and `sugi' can be checked in advance.

Consider the approaches using Directed Acyclic Word Graph (DAWG) or Finite

State Automaton (FSA). In general, the DAWG and FSA have states with more

than one outgoing transition after a state with two or more incoming transitions.

Thus, there is no guarantee that there exists a subset of states in them with a one-

to-one correspondence between the outputs and the states in that subset. Therefore,

the DAWG and FSA cannot keep information of unconnection candidates correctly

[AOE96]. But, by using the AC machine, information of unconnection candidates can

be attached to the corresponding output state uniquely.

0 4321
ta be su gi

¬{ta, ...}

output(1)

output(2)

output(3)

output(4)

(a) The goto function and the output function.

ta

(10)

(0)

be

(2)

(2)

tabe

(1)

(0)

su

(11)

(11)

gi

(5)

(5)

sugi

(6)

(6)

tabesugi

(1)

(0)

notation

(part of speech)

(unconnection candidates)

output(i)

Figure 5: The connection checking for the pass \tabesugi".

Algorithm 3 summarizes the method for checking all unconnection candidates in

8

A Fast Morphological Analysis Using the Extended AC Machine for Oriental Languages

one pass, and the following variables and functions are utilized:

Variable queue : stores the states;

Variable candidate : stores a set of unconnection candidates returned by a function

CCheck();

Function CCheck(state1, state2) : checks the grammatical connectivity between the

adjacent words in output(state1) and output(state2) and it returns a set of unconnec-

tion candidates;

Function Update(state, candidate) : updates the output(state) on the basis of the

candidate;

Algorithm 3 : Algorithm for checking all unconnection candidates in one pass.

Input : A key KEY = c

1

c

2

:::c

n

registered in the AC machine, where each c

i

, for

1 � i � n, is an input character and the AC machine.

Output : All unconnection candidates in one pass.

Method :

Step 3-1 : f Initialization g

state 0; queue empty; i 1;

Step 3-2 : f Storing states g

state goto(state, c

i

);

if output(state) 6= empty then queue queue [state;

Step 3-3 : f Operation control g

i i+ 1;

if i � n then goto Step 3-2;

Step 3-4 : f Getting a state g

if queue = empty then the process is terminated.

let pre state be the next state in the queue;

queue queue - fpre stateg;

tmp queue;

Step 3-5 : f Connection checking g

if tmp = empty then goto Step 3-6

let next state be the next state in the tmp;

tmp tmp - fnext stateg;

Un-Cand ConnectionCheck(pre state, next state);

UpdateOutput(next state, Un-Cand);

goto Step 3-5;

Step 3-6 : f Operation control g

goto Step 3-4;

Since all unconnection candidates in the dictionary can be checked by repeating

the Algorithm 3 after the dictionary based on the AC machine is constructed, the

number of checking unnecessary connections can be reduced by using the unconnec-

tion candidates.

In the example of the pass \ta-be-su-gi" in Fig. 5, when checking connections

between the word starting with `ta' and the following words, it involves 37(= 10(ta)

� 2(be) + 1(tabe) � 11(su) + 1(tabe) � 6(sugi)) kinds of checking by using our

grammatical table. On the other hand, if the unconnection candidates are available,

it is not necessary to check the grammatical connectivity, because all parts of speech

9

Proceedings of the Prague Stringology Club Workshop '98

of `be', `su' and `sugi' are unconnection candidates, that is, it is 0(=10�0+1�0+1�0).

Therefore, the most suitable word boundary for the \tabesugi" is the only last position

of the word, that is, \tabesugi/".

As shown the above, in some cases, the word boundary can be detected by using

the unconnection candidate without checking the grammatical connectivity during

the execution of the morphological analysis.

4 Evaluation

4.1 Theoretical Evaluation

Let n be the length of key. The precise complexity of algorithms presented depends

on the data structures, so theoretical analysis is �rst discussed under the following

assumptions:

1) The time complexity of con�rming one transition, that is, a goto function is O(1).

2) The time complexity of a failure function is O(1).

3) The time complexity of a output function is O(1).

Consider the time complexity of dictionary lookup. As for a trie, it is clear that the

time complexity of retrieving a key is O(n) [AOE91, AOE96]. However, in morpholog-

ical analysis, since it must detect all possible substrings in a given input sentence, the

number of the dictionary access depends on the length of the input sentence. There-

fore, the time complexity becomes O(n

2

+n)(=O((n+1)n/2). On the other hand, the

time complexity for dictionary lookup of the proposed method is O(n)(=O(2n-1))

[AHO75].

Next, consider the time complexity of construction. Suppose that k is the total

number of length of the keys. Concerning the trie, the time complexity isO(k) because

it is proportional to the total length of keys. The time complexity for construction

of the AC machine is O(k) [AHO75]. The cost of the algorithm 3 depends on the

function ConnectionCheck and the length of key. Let p be the average number of

parts of speech of preceding words and let f be the average number of parts of speech

of following words. Then, since the time complexity of the ConnectionCheck is O(pf),

the time complexity of the algorithm 3 becomes O(n+pf(n

2

-n)) in the worst case,

because the cost of for-loop in algorithm 3 is O(n) and the cost of while-loop is

O((pf)(n-1)n/2). From above observation, the time complexity for constructing the

proposed method becomes O(s(l+pf(l

2

-l))), where s is the total number of keys and

l is the average length of keys.

Consider the e�ectiveness of the unconnection candidate. By using this candidate

during the execution of the morphological analysis, the time complexity of the Con-

nectionCheck becomes O(p(f -c)), where c is the average number of the unconnection

candidates which are stored in the output functions.

4.2 Experimental Evaluation

For experimental evaluation the following methods have been implemented on DELL

OptiPlex XMT5120 (Pentium 120MHz) and they have been written in the C language.

(1) The dictionary lookup using a trie represented by a list structure.

(2) The proposed dictionary lookup method represented by a list structure.

10

A Fast Morphological Analysis Using the Extended AC Machine for Oriental Languages

In order to observe the e�ect of the proposed method, the following materials were

used:

Dictionary : A 100,267 words dictionary of a Kana-to-Kanji translation system;

The maximum length of keys is 19 and the average length of keys is 4.2. Note that

Hiragana character in the Dictionary Source and the Input Text requires two bytes.

Inputs : News papers articles (2.7MByte); The total number of sentences is 39,339

and the average number of characters of the sentences is 72.6.

Table 1 shows the obtained simulation results. From these results, it turns out

that the number of state transitions of the proposed method is 45.5% less than that

of the trie method, and the proposed method is 49.9% faster (CPU time) than the

trie one. However, the dictionary size of the proposed method is larger than that of

a trie approach.

As for the candidates for checking connections, the total number of candidates is

reduced from 5,637,007 to 4,014,625 by the unconnection candidates. This is 25.5%

less than that of common morphological analysis. This means that the number of

checking unnecessary connections can be reduced.

From the whole experimental observations, we can say that the proposed method

is more practical than that of the trie. Although it requires more memory spaces, a

fast morphological analysis can be achieved by using the proposed method.

Table 1: Simulation Results.

Trie method Our method

Dictionary Size (Mbyte) 8.3 32.5

State Transtions 14.444,170 8,016,514

Retrieval Time (sec.) 43.34 21.95

Conclusions

This paper has proposed a high speed morphological analysis by the AC machine.

The proposed method is a simple and fast algorithm to �nd all possible substrings in

an input sentence, and during a single scan, and it stores the connectivity relation of

adjacent words into the output functions as the unconnection candidates. Therefore,

if the unconnection candidates are available during the execution of the morphological

analysis, the number of checking unnecessary connections can be reduced. Since these

features depends on the passes, the proposed method have a good e�ect if there are

a large number of long words in input text.

The e�ciency of the proposed algorithm has been algorithm by the theoretical

analysis, and the experimental evaluation was supported by the computer simulation

with a 100,267 words dictionary. From the results, it turns out that the proposed

method was 49.9% faster (CPU time) than the traditional trie approach. As for the

number of candidates for checking connections, it was 28.8% less than that of the

original morphological analysis by using the unconnection candidates.

11

Proceedings of the Prague Stringology Club Workshop '98

As a future extension to this work, we are considering an implementation of mor-

phological analysis system using the Multi-attribute AC machine [AND96] and the

proposed method based on Double-Array Structure.

References

[ABE86] Abe, M. Ooshima, Y., Yuura, K., and Takeichi, N.: A Kana-Kanji Trans-

lation System for Non-Segmented Input Sentences Based on Syntactic and

Semantic Analysis, Proceedings of the 10th International Conference on

Computational Linguistics, 1986, pp.280-pp.285.

[AHO75] Aho, A.V., and Corasick, M.J.: E�cient String Matching : An Aid to

Bibliographic Search, Communications of the ACM, Vol.18, No.6, 1975,

pp.333-340.

[AKI94] Akiba, T., Tokunaga, T., and Tanaka, H.: An Extension of LangLAB for

Japanese Morphological Analysis, Proceedings of the International Work-

shop on Sharable Natural Language Resources, 1994, pp.36-42.

[AND96] Ando, K., Shishibori, M., and Aoe, J.: An E�cient Multi-Attribute Pat-

tern Matching Machine, Proceedings of the Prague Stringology Club Work-

shop'96, 1996, pp.1-14.

[AOE91] Aoe, J.: Computer Algorithms: Key Search Strategies, IEEE Computer

Society Press, 1991.

[AOE96] Aoe, J., Morimoto, K., Shishibori, M., and Park, K.H.: A Trie Compaction

Algorithm for a Large Set of Keys, IEEE Transactions of Knowledge and

Date Engineering, Vol.8, No.3, June. 1996, pp.476-491.

[KAP84] Kaplan, S.J.: Designing a Portable Natural Language Database Query

System, ACMTransactions on Database Systems, Vol.9, No.1, March.1984,

pp.1-29.

[KUR94] Kurohashi, S., Nakamura, T., Matsumoto, Y., and Nagao, M.: Improve-

ments of Japanese Morphological Analyzer JUMAN, Proceedings of the

International Workshop on Sharable Natural Language Resources, 1994,

pp.22-28.

[LEE97] Lee, G., Lee, J.H., B.-C., Kim, B.C., and Lee, Y.: A Viterbi-based morpho-

logical analysis for speech and natural language integration, Proceedings

of the 17th International Conference on Computer Processing of Oriental

Languages, Vol.1, 1997, pp.133-138.

[MAR94] Maruyama, H.: Backtracking-Free Dictionary Access Method for Japanese

Morphological Analysis, Proceedings of the 15th International Conference

on Computational Linguistics, 1994, pp.208-213.

[MOR96] Mori, S.: High Speed Morphological Analysis using DFA, Technical report

of IEICE of Japan, NLC96-23, 1996, pp.17-23. (in Japanese)

12

A Fast Morphological Analysis Using the Extended AC Machine for Oriental Languages

[SAN94] Sano, H., Kawada, R., and Hasimoto, M.: Morphological Grammar Rules

: An Implementation for JUMAN, Proceedings of the International Work-

shop on Sharable Natural Language Resources, 1994, pp.29-35.

13

The Longest Restricted Common Subsequence

Problem

1

Gabriela Andrejkov�a

Department of Computer Science, College of Science,

P. J.

�

Saf�arik University,

Jesenn�a 5, 041 54 Ko�sice, Slovakia

e-mail: andrejk@kosice.upjs.sk

Abstract. An e�cient algorithm is presented that solves a Longest Restricted

Common Subsequence Problem (RLCS) of two partitioned strings with the

restricted using of elements. The above algorithm has an application in solution

of the Set-Set Longest Common Subsequence Problem (SSLCS). It is shown the

transformation of SSLCS Problem on RLCS Problem.

Key words: Design and analysis of algorithms, longest common subsequence,

dynamic data structures.

1 Introduction

The common subsequence problem of two strings is to determine one of the subse-

quences that can be obtained by deleting zero or more symbols from each of the given

strings.

The longest common subsequence problem (LCS Problem) of two strings is to

determine the common subsequence with the maximal length.

For example, the strings AGI is a common subsequence and the string ALGI is

the longest common subsequence of the strings ALGORITHM and ALLEGATION.

Algorithms for this problem can be used in chemical and genetic applications and

in many problems concerning to the data and to the text processing. Genetic and

chemical applications comprise the study of di�erences between long molecules such

as proteins [14]. In the data processing and in the text processing the algorithms are

used to determine an equivalence or a similarity of two strings [11] and to compress

data when similar texts are being stored [4].

Further applications include the string-to-string correction problem [11] and de-

termining the measure of di�erences between text �les [4]. The length of the longest

common subsequence (LLCS Problem) can determine the measure of di�erences (or

similarities) of text �les.

D. S. Hirschberg [6] presented O(p � n)-time and O(p � (m � p) � log n)-time LCS

algorithms, where m;n are the lengths of strings and p is the length of any longest

common subsequence.

1

This research was supported by Slovak Grant Agency for Science VEGA, Project No. 1/4375/97

14

The Longest Restricted Common Subsequence Problem

J. W. Hunt and T. G. Szymanski [10] have presented O((m+ r) � log n)-time and

O(m + r)-space algorithm, where m;n are lengths of strings and r = jfhi; ji : a

i

=

b

j

; 1 � i � m; 1 � j � ngj. G. Andrejkov�a, Y. Robert and M. Tchuente [1, 15,

16] have presented systolic systems for LCS Problem with the combined complexity

measures - A�T

2

= O(n

3

) and A�P

2

= O(n

2

), where A;T; P are complexitymeasures:

area, time and period.

D. S. Hirschberg and L. L. Larmore [7] have discussed a generalization of LCS

Problem, which is called Set LCS Problem (SLCS Problem) of two strings where

however the strings are not of the same type. The �rst string is a sequence of the

symbols and the second string is a sequence of subsets over an alphabet
. The

elements of each subset can be used as an arbitrary permutation of elements in the

subset. The longest common subsequence in this case is a sequence of symbols with

maximal length. The SLCS Problem has an application to problems in computer

driven music [7]. D. S. Hirschberg and L.L. Larmore have presented O(m � n)-time

and O(m+ n)-space algorithm, m;n are lengths of strings.

The Set-Set LCS Problem (SSLCS Problem) is discussed by D. S. Hirschberg and

L. L. Larmore [8] in 1989. In this case both strings are the strings of subsets over an

alphabet
. In the paper is presented an O(m � n)-time algorithm which solves the

general SSLCS Problem.

In this paper we present an algorithm for special case of the LCS Problem, it

means Longest Restricted Common Subsequence Problem (LRCS Problem) and its

using to the solution of SSLCS Problem.

2 Basic De�nitions

In this section, some basic de�nitions and results concerning to LRCS Problem and

SSLCS Problem are presented.

Let
 be a �nite alphabet, j
j = s; P (
) the set of all subsets of
; jP (
)j = 2

s

.

Let A = a

1

a

2

: : : a

m

; a

i

2
; 1 � i � m be a string over an alphabet
, jAj = m

is the length of the string A. A sequence of indices, h

A

= h

A

0

h

A

1

h

A

2

: : : h

A

k

A

; 0 = h

A

0

<

h

A

1

< h

A

2

< : : : < h

A

k

A

= m; 1 � k

A

� m is a partition of the string A.

The sequence h

A

divides the string A in the following way:

A = ja

1

a

2

: : : a

h

A

1

ja

h

A

1

+1

: : : a

h

A

2

j : : : ja

h

A

k�1

+1

: : : a

h

A

k

A

j = subst

A

1

: : : subst

A

k

A

, where

subst

A

i

= a

h

A

i�1

+1

: : : a

h

A

i

; 1 � i � k

A

. A pair [A;h

A

] is called the string with the

partition.
(subst

A

r

) is the alphabet of the substring subst

A

r

.

For example,
 = fa; b; c; d; eg, A = jabcjdababcajbdjdaaj;m= 15, h

A

= 0; 3; 10;

12; 15; subst

A

1

= abc; subst

A

2

= dababca; subst

A

3

= bd; subst

A

4

= daa.

A string C = c

1

c

2

: : : c

p

; 1 � p � m is a restricted subsequence of the string with

the partition [A;h

A

], i�

1. there exists a sequence of indices 1 � i

1

< i

2

< : : : < i

p

� m such that

a

i

t

= c

t

; 1 � t � p, and

2. if h

A

r�1

< i

u

; i

v

� h

A

r

then c

u

6= c

v

, for all r, 1 � r � k

A

,

(this means that each element of an alphabet
(subst

A

r

) can be used in C once

at most).

15

Proceedings of the Prague Stringology Club Workshop '98

The string C is a common restricted subsequence of two strings with partition

[A;h

A

] and [B;h

B

] if C is the restricted subsequence of [A;h

A

] and C is the restricted

subsequence of [B;h

B

] at once. jCj is the length of the restricted common subse-

quence.

The string C is a longest common restricted subsequence of two strings with par-

tition [A;h

A

] and [B;h

B

] if C is a common restricted subsequence of the maximal

length.

For example,
 = fa; b; cg; A = jabajabacacjbabj;m = 12; B = jbabcjcacjcbcbj; n =

11. The string C = bacb is the restricted subsequence, C

0

= bacab is the longest

restricted common subsequence but the string D = babccbb is not the restricted

common subsequence for [A;h

A

] and [B;h

B

] as it can be seen in Figure 1. The string

C" = babcacbb is the longest common subsequence of the strings A = abaabacacbab

and B = babccaccbcb if the partition does not matter.

m m m m m m m m m m m m

m m m m m m m m m m m

a

b

a a

b

a c a c

b

a

b

b

a

b

c c a c c

b

c

b

A=

B=

Figure 1. Restricted longest common subsequence of two strings A and B.

�

�

�

�

�

�

�

!

!

!

!

!

!

!

!

�

�

�

�
�

�

�

�

�

A string of sets A over an alphabet
 is any �nite sequence of sets from P (
).

Formally, A = A

1

A

2

: : : A

m

; A

i

2 P (
); 1 � i � m, m is the number of sets in the

string A. The length of the symbol string described by A is M = �

m

i=1

jA

i

j.

A string of symbols C = c

1

c

2

: : : c

p

; c

i

2
; 1 � i � p, is subsequence of symbols (in

short, a subsequence) of string A if there is nonincreasing mapping F : f1; 2; : : : ; pg !

f1; 2; : : : ;mg, such that

1. if F (i) = k then c

i

2 A

k

, for i = 1; 2; : : : ; p

2. if F (i) = k and F (j) = k and i 6= j then c

i

6= c

j

.

Let A = A

1

: : : A

m

;B = B

1

: : : B

n

; 1 � m � n, be two strings of sets over the

alphabet
. The string of symbols C is a common subsequence of symbols of A and

B is C a subsequence of symbols of A and C is a subsequence of symbols of the string

B. The longest common subsequence problem of the strings A and B (SSLCS(A;B)

consists of �nding a common subsequence of symbols C of the maximal length.

The length of SSLCS(A;B) will be denoted LSSLCS(A;B). Note that C is not

unique in general way.

m m m m m m m m

m m m m m m m m m m m

a

d

c a

b

e

b

a

d

e c a

d

e

b d

c

b d

A=

B=

Figure 2. Longest common subsequence of two set strings A and B.

f gf g

f g

�

�

�

�

�

�

f g

f gf gf g

�

�

�

16

The Longest Restricted Common Subsequence Problem

For example, let
 = fa; b; c; d; eg;A = fa; dgfa; b; cgfa; b; eg;B = fc; d; egfa; d; eg

fb; c; dgfb; dg. C = abc is a common subsequence of symbols and C

0

= adbcb and

C

00

= dcaeb are the longest common subsequences of symbols for A;B. C

00

can be

seen in Figure 2.

3 Algorithm for LRCS Problem

Designation.

� A[i::k] = a

i

a

i+1

: : : a

k

, for 1 � i � k � m,

� hi; ji represents i-th position in the string with the partition [A;h

A

] and j-th

position in [B;h

B

], there exist indices r; s such that 1 � r � k

A

; 1 � s � k

B

and h

A

r�1

< i � h

A

r

; h

B

s�1

< j � h

B

s

,

� LRCS(A,B) is the longest restricted common subsequence of strings [A;h

A

] and

[B;h

B

],

� LLRCS(A;B) is the length of LRCS(A,B),

� L(i; j) = LLRCS(A[1::i]; B[1::j]).

Principle of the recursive algorithm:

LLRCS(A;B) = max

jCj

fjCj : C is the restricted common subsequence of [A;h

A

]

and [B;h

B

]g.

Recursive version of the algorithm is constructed according to the following idea:

If an element c

t

= a

k

t

= b

l

t

is in the LRCS([A;h

A

]; [B;h

B

]) then

LLRCS([A;h

A

]; [B;h

B

]) = 1+ LLRCS([A[1::k

t

� 1]; h

A

0

]; [B[1::l

t

� 1]; h

B

0

])+

LLRCS([A[k

t

+ 1::m]; h

A

00

]; [B[l

t

+ 1::n]; h

B

00

]);

where h

A

0

; h

A

00

; h

B

0

; h

B

00

are partitions of the related substrings. The recursive version

of the algorithm has the exponential time complexity.

A modi�ed Hirschberg's method [6] will be used in the construction of the following

time-polynomial algorithm.

A pair h0; 0i is a 0-candidate with an empty generating sequence.

A pair of indices hi; ji; 1 � i � m; 1 � j � n; h

A

r�1

< i � h

A

r

; h

B

s�1

< j � h

B

s

, will

be named a k-candidate, k � 1, i�

1. a

i

= b

j

, and

2. there exists a sequence of pairs which is called a generating sequence:

h0; 0i = hi

0

; j

0

i; hi

1

; j

1

i; : : : ; hi

k�1

; j

k�1

i such that i

k�1

< i and j

k�1

< j and

hi

t

; j

t

i is the t-candidate with the generating sequence hi

0

; j

0

i; hi

1

; j

1

i; : : : ;

hi

t�1

; j

t�1

i and (a

i

t

6= a

i

or (i

t

� h

A

r�1

) and (b

j

t

6= b

j

or j

t

� h

B

s�1

) for

0 � t � k � 1.

17

Proceedings of the Prague Stringology Club Workshop '98

The set of all k-candidates will be designed C

k

and the generating sequence of k-

candidate will be designed I

k�1

.

For example, h1; 2i; h2; 1i; h3; 2i; h2; 3i; h9; 4i; h9; 5i; h10; 6i 2 C

1

, h3; 2i; h9; 4i; h9; 5i;

h10; 6i 2 C

2

, h9; 4i; h9; 5i; h10; 6i 2 C

3

; h10; 6i 2 C

4

; : : : for the strings with partitions

A = jabajabacacjbabj; B = jbabcjcacjcbcbj.

Remark. hi; ji; h

A

r�1

< i � h

A

r

; h

B

s�1

< j � h

B

s

is 1-candidate with the generating

sequence h0; 0i if a

i

= b

j

.

Lemma 3.1 If the pair hi; ji; h

A

r�1

< i � h

A

r

; h

B

s�1

< j � h

B

s

is a k-candidate then

L(i; j) � k.

Proof. Let k=1 and hi; ji is 1-candidate with the generating sequence h0; 0i. a

i

= b

j

,

then L(i; j) � 1. Let hi; ji be a k-candidate. There exist two sequences of indices

such that i

1

< i

2

< : : : < i

k�1

< i and j

1

< j

2

< : : : < j

k�1

< j. hi

k�1

; j

k�1

i is

k � 1-candidate and we suppose L(i

k�1

; j

k�1

) � k � 1. a

i

= b

j

and a

i

t

= b

j

t

for

1 � t � k� 1. The string C = a

i

1

a

i

2

: : : a

i

k�1

a

i

is the restricted common subsequence

of A[1::i] and B[1::j] because of if h

A

r�1

< i

t

; i

u

� h

A

r

then a

i

t

6= a

i

u

is ful�lled for all

r; 1 � r � k

A

. Analogously for B[1::j]. It follows that L(i; j) � L(i

k�1

; j

k�1

)+ 1 � k.

2

Lemma 3.2 If L(i; j) = k then there exists k-candidate hi

�

; j

�

i with the generating

sequence I

k�1

such that i

�

� i and j

�

� j and L(i

�

; j

�

) = k.

Proof. If L(i; j) = k then there is the restricted common subsequence C = c

1

c

2

: : : c

k

which is created by elements in the positions determined by sequences 1 � i

1

< i

2

<

: : : < i

k

� i; 1 � j

1

< j

2

< : : : < j

k

� j, such that a

i

t

= c

t

= b

j

t

for 1 � t � k, and

from the de�nition of the restricted common subsequence follows:

1. if h

A

r�1

< i

u

; i

v

� h

A

r

, then a

i

u

6= a

i

v

, for 1 � r � k

A

, and

2. if h

B

s�1

< j

u

; j

v

� h

B

s

, then b

j

u

6= b

j

v

, for 1 � s � k

B

,

Let i

u

; i

v

2 fi

1

; : : : ; i

k

g. The 1. condition can be formulated as not (h

A

r�1

< i

u

; i

v

�

h

A

r

) or a

i

u

6= a

i

v

. The �rst part means that i

u

; i

v

are not in the same interval of

the partition h

A

. If i

u

< i

v

� h

A

r

then i

u

� h

A

r�1

. The condition can be explained

a

i

v

6= a

i

u

or i

u

� h

A

r�1

. Analogously for the condition 2.

Suppose that i

�

= i

k

; j

�

= j

k

and h

A

r�1

< i

k

� h

A

r

; h

B

s�1

< j

k

� h

B

s

. The pair

hi

k

; j

k

i is the k-candidate with the generating sequence h0; 0i; hi

1

; j

1

i; : : : ; hi

k�1

; j

k�1

i,

since a

i

k

= b

j

k

and for all t; 1 � t � k � 1, the pair hi

t

; j

t

i is the t-candidate with the

generating subsequence I

t�1

and (a

i

t

6= a

i

k

or i

t

� h

A

r�1

) and (b

j

t

6= b

j

k

or j

t

� h

B

s�1

).

2

Lemma 3.3 Let C = c

1

c

2

: : : c

k

= a

i

1

a

i

2

: : : a

i

k

= b

j

1

b

j

2

: : : b

j

k

be the longest restricted

common subsequence of A[1::i] and B[1::j] and L(i; j) = k is its length. Let h

A

r�1

<

i+ 1 � h

A

r

; h

A

s�1

< j + 1 � h

B

s

. Let Cond A is the following condition:

a

i+1

= b

j+1

and (a

i+1

6= a

i

t

or (i

t

� h

A

r�1

)) and (b

j+1

6= b

j

t

or (j

t

� h

B

s�1

)) for all

t; 1 � t � k.

If the Cond A is ful�lled then hi+1; j+1i is (k+1)-candidate and L(i+1; j+1) =

L(i; j) + 1, and the longest restricted common subsequence is C

�

= c

1

c

2

: : : c

k

a

i+1

. If

Cond A is not ful�lled then L(i+1,j+1)=max fL(i; j+1); L(i+1; j)g and the longest

restricted common subsequence is in the same form as for maxfL(i; j+1); L(i+1; j)g.

18

The Longest Restricted Common Subsequence Problem

Proof. Suppose that Cond A is ful�lled. The sequence hi

1

; j

1

i; : : : ; hi

k

; j

k

i is the

generating sequence for (k+1)-candidate hi+1; j+1i since i

k

< i+1; j

k

< j+1, and

for all t; 1 � t � k the pair hi

t

; j

t

i is t-candidate with the generating subsequence I

t�1

and (a

i

t

6= a

i+1

or i

t

� h

A

r�1

) and (b

j+1

6= b

j

t

or j

t

� h

B

s�1

). If assumptions of lemma

are not ful�lled then hi+ 1; j + 1i is not (k+1)-candidate and L(i+ 1; j + 1) can not

be greater than L(i; j + 1) or L(i+ 1; j). 2

Lemma 3.3 is the base for the construction of the algorithm for a computing of

the restricted longest common subsequence of two strings with partitions. We use the

dynamic data structure for the construction of linear lists representing the generating

sequences of k-candidates, k = 1; 2; : : : as follows:

S

S

S

Sw

- - -

q q q

pm

i

k

j

k

i

1

j

1

i

k�1

j

k�1

Algorithm will work with the following data types

{Omega is an alphabet of strings;}

type vertex = record {element of generating sequence}

x, y : integer; {indices}

p: pointer;

end;

type pointerv = ^vertex; {pointer to the element of

the generating sequence }

type genseq = record {record of the length and pointer}

length: integer; {to the generating sequence}

pt: pointer;

end;

The de�nition of the k-candidate gives the method for the construction of the

k-candidate if the generating sequence is known. The next function Candidate �nds

if the element hi; ji is a potential k-candidate with a generating subsequence with

pointer pm.

function Candidate(pm: pointer; ab: Omega; uA, uB: integer): Boolean;

{It returns the value "true" if <i,j> is a potential k-candidate

else returns "false".

pm - pointer to the generating subsequence,

ab - the candidate in positions i, j,

uA, uB - upper bounds of intervals for current positions

i, j: uA<=i, uB<=j.}

var pp:pointerv; q: Boolean; ii, jj:integer;

19

Proceedings of the Prague Stringology Club Workshop '98

begin

pp:= pm; q:=true;

while (pp<>nil) and q do

begin

ii:=pp^.x; jj:=pp^.y;

if (a[ii]=ab) and (ii>=uA)

or (b[jj]=ab) and (jj>=uB) then q:=false;

pp:= pp^.p

end;

Candidate:= q;

end; {Candidate}

Lemma 3.4 The function Candidate computes the value true if hi; ji is a potential

k-candidate else the value false in O(k)-time.

Proof. pm is a pointer to the generating sequence of pairs hi; ji, hi; ji is k-candidate.

The function Candidate computes the value false if in this sequence there exists hi

�

; j

�

i

such that a

i

�

= a

i

= b

j

and i

�

� uA or b

j

�

= a

i

= b

j

and j

�

� uB. It means that

the condition of k-candidate for hi; ji is not ful�lled. In the other case Candidate

gives the value true, hi; ji is k-candidate with the given generating sequence. Time

complexity is O(k) because of each element of the generating sequence is compared

with a

i

k-times in the worst case. 2

The function Candidate is used in the algorithm for computing a longest restricted

common subsequence of two strings with some partitions.

ALGORITHM A:

fAlgorithm constructs a longest restricted common subsequence of two strings with

partitions.g

Input: [A;hA]; [B;hB] - two strings of symbols with partitions over alphabet Omega;

Output: pptr - pointer to the longest restricted common subsequence of A and B;

Variables:

Arrays C, D[0. .m] of the type genseq.

C[i], D[i] - pointers to the longest common subsequences of A[1. .i] and B[1. .j];

hA[1::kA]; hB[1::kB] - arrays of partitions of the strings A and B;

uA; uB - upper bounds of intervals for current positions i; j : uA � i; uB � j.

dA, dB - the recent numbers of intervals in the partitions,

pp - a pointer to the vertex.

Method:

begin

for i:=0 to n do

begin

D[i].pt:=nil; D[i].length:=0;

end;

C[0].pt:=nil; C[0].length:=0;

20

The Longest Restricted Common Subsequence Problem

dA:=1; uA:=1;

for i:=1 to m do

begin

if i>hA[dA] then begin inc(dA); uA:=hA[dA-1]+1 end;

dB:=1; uB:=1;

for j:=1 to n do

begin

if j>hB[dB] then begin inc(dB); uB:=hB[dB-1]+1 end;

if a[i]=b[j] then q:=Candidate(D[j-1].pt,a[i],uA,uB)

else q:=false;

if q then

begin

new(pp);

pp^.p:=D[i-1].pt; pp^.x:=i; pp^.y:=j;

C[i].pt:=pp; C[i].length:=D[i-1].length+1;

end else

if D[i].length>=C[i-1].length then C[i]:=D[i]

else C[i]:=C[i-1];

{Invariant1}

end;

for j:=1 to n do D[j]:=C[j];

{Invariant2}

end;

len := C[n].length; pptr := C[n].pt;

{ "len" contains the length of the longest restricted common

subsequence and C[n].pt contains pointer to the LRCS(A,B)}

writeln('Length LRCS(A,B) =', len:3);

while pptr<>nil do

begin

write(pptr^.x:3,pptr^.y:3,'**');

pptr:=pptr^.p

end;

end;

Theorem 3.1 The Algorithm A computes correctly LRCS(A;B) in O(m �n �p)-time

and O(n + r)-space, where p is the length of LRCS(A;B) and r = jfhi; ji : a

i

=

b

j

; 1 � i � m; 1 � j � ngj.

Proof. We specify the invariants of the cycles in the algorithm A.

Invariant1:

C[j

0

] contains the length and the pointer to the LCSS(A[1::i]; B[1::j

0

]), for 1 �

j

0

� j, and C[j

�

] contains the length and the pointer to the LRCS(A[1::i�1]; B[1::j

�

])

for j < j

�

� n.

Invariant2:

C[j];D[j] contains the length and the pointer to the LRCS(A[1::i]; B[1::j]) for

1 � j � n and i � n.

21

Proceedings of the Prague Stringology Club Workshop '98

The correctness of the algorithm follows immediately from the Invariant1 and

Invariant2.

Time complexity: The function Candidate requires O(k) steps, k � p, and it can

be repeated at most m � n times. Thus, total time is O(m � n � p).

Space complexity: The arrays C, D require O(n) space, strings [A;h

A

] and [B;h

B

]

require O(m+ n) space. If a

i

= b

j

then function Candidate can give a value true and

in this case a next element is added to the dynamic data structure that requires O(r)

space. If m � n then the algorithm requires O(n + r) space. 2

Let C

k

be the set of all k-candidates, for some k � 1. Partial ordering "�" can

be de�ned on C

k

in the following way:

hi; ji � hi

�

; j

�

i i� i � i

�

and j � j

�

, for hi; ji; hi

�

; j

�

i 2 C

k

.

An element hi; ji is a minimal k-candidate i� for all hi

�

; j

�

i 2 C

k

; hi

�

; j

�

i 6= hi; ji

is i

�

< i or j

�

< j.

The set of all minimal k-candidates for k � 1, will be designed C

min

k

.

Remarks. It is clear that

1. C

1

� C

2

� : : : � C

p

� C

p+1

= ;

2. C

min

1

6= C

min

2

6= : : : 6= C

min

p

3. Let 1 � k � p; hi; ji 2 C

k

and hi; ji 62 C

k+1

then L(i; j) = k.

Hirschberg's method of minimal k-candidates [6] can be applied in this special case

of strings with partitions and gives O(n � p

2

)-time algorithm, where p is the length of

the longest restricted common subsequence.

4 Transformation of SSLCS Problem to LRSC

Problem

Let A = A

1

A : : :A

m

; 1 � m be the string of the sets over
. Elements of a subset

A

i

; A

i

2 P (
); 1 � i � m, can be chosen in an arbitrary order and there are jA

i

j!

permutations of these elements.

Let p(A

i

) be a permutation of elements inA

i

(it is a string consisting of all symbols

in A

i

).

We de�ne a string of symbols A in the following way:

A = p(A

1

)p(A

2

) : : : p(A

m

); (1)

A is the concatenation of strings p(A

1

); p(A

2

) : : : ; p(A

m

).

Let A be the set of all strings of symbols created by (1). The number of elements

in A is jAj = �

jAj

i=1

jA

i

j!. Let the elements in A are enumerated in some way, A =

fA

i

g; i = 1; : : : ; jAj.

Analogously, it is possible to construct the set B to the string B. Let be

L(A;B) = max fLLCS(A

i

; B

j

) : 1 � i � jAj; 1 � j � jBjg: (2)

Lemma 4.1 L(A;B) = LSSLCS(A;B).

22

The Longest Restricted Common Subsequence Problem

Proof. Let 1 � i � jAj; 1 � j � jBj. LLCS(A

i

; B

j

) is the length of the longest

common subsequence of strings of symbols A

i

and B

j

. Both strings are constructed

as a special cases of strings A;B, and LLCS(A

i

; B

j

) � LSSLCS(A;B), for 1 � i �

jAj; 1 � j � jBj. It means L(A;B) = max

i;j

fLLCS(A

i

; B

j

g � LSSLCS(A;B).

Since all possible strings A

i

and B

j

have been used, the following inequality holds

L(A;B) � LSSLCS(A;B). 2

Let 1 � k � m. p

�

(A

k

) is constructed from p(A

k

) by adding some elements of A

k

into arbitrary positions of p(A

k

). Each element of A

k

is in the p

�

(A

k

) once at least.

Lemma 4.2 Let i; j be indices such that L(A;B) = LLCS(A

i

; B

j

); A

i

= p(A

1

)p(A

2

)

: : : p(A

m

). Let 1 � k � m and A

i�

= p(A

1

) : : : p(A

k�1

)p

�

(A

k

)p(A

k+1

) : : : p(A

m

).

If each element of A

k

can be chosen from p

�

(A

k

) once at most then L(A;B) =

LLCS(A

i�

; B

j

).

Proof. Since each element of A

k

can be chosen from p

�

(A

k

) once at most (some

permutation of elements in A

k

), we have L(A;B) � LLCS(A

i�

; B

j

). p

�

(A

k

) has been

constructed by adding some elements to p(A

k

) and the following inequality is ful�lled:

LLCS(A

i�

; B

j

) � LLCS(A

i

; B

j

). 2

Lemma 4.3 Let i; j be indices such that L(A;B) = LLCS(A

i

; B

j

). Let A

i�

=

p

�

(A

1

) : : : p

�

(A

m

); B

j�

= p

�

(B

1

) : : : p

�

(B

n

). If each element of A

k

; 1 � k � m can

be chosen from p

�

(A

k

) once at most and each element of B

t

; 1 � t � n can be chosen

from p

�

(B

t

) once at most then L(A;B) = LLCS(A

i�

; B

j�

).

Proof. A

i�

and B

j�

are constructed by adding some elements to the strings A

i

; B

j

and thus LLCS(A

i�

; B

j�

) � LLCS(A

i

; B

j

). Since each part p

�

(A

k

), or p

�

(B

t

) can be

used as a permutation of A

k

or B

t

respectively, we have L(A;B) � LLCS(A

i

; B

j

).

Thus L(A;B) = LLCS(A

i

; B

j

). 2

Let A = A

1

A

2

: : : A

m

;m � 1 be the string of the sets over
. Let p

+

(A

k

); 1 �

k � m be the string of all permutations of A

k

(permutations of elements in A

k

are

in p

+

(A

k

) as the subsequences). Let A

�

= p

+

(A

1

)p

+

(A

2

) : : : p

+

(A

m

). Analogously for

B, B

�

= p

+

(B

1

)p

+

(B

2

) : : : p

+

(B

n

).

Theorem 4.1 L(A;B) = LLCS(A

�

; B

�

) if each element of A

k

, respectively B

t

, can

be used once at most from the part p

+

(A

k

), respectively p

+

(B

t

).

Proof. There are the indices i; j such that L(A;B) = LLCS(A

i

; B

j

). According to

Lemma 4.3 LLCS(A

i

; B

j

) = LLCS(A

i�

; B

�j

). The strings A

�

; B

�

are some special

cases of strings A

i�

; B

j�

and it implies L(A;B) = LLCS(A

�

; B

�

). 2

Lemma 4.4 The length of the string A

�

is less or equal than M

2

, the length of B

�

is less or equal than N

2

.

Proof. p+(A

k

) can be constructed by a repeating of A

k

jA

k

j times. This construction

gives the length jA

k

j

2

. In [12] is presented the construction of shorter string with the

length jA

k

j

2

� 2 � jA

k

j + 4; jA

k

j � 4. The length of A

�

is jA

�

j = �

m

k=1

jp

+

(A

k

)j �

�

m

k=1

jA

k

j

2

� (�

m

k=1

jA

k

j)

2

=M

2

. Analogously, jB

�

j � N

2

. 2

23

Proceedings of the Prague Stringology Club Workshop '98

For example, let
 = fa; b; c; d; eg;A = fa; dgfa; b; cgfa; b; eg;B = fc; d; egfa; d; eg

fb; c; dgfb; dg. It is possible to construct the following strings with partitions [A

�

; h

A

�

]

and [B

�

; h

B

�

] to A and B respectively:

A

�

= jadajcabcacbjebaebeaj; h

A

�

= 0; 3; 10; 17; k

A

�

= 3;

B

�

= jdecdedcjadeadaejbdcbdbcjbdbj; h

B

�

= 0; 7; 14; 21; 24; k

B

�

= 4:

And the longest common subsequence of A and B can be computed by the algo-

rithm for the restricted common subsequence problem of the strings with partitions

[A

�

; h

A

�

] and [B

�

; h

B

�

]: LSSLCS(A;B) = LLRCS([A

�

; h

A

�

]; [B

�

; h

B

�

]).

Theorem 4.2 Set-Set LCS Problem for two strings of sets can be computed in O(M

2

�

N

2

� p) time and O(N

2

+ r) space, where M;N are the numbers of symbols in subsets

A or B, respectively, p is the length of the longest common subsequence and r =

jfhi; ji : a

i

= b

j

; a

i

2 A

�

; b

j

2 B

�

; 1 � i �M

2

; 1 � j � N

2

gj.

Proof. It follows from the Lemmas 4.2, 4.3, 4.4 and Theorem 4.1. 2

5 Concluding Remarks

The polynomial algorithm for the solution of the LRCS Problem with a restricted

using of elements has been presented. The algorithm can be used to show in the very

simple way that SSLCS Problem has a polynomial complexity.

The LRCS Problem o�ers a generalization that is leading to the following problem:

Let [A;h

A

]; [B;h

B

] be two strings with the partitions and with the restricted using

of elements, let f

A

; f

B

are integer functions called weights of elements in positions:

f

A

; f

B

:
� f1; 2; : : : ; ng ! Integer. For example, A = abacbda the function f

A

can

have values f

A

(a; 3) = 7; f

A

(a; 7) = 4; : : :. The measure of a common subsequence

is the sum of weights of the matching elements. A weight of matching elements is

the sum (or maximum) of weights of these elements in strings A and B in matching

positions. Construct restricted common subsequence with the maximal measure.

References

[1] Andrejkov�a, G.: Systolic systems for the longest common subsequence problem.

Computers and Arti�cial Intelligence, 5 (1986), No. 3, p. 199{212.

[2] Apostolico, A.: Improving the worst-case performance of the Hunt-Szymanski

strategy for the longest common subsequence of two strings. Information Process-

ing Letters 23 (1986), p. 63{69.

[3] Dewar, R. B., Merritt, S. M., Sharir, M.: Some modi�ed algorithms for Dijkstra's

longest common subsequence problem. Acta Informatica 18, 1982, p. 1{15.

[4] Heckel, P.: A technique for isolating di�erences between �les. Comm. ACM 21, 4

(Apr. 1978), p. 264{268.

[5] Hirschberg, D. S.: A linear space algorithms for computing maximal common

subsequences. Comm. ACM 18, 6 (June 1975), p. 341{343.

24

The Longest Restricted Common Subsequence Problem

[6] Hirschberg, D. S.: Algorithms for longest common subsequence problem. Journal

ACM 24, 4 (Oct 1977), p. 664{675.

[7] Hirschberg, D. S., Larmore, L. L.: The Set LCS Problem. Algorithmica 2 (1987),

p. 91{95.

[8] Hirschberg, D. S., Larmore, L. L.: Set-Set LCS Problem. Algorithmica 4 (1989),

p. 503{510.

[9] Huang, S. S., Asuri, S. H.: Algorithms for the Set-LCS and Set-Set-LCS Problems.

Tech. Report No. UH-CS-89-09, University of Houston, March, 1989.

[10] Hunt, J. W., Szymanski, T. G.: A fast algorithm for computing longest common

subsequences. Comm. ACM 20, 5 (May 1977), p. 350{351.

[11] Lowrance, R., Wagner, R. A.: An extension of the string-to-string correction

problems. Journal ACM 22, 2 (Apr. 1975), p. 177{183.

[12] Mohanty, S. P.: Shortest string containing all permutations. Discrete Mathemat-

ics 31, 1980, p. 91{95.

[13] Nakatsu, N., Kombayashi, Y., Yajima, S.: A longest common subsequence algo-

rithm suitable for similar text strings. Acta Informatica 18, 1982, p. 171{179.

[14] Needleman, S. B., Wunsch, Ch. D.: A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal Mol. Biol. 48,

1970, p. 443{453.

[15] Robert, Y., Tchuante, M.: A Systolic array for the longest common subsequence

problem. Information Processing Letters 21 (1985), p. 191{198.

[16] Robert, Y., Tchuante, M.: Calcul en temps lin�eaire d'une plus longue sous-suite

commune �a deux châ�ne sur une architecture systolique. C. R. Acad. Sci. Paris,

S�erie I, No. 7, 1984, p. 269{271.

25

Implementation of DAWG

Miroslav Bal��k

Department of Computer Science and Engineering

Faculty of Electrical Engineering

Czech Technical University

Karlovo n�am. 13

121 35 Prague 2

Czech Republic

e-mail: balikm@cslab.felk.cvut.cz

Abstract. Let T be a text over a �xed alphabet A. Then an automaton can

be created in a linear time that accepts all substrings that occur in text T . The

ratio of the size of the implementation of this automaton (factor automaton,

DAWG) and of the input text is in usual cases 14:1 . This paper shows a method

of implementing DAWG that reduces this ratio down to 4:1 while preserving

good qualities of the automaton, which is linear time of its construction with

respect to the length of the input text and linear time of checking that a pattern

is present in the text with respect to the length of the pattern.

Key words: �nite automata, approximate string matching, DAWG, factor au-

tomaton

1 Introduction

Let T = t

1

t

2

: : : t

n

be a text over a given alphabet A. An alphabet is a �nite set

of symbols. A word (string) over a given alphabet is a �nite sequence of symbols.

An empty sequence of symbols is called an empty word and it will be denoted as ".

A pattern P = p

1

p

2

: : : p

m

is a substring of a text T i� such two natural numbers i; j

exist that P = t

i

t

i+1

: : : t

j

: To answer whether a pattern P is a substring (subpattern,

subword, factor) of a text T is a look-up problem.

A graph that represents a �nite automaton accepting all substrings occurring in

a given text is called DAWG (Directed Acyclic Word Graph).

The major advantages of DAWG are:

� it has a linear size limited by the number of vertices ,which is less than 2jnj�2;

the number of edges is less than 3jnj � 4, where n > 1 is the length of the text,

� it can be constructed in the time O(n),

� it allows to check whether a pattern occurs in a text in O(m), where m is the

length of the pattern. Algorithm is shown on Fig. 1.

26

Implementation of DAWG

The basic idea of the implementation that is about to be described is that because

the majority of edges contained in DAWG connect neighbouring vertices (according

to a given topological order), these edges are worth implementing as a single bit

saying whether such an edge is present or not. Another DAWG property is that all

edges ending at such vertex are labeled by the same symbol of the alphabet, thus the

labelling symbol can be transferred to vertices. Finally, when a statistical analysis of

symbols and of the number of edges starting at a given vertex is performed, a suitable

encoding can be employed to yield another reduction of DAWG size.

1. State Q := Q

0

; i := 1;

2. if (i = m+ 1)END - Pattern occurs in Text

3. Q := Successor(Q;P [i]); i := i+ 1

4. if(Q = nil) END - Pattern does not occur in Text

else goto(2)

Figure 1: Matching Algorithm

2 Implementation

The approach presented here creates a DAWG structure in three phases. The �rst

phase is the construction of the usual DAWG graph, the second phase is topologi-

cal ordering (or re-ordering) of vertices, which ensures that no edge has a negative

"length", where length is measured as a di�erence of vertex numbers. The �nal phase

is encoding and storing the resulting structure. More details about the implementa-

tion and the results presented here can be found in [Bal98].

2.1 Construction of DAWG

There are many ways of constructing DAWG from text, more details can be found

for example in [Cro94]. The method used in this article is the on-line construction

algorithm. An example of DAWG constructed using this algorithm for an input text

T = aabbabb is shown below:

During this phase a statistical distribution of symbols in the text is created. A

statistical distribution of the number of edges at respective vertices is also created.

2.2 Topological Ordering

The DAWG structure is a directed acyclic graph. This means that its vertices can

be ordered according to their interconnection by edges. Such an implementation

that keeps all the information about edges starting from a vertex only in the vertex

concerned while storing the vertices in a given order guarantees that every pattern

matching will result in a single one-way pass through this structure.

27

Proceedings of the Prague Stringology Club Workshop '98

1

�

�

�

�

�

�

�

�

2

�

�

�

�

�

�

�

�

3

�

�

�

�

�

�

�

�

4

�

�

�

�

�

�

�

�

5

�

�

�

�

�

�

�

�

7

�

�

�

�

�

�

�

�

8

�

�

�

�

�

�

�

�

10

�

�

	

�

�

	

6

�

�

�

�

�

�

�

�

9

�

�

�

�

�

�

�

�

11

�

�

	

�

�

	

a

b

a

b

b b

a

a

b

b b

b

a

Figure 2: DAWG for the text T = aabbabb:

The problem of such topological ordering can be solved in linear time. At �rst, for

each vertex its input degree (the number of edges ending at the vertex) is determined,

next a list of vertices having an input degree equal to zero (the list of roots) is

constructed. At the beginning, this list will contain only the initial vertex. One

vertex is chosen from the list and for all vertices accessible by an edge starting at

this vertex their input degree is decreased by one. Then such vertices that have a

zero input degree are inserted into the list. And this goes on until the list is empty.

The order of the vertices, which determines the quality of the �nal implementation,

obtained this way depends on the strategy of choosing a vertex from the list. Several

strategies were tested and the best results were obtained using the LIFO (last in -

�rst out) strategy, for more details see [Bal98].

The original DAWG shown in Fig. 1 will be reordered using the LIFO strategy

and the resulting graph is depicted in Fig. 3

1

�

�

�

�

�

�

�

�

2

�

�

�

�

�

�

�

�

3

�

�

�

�

�

�

�

�

4

�

�

�

�

�

�

�

�

5

�

�

�

�

�

�

�

�

9

�

�

�

�

�

�

�

�

10

�

�

	

�

�

	

11

�

�

	

�

�

	

7

�

�

�

�

�

�

�

�

6

�

�

�

�

�

�

�

�

8

�

�

�

�

�

�

�

�

a

b

a

b

b b

a

a

b

b b

b

a

Figure 3: The result of reordering.

2.3 Encoding

The DAWG graph is encoded element by element (elements are described later in

this section). It starts with the last vertex according to the topological order (as

described above) and progresses in the reverse order, ending with the �rst vertex of

the order. This ensures that a vertex position can be de�ned by the �rst bit of its

representation and that all edges starting at the current vertex can be stored because

all ending vertices have already been processed and their address is known.

The highest building block is a graph. It is further divided into single elements.

Each element consists of two parts: a vertex and an edge. A vertex carries out an

28

Implementation of DAWG

information on a label of all edges ending at it. A Hu�man code is used for coding of

the respective symbol of the alphabet. An edge is further split into a header and an

address order . A header carries out information on the number of addresses - edges

belonging to a respective vertex. A distribution of edge counts for all vertices can be

obtained during the construction of DAWG. This makes possible to use a Hu�man

code for header encoding, but Fibonacci encoding is su�cient as well, though one

must expect a substantial amount of small numbers. An address is the address of the

�rst bit of the element being pointed to by an appropriate edge. It is further split

to two parts, one describing the length of the other part, which is a binary encoded

address.

Figure 4: Implementation - Data Structures

2.4 Matching Algorithm

1. Build coding trees from the CodeF ile

2. Ptr := 0; fPtr : : :pointer into the CodeF ileg

i := 1; initialize Stack

3. if (i = m+ 1)END - Pattern occurs in Text

4. Decode num : : :number of edges starting in state Q, update Ptr.

5. if (num = "Only one edge to the next vertex") Push(Stack; 0)

else while(num > 0) fdecode one edge and push it to Stack; num :=

num� 1; update Ptr g

6. if (Stack is empty)END - Pattern does not occur in Text

7. Ptr := Ptr + Pop(Stack)

8. Decode label from Ptr

9. if (label = P [i]) f update Ptr; i := i+1; goto(3)g

else goto(6)

29

Proceedings of the Prague Stringology Club Workshop '98

2.5 Symbol Encoding

A code of an element (vertex and corresponding edges) starts with a code of the sym-

bol for which it is possible to enter the vertex. The best code is the Hu�man code,

which can be based either on counts of symbol occurrences in the text, or proportion-

ate representation at individual vertices. The latter better suits the implementation.

File Name jXj Symbol Count Proportionate Repre.

jBitsj

jSymbolj

jBitsj

jSymbolj

TEXT1 21818 4.771186 4.770672

TEXT2 53801 4.264782 4.264746

TEXT3 81054 4.588081 4.587633

RANDOM1K 1000 7.532672 7.531844

RANDOM10K 10051 7.809383 7.807136

RANDOM100K 100447 7.831894 7.831680

The average number of bits necessary to store one symbol is calculated for symbols

representing the vertices of the graph. It can be observed that the two methods of

encoding provide similar results. For example, using the latter method for encoding

the �le TEXT3 will result in improvement of only 0.00045 bits per symbol, which is

0.0098% with respect to the value obtained using the �rst method.

2.6 Symbol Decoding

Decoding begins at the root of the coding tree, and follows a left edge when a '0' is

read or a right edge when a '1' is read. When a leaf is encountered, the corresponding

symbol is output.

2.7 Encoding of Number of Edges

The code of the number of edges is another item. Even this value can be obtained

prior to encoding. A typical example of a distribution of numbers of edges for two

input text �les is shown in the Fig. 6.

Figure 5: Edge count distribution (# of edges, # of vertices - %)

30

Implementation of DAWG

In the �gure Fig. 5 vertices with just one edge starting at them were further

divided into two groups: the �rst group is formed by vertices having just one edge

leading to the next vertex according to given vertex ordering (included in the group

Edge count = 0), and the second group is formed by vertices having just one edge

leading anywhere else (Edge count = 1). The �rst group can be easily encoded by

the value of Edge count

The �gure also shows that more than 84% of all vertices belong to the �rst group.

This means that the code word describing this fact should be very short. It will be

only one bit long using Hu�man coding. Other values of edge counts are represented

by more bits according to the structure of the input text.

The smallest element of DAWG represents a vertex with just one edge ending

at the next vertex. For TEXT3 it is 5.6 (4.6 per symbol + 1 bit per edges) bits

on average. The fact that DAWG consists mainly of such elements was used in the

construction of the Compact DAWG structure (CDAWG) derived from the general

DAWG, more details can be found in [Cro97].

2.8 Number of Edges Decoding

The process is similar to Symbol decoding.

2.9 Edge Encoding

The last part of the graph element contains references to vertices that can be ac-

cessed from the current vertex. These references are realised as relative addresses

with respect to the beginning of the next element. The valid values are non-negative

numbers. To evaluate them it is necessary to know the ending positions of corre-

sponding edges. This is why the code �le is created by analysing DAWG from the

last vertex towards the root in an order that excludes negative edges. If we wanted

to work with these edges, we would have to reserve an address space to be �lled in

later when the position of the ending vertex is known.

The address space for a given edge depends on the number of bits representing

the elements (vertices) lying between the starting and ending vertices. As the size of

these elements is not �xed (the size of the dynamic part depends mainly on element

addresses), it is impossible to obtain an exact statistical distribution of values of these

addresses, which we obtained for symbols and edges. A poor implementation of these

addresses will result in the fact that elements will be more distant and the value range

broader.

Yet it is possible to make an estimation based on the distribution of edge lengths

(measured by the number of vertices between the starting and ending vertices). In

this case the real address value might be only q � times higher on average, where q

is an average length of one DAWG element. The �rst estimation of optimal address

encoding is based on the fact that the number of addresses covered by k bits is the

same for k = 1; 2; :::; t; where t is the number of bits of the maximum address. We

will use an address consisting of two parts: the �rst part will determine the number

of bits of the second part, the second part will determine the distance of the ending

vertex in bits. The simplest case is when the addresses are of a �xed length, then the

length of an average address �eld is r = s + t, where s = 0, which means that r = t

31

Proceedings of the Prague Stringology Club Workshop '98

actually. Another signi�cant case is a situation when the number of categories is t,

then s = dlog

2

te.

When s is chosen from an interval s 2 h0; dlog

2

tei, the number of categories is

2

s

, the number of address bits of the i� th category is

t�i

2

s

. An average address �eld

length is then

r = s+

2

s

X

i=1

t � i

2

s

:

When we rearrange this formula, we obtain

r = s+ t

2

s

+ 1

2

s+1

:

When the address length is �xed and the number of categories varies, this function

has a local minimum for

2

s

=

t ln 2

2

:

If we know t, we can calculate s as

s = log

2

(t ln 2) � 1

s t Optimal jXj

1 6 3B

1 and 2 8 11B

2 12 171B

2 and 3 16 2.7kB

3 23 350kB

3 and 4 32 180MB

4 46 2.9TB

4 and 5 64 8 � 10

17

B

5 92 2 � 10

26

B

The above table shows optimal values of t for given values of s as well as address

limits when it does not matter if we use a code for s or s + 1 categories. The

estimation of the input �le length assumes that the code �le is three times greater

than is the length of the input text, and that the code �le contains the longest possible

edge, which connects the initial and the last vertices. This observation is based on

experimental evaluation.

It can be seen that the value s = 3 is su�cient for a wide range of input text

�le lengths, which guarantees a simple implementation, yet it leaves some space for

doubts about the quality of the approach used. Or is it so that edge lengths are

not spread uniformly in the whole range of possible edge lengths (1 to the maximum

length)? The answer can be found in the following �gure.

The �gure does not contain edges ending at the next vertex (with respect to the

actual vertex) as they are dealt with in a di�erent way. It can be clearly observed that

the assumption of uniformity of the distribution is not quite ful�lled. Nevertheless

categories can be constructed in the way that supports the requirement of the minimal

average code word length. The other two �gures depict the real distribution of address

32

Implementation of DAWG

Figure 6: Edge Length Distribution (Length - bits, # of edges - %)

lengths for two ways of encoding. The �rst is a code with two categories, one encoding

addresses with 15 bits, the other with 30 bits. The second way regularly divides

address codes into eight categories by four bits.

Figure 7: Address length distribution - Two categories (Length - bits, # of addresses

- %)

Both ways of address encoding provide similar results. The relevancy with respect

to the statistical distribution of edges is obvious, the peaks being shifted by three or

four bits to the right.

2.10 Edge Decoding

Decoding depends on the number of categories used for encoding. When eight cat-

egories are used, three bits are used for symbol length code { s = 3. We read these

three bits as an integer n. Then we calculate the number of bits that represent an

edge address as t := (n+ 1) � const, where const is based on the length of CodeF ile.

Than, we read n bits from CodeF ile as an integer, and this number is the address.

33

Proceedings of the Prague Stringology Club Workshop '98

Figure 8: Address length distribution - Eight categories (Length - bits, # of addresses

- %)

The following picture describes the contribution of individual parts to the overall

length of the resulting code.

Figure 9: The inuence of code lengths to the overall length of the code �le

The biggest portion is occupied by edge encoding, even though the majority of

edges is included in the edge count encoding. The test was performed for encoding

with eight address categories.

2.11 Complexity

DAWG can be created using the on-line construction algorithm in O(n) time [Cro94].

Vertex re-ordering can be also done in O(n) time, encoding of DAWG elements as

described above can also be done in O(n) [Bal98]. Moreover, vertex re-ordering can

be done during the �rst or third phases. This means that the described DAWG

construction can be performed in O(n).

The time complexity of searching in such an encoded DAWG is O(m) [Bal98].

34

Implementation of DAWG

3 Results

File Name jXj jY

1

j jY

2

j

jY

1

j

jXj

jY

2

j

jXj

TEXT1 21818 602928 500385 345.4 % 286.7%

TEXT2 53801 1459973 1201342 339.2 % 279.1%

TEXT3 81054 2304026 1906376 355.3 % 294.0%

MOD4005.TXT 1246946 - 11818341 - 118.5%

RANDOM1K 1000 25687 23258 321.1 % 290.7%

RANDOM10K 10051 244703 219157 304.3 % 272.6%

RANDOM100K 100447 3843810 3177465 478.3 % 395.4%

The size of the code �le for two sets of addresses is denoted as jY

1

j, jY

2

j is relevant

for the code using eight address categories. Both values are in bits and do not contain

information on the Hu�man encoding used. The size of these data does not depend

on the size of the input �le.

4 Conclusion

The results show that the ratio of code �le size vs. the input �le size is 3:1. This

number changes very little with the rising size of the input �le to the detriment of

the code �le. If the ratio rose as high as 4:1, a CD-ROM with the capacity of 600MB

could contain one code �le for an input �le of the maximal size up to 150MB, which is

a more than three-times better result than the one obtained by the classical approach.

References

[Ada89] J. Adamek: Coding. MV

�

ST XXXI, SNTL, Prague, 1989, in Czech.

[Bal98] M. Bal��k: String Matching in a Text. Diploma Thesis, CTU, Dept. of Com-

puter Science & Engineering, Prague, 1998.

[Cro94] M.Crochemore, W.Rytter: Text Algorithms, Oxford University Press, New

York, 1994.

[Cro97] M.Crochemore and R.V�erin: Direct Construction Of Compact Directed

Acyclic Word Graphs. in (CPM97, A. Apostolico and J. Hein, eds., LNCS

1264, Springer{Verlag, 1997) pp 116-129.

[Me95] B. Melichar: Approximate String Matching By Finite Automata. Computer

Analysis of Images and Patterns, LNCS 970, Springer, Berlin 1995.

[Me96] B. Melichar: Fulltext Systems. Publishing house CTU, Prague, 1996, in

Czech.

[Me97] B. Melichar: Pattern Matching and Finite Automata. Proceedings of the

Prague Stringology Club Workshop '97, Prague, 1997.

35

Exact String Matching Animation in Java

1

Christian Charras and Thierry Lecroq

LIR (Laboratoire d'Informatique de Rouen) and

ABISS (Atelier Biologie Informatique Statistiques Socio-linguistique)

Facult�e des Sciences et des Techniques

Universit�e de Rouen

76128 Mont Saint-Aignan Cedex, France

e-mail: fChristian.Charras,Thierry.Lecroqg@dir.univ-rouen.fr

Abstract. We present an animation in Java for exact string matching algo-

rithms [4]. This system provides a framework to animate in a very straight-

forward way any string matching algorithm which uses characters comparisons.

Already 27 string matching algorithms have been animated with this system.

It is a good tool to understand all these algorithms.

Key words: Exact string matching, animation, Java

1 Introduction

Pattern matching is a very important �eld in computer science as much from a the-

oretical viewpoint as from a practical one. It occurs for instance in text processing,

speech recognition, information retrieval, and computational biology. It also provides

challenging theoretical problems. For a large number of programs, the techniques

used to match a pattern constitute a high percentage of their total work. It is then

important to design very e�cient algorithms. Understanding the existing algorithms

is helpful to achieve this goal. It seemed to us very interesting to o�er a tool to

visualize easily string matching algorithms.

String matching is a special case of pattern matching where the pattern is set up

by a �nite sequence of characters. It consists in �nding one, or more generally, all the

occurrences of a word x of length m in a text y of length n. Both x and y are built

over the same alphabet �.

The best way to understand how a string matching algorithm works is to imagine

that there is a window on the text. This window has the same length as the word x.

It is �rst aligned with the left end of the text y, then the string matching algorithm

scans if the symbols of the window match the symbols of the word (this speci�c work

is called an attempt). After each attempt, the window (and the word) is shifted to

the right over the text until it goes beyond the end of the text. A string matching

algorithm is then a succession of attempts and shifts. The aim of an e�cient algorithm

is to minimize the work done during each attempt and to maximize the length of the

1

This work was partially supported by the project \Informatique et G�enomes" of the french

CNRS.

36

Exact String Matching Animation in Java

shifts. To achieve this, most of the string matching algorithms preprocess the word

before the searching phase. All the di�erent string matchings algorithms di�er both

in the way they compute the attempts (from left to right, from right to left or from

other speci�c orders) and in the way they compute the shifts.

Numerous solutions to the string matching problem have been designed (see [6] and

[11]). The two most famous are the Knuth-Morris-Pratt algorithm [9] and the Boyer-

Moore [2]. There exist then a large number of algorithms using various methods. It

is interesting to have a tool to understand them. There exist some general-purpose

visualization systems (see [10] and [3]). These systems have been developed for X

Window. Such a system, running for X Window and dedicated to string matching,

has been developed by Baeza-Yates and Fuentes [1]. Some specialized systems are

accessible directly through the World Wide Web (see [7], [8], [12] and [13]). All of

these systems enable only to visualize the very classical string matching algorithms

and usually they do not permit to keep trace of the history of the search phase. Our

system o�ers to the users the possibility to follow the running of a large choice of

string matching algorithms very easily through the World Wide Web.

This article is organized as follows: Section 2 described how the system operates

and Section 3 described how the system is written and how to animate a new string

matching algorithm.

2 The environment

The user can choose among the 27 string matching algorithms already implemented.

For each algorithms there is a button (see Figure 1). If one clicks on a button, a

window appears (see Figure 2). In that window the user can then enter a text and

a word (default text is gcatcgcagagagtatacagtacg and default word is gcagagag).

The text and the word alphabet is restricted to the lower case letters. A button

enables then the user to start the search and another button to stop it at any time.

The search phase is then shown attempt by attempt: for one attempt the text is

displayed and the word, which all characters are materialized by a dot, is aligned with

the relevant position in the text. In each attempt the di�erent character comparisons

are shown in the following way:

� matches are shown by displaying the word letter in upper case;

� mismatches are shown by displaying the word letter in lower case.

An occurrence of the word in the text is shown by displaying the corresponding text

characters in upper case. At the end of the search phase, the system gives the number

of attempts and the number of character comparisons performed during the search

phase (see Figure 2).

3 The model

The system is written in Java. It is dedicated mainly to exact string matching al-

gorithms but is easily extensible to a large family of algorithms. Moreover it is

completely straightforward to implement any string matching algorithms providing

that it is written in a speci�c way.

37

Proceedings of the Prague Stringology Club Workshop '98

Figure 1: The visualization button for the Brute Force algorithm.

Let us �rst describe the di�erent structures used by the system. The di�erent

buttons for each string matching algorithms are dealt by a class called AppletButton2

which inheritance graph is shown Figure 3 (AppletButtoni is an applet with i inputs

for 0 � i � 3).

The windows displaying the search phases are dealt by a class which name is

ProgramTextWindow2 which inheritance graph is shown Figure 4.

All the di�erent string matching algorithms inherit of a class which name is

ProgramSPM which inheritance graph is given Figure 5.

In ProgramSPM the di�erent following methods are declared:

� showAttemptAt(i): this method displays m dots below the position i in the

text;

� EqCharsAt(i,j): this method tests, and displays the word character accord-

ingly, if there is a match between characters y

i

and x

j

;

� NotEqCharsAt(i,j): this method tests, and displays the word character ac-

cordingly, if there is a mismatch between characters y

i

and x

j

;

� showMatch(i): this method displays a full match of the word at position i in

the text;

� showComparisons(): this method displays the number of attempts and the

number of character comparisons at the end of the search phase.

The word x, its length m, the text y and its length n are all attributes of the class

programSPM.

38

Exact String Matching Animation in Java

Figure 2: The window for the Brute Force algorithm after a run.

Applet

AppletButton

AppletButton0 AppletButton1 AppletButton2 AppletButton3

Figure 3: Inheritance graph of the button class.

The animation of a string matching algorithm is very easy if the begin of each

attempt (showAttemptAt), the character comparisons (EqCharsAt or NotEqCharsAt)

and the report of a full occurrence (showMatch) are clearly identi�ed and separated

from any other instruction.

Thus the translation of the Brute Force string matching algorithm (see Figure 6)

is very straightforward (see Figure 7).

And for a more complicated algorithm as for the Colussi algorithm [5] it is as

simple (see Figure 8 and 9).

4 Concluding Remarks

We have presented a system which is able to animate exact string matching algo-

rithms. A demo package is available at the following address:

39

Proceedings of the Prague Stringology Club Workshop '98

Frame

ProgramWindow

ProgramTextWindow ProgramSortWindow

ProgramTextWindow2

Figure 4: Inheritance graph of the window class.

Thread

ProgramCode

� � � ProgramText ProgramSort

Fibo ProgramSPM ProgramBubbleSort

� � � string � � �

matching

algorithms

Figure 5: Graph inheritance for the string matching algorithms.

void BF(char *y, char *x, int n, int m) {

int i, j;

for (i=0; i <= n-m; i++) {

j=0;

while (j < m && y[i+j] == x[j]) j++;

if (j >= m) OUTPUT(i);

}

}

Figure 6: Brute Force string matching algorithm in C.

40

Exact String Matching Animation in Java

import lirdir.aptk.InterruptionException;

import lirdir.progtext.ProgramSPM;

public final class ProgramBruteForce extends ProgramSPM {

public void MAIN() throws InterruptionException{

int i, j;

for (i=0; i <= n-m; i++) {

showAttemptAt(i);

j = 0;

while (j < m && EqCharsAt(i+j,j)) j++;

if (j >= m) showMatch(i);

}

showComparisons();

}

}

Figure 7: Brute Force string matching algorithm in Java.

void COLUSSI(char *y, char *x, int n, int m)

{

int i, j, right, last, nd, h[XSIZE], next[XSIZE], shift[XSIZE];

PRE_COLUSSI(x, m, h, next, shift, &nd);

/* Searching */

i=0;

right=0;

last=-1;

while (i <= n-m) {

j=right;

while (j < m && last < i+h[j] && y[i+h[j]] == x[h[j]]) j++;

if (j >= m || last >= i+h[j]) {

OUTPUT(i);

j=m;

}

if (j > nd) last=i+m-1;

i+=shift[j];

right=next[j];

}

}

Figure 8: Colussi string matching algorithm in C.

41

Proceedings of the Prague Stringology Club Workshop '98

import lirdir.aptk.InterruptionException;

import lirdir.progtext.ProgramSPM;

public final class ProgramColussi extends ProgramSPM {

public void MAIN() throws InterruptionException {

int i, j, right, last, nd;

int h[] = new int[m+1];

int next[] = new int[m+1];

int shift[] = new int[m+1];

nd = PRE_COLUSSI(h, next, shift);

/* Searching */

i=0;

right=0;

last=-1;

while (i <= n-m) {

showAttemptAt(i);

j=right;

while (j < m && last < i+h[j] && EqCharsAt(i+h[j],h[j])) j++;

if (j >= m || last >= i+h[j]) {

showMatch(i);

j=m;

}

if (j > nd) last=i+m-1;

i+=shift[j];

right=next[j];

}

showComparisons();

}

}

Figure 9: Colussi string matching algorithm in Java.

42

Exact String Matching Animation in Java

ftp.dir.univ-rouen.fr/pub/ESMAJ/esmaj.zip

and can be consulted at

http://www.dir.univ-rouen.fr/~charras/esmaj/.

We have shown how it is easily possible to animate new string matching algorithms

providing that they are written in a given form. This system can easily be extended to

animate other class of algorithms. It seems quite obvious that animating approximate

string matching algorithms would just need a few e�orts. Some sort algorithms and

some graph algorithms have already been animated with the same principles.

References

[1] R.A. Baeza-Yates and L.O. Fuentes. A framework to animate string algorithms.

Inform. Process. Lett., 59(5):241{244, 1996.

[2] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Comm. ACM,

20(10):762{772, 1977.

[3] M.H. Brown. Zeus: A system for algorithm animation and multi-view editing.

In Proceedings of the IEEE Workshop on Visual Languages, 1991.

[4] C. Charras and T. Lecroq. Exact string matching algorithms, 1996.

URL:http://www.dir.univ-rouen.fr/~charras/string/

[5] L. Colussi. Correctness and e�ciency of the pattern matching algorithms. Inform.

Comput., 95(2):225{251, 1991.

[6] M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

[7] A. C�assia Rossi de Almeida. Smaa: string matching algorithm animation.

URL:http://www.dcc.ufmg.br/~cassia/english_version_smaa.html

[8] M. T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java. John

Wiley & Sons, 1998.

URL:http://www.cgc.cs.jhu.edu/~goodrich/dsa/11strings/demos/pattern/

[9] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings.

SIAM J. Comput., 6(1):323{350, 1977.

[10] J. T. Stasko. Tango: A framework and system for algorithm animation. IEEE Trans.

Comput., 23(9):27{39, 1990.

[11] G. A. Stephen. String searching algorithms. World Scienti�c Press, 1994.

[12] M. Takeda. Demonstration of naive, KMP, and BM pattern matching algorithms, and

their variations.

URL:http://www.i.kyushu-u.ac.jp/~takeda/PM_DEMO/e.html

[13] K. A. Zaman. Illustrated pattern matching.

URL:http://www.cs.columbia.edu/~zkazi/proj.html

43

Local Prediction for Lossless Image Compression

Ahmad Daaboul

Institut Gaspard Monge

University of Marne-la-Vall�ee

Cit�e Descartes, 5, Bd Descartes, Champs-sur-Marne

77454 Marne-la-Vall�ee CEDEX 2

France

e-mail: daaboul@monge.univ-mlv.fr

Abstract. In predictive coding a group of neighboring picture elements is used

to select a suitable prediction value for a current pixel. In this paper, we propose

two techniques for lossless images compression based on predictive coding. In

the �rst technique which called, the predictors, we replace each pixel in the

image by the predicted pixel; we use various schemes to predict the value of a

pixel. In the second, which is based on predictor technique, and called optimal

prediction schemes, we divide the original image into blocks or lines and seek

the best predictor for each (among a selected set of eight) that provides the

best prediction. The errors image is encoded through arithmetic coding, during

the �nal step of compression. The gains of compression that we obtained are

observed in the lossless image compression.

Key words: Image compression and Predictive coding.

1 Introduction

The aim of image compression is to represent a given image with the minimal number

of bits in order to accelerate transmission or reduce storage. Image compression can

be divided into two categories. In the �rst, lossy compression : we accept a di�erence

between the original image and the decompressed one. Second, lossless compression:

after a cycle of compression/decompression, the decompressed image is identical to

the original image.

Most image compression techniques are lossy. However, there are many applications

which require lossless compression. For example in medical and satellite images no

loss of information can be tolerated. In our work we focused lossless image compres-

sion.

Among the various methods which have been devised for lossless compression, predic-

tive coding is perhaps the most simple and e�cient. In predictive coding, a prediction

is made for the current pixel based on the values of previously encountered neighbor-

ing pixels. For every input x

N

pixel, a predictor generates a prediction value which

is calculated from N � 1 preceding samples. A predictor is a linear or non-linear

44

Local Prediction for Lossless Image Compression

combination of neighboring pixels of a current pixel. We call error image the di�er-

ence between the original image and the predicted image. If the prediction scheme

is satisfactory then the distribution of prediction error is concentrated near zero and

the error image has a signi�cantly lower entropy compared to the original image.

Lossless image compression techniques [TLR85] identify two basic steps: decorrela-

tion and coding. In the decorrelation step, redundancies among the pixels are reduced.

In the coding step, the error image is encoded into a binary string using a variable

length code, such as a Hu�man coding [Hu52] or arithmetic coding [BCW90, R76].

The predictors proposed by Wallace [W91] de�ne the JPEG lossless image compres-

sion standard. Harrison [H52] proposed two predictors, others were de�ned by Todd,

Langdon and Rissanen [TLR85]. In this paper, we describe new predictors. Secondly,

we select some JPEG predictors, Harrison predictors and two of our predictors. This

set of selected predictors is used to predict a sample of pixels and we choose (among

the set of selected predictors) the one that provides the best prediction for this sam-

ple. The error image obtained is encoded by a zero order arithmetic coding.

We consider an image to be an array P of integers of two dimensions M � N such

that 0 � m <M and 0 � n < N , where M denotes the number of lines of P and N ,

the number of columns. In this paper Pr represents a predictor.

2 Predictors techniques

Among all the methods of lossless image compression, the methods based on predic-

tors are the simplest. These methods take into account the value of a pixel compared

to its neighbors. Di�erent predictors have been proposed to predict the value of a

pixel at the location (m;n). Harrison [H52] has proposed some predictors. These

predictors are called slope predictor (Pr

s

):

Pr

s

(m;n) = 2 � P [m;n� 1] � P [m;n� 2]:

and Plane 3 predictor (Pr

p3

):

Pr

p3

(m;n) =

2

3

P [m;n� 1] +

2

3

P [m� 1; n]�

1

3

P [m� 1; n � 1]:

Other predictors are de�ned in [TLR85], they are called Plane 2 predictor (Pr

p2

):

Pr

p2

(m;n) = P [m;n� 1] + (P [m� 1; n + 1]� P [m� 1; n� 1])=2:

and Right diagonal (Pr

p3

):

Pr

rd

(m;n) = P [m� 1; n � 1]:

Table 1 contains the predictors proposed by Wallace [W91] which are used as the

JPEG lossless image compression standard.

45

Proceedings of the Prague Stringology Club Workshop '98

Predictor Prediction

Pr

J1

(m;n) P [m� 1; n]

Pr

J2

(m;n) P [m;n� 1]

Pr

J3

(m;n) P [m� 1; n� 1]

Pr

J4

(m;n) P [m� 1; n] + P [m;n� 1]� P [m� 1; n� 1]

Pr

J5

(m;n) P [m� 1; n] + ((P [m;n� 1]� P [m� 1; n� 1])=2)

Pr

J6

(m;n) P [m;n� 1] + ((P [m� 1; n]� P [m� 1; n� 1])=2)

Pr

J7

(m;n) (P [m� 1; n] + P [m;n� 1])=2

Table 1: JPEG predictors.

In this work, we propose new predictors which correspond to di�erent schemes of

linear prediction. Table 2 contains our predictors.

Predictor Prediction

Pr

1

(m;n) (2 � P [m;n� 1] + P [m� 1; n� 1])=3

Pr

2

(m;n) (2 � P [m;n� 1] + P [m� 1; n])=3

Pr

3

(m;n) max(P [m;n� 1]; P [m� 1; n])

Pr

4

(m;n) (P [m;n� 1] + P [m� 1; n] + P [m� 1; n� 1])=3

Pr

5

(m;n) (3 � P [m;n� 1] + P [m� 1; n] + P [m� 1; n� 1])=5

Pr

6

(m;n) max(P [m;n� 1]; P [m� 1; n]; P [m� 1; n� 1])

Pr

7

(m;n) (P [m;n� 1] + P [m� 1; n] + P [m� 1; n� 1]

+P [m� 1; n+ 1])=4

Pr

8

(m;n) (P [m;n� 1] + P [m� 1; n]) + P [m� 1; n � 1]

+P [m� 1; n+ 1] + P [m� 1; n+ 2])=5

Table 2: Our predictors.

3 Optimal prediction schemes

The best method to predict a pixel is to compare it with its neighbors in the same

sample, and select the neighbor that provides the best prediction, i.e. the nearest

value among his neighbor. Beginning with this idea, we search for the best predictor

for a sample of pixels, not of only one. For this purpose, we divide the original image

into line and block as described in sections 3.1 and 3.2. The basic idea of our technique

is to use a sample of predictors to predict an image or a part of an image. This sample

is composed by eight predictors : Pr

J1

, Pr

J2

, Pr

J5

, Pr

J6

, Pr

J7

, Pr

p3

, Pr

2

and Pr

3

.

The reason for choosing these eight predictors is that the values of these predictors

are used to detect the magnitude and orientation of edges in the input image (or

sample of pixels) and make necessary adjustments in the prediction.

We predict the sample pixels using all predictors, and we compute the zero-order

entropy of error image with each of them. The best predictor is the one that provides

the lower zero-order entropy, which is given by the formula de�ned below.

46

Local Prediction for Lossless Image Compression

If we have n independent symbols whose probabilities of choice are P

i

; then we de�ne

the zero-order entropy as follows:

E = �

X

0�i�n

P

i

log(P

i

)

3.1 Lines partitioning schemes

Here the image will be divided into lines, each line is of size 256. Afterwards, every

line will be divided into a Vector-Line type. Denote, V-L

i

[x] a Vector-Line of size x,

the V-L

i

types are:

V-L

i

[2

i

], such that 1 � i � 8.

Figure 1 shows the main steps using lines partitioning schemes:

Original

Image

-

Image

cutting

into lines

Line

?-

Line

processing

Line

cutting

using a

V-L

i

type

-

V-L

i

Coding

-

6

error image

of V-L

i

+ Indicator

Arithmetic

coding

-

Compressed

image

Figure 1: Lines partitioning schemes

3.1.1 V-L Encoding

Each line of the original image, is divided using a type of V-L

i

. For example if i=7,

V-L

7

, we divide a line of the original image into two vectors of size 128 each. Let

V-L

7

[128] a vector of V-L

7

type, �nd below the main steps to encode this vector:

1. processing of V-L

7

[128] using the eight predictors ;

2. calculation of V-L

7

[128] error image and of the zero-order entropy of error image

for each predictor ;

3. selection of the best among the eight predictors, the one which provides the

lower zero-order entropy of V-L

7

[128] error image ;

4. the V-L

7

[128] error image , calculated using the selected predictor, and the

indicator

1

which is used to indicate the selected predictor are processed with

zero-order arithmetic coding [BCW90, R76].

1

The indicator is an integer from 0 to 7, of the eight predictors.

47

Proceedings of the Prague Stringology Club Workshop '98

To provide the best way of searching for the best predictor, we need to process

the image in steps. First, we process the image to detect the magnitude and the

orientation of edges in the input image. Secondly, according to the output of the �rst

step, we choose the best predictor and the best block size.

3.2 Blocks partitioning schemes

Here, we divide the image into a Vector-Block[M][N] type where M is the number of

lines, and N is the number of columns. Next, we process every Vector-Block by the

eight predictors and select the predictor that provides the lower zero-order entropy.

We use V-B to denote a Vector-Block. We describe the V-B types and their length

as follows:

(

V-B

i

[2

i

][2

i

] such that 2 � i � 7

V-B

i

[2

i�1

][2

i

] such that i = 8:

To encode a V-B, we follow the same steps as the V-L encoding.

4 Results

We tested the presented algorithms on eight images. All the images are of size 256�

256 and have 256 intensity levels. The images have been extracted from the university

of Southern California and Nebraska-Lincoln Database. These images are part of a

standard test set used by the image compression research community. The gain of

compression is computed in the following way:

% gain =

R

o

�R

e

R

o

� 100

where R

o

is the size of original image and R

e

is the size of compressed image. Ta-

ble 3 contains the gains of compression using the following predictors: Pr

rd

and

Pr

s

; P r

p3

; P r

p2

and trivial predictor (the original image).

Image Trivial Pr

rd

Pr

s

Pr

p2

Pr

p3

USG-Girl 21:0% 31:6% 29:6% 36:0% 38:2%

Girl 21:7% 41:0% 32:6% 39:1% 39:2%

Lady 36:3% 45:6% 42:2% 49:1% 49:9%

House 21:8% 33:8% 35:5% 40:7% 42:7%

USC-Couple 26:7% 36:1% 34:3% 41:6% 45:1

Tree 10:6% 22:8% 22:5% 27:9% 30:4%

Satellite 09:1% 15:1% 17:0% 22:0% 25:3%

X-Ray 34:7% 31:2% 15:9% 17:9% 19:0%

Table 3: Gain obtained using trivial and Harrison predictors.

48

Local Prediction for Lossless Image Compression

Image J1 J2 J3 J4 J5 J6 J7

USG-Girl 35:4% 35:9% 31:7% 34:5% 37:2% 36:8% 38:7%

Girl 44:8% 46:1% 41:3% 39:5% 40:1% 39:3% 42:5%

Lady 47:6% 51:3% 45:7% 46:8% 50:4% 48:2% 51:2%

House 37:2% 41:9% 33:6% 41:4% 43:4% 41:5% 42:1%

USC-Couple 43:1% 41:3% 35:7% 43:5% 44:2% 45:3% 44:2%

Tree 25:4% 29:8% 24:0% 26:8% 30:4% 28:5% 30:9%

Satellite 19:4% 22:3% 17:5% 21:8% 24:7% 23:5% 25:4%

X-Ray 34:5% 34:3% 31:2% 24:6% 20:0% 20:1% 23:3%

Table 4: Gain obtained using JPEG predictors.

Image Pr

1

Pr

2

Pr

3

Pr

4

Pr

5

Pr

6

Pr

7

Pr

8

USG-G 35:4% 38:3% 37:5% 36:7% 37:1% 36:3% 37:8% 37:0%

Girl 39:6% 41:3% 47:8% 39:7% 40:1% 47:0% 39:9% 39:4%

Lady 50:4% 51:6% 50:7% 50:4% 51:2% 50:4% 50:7% 50:1%

House 40:7% 42:9% 41:2% 39:6% 41:6% 40:0% 39:7% 38:6%

USC-C 40:3% 43:7% 43:5% 41:4% 42:0% 42:0% 42:4% 40:9%

Tree 29:7% 31:6% 28:6% 29:1% 30:7% 27:4% 28:6% 27:4%

Satellite 22:8% 25:6% 22:9% 23:2% 24:4% 21:6% 22:9% 21:1%

X-Ray 20:0% 21:3% 36:7% 20:6% 20:3% 36:0% 20:1% 20:0%

Table 5: Gains obtained using our predictors.

Image V-L

1

V-L

2

V-L

3

V-L

4

V-L

5

V-L

6

V-L

7

V-L

8

USG-G 27:8% 29:5% 33:5% 36:1% 37:3% 37:8% 37:9% 38:1%

Girl 39:3% 40:5% 43:3% 45:7% 47:6% 48:3% 48:3% 48:0%

Lady 41:1% 42:6% 46:3% 49:2% 51:3% 52:2% 52:4% 52:6%

House 31:7% 33:7% 38:3% 41:2% 43:0% 43:9% 43:9% 44:1%

USC-C 33:4% 37:2% 41:9% 44:5% 45:8% 46:0% 45:8% 45:7%

Tree 22:4% 22:5% 25:7% 28:6% 30:4% 31:2% 31:2% 31:1%

Satellite 15:7% 15:9% 19:3% 22:1% 23:9% 25:0% 25:5% 25:7%

X-Ray 26:9% 25:6% 28:9% 32:8% 35:7% 36:3% 36:4% 36:5%

Table 6: Gains obtained using our lines partitioning schemes.

49

Proceedings of the Prague Stringology Club Workshop '98

Image V-B

1

V-B

2

V-B

3

V-B

4

V-B

5

V-B

6

V-B

7

V-B

8

USG-G 18:4% 30:2% 36:1% 37:8% 38:0% 38:5% 38:6% 38:7%

Girl 27:0% 39:9% 46:0% 47:8% 47:9% 47:8% 47:8% 47:8%

Lady 30:9% 43:8% 51:1% 53:0% 53:2% 52:4% 50:9% 51:6%

House 20:1% 34:2% 42:1% 44:7% 45:2% 44:1% 42:8% 43:4%

USC-C 27:9% 39:1% 44:9% 46:4% 46:2% 46:3% 45:9% 46:0%

Tree 11:0% 22:5% 29:2% 31:1% 31:3% 31:0% 31:2% 31:6%

Satellite 03:9% 15:4% 22:1% 24:7% 25:3% 25:5% 25:8% 25:8%

X-Ray 21:9% 27:9% 34:6% 36:0% 36:3% 36:6% 36:6% 36:7%

Table 7: Gains obtained using our blocks partitioning schemes.

Tables 3, 4 and 5 contain the gains of compression using JPEG, Harrison and our

predictors. If we compare these tables we notice that the gains in table 5 are often

higher than those in tables 3 and 4. This means that the predictions that we propose

are often better than those proposed by Harrison and Wallace. Table 6 and 7 contain

the gains of compression using lines partitioning schemes and blocks partitioning

schemes that we propose. The results in the two tables are clearly better than those

in table 3, 4 and 5.

Conclusions

In this paper, we presented two techniques of lossless image compression based on

predictors. If we compare our performances with the existing algorithms based on the

re�nement of pixels and specialized in lossless image compression, we obtain higher

results. The algorithms that perform the best, are Pr

2

and Pr

3

, which provide the

best prediction. The optimal prediction scheme techniques obtains the best results.

References

[BCW90] Bell, T.C., Cleary, J.C. and Witten, I.H.: Text Compression. Advanced

Reference Series. Prentice-Hall, Englewood Cil�s, New Jersey, 1990.

[H52] Harrison, C.W.: Experiments with linear prediction in television. Bell Sys-

tem Tech. J., 31, pages 764{783, July, 1952.

[Hu52] Hu�man, D.A.: A method for the construction on minimum redundancy

codes. Proc. IRE, 40, pages 1098{1101, 1952.

[R76] Rissanen, J.J.: Kraft inequality and Arithmetic coding. IBM Journal of

Research and Development, 20, pages 198{203, May, 1976.

[TLR85] Todd, S., Langdon, G.G. and Rissanen, J.: Parameter reduction and con-

text selection for compression of gray scale images. IBM J. Res. Develop.,

29, 2, pages 188{193, March 1985.

[W91] Wallace, G.K.: The JPEG still picture compression standard. Communi-

cations of the ACM, 34, 4, pages 31{44, 1991.

50

On the All Occurrences of a Word in a Text

O.C. Dogaru

West University of Timi�soara

Bd.V.Pârvan,nr.4,Timi�soara,1900,Romania

e-mail: dogaru@info.uvt.ro

Abstract. In this paper a simple straight string search algorithm is presented.

For a string s that consists of n characters and a pattern p that consists of m

characters the order of comparisons is O(n:m), 0 < m � n, in the worst case,

but the average time complexity is good. The algorithm presented �nds all

occurrences of p in s. It do not use a precompiling of the pattern p.

1991 Mathematical Subject Classi�cations: 68P10 [Searching and Sorting]

Key words: direct, string, pattern, search

1 Introduction

The string matching problem is following. Given an array s[0::n� 1] of n characters

and an array p[0::m � 1] of m characters where 0 < m � n, the task is to �nd

all occurrences of p in s. The string s is regarded as a text and the string p as a

word(pattern). Generally, s and p are item.

In [W86] it is presented a direct method to determine the �rst occurrence of p

in s. In the same book it is presented the fact that the algorithm proposed is very

ine�cient, for example, if the pattern is p=a

m�1

b and the string is s=a

n�1

b, then

m � n comparisons are necessary to determine that p is in s.

In this direct method the pattern and the text are aligned at the left ends. The

searching begins with p

0

and s

0

. If a mismatch appears then a new searching begins

always with p

0

, the �rst character of the pattern.

2 The algorithm

The algorithm proposed by us begins with p and s aligned at the left ends too but in

the case that a mismatch occurs in the process of comparisons of p and s (p

j

6= s

j

)

then the searching continues with the character of p which produced the mismatch,

that is p

j

, which is searched between s

j+1

and s

n�m+j

. On this idea the algorithm is

built. It will contain the followings.

1. One compares successively p

0

with s

i

, i=0,1,. . .,n�m. If it exists no match of

the p

0

with s

i

, i=0,1,. . .,n�m then 'p is not in s' and the process is terminated.

2. If s

i

is the �rst match of p

0

then one compares successively p

1

with s

i+1

, p

2

with s

i+2

etc. If all p

j

match with s

i+j

, j=0,1,. . .,m-1 then this is the �rst occurrence

of p in s. A new searching is resumed beginning with p

0

and s

i+m

.

51

Proceedings of the Prague Stringology Club Workshop '98

3. If in the process of searching a mismatch occurs between p

j

and s

i+j

(p

j

6= s

i+j

)

then p

j

is searched in the rest of string s between s

i+j+1

and s

n�m+j

. If p

j

is not in

this rest then the searching is ended.

4. If in the substring s

i+j+1

; :::; s

n�m+j

there exists a character which match with

p

j

, one renames this character s

i

. Therefore p

j

= s

i

. In this case one compares the

left and right neighbours of p

j

and s

i

that is p

0

; p

1

; :::; p

j

; :::;

p

m�1

with correspondings s

i�j

; :::; s

i

; :::; s

i�j+m�1

. If all occur then this is an occur-

rence of p in s and the process of searching is resumed. If in the time of veri�cation

the neighbours of p

j

and s

i

a mismatch occurs then a new searching of p

j

begins with

the character s

i+1

.

5. The algorithm stops if i >= n �m+ j.

Example.

p=abcd (m=4)

s=xabcdxabxxaycdxabcd (n=19)

a

abcd

a

abc

c

c

c

c

a?c

c

c

c

c

abcd

In this example there are 23 comparisons to �nd two occurrences of p in s.

The complete algorithm, presented as a procedure named DO3(written in a Pascal-

like language described in [HS83]), is the following.

procedure DO3(s,p,n,m)

//find all occurrences of the word p(0:m-1)//

//in the string s(0:n-1) if this exists. If yes//

//then procedure writes 'p is in s' else it//

// write 'p is not in s'. 0<m<=n//

char p(0:m-1),s(0:n-1); integer i,j,m,n,k; boolean f;

i:=0; f:=false;

loop

j:=0;

while (j<m) and (p(j)=s(i)) do i:=i+1;j:=j+1 repeat;

if (j=m) then write('p is in s');f:=true;cycle endif

// the character p(j) is a mismatch:p(j)<>s(j) //

1:i:=i+1;

while (i<=n-m+j)and(p(j)<>s(i)) do i:=i+1 repeat

52

On the All Occurrences of a Word in a Text

if i>n-m+j and not f then exit endif;

// it exists i thus p(j)=s(i),one verifies the //

//left and right neighbours of p(j) and s(i)//

k:=0;

while(k<=m-1) and (p(k)=s(i-j+k) do k:=k+1 repeat;

if k=m then write('p is in s'); f:=true; i:=i-j+m

else goto 1 endif

until i>=n-m+j repeat;

if not f then write('p is not in s') endif

endDO3;

3 Number of comparisons

The maximum number of comparisons to determine that 'p is or it is not in s',

theoretically, it is obtained when, after p

k

= s

k

; k = 0; 1; :::; j � 1 match, it appears

p

j

6= s

j

, but p

j

= s

i

; i = j + 1; :::; n � m + j and all the left neighbours of p

j

match with the corresponding neighbours of s

i

and the right neighbours of p

j

, that

is, p

j+1

; p

j+2

; :::; p

m�2

match with the right corresponding neighbours of s

i

excepting

p

m�1

. For i = n�m+ j; p

m�1

may or it may not match with his corresponding in s.

Therefore for:

i = j+1, p

0

= s

1

; :::; p

j

= s

i

; :::; p

m�2

= s

m�1

; p

m�1

6= s

m

there are m comparisons;

i = j+2, p

0

= s

2

; :::; p

j

= s

i

; :::; p

m�2

= s

m

; p

m�1

6= s

m+1

there are m comparisons;

. .

i = n � m + j, p

0

= s

n�m+j

; :::; p

j

= s

i

; :::; p

m�2

= s

n�2

and p

m�1

= s

n�1

or

p

m�1

6= s

n�1

, there are m comparisons. Therefore in all it exists j + 1 comparisons

p

k

with s

k

; k = 0; 1; :::; j; between j + 1 and n � m + j there exists (n � m + j)-

(j+1)+1 = n�m cases for which p

j

maymatch with s

i

; i = j+1; j+2; :::; n�m+j and

the neighbours of p

j

, that is p

0

; p

1

; :::; p

m�2

match with the corresponding neighbours

of s

i

, but p

m�1

6= s

m+k

; k = �1; 0; 1; :::; n�m� 1. Possibly, p

m�1

= s

n�1

. Every case

gives m comparisons. Hence the maximum number of comparisons is

N

max

= j + 1 + (n�m) �m � m� 1 + 1 + (n �m)m = m(n�m+ 1):

The complexity of the algorithm DO3 is O(n:m) too.

But in the most unfavourable cases the algorithm DO3 reduces the maximum

number of comparisons from m �n as in algorithm presented by N.Wirth in [W86] to

m(n�m+ 1).

For the example p=a

m�1

b and s=a

n�1

b presented in Section 1, the algorithm DO3

carries out n +m� 1 comparisons.

4 Pro�ling

The variant of this algorithm(OD) written to determine the �rst occurrence of p

in s [D98] has been compared with a direct method(DIR) presented in [W86] and

the Boyer-Moore algorithm(BM) [BM77].The tests have been realized for di�erent

53

Proceedings of the Prague Stringology Club Workshop '98

values of p(m=5, 10, 20, 50, 100) and s(n=1000, 2000, 3000, 4000, 5000). The p

and s have been generated randomly. One generated sequences of m and n decimal

integer random numbers between 32-127 and one has tacken the ASCII corresponding

characters for p respectively for s. For the same m and n the three methods have

been executed 10 times. The average time for an m and �ve values for n(=1000,

2000, 3000, 4000, 5000) are written down in the following table

m= 5 10 20 50 100 Average

OD 0.52 0.20 0.56 0.24 0.30 0.364

DIR 0.46 0.58 0.24 0.34 0.58 0.432

BM 0.12 0.22 0.44 0.42 0.22 0.284

Between the average times of three methods there are the relations

t

OD

= 1:28t

BM

; t

DIR

= 1:18t

OD

:

But if the three methods are executed 100 times then the values are the following

m= 5 10 20 50 100 Average

OD 0.362 0.374 0.396 0.376 0.368 0.372

DIR 0.408 0.398 0.408 0.414 0.396 0.404

BM 0.364 0.350 0.308 0.300 0.312 0.326

In this case the relations are

t

OD

= 1:14t

BM

; t

DIR

= 1:08t

OD

:

5 Correctness of the algorithm

Theorem.The algorithm DO3 works correctly.

Proof. To proof the correctness of the algorithm we use a proof table [TBCG92]

procedure DO3(s,p,n,m)

char p(0:m-1),s(0:n-1); integer i,j,m,n,k; boolean f;

fpre:input=(p

0

; p

1

; :::; p

m�1

)^(s

0

; s

1

; :::; s

n�1

)^

n � m > 0^8i2f0,1,. . .,n-1g:s

i

are characters^

8j2f0,1,. . .,m-1g:p

j

are charactersg

f:=false; i:=0;

loop

j:=0;

54

On the All Occurrences of a Word in a Text

while (j<m) and (p(j)=s(i)) do

finv:8 h2f0,1,. . .,j-1g:p

h

= s

h

^0�j,i�mg

i:=i+1;j:=j+1 repeat;

f8 h2f0,1,. . .,j-1g:p

h

= s

h

^(j=m_p

j

6= s

i

g

if (j=m) then write('p is in s');f:=true;

foutput f=trueg

cycle endif

// the character p(j) is a mismatch:p(j) 6= s(j) //

ff=false^j<m^p

j

6= s

i

g

1:i:=i+1;

f0<i�n-m+j^p

j

6= s

i

)_i>n-m+j)g

while (i<=n-m+j)and(p(j) 6=s(i)) do

finv:p

j

6= s

i�1

^ i� n-m+jg

i:=i+1 repeat;

f(p

j

6= s

i�1

^ :(i<=n-m+j^ p

j

6= s

i

)�

f(p

j

6= s

i�1

^ i>n-m+j)_(s

i

= p

j

^ i<=n-m+j)g

if i>n-m+j and not f then

fp

j

6= s

i

g

exit endif;

fp

j

= s

i

^ i<=n-m+jg

// it exists i thus p(j)=s(i) //

//one veri�es the left and right neighbours of p(j) and s(i)//

k:=0;

while(k<=m-1) and (p(k)=s(i-j+k) do

finv:8h2f0,1,. . .,k-1g:p

h

= s

i�j+h

^ 0� k � mg

k:=k+1 repeat;

f(8h2f0,1,. . .,k-1g:p

h

= s

i�j+h

)^ :(k� m-1^ p

k

= s

i�j+k

)g

�(8 k2f0,1,. . .,m-1g:p

k

= s

i�j+k

^ k=m)_

(8h2f0,1,. . .,k-1g:p

h

= s

i�j+h

^ p

k

6= s

i�j+k

g)

if k=m then write('p is in s'); f:=true; i:=i-j+m

f8k2f0,1,. . .,m-1g:p

k

= s

i�j+k

g

else

f9k2f0,1,. . .,m-1g:p

k

6= s

i�j+k

g

goto 1

endif

until i>=n-m+j repeat;

ff=false _ f=true ^ 0<=j<=m^ i>n-m+jg

if not f then write('p is not in s') endif;

fpost:output=;g

endDO3;

The justi�cations are based on the application of logical equivalences and the rules

of inference to the sequence of Pascal statements. These are:

i)the assignment rule of inference

fP(e)g v:=e fP(v)g

ii)the conditional rules of inference

a)fP ^ Bg s fQg b)fP ^ B g s1 fQg

55

Proceedings of the Prague Stringology Club Workshop '98

P ^ :B) Q P ^:Bg s2 fQg

|||||||||||| |||||||||||

fPg if B then s fQg fPg if B then s1 else s2 fQg

iii)the loop rules of inference

a)finv ^ Bg s finvg b)finv ^Bg s finvg

||||||||||||{ |||||||||||

finvg while B do s finv ^: Bg finvg repeat s until B finv^Bg

where P,Q denote propositions, B-Boolean expression, inv-the invariant of the loop

and s, s1, s2 are statements.

Conclusions

1)Algorithm OD is faster than algorithm DIR in average time;

2)There are pairs of p and s where algorithms OD or DIR are faster than algorithm

BM;

3)At limit, the average times of the three methods tend to approach;

4)Possibly, for other p and s, the relations between the average times of the three

methods can be slight di�erent.

References

[BM77] R.S. Boyer, J.S. Moore, A fast string searching algorithm, Comm. ACM, 20,

10(1977), pp.762-772

[CH92] R.Cole, R.Hariharan, Tighter bounds on the exact complexity of string

matching, Proc. 33rd IEEE Symp. on Foundations of Computer Science,(1992),

pp.600-609

[C94] R.Cole, Tight bounds on the complexity of the Boyer-Moore string matching

algorithm, SIAM J.Comput, 23, 5(1994), pp.1075-1091

[CHPZ95] R.Cole, R.Hariharan, M.Paterson, U.Zwick, Tighter lower bounds on the

exact complexity of string matching, SIAM J. Comput., 24, 1(1995), pp.30-45

[CH97] R.Cole, R.Hariharan, Tighter upper bounds on the exact complexity of string

matching, SIAM J.Comput., 26, 3(1997), pp.803-856

[CCGJLPR94] M.Crochemore, A.Czumaj, L.Gasiniec, S.Jarominek, T.Lecroq,

W.Plandowski, W.Ritter, Speeding up two string-matching algorithms, Algo-

ritmica, 5(1994), pp.247-267

[D93] O.Dogaru, Algorithm of straight string search, Proceedings of the 9th RO-

manian SYmposium on Computer Science (ROSYCS), University of Iasi,(1993),

pp.172-177

56

On the All Occurrences of a Word in a Text

[D98] O.Dogaru, On the �rst occurence of a pattern in a text, Proceedings of MO-

SIS'98(Modelling and Simulation of Systems), International Conference, Volume

2, pp.45-50, May 5-7, 1998, Sv.Hostyn-Bistrice pod Hostynem, Czech Republic

[GG93] Z.Galil, R.Giancarlo, On the exact complexity of string matching:Upper

bounds, SIAM J. Comput., 3(1993), pp.407-437

[HS83] E.Horowitz, S.Sahni, Fundamentals of Computer Algorithm, Computer Sci-

ence Press(1983)

[KMP77] D.E.Knuth, J.H.Morris, V.R.Pratt,Fast pattern matching in string, SIAM

J.Comput. 6, 2(1977), pp.323-349

[TBCG92] A.B.Tucker, W.J.Bradley, R.D.Cupper, D.K.Garnick, Fundamentals of

Computing I, McGraw-Hill,Inc, (1992)

[W86] N.Wirth, Algorithm and Data Structures, Prentice Hall, N.J.(1986)

57

A Highly Parallel Finite State Automaton

Processor for Biological Pattern Matching

Glen Herrmannsfeldt

Department of Molecular Biotechnology

University of Washington

Box 357730

Seattle, WA 98195-7730

USA

e-mail: gah@mbt.washington.edu

Abstract. Finite State Automata are useful for string searching problems

mostly because they are fast. For very large problems, a software implemen-

tation will not be fast enough. I describe here a parallel implementation of a

hardware Deterministic Finite State Automaton processor. It can rapidly search

a large database for approximately matching strings, as a �lter for more detailed

processing later. As the most important parts, large Random Access Memory

chips, are continually getting cheaper, it should be possible and a�ordable to

make large arrays of such processors.

Key words: �nite automata, approximate string matching, high-speed search-

ing, deterministic �nite automata, massive parallelism

1 Finite State Automata for Biology

An important problem in contemporary molecular biology is sequence comparison.

One would like to compare DNA or protein sequences against other DNA or protein

sequences and �nd ones that are most similar. As the database of known DNA and

protein sequences is growing exponentially, this problem is continually getting harder.

It is useful to have a machine to rapidly compare a group of sequences against a large

disk �le of sequences and indicate which ones match most closely.

All the examples will be done using a DNA alphabet size of four. The DNA

database is much larger than the protein database, and so the larger, faster, processors

are needed here �rst. The processors should be designed to also handle the protein

20 character alphabet.

This paper describes the design of hardware implementations of Finite State Au-

tomata [HU79][W87] for processing biological sequences. In all cases described here,

the Finite State Automata are Deterministic, though sometimes the acronym FSA

will be used instead of DFSA or DFA.

58

A Highly Parallel Finite State Automaton Processor for Biological Pattern Matching

2 The Problem with Insertions and Deletions

The preferred method for approximate sequence comparison is dynamic programming

[NW70]. Preferred, that is, unless you are in a hurry. Heuristic methods, based on

hashing or �nite state automata are faster than dynamic programming, but are not as

good at separating the biologically related sequences from statistically insigni�cant,

but similar looking sequences.

While �nding an exact match fast is relatively easy, biological problems usually

don't work that way. Both natural genetic mutations and errors in sequencing can

cause inserted, deleted or substituted bases. Dynamic programming is well suited

to doing comparisons with a supplied similarity matrix, giving the score for aligning

any database character with any query character, and with speci�ed insertion and

deletion penalty values.[G82] Applying a dynamic programming algorithm will give a

score for each database sequence aligned with the query sequence, and one can select

the highest scoring sequences. The limitation is that dynamic programming is slow.

A modern RISC superscalar processor can do over 100,000,000 mathematical op-

erations (additions or comparisons) per second. Using a dynamic programming algo-

rithm with 10 operations per matrix element, where the number of matrix elements

needed is the product of the query length and database length, we can calculate over

10,000,000 matrix elements per second. With a 1,000,000,000 base DNA database,

and typical 1000 base query, one search requires 100,000 seconds, or about one day.

To compare the entire 10

9

base GenBank against itself would require evaluating 10

18

matrix elements in 10

11

seconds. This is over 3000 years, clearly not practical.

One way to speed up the calculation is with special purpose hardware. Systolic

array processors work very well for dynamic programming algorithms, [LL85][CH91]

and are certainly the way to go to for fast dynamic programming. With an array of

10

3

processors, each evaluating 10

7

cells per second, the GenBank comparison can be

done in 10

8

seconds, or about three years. But a large fraction of the sequences being

compared will have no relation to the query sequence. If one could do an even faster

comparison, as a �lter before running the dynamic programming algorithm, it might

be possible to speed up the whole process. It should at least be possible to �nd the

interesting results sooner.

3 Finite State Automata for Biological Searching

The BLAST program is the most popular Finite State Automata implementation for

biology.[AG90][KA90][KA93] It is probably the most popular overall. BLAST can

rapidly scan a database to �nd possible matches, and then spend more time trying to

extend those matches. With the default parameters, and some luck with the choice of

query, BLAST may be within a factor of two of the speed that the data can be read

o� the disk. BLAST is very good at �nding close matches, though its performance

falls of for less exact matches. There are adjustable parameters which can be used to

tune the search strategy. With parameters that do a better job at �nding less exact

matches, BLAST will slow down.

59

Proceedings of the Prague Stringology Club Workshop '98

4 A Hardware Implementation of a Finite State

Automaton

Searching with a Deterministic Finite State Automaton is very simple. The new state

is obtained through a lookup table from the current state and the incoming database

character. In hardware, this is not much more than a large RAM array and a register.

One could imagine a single printed circuit board with a large number of processor

elements, each consisting of a few RAM chips and a simple programmable logic chip,

each processor implementing a DFSA. With the currently popular 64 Megabit RAM

chips, and more recently available 256 Megabit chips, a lookup table with 8 million

entries, and running with a 10 MHz clock should be very feasible. If one or more query

sequence can be compiled into an 8 million state FSA, then we could get hundreds of

queries on a system at one time, and search at near the disk streaming transfer rate.

That is the motivation for this paper.

If we assume a 10 million character per second streaming rate, that a 1000 char-

acter query can be compiled into a single FSA processor, with 100 processors our

comparison rate is 10

12

per second. We can complete the GenBank against itself

comparison in 10

6

seconds, about twelve days. This would be fast enough to al-

low multiple passes, to adjust parameters, and select sequences to feed to a slower,

dynamic programming processor.

5 Finite State Automaton Size

A critical parameter is the size of the FSA necessary. Finite State Automata are very

good at �nding an exact match, as this requires relatively few states. For biological

problems, it is necessary to include some substitution data, and usually also some

insertions and deletions in the comparison. This is the reason we need such large

FSAs. With dynamic programming, the scoring and gap penalties are part of the

algorithm, and are used to calculate the score. With an FSA, it is necessary to

predetermine all the sequences we will match, including sequences with substitutions,

insertions, or deletions. We need a balance between the ability to �nd less exact

matches, and the size of the FSA needed.

If we take a typical query of 1000 characters, and we search for an exact match,

we need a 1000 state FSA. (Like BLAST, we trigger on transitions and not states,

reducing the required state memory.) If we want to �nd any 16 character substring,

we have 985 substrings of 16 characters each, for 15760 states.

At this point, it will be assumed that the number of states is equal to the total

number of characters in the query substrings. Fewer states will be required, because

of degeneracy at the beginning of the tree. Each state requires one table entry for

each character in the alphabet. For now, we calculate just the total query size, and

assume this is close to the number of states needed.

If we want to �nd any of the 16 character substrings with one of three possible

substitutions from the DNA alphabet, in any one of the 16 positions, have to search for

the exact match plus 48 possible mismatched strings, for each of the 985 substrings.

Thus 49 � 985 = 48265 strings of 16 characters each, requiring 772240 states in the

FSA. If we add all the single insertion and single deletion strings to the list, we

60

A Highly Parallel Finite State Automaton Processor for Biological Pattern Matching

increase by nearly a factor of three, approaching two million states.

This could be implemented as a two million entry look-up table, with each entry

large enough to address the entire table, and in addition, to indicate the required

result information. It takes 21 bits to address the two million entries, plus at least

one bit to indicate a hit. In matching the �nal character, we indicate a hit and return

to a lower state, the longest su�x of the matching state. In all cases where a match

fails, the transition is to the longest su�x of what has been matched.

In the case of DNA, with an alphabet size of four, it is also possible to store the

database with four bases per byte, for a 256 character alphabet. This increases the

data transfer rate by a factor of four, but it also changes the FSA size. We reduce

the length of the query subsequences by a factor of nearly four, but we still increase

the number of table entries per database character by a factor of 64. For small FSA

on a slow processor, like BLAST uses, this makes sense. If our query substrings

were randomly distributed, it would not. However, our query substrings are not

statistically independent, and in fact, the substitution/insertion/deletion model gives

us many query substrings that di�er in only one position. This reduces the number

of states required, so it may turn out to be useful. In a hardware implementation,

we do better by including more processors. If the processor can run faster than the

disk transfer rate, we can unpack the data after it comes o� the disk. This would, for

example, allow us to use the signi�cantly faster cycle time of static RAM relative to

dynamic RAM to our advantage.

6 Finite State Automata as Filters

We consider the Dynamic Programming calculation as the preferred way to score

sequence matches. The goal now is to separate likely candidates from unlikely ones. A

�lter that would reduce the number of comparisons by a factor of ten in the following

stage would seem useful, yet practical. If we allow random strings through with

a 10% probability, and assume that the real signal is well below this, we should

nearly achieve this goal. If we assume DNA with an alphabet size of four, and also

assume that the base usage is randomly distributed, we can calculate statistically

how many hits we should get with di�erent query substring lengths and numbers

of substitutions/insertions/deletions. For the example, each of the 48265 length 16

strings should randomly match one in 4

16

positions in the database. With a 10

9

database size, or nearly 4

15

, each of the query strings has about one in four chance

of matching. We would like an entire 1000 base sequence to have about a one in ten

match rate. One possibility is to increase the length of our query substrings.

Table 1 shows the results if we allow up to one substitution, insertion, or deletion

in di�erent length (l) substrings of a 1000 character query. The �nal column shows

the expected number of matches of a random string in a four character alphabet

matching against a 10

9

character database.

We can see that 10% is somewhere between 25 and 26 character query substrings,

and nearly six million states needed in the FSA. With strings this long, though, one

error in 26 may not be enough. If we increase the allowed number of errors, then we

need even longer query substrings to maintain the 10% hit rate.

As an additional complication, we should remember that our query strings are

not necessarily statistically independent. With the one error allowance, many strings

61

Proceedings of the Prague Stringology Club Workshop '98

l n e t f x

10 991 91 90181 901810 86003303.53

11 990 100 99000 1089000 23603439.33

12 989 109 107801 1293612 6425440.31

13 988 118 116584 1515592 1737236.98

14 987 127 125349 1754886 466961.41

15 986 136 134096 2011440 124886.63

16 985 145 142825 2285200 33254.04

17 984 154 151536 2576112 8820.56

18 983 163 160229 2884122 2331.64

19 982 172 168904 3209176 614.47

20 981 181 177561 3551220 161.49

21 980 190 186200 3910200 42.34

22 979 199 194821 4286062 11.07

23 978 208 203424 4678752 2.89

24 977 217 212009 5088216 0.75

25 976 226 220576 5514400 0.20

26 975 235 229125 5957250 0.05

27 974 244 237656 6416712 0.01

28 973 253 246169 6892732 0.00

29 972 262 254664 7385256 0.00

The required FSA size is approximately proportional to the total number of characters

in the query substrings. We tabulate for di�erent lengths (l) the number of substrings

in a 1000 character query (n), the number of cases of each with no errors, or a single

substitution, insertion, or deletion using an alphabet size of four (e). Also, the total

number of query substrings (t), and total number of characters in those substrings (f).

The �nal column (x) is the expected number of times one of the query subsequences

should match in a 10

9

character database, assuming they are statisically independent.

Table 1

62

A Highly Parallel Finite State Automaton Processor for Biological Pattern Matching

are very similar. In any case, to make a useful �lter, we must do better than match

a single substring with up to one error.

7 A Two Level Finite State Automaton

In order to implement approximate string matching in a Finite State Automaton, we

need a vary large number of states. However, many of the states end in a similar

result. One possible way to get around this, and allow for a more reasonable memory

size, is to drive a second FSA from the output of the �rst. Suppose we want to match

all substrings of length 24 with up to three mismatches. We could generate a FSA to

match all substrings of length six with up to three mismatches, and to output a value

indicating how many mismatches it found. Then a second FSA matches the patterns

in the output of the �rst. If we have an exact match, the �rst FSA will generate a

series of exact match states. We now have to match four exact match states each

six positions apart. There are still a large number of states to match, but the large

number of strings with a given number of mismatches will all map into the same state

in the output of the �rst stage.

To see how the number come out, we calculate the case just described. For a DNA

alphabet size of four, strings of length six, and up to three substitutions, insertions,

or deletions, including the �rst and last characters when appropriate, the results are

shown in table 2. A total of 21065 strings of length six are needed for the �rst FSA.

For the second FSA we have an alphabet size of 21, the states tallied, plus the

\none of the above" state, and strings of length up to 22. We need up to 19 for the

exact match, and up to 22 to �nd the three insertions case. We need to distinguish

substitutions, insertions, and deletions to match up the di�erent sub-matches. The

result, though, will be that the second FSA is even larger than a single FSA would

be.

If we really need to detect all such matches, and only such matches, that is what

would be required. But for our �lter application, we can use a more statistical method.

An FSA that �nds six or eight character substrings will �nd many more of them in a

reasonably similar sequence. In a region of a long exact match, it will continuously �nd

matching substrings. In a long approximate match, we will have many consecutive

single error matches. We need, then, a way to statistically recognize a good match

from the output of a FSA matching smaller substrings. We implement the �rst FSA

to output only the number of errors, zero, one, two, three, or \more", where \more"

is too many to be useful.

We implement the second FSA similar to an accumulator, where its state would

rise in high match regions, and fall in low match regions, accumulating match scores.

If it reached a su�ciently high state, either due to an exact match, or a longer, but

less exact match, it would signal the hit. This is a little similar to the way dynamic

programming algorithms accumulate scores, though more statistical. It is di�erent

than dynamic programming in a special way: at each position it does not destinguish

which query substring matched, only that one did. While this would be a disadvantage

to dynamic programming, it may be an advantage to us. There are many sequences

of marginal similarity that we would otherwise miss. If the query substrings are

long enough, they should represent biological features, even if we wouldn't otherwise

recognize them. Doing this well implies understanding the details of the sequence

63

Proceedings of the Prague Stringology Club Workshop '98

Match condition Cases Strings

Exact match 1 1

One substitution 6 18

One deletion 6 6

One insertion 5 20

Two substitutions 30 90

Two deletions 30 30

Two insertions 20 320

Three substitutions 120 3240

Three deletions 120 120

Substitution and Insertion 30 360

Substitution and Deletion 30 90

Substitution and Insertion 30 360

Substitution and two deletions 120 360

Two substititions and deletion 120 1080

Substitution and two insertions 120 5760

Two substitution and insertion 120 4320

Insertion and deletion 30 120

Insertion and two deletions 100 400

Two insertions and deletion 80 1280

Insertion substutution deletion 125 3000

For a six character string, we tabulate the number of cases of substitutions, insertions,

deletions, and combinations. The numbers get large very fast, and FSA for these cases

must be considered carefully. These numbers are approximate, as they don't include

degeneracy in the original sequence, but give an idea about how the query space

increases with increasing allowable errors.

Table 2

64

A Highly Parallel Finite State Automaton Processor for Biological Pattern Matching

better than I have described here. The important point, though, is that for longer

queries we can use a more statistical approach to the scoring, and still �lter what we

need to �lter.

The biology of approximate matches is a little di�cult to describe, but maybe

another example will make it more obvious. Imagine an FSA to recognize english

words. For an exact answer, one should include an entire dictionary, but realizing the

non-uniform distribution of letters and letter groups, one could score based on these

groups. Using digraph (two letter) or trigraph (three letter) frequencies in a FSA

would recognize possible english words with a high probability. Protein sequences

can be similarly recognized by groups of amino acids, even if the groups are in a

di�erent order. It is this feature that FSA can �nd though dynamic programming

cannot.

8 Counting FSA States

Until this point, only the total query size was used as a measure of FSA size. Here,

the calculation gets more detailed. With a large number of query substrings, the

lower FSA states will be well populated. With an alphabet size of four, and the FSA

expanding like a tree, the �rst level will have four states, the second level 16, and

the third will have 64. In the terminal branches, the number of states will equal the

number of query substrings, each one indicating a hit. In between, it transitions from

the saturated lower states, to the sparse terminal states. It is these transition states

where the FSA spends most of the time during a search.

For di�erent levels of the tree, a four character alphabet and 10000 query sub-

strings, the numbers are shown in table 3.

The table shows, for each level i of the tree, l the number of states at that level,

r the probability of that string matching a random string of that length, and p the

probability of matching a string of that length and not matching a longer string. This

last column gives the probability that the FSA will be at this level of the tree, at an

average point during the search.

For an alphabet size of a, the number of possible states at level i is a

i

, and there

won't be more than the number of query subsequences. If statistically independent,

the fraction not used is (1�a

�1

)

j

Where j is number of query subsequences per state

at the previous level. That is, at each branch of the tree at level i we have j query

subsequences to divide up among a new branches. Then l is this fraction multiplied

be a multiplied by the number of states at the previous level. Next, the probability

p of being at or past level i is la

�i

, the number of states divided by the number of

possible states. The incremental probability, �p is p

i

� p

i+1

, the probability of being

at least at level i minus the probablility of being higher than level i.

9 Scaling Laws for FSA Processors

With the ability to put multiple processors on one board, the balance between the

size of each processor and the number of processors becomes important. For a �xed

board size or �xed cost, we would like to know how many of what sized processors to

use. High overall processing speed is achieved by having many processors all running

65

Proceedings of the Prague Stringology Club Workshop '98

i l p �p

1 4 1 0

2 16 1 0

3 64 1 0

4 256 1 1.32e-05

5 1024 0.999987 0.060238

6 3849 0.939748 0.445070

7 8105 0.494678 0.346872

8 9687 0.147806 0.109828

9 9956 0.037978 0.028448

10 9994 0.009531 0.007147

11 9999 0.002384 0.001788

12 10000 0.000596 0.000447

13 10000 0.000149 0.000112

14 10000 3.73e-05 2.79e-05

15 10000 9.31e-06 6.98e-06

16 10000 2.33e-06 1.75e-06

17 10000 5.82e-07 4.37e-07

18 10000 1.46e-07 1.09e-07

19 10000 3.64e-08 2.73e-08

20 10000 9.09e-09 6.82e-09

21 10000 2.27e-09 1.71e-09

22 10000 5.68e-10 4.26e-10

23 10000 1.42e-10 1.07e-10

24 10000 3.55e-11 2.66e-11

25 10000 8.88e-12 6.66e-12

26 10000 2.22e-12 1.67e-12

For each level (i) of the FSA tree for alphabet size four,

and 10000 query substrings, the number (l) of states there

are likely to be, and the probability of being at least at

this level. The �nal column, �p, indicates the

probability of being at this level and not a higher level.

Table 3

66

A Highly Parallel Finite State Automaton Processor for Biological Pattern Matching

at the same time. Making one large processor, is inconvenient. Some parts, including

addressing logic, get bigger as the logarithm of processor size. For result collection

reasons, it is more convenient to have the processor size close to the size for a single

query sequence, of approximately 1000 bases.

If we make the processor too small, we are limited by the number we can get

on a board, and the overhead in board area and cost per processor. The control

logic should be done using programmable logic[X96]. Though a simple PAL may be

enough, though something a little more complex would probably be useful. In any

case, the control logic should be a single chip, and the board area that this takes up

will be the most important parameter determining the overall logic density.

Toshiba makes a 64k by 32 bit synchronous static RAM with a 15ns cycle time

[TOS98]. This could be clocked at 66 MHz, and hold a 65,536 state FSA. The

package itself is 22mm by 16mm. If the control logic was a similar size, and the

necessary space between chips added, we need about 10cm

2

of board area.

Samsung makes 128k by 36 bit and 256k by 18 bit synchronous static RAMs

with a 6ns cycle time.[SAM98] The access time, the time between the address being

clocked in and the data being clocked out is about one half the cycle time, so some

time is available for the control logic. Though it will be very di�cult to keep up with

a 166 MHz clock.

Samsung also makes a 16M by 16 bit synchronous dynamic RAM, with a 72ns

read cycle time. (A read cycle requires 9 cycles of a 125 MHz clock.) While the cycle

time is much slower than the static RAM, it is closer to the rate we are likely to get

data into the processor array. The much larger FSA size will allow overall a greater

throughput. As this RAM is only 16 bits wide, two will be required to be able to

address all the states. The package size of 10mm by 22mm, a little more than half

the SRAM sizes, allows again for about a 10cm

2

processor unit. The processor runs

12 times slower than the SRAM processor, but allows 64 or 128 times the number of

states. Except for the extra di�culty of designing for DRAM, this is certainly worth

using.

The physical size of a RAM package depends very little on the number of bits

stored. Packaging technology is keeping up with current RAM densities, and the

silicon size is growing very slowly, approximately logarithmically with the number of

bits. With a given size for the control logic and RAM package, what is the optimal

number of RAM units to use per control unit?

If the control chip area and RAM chip area are about equal, and we use this size

as our unit area, we want to maximize the number of query sequences multiplied by

the number of states (input characters) per second we can process. The required

number of states is about equal to the number of query sequences per processor. The

area for the control logic increases with the required number of address bits, again

logarithmically with RAM size.

With the size and speed of the RAM factored out, the number of states per

unit area is proportional to n=(1 + n), increases asymptotically with increasing n.

The number of address lines, and things proportional to the number of address lines

increase as log n, so that n=((1+n) log n) is a better measure, which still increases with

increasing n. However, generating the FSA also gets more di�cult with increasing

n. It is because of this, and simplifying result collection, that we size the RAM to

the largest RAM we can get with the smallest number of chips with su�cient data

67

Proceedings of the Prague Stringology Club Workshop '98

output lines.

10 Result Collection

One of the easiest details to overlook is the collection and storage of result data. If

this becomes a bottleneck, it will limit the speed of the entire system. In this case, we

need to at minimum know which query sequence matched which database sequence.

Optionally, we would know where in the query or database the match was found. As

a �lter, this additional information is less important.

To �nd query and database sequence information, we must have an indication

of sequence boundaries stored in the database. If we allow only one query per FSA

processor, we only need to know which processor detected the hit. We should then

latch this state until the next database sequence, avoiding multiple records of the

same match.

While the goal is that 10% of the sequences will have hits, in some cases it could

approach 100%, and hit collection should be designed to tolerate this case. We could,

then, require millions of hits per query per search. Most economical, is to have a

small number of hit processors for the entire array. We then have to either bu�er

hits, or store the entire hit record on each cycle. Bu�ering requires FIFO (First In

First Out) memory in the result path. Storing the entire record, with only one bit

per processor, means storing a bit vector at each hit signal. If we allow only one hit

per sequence per processor, then we can store the bit vector, one bit per processor,

at the end of each database sequence for which we have at least one hit, along with

the database sequence number. This is a reasonable compromise in memory required

for storing hits.

11 An Implementation Detail

While many implementation details should be left up to the system designer, there is

one very interesting one that I describe here. In any technology, dynamic RAMs are

much larger in bits stored, than static RAMs, for a similar silicon area and price. In

the RAM array, it takes six transistors for a traditional static RAM cell, but only one

for a dynamic RAM cell, so it is interesting to consider a design with dynamic RAM.

To keep a dynamic RAM refreshed, it is necessary that every value of some of the low

order bits be accessed every few milliseconds. RAM is normally implemented as a

square array of data cells. In a DRAM read cycle, a row of bits are destructively read

out, then stored back into the array. The column address then selects the appropriate

bit from the row. It is the read and write back that refreshes the stored charge in the

entire row, which happens on any read or write cycle. Normally, processors cannot be

depended on to generate addresses su�ciently randomly to rely upon this to refresh

the data. Dynamic RAM controllers will add special refresh cycles to guarantee that

the data is refreshed in time. But in a processor that naturally cycles through the

array, video displays being a common example, this is not necessary.

In designing a Finite State Automaton, it is possible to cycle the low order bits,

assuming a little randomness to the input stream. To use real numbers, a certain 256

Megabit DRAM requires each of 8192 rows to be refreshed every 64ms.[SAM98B] If

68

A Highly Parallel Finite State Automaton Processor for Biological Pattern Matching

the cycle time is close to 64ns, that means that each row must be accessed every one

million cycles. A FSA search processor will normally have some states that it spends

much of its time in. Table 3 shows this for a speci�c combination of parameters. If

we take this small number of states, and arrange a succession of equivalent states for

them, which cycle the appropriate address bits, it should work. For the case in Table

3, there are 3849 states that together represent 47% of the cycles. If we replace each

of these states by ten or more equivalent states, and distribute the addresses among

these states, it should be possible to cover the 8192 states needed for the refresh

condition.

It may take a fair number of states to do this, but with an 8 million state machine,

there should be states to spare.

If this can't be depended upon, it would also be possible to add extra data to the

database to insure randomness at the appropriate point. Of course, one could always

implement standard refresh logic in the controller.

12 Generating the Finite State Automaton

The ability to process large FSA fast requires the ability to generate them fast.

Once we have a list of query sequence fragments, including ones with substitutions,

insertions or deletions, a single FSA is generated from them.

With the four character DNA alphabet, we generate a quaternary (base 4) tree for

the FSA. To do this, we read in the query sequences and follow through the states of

the current FSA. When we try to take a branch with no successor state, we generate

a new state and �ll all entries with zero, add the branch from the previous state to

the new state, and continue on through the sequence.

After we have generated the tree, there will be many states left still with no

successor.[W87] It is necessary to back �ll these states, to point to the state that the

automaton would be in if that state didn't exist. Consider the FSA to match only

the query ACGTACGC: The states, in succession, will have matched A, AT, ACG, ACGT,

ACGTA, ACGTAC, ACGTACG, before reaching the �nal tt ACGTACGC. Now, consider the

input ACGTACGT. Before the �nal T the FSA will be in the ACGTACG state, attempting

to match the �nal C. When the T is read, it must return to the ACGT state, the state

matching the longest su�x of the current input.

To do this, an algorithm devised by Gish[Gish] for use in BLAST[AG90] is used.

This algorithm starts from the root state and considers every branch that leaves the

root state. Each adds onto a circular queue of from and to states, the branch from

the root state to its successor state. Then the queue of from and to states is then

processed. For each branch out of the to state that is still zero, we replace it with

the corresponding branch out of the from state. This does exactly what is needed: it

branches to the same place we would have gone if the current state didn't exist. The

FIFO (�rst in �rst out) queue is important here. The next state must be the state

representing the longest match to the input stream. As the tree is traversed, deeper

states, representing longer matches, get �lled �rst. The scan and �ll process is very

fast and executes in time linear in FSA size.

If we are generating a two million state FSA from an input stream, we should

consider how fast this process is. With current size machines, we should be able to �t

the whole table in processor real memory. In the tree building phase, for each input

69

Proceedings of the Prague Stringology Club Workshop '98

character, we need to check the current table entry, add a new state if it doesn't exist,

and then move to the next state. For the back�ll process, we need to progress through

the tree as states are added to and removed from the FIFO queue. The queue depth

could approach the number of states in the FSA, and each queue entry needs two

state pointers.

The generate and back�ll algorithm should be fast enough to keep the system

running. During a search, the processor should be able to stream data at 16 million

characters per second. The time needed to generate and load the FSA should be

less than the search time. With upcoming genome projects expected to generate 30

gigabase data sets within three years, there should be enough data to keep the system

running.

If our search time is on the order of hours and we need hundreds of FSA's generated

in that time, we must generate them in minutes. We should be able to generate two

million states in times the order of seconds on 100 MHz processors. Writing the

generated FSA out to disk is the slowest part.

For the dynamic RAM version using statistical refresh, we want multiple copies

of the more commonly occupied states. If we generate a complete tree for the �rst

levels, with multiple identical copies of the level common states distributed through

the low order address bits, and then add new states onto this, we should have a good

start.

13 Conclusion

A large array of Finite State Automaton processors can be built for a reasonable price.

This array can be used to rapidly search a database for some set of query sequences,

and to store information related to the query sequences found. In some cases, this

may be enough, otherwise, it can be used as input to a more detailed search. It should

increase the value of the more detailed search by concentrating the useful sequences.

70

A Highly Parallel Finite State Automaton Processor for Biological Pattern Matching

C code fragment to back�ll states in a FSA

q=0;

for(i=0;i<ALPHABET;i++) f

j=fsa[i];

j &= ACCEPT;

if(j==0) continue;

fifo[q].from=0;

fifo[q].to=j;

q++;

g

head=q-1;

tail=0;

while(q>0) f

from=fifo[tail].from;

to=fifo[tail].to;

tail=(tail+1)%(state+1);

q--;

for(i=0;i<ALPHABET;i++) f

j=fsa[from+i];

k=fsa[to+i];

if(!k) f

fsa[to+i]=j;

continue;

g

if(k & ACCEPT) f

fsa[to+i]=j | ACCEPT;

continue;

g

if(!(j & ACCEPT)) f

head=(head+1)%(state+1);

q++;

fifo[head].from=j;

fifo[head].to=k;

g

g

g

Figure 1: After all the query sequences are added to the FSA it is necessary to back�ll

it. Each link that is not part of a query sequence must point back to the state that

the FSA would be in with the same input if the current state did not exist. The

signi�cant feature of this algorithm is the FIFO queue of states to be done.

71

Proceedings of the Prague Stringology Club Workshop '98

References

[AG90] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., J. Mol.

Biol. 215, 403-410 (1990).

[CH91] Chow E.T., Hunkapiller T., Peterson J.C., Zimmerman B.A., Waterman

M.S., A systolic array processor for Biological Information Signal Process-

ing. Proc. of International Conference on Supercomputing (ICS-91) June

17-21, 1991.

[Gish] Personal communication.

[G82] Gotoh, O., An improved algorithm for matching biological sequences, J.

Theor. Biol., 162, 705-708 (1982).

[HU79] Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages,

and computation. Addison-Wesley, Reading, Massachusetts.

[KA90] Karlin, S., Altschul, S.F., Proc. Natl. Acad. Sci. USA 87 2264-68 (1990).

[KA93] Karlin, S., Altschul, S.F., Proc. Natl. Acad. Sci. USA 90 5873-7 (1993).

[LL85] Lipton, R.S., Lopresti, D., A Systolic Array for Rapid String Comparison,

1985 Chapel Hill Conference on VLSI (1985)

[NW70] Needleman, S.B., Wunch, C.D., A general method applicable to the search

for similarities in the amino acid sequence of proteins, J. Mol. Biol.,

48:443-453 (1970).

[SAM98] 256K x 18 bit Synchronous Pipelined Burst SRAM, KM718V889, Samsung

Electronics, (1997).

[SAM98B] 4M x 16bit x 4 Banks Synchronous DRAM, KM416S16230A, Samsung

Electronics, (1997).

[TOS98] 65,536 word by 32 bit Synchronous Pipelined Burst Static RAM,

TC55V2325FF-7, Toshiba Corporation (1998).

[W87] Wood, Derick: Theory of Computation. Harper & Row, New York, New

York.

[X96] Xilinx, Inc., The Programmable Logic Data Book, Xilinx, Inc., 1996

72

Dynamic Programming for Reduced NFAs for

Approximate String and Sequence Matching

1

Jan Holub

Department of Computer Science and Engineering

Czech Technical University

Karlovo n�am. 13, 121 35 Prague 2, Czech Republic

phone: (++420 2) 2435 7287, fax: (++420 2) 298098

e-mail: holub@cs.felk.cvut.cz

Abstract. We present a new simulation method for the reduced nondetermin-

istic �nite automata (NFAs) for the approximate string and sequence matching

using the Levenshtein and generalized Levenshtein distances. These reduced

NFAs are used in case that we are interested only in all occurrences of a pattern

in an input text such that the edit distance between the pattern and the found

strings is less or equal to a given k and we are not interested in the values of

these edit distances. The presented simulation method is based on the dynamic

programming.

Key words: approximate string and sequence matching, simulation of non-

deterministic �nite automata, Levenshtein distance, generalized Levenshtein

distance, dynamic programming

1 Introduction

Given a string T = t

1

t

2

: : : t

n

over an alphabet �, a pattern P = p

1

p

2

: : : p

m

over

the alphabet �, and an integer k, k � m � n. The approximate string matching is

de�ned as a searching for all occurrences of pattern P in text T such that edit distance

D(P;X) between pattern P and string X = t

i

t

i+1

: : : t

j

, 0 < i � j � n, found in the

text is less than or equal to k. The approximate sequence matching is de�ned in the

same way as the approximate string matching, but any number of symbols can be

located between the occurrences of two adjacent symbols of the pattern in the text.

In this paper we consider two types of distances called the Levenshtein distance and

the generalized Levenshtein distance.

The Levenshtein distance D

L

(P;X) between strings P and X not necessarily of

the same length is the minimum number of edit operations replace (one character

is replaced by another), insert (one character is inserted), and delete (one character

is removed) needed to convert string P to string X. The generalized Levenshtein

distance D

G

(P;X) between strings P and X not necessarily of the same length is

the minimum number of edit operations replace, insert , delete, and transpose (two

adjacent characters are exchanged) needed to convert string P to string X.

1

This research was partially supported by grant 201/98/1155 of the Grant Agency of Czech

Republic and by internal grant 3098098/336 of Czech Technical University.

73

Proceedings of the Prague Stringology Club Workshop '98

1110

5 876

43210

p3 p4

p4p3p2

p2 p3 p4

p4p3p2p1

p4p3p1

Σ

ε
p2 p3

p3

p4

p4

p2

ε

ε ε ε

ε ε

p2

9

Figure 1: NFA for the approximate string matching using the Levenshtein distance

(m = 4, k = 2).

The nondeterministic �nite automaton (NFA) for the approximate string matching

using the Levenshtein distance has been presented in [Mel96, Hol96]. In the NFA there

is for each edit distance l, 0 � l � k, one level of states. An example of such NFA for

m = 4 and k = 2 is shown in Figure 1

2

.

There are known two algorithms for the approximate string matching for which

there was shown [Mel96, Hol97] that they simulate the run of the NFA for the ap-

proximate string matching. The �rst method is Shift-Or algorithm [BYG92] and its

variations | Shift-Add [BYG92] and Shift-And [WM92]. The second method is the

dynamic programming [Sel80, Ukk85].

2 Reduced NFAs

If we are interested only in all occurrences of the pattern in the text with the edit

distance less or equal to k, and we do not want to know the edit distance between

the found string and the pattern, we can remove such states from the NFA for the

approximate string matching that are needed only to determine the edit distance of

the found string [Hol96]. Such states are bordered by the dotted line in Figure 1.

The resulting NFA is shown in Figure 2 and has only one �nal state that represents

that the pattern has been found with the edit distance less or equal to k.

2

Symbol p

j

, 0 < j � m, represents �� fp

j

g in �gures.

74

Dynamic Programming for Reduced NFAs for Approximate String and Sequence Matching

87

3 54

210

p3 p4

p4p3p2

p2 p3

p3p2p1

p1

Σ

ε
p2 p3

p3 p4

p2

ε

ε ε ε

ε

p2

6

Figure 2: Reduced NFA for the approximate string matching using the Levenshtein

distance (m = 4, k = 2).

The modi�cation of Shift-Or algorithm for the reduced NFAs was presented in

[Hol96] and the modi�cation of the dynamic programming is discussed in the following

sections.

3 Dynamic Programming

The dynamic programming [Sel80, Ukk85] computes in each step i of the run of the

NFA ith column of matrix D which is of size (m� n); one element of the column is

for each depth of the NFA and contains the number of level of the highest active state

of this depth. If there is no active state in this depth, then the element contains the

number of the level not existing in this depth. Since each NFA for the approximate

string matching has m+ 1 depths, it needs space O(m) and runs in time O(mn).

Since last k depths of the NFA do not have states on all k + 1 levels of the NFA,

this method is not suitable for the reduced NFAs for the approximate string matching.

Instead of having one element of the column for each depth of the NFA we have one

element for each diagonal of the NFA; these diagonals are formed by the "-transitions

and are of the same length. If any state on a diagonal is active, then all states

located lower on this diagonal are also active because of "-transitions. Therefore in

the element for each diagonal l, 0 � l � m� k, we store only the number of the level

of the highest active state on diagonal l. In this way we get for each step i, 0 � i � n,

of the run of the NFA the column D

i

= d

0;i

; d

1;i

; : : : ; d

m�k;i

of length m� k+1. Each

element of the column can contain a value ranging from 0 to k+1, where value k+1

75

Proceedings of the Prague Stringology Club Workshop '98

represents that there is no active state on the corresponding diagonal. The formula

for computing columns D

i

is as follows:

d

0;i

:= 0; 0 � i � n

d

j;0

:= k + 1; 0 < j � m� k

d

j;i

:= min(k + 1;

g

d

j�1;i�1

+j;t

i

+ d

j�1;i�1

; delete & match

if p

d

j;i�1

+j+1

6= t

i

then d

j;i�1

+ 1 replace

else k + 1;

if p

d

j+1;i�1

+j+2

6= t

i

then d

j+1;i�1

+ 1 insert

else k + 1); 0 < j < m� k; 0 < i � n

d

j;i

:= min(k + 1;

g

d

j�1;i�1

+j;t

i

+ d

j�1;i�1

; delete & match

if p

d

j;i�1

+j+1

6= t

i

then d

j;i�1

+ 1 replace

else k + 1); j = m� k; 0 < i � n

(3)

The �rst line in the formula says that the initial state lying on the 0th diagonal

of the NFA is always active because of its self-loop.

The second one says that at the beginning of the searching there is no active state

on diagonals l, 0 < l � m� k, because there is no initial state on such diagonals.

Part g

d

j�1;i�1

+j;t

i

+ d

j�1;i�1

represents match and delete transitions. The match

is represented by the horizontal transitions and edit operation delete is represented

by the diagonal "-transitions in Figure 2. An implementation of match transition is

simple | if the state on diagonal j � 1 and on level d

j�1;i�1

is active and horizontal

transition leading from this state is labeled by symbol t

i

, then the state on diagonal j

and on level d

j�1;i�1

becomes active. For an implementation of delete transition we

have to search for the state on diagonal j�1 and on level l, d

j�1;i�1

� l � m�k, such

that there is a match transition labeled by input symbol t

i

leading from this state.

In order to �nd such state in the constant time we have to use auxiliary matrix G in

which there is for each position r in pattern P and input symbol t

i

the number r

0

,

0 � r

0

, such that p

r+r

0

= t

i

where r

0

is the lowest possible. If there is no such position,

then r

0

= k+1. Since the value of d

j�1;i�1

can be k+1 and the maximum number of

diagonal, into which there lead match transitions, is m�k, the maximumposition for

which a value of matrix G is required is m� k+ k+1 = m+1. Therefore the matrix

has to be of size (m+ 2)� j�

0

j where �

0

� � is the alphabet used in pattern P . The

formula for computation of matrix G is as follows:

g

j;a

:= min(fk + 1g [f(l j p

j+l

= a; 0 � l) or

(k + 1 j if there is no such l)g); 0 < j � m;a 2 �

g

m+1;a

:= k + 1; a 2 �

(4)

Number d

j�1;i�1

+ j gives the position of symbol p

d

j�1;i�1

+j

in the pattern which

is used as a label of the match transition leading from the highest active state on

76

Dynamic Programming for Reduced NFAs for Approximate String and Sequence Matching

diagonal j�1 to a state on diagonal j. Therefore g

d

j�1;i�1

+j;t

i

+d

j�1;i�1

gives the level

of the highest active state on diagonal j that has arisen by using match transition to

each active state on diagonal j � 1.

Part d

j;i�1

+ 1 represents replace transition. In Figure 2, edit operation replace

is represented by the diagonal transition labeled by symbol p

d

j;i�1

+j+1

mismatching

symbol p

d

j;i�1

+j+1

. To implement replace transition it is only needed to move the

highest active state on diagonal j to the next lower position on the same diagonal.

Since d

j;i�1

can reach k + 1 the value of expression d

j;i�1

+ j + 1 can be greater than

m and in that case p

d

j;i�1

+j+1

would give unde�ned value. To solve this problem we

can add some if statements but it increases the time of the computation. The better

solution is to put some symbols, that are not in input alphabet �, at positions m+1

and m+ 2 of the pattern | for example symbol hend of stringi.

Part d

j+1;i�1

+1 represents insert transition. In Figure 2, edit operation insert is

represented by the vertical transition also labeled bymismatching symbol p

d

j+1;i�1

+j+2

.

The active state on diagonal j + 1 and on level d

j+1;i�1

moves to level d

j+1;i�1

+ 1 on

diagonal j.

From these transitions we get minimum in order to obtain the highest active state

on each diagonal. An example of matrixG for pattern P = adbbca is shown in Table 1

and the process of searching for pattern P = adbbca with at most k = 3 errors in text

T = adcabcaabadbbca is shown in Table 2.

G a b c d � � fa; b; c; dg

1 0 2 4 1 4

2 4 1 3 0 4

3 3 0 2 4 4

4 2 0 1 4 4

5 1 4 0 4 4

6 0 4 4 4 4

7 4 4 4 4 4

Table 1: Matrix G for pattern P = adbbca and k = 3.

D - a d c a b c a a b a d b b c a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 4 0 1 1 0 1 2 0 0 1 0 1 2 2 3 0

2 4 4 0 1 2 1 2 3 4 1 2 0 1 2 3 4

3 4 4 4 2 3 4 2 3 3 4 3 4 0 1 2 3

Table 2: Matrix D for pattern P = adbbca, text T = adcabcaabadbbca, and k = 3.

Below we also present an algorithm that uses the dynamic programming for the

reduced NFA for the approximate string matching using the Levenshtein distance.

While in Formula 3 there were evaluated the transitions incoming to the diagonals,

77

Proceedings of the Prague Stringology Club Workshop '98

in this algorithm there are evaluated the outgoing transitions. It simpli�es the com-

putation because then there is only one test whether input symbol t

i

is a matching

symbol. This test is necessary for deciding whether to use only match transition or

to use replace, insert , and delete transitions.

Algorithm 1

DP for the reduced NFA for the approximate string matching using the Levenshtein

distance

Input: Pattern P = p

1

p

2

: : : p

m

, text T = t

1

t

2

: : : t

n

, maximum number of di�erences

allowed k.

Output: Matrix D of size (m� k + 1)� (n+ 1).

Method:

d

0;0

:= 0

d

j;0

:= k + 1; 0 < j � m� k

for i := 1; 2; : : : ; n do

d

0;i

:= 0 /� j = 0 �/

d

1;i

:= g

1;t

i

/� delete & match from the initial state ��� �/

if p

d

1;i�1

+2

= t

i

then /� j = 1 �/

d

2;i

:= d

1;i�1

/� match �/

else

d

2;i

:=min(g

d

1;i�1

+2;t

i

+ d

1;i�1

; k + 1) /� delete & match �/

d

1;i

:=min(d

1;i�1

+ 1; d

1;i

) /� replace �/

endif /� ��� �/

for j := 2; 3; : : : ;m� k � 1 do

if p

d

j;i�1

+j+1

= t

i

then

d

j+1;i

:= d

j;i�1

/� match �/

else

d

j+1;i

:=min(g

d

j;i�1

+j+1;t

i

+ d

j;i�1

; k + 1) /� delete & match �/

d

j;i

:=min(d

j;i�1

+ 1; d

j;i

) /� replace �/

d

j�1;i

:=min(d

j;i�1

+ 1; d

j�1;i

) /� insert �/

endif /� ��� �/

endfor

j := m� k /� the last diagonal �/

if p

d

j;i�1

+j+1

6= t

i

then

d

j;i

:=min(d

j;i�1

+ 1; d

j;i

) /� replace �/

d

j�1;i

:=min(d

j;i�1

+ 1; d

j�1;i

) /� insert �/

endif

if d

m�k;i

< k + 1 then

write(\pattern found at position i")

endif

endfor

The �rst command in the �rst for cycle in the algorithm (d

0;0

:= 0) represents

the self-loop of the initial state | the highest active state in 0th diagonal is always

in level 0 and this is the initial state.

The second command (d

1;i

:= g

1;t

i

) represents the only transition that leads from

0th diagonal which is match transition. g

1;t

i

gives the position l of the pattern, on

which t

i

is located, or k+1 if t

i

is not in the pattern. If l < k+1, then this position l

78

Dynamic Programming for Reduced NFAs for Approximate String and Sequence Matching

is equal to the level of 1st diagonal in which there is the active state that arose by

using match transition for t

i

going from 0th diagonal.

The �rst if statement represents transitions leading from the highest active state

on the 1st diagonal. In this case we do not evaluate insert transitions because they

lead always to 0th diagonal where the initial state is always active. If input symbol

t

i

is the same as the symbol p

d

1;i�1

+2

used as a label of match transition leading from

the highest active state in 1st diagonal, then we evaluate only this match transition

(d

2;i

:= d

1;i�1

). If the symbols are di�erent, then we evaluate delete and replace

transitions. For delete transition we search for the next occurrence of input symbol

t

i

in the pattern behind position d

j;i�1

+ j + 1 (the number of the diagonal plus the

number of the level gives the position in the pattern corresponding to the state on

that level of that diagonal). At �rst we perform delete transition (we move the highest

active state down in the diagonal) and then we perform match transition for input

symbol t

i

. For replace transition we move the highest active state in the diagonal to

the next lower position in the diagonal.

In the next for cycle the transitions leading from the highest active state of the

next diagonals except the last one are evaluated. It is done in the same way as

described in the previous paragraph but in addition insert transition is evaluated.

For this insert transition we put the level of diagonal j increased by one to the

previous diagonal j � 1.

In the last diagonal we evaluate only replace and insert transitions because match

transition has no diagonal into which it could lead.

121110

98

765

0

43

2

p4

p4

p3

p3

p3

p3

p2

p2

Σ

p2

p1

p1 p2

p2 p3

p3 p4

ε ε

ε ε ε

ε

p2 p3

p3 p4

p1 p2

p2 p3

1

Figure 3: Reduced NFA for the approximate string matching using the generalized

Levenshtein distance (m = 4, k = 2).

This method can be also used for the simulation of the run of the reduced NFA

79

Proceedings of the Prague Stringology Club Workshop '98

for the approximate string matching using the generalized Levenshtein distance. An

example of such reduced NFA for m = 4 and k = 2 is shown in Figure 3. We have

only to add the part representing edit operation transpose. In Formula (3), the added

part is as follows:

if p

d

j�1;i�2

+j+1

= t

i�1

and p

d

j�1;i�2

+j

= t

i

then d

j�1;i�2

+ 1 transpose

else k + 1; 0 < j � m� k; 1 < i � n

(5)

And in Algorithm 1, the added part is as follows:

if p

d

j;i�2

+j+2

= t

i�1

and p

d

j;i�2

+j+1

= t

i

then

d

j+1;i

:=min(d

j;i�2

+ 1; d

j+1;i

) /� transpose �/

endif

This part should be inserted into each part of Algorithm 1 where 0 � j < m� k and

1 < i � n. Such places are behind the lines marked by `���'.

p4

p4

p2 p3

p3

p2

p2 p3

p3

p2p1

0

876

543

21

Σ

ε
p2

p1

p3

p3 p4

ε

ε ε ε

ε
p2 p3

p3

p4

p4

p2 p3

Figure 4: Reduced NFA for the approximate sequence matching using the Levenshtein

distance (m = 4, k = 2).

This type of simulation of the reduced NFAs can be also used for the reduced

NFAs for the approximate sequence matching using the Levenshtein and generalized

Levenshtein distances [Hol97]. An example of the reduced NFA for the approximate

80

Dynamic Programming for Reduced NFAs for Approximate String and Sequence Matching

sequence matching using the Levenshtein distance for m = 4 and k = 2 is shown in

Figure 4.

To modify the presented algorithm so that it could simulate this reduced NFA

we have to implement the self-loops in each non�nal and noninitial state. It can

be performed by inserting the following part into Formulae (3) and (3+5) for the

approximate string matching.

if p

d

j;i�1

+j+1

6= t

i

then d

j;i�1

self �loop

else k + 1; 0 < j < m� k; 0 < i � n

if p

d

j;i�1

+j+1

6= t

i

and d

j;i�1

< k

then d

j;i�1

self �loop

else k + 1; j = m� k; 0 < i � n

(6)

The presented formulae and algorithm compute whole matrixD but in the practice

only two (three for the generalized Levenshtein distance) columns from this matrix

are used in each step of the computation.

4 Conclusion

The resulting simulation runs in time O((m � k)n + m�) and needs space O(m�),

where � is the number of di�erent symbols used in the pattern. We can decrease

the space complexity by using another implementation of auxiliary matrix G but it

increases the time complexity. Our algorithm also uses only one input symbol in each

step of computation in case of the Levenshtein distance and two input symbols in

case of the generalized Levenshtein distance.

The resulting algorithm has the time bound better than [Sel80, Ukk85] which

runs in time O(mn) and for k >

m

2

it has also the time bound better (not considering

the preprocessing time) than [GP89] which runs in time O(kn + m log ~m) where

~m = min(m; j�j).

References

[BYG92] R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching.

Commun. ACM, 35(10):74{82, 1992.

[GP89] Z. Galil and K. Park. An improved algorithm for approximate string match-

ing. In G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Della Rocca,

editors, Proceedings of the 16th International Colloquium on Automata,

Languages and Programming, number 372 in Lecture Notes in Computer

Science, pages 394{404, Stresa, Italy, 1989. Springer-Verlag, Berlin.

[Hol96] J. Holub. Reduced nondeterministic �nite automata for approximate string

matching. In J. Holub, editor, Proceedings of the Prague Stringologic Club

Workshop '96, pages 19{27, Prague, Czech Republic, 1996. Collaborative

Report DC-96-10.

81

Proceedings of the Prague Stringology Club Workshop '98

[Hol97] J. Holub. Simulation of NFA in approximate string and sequence match-

ing. In J. Holub, editor, Proceedings of the Prague Stringology Club Work-

shop '97, pages 39{46, Czech Technical University, Prague, Czech Republic,

1997. Collaborative Report DC{97{03.

[Mel96] B. Melichar. String matching with k di�erences by �nite automata. In

Proceedings of the 13th International Conference on Pattern Recognition,

volume II., pages 256{260, Vienna, Austria, 1996. IEEE Computer Society

Press.

[Sel80] P. H. Sellers. The theory and computation of evolutionary distances: Pat-

tern recognition. J. Algorithms, 1(4):359{373, 1980.

[Ukk85] E. Ukkonen. Finding approximate patterns in strings. J. Algorithms, 6(1{

3):132{137, 1985.

[WM92] S. Wu and U. Manber. Fast text searching allowing errors. Commun. ACM,

35(10):83{91, 1992.

82

Validating and Decomposing Partially Occluded

Two-Dimensional Images (Extended Abstract)

1

Costas S. Iliopoulos

1;2

and James F. Reid

1;3

1

Algorithm Design Group, Department of Computer Science

King's College London, London WC2R 2LS, UK.

2

School of Computing, Curtin University of Technology

Perth, WA 6102, Australia.

3

Dipartimento di Elettronica e Informatica

Universit�a degli Studi di Padova

Via Gradenigo 6/a, 35131 Padova, Italy.

e-mail: fcsi,jfrg@dcs.kcl.ac.uk

Abstract. A partially occluded scene in an image consists of a number of ob-

jects that are partially obstructed by others. Validating a partially occluded

image consists of generating a sequence of concatenated and possibly overlap-

ping objects that corresponds to the input image. The algorithm presented

here validates a two-dimensional image X of size r � s over a set of k objects

of identical size m�m in O(mrs) time.

Key words: String algorithms, image processing, occlusion analysis, pattern

recognition.

1 Introduction

The study of repetitive structures in sequences (strings) plays a key role in information

processing and more generally in computer science. This has lead to a generaliza-

tion of notions concerning repetitions in sequences. The periodicity of a string was

the key element in the design of the famous pattern matching algorithm by Knuth,

Morris and Pratt, [KMP-77]. A related notion is the one of a cover of a string. A

substring w of a string x is called a cover of x if x can be constructed by concatena-

tions and superpositions of w. As a result, many sequential and parallel algorithms

have been developed concerning the covering of a string. Among the sequential algo-

rithms, Apostolico, Farach and Iliopoulos [AFI-91] solved the problem of computing

the shortest cover of a given string, similarly Moore and Smyth [MS-95] solved the

problem of computing all the covers of a given string both in linear time. These

1

C.S. Iliopoulos was partially supported by EPSRC grants GR/F 00898, GR/L 19362 and GR/J

17844, NATO grant CRG 900293, and MRC grant G9115730. J.F. Reid was supported by a

Marie Curie fellowship of the European Commission Training and Mobility of Researchers (TMR)

Programme.

83

Proceedings of the Prague Stringology Club Workshop '98

e�cient solutions for string covering problems have applications to DNA sequencing

by hybridization, see [DS-96] and [PL-94].

This paper focuses on an application of the string covering techniques to image

processing and the analysis of images composed of know objects obstructing each

other. Decomposing partially occluded images is a classical problem in computer

vision and its computational complexity is exponential. There are many arti�cial

intelligence and neural network solutions to this problem, see for example [BC-94].

Here we present a theoretical study on the analysis of images composed from a given

set of objects, where some of the appearing objects may be partially occluded by

other ones. Thus we restrict our attention on the occlusion problem by focusing only

on discrete images and convex objects, and their e�cient solutions are based on the

study of the repetitive structures of the input. The results and solutions presented

here provide the foundations for practical solutions to this problem. This problem

was �rst approached by only considering one-dimensional images (strings). A linear

sequential on-line algorithm was produced by Iliopoulos and Simpson [IS-97] and an

optimal parallel version was also produced, see [IR-97].

In the following, we will consider the family of two dimensional images (considered

as two-dimensional arrays of strings), that we call valid images; given a set of objects

fS

1

; : : : ; S

k

g and a special \background" symbol denoted #, an image X of size r� s

is a valid image, if X is iteratively obtained from an initial string Z of size r � s

consisting only of #'s by substituting substrings of Z by some objects S

i

, for some

i. We will be focusing in designing algorithms for testing two-dimensional images for

validity, under restricted sets of objects, i.e. square objects of the same size.

Here we present an algorithm for validating a two-dimensional image X of size

r � s over a �xed number k of objects S

i

of equal size m�m in O(mrs) time.

The paper is organised as follows. In the next section we present the basic de�-

nitions for strings and partially occluded images. In Section 3 we describe the data

structures and the main techniques used in the algorithm and �nally in Section 4 we

present our conclusions and open problems.

2 Preliminaries

2.1 String de�nitions in one and two dimensions

A string (or word) is a sequence of zero or more symbols drawn from an alphabet �,

which consists of a �nite number of symbols. The set of all strings over � is denoted

by �

�

. The string of length zero is the empty string � and a string x of length n > 0

is represented by x

0

x

1

� � �x

n�1

, where x

i

2 � for 0 � i � n � 1. A string w is said

to be substring of x if and only if x = uwv for some u; v 2 �

�

. A string w is a

pre�x of x if and only if x = wu for some u 2 �

�

; if u is not empty then w is a

called a proper pre�x of x. Similarly, w is a su�x of x if and only if x = uw for some

u 2 �

�

; if u is not empty then w is called a proper su�x of x. Additionally prefix

k

(x)

denotes the �rst k symbols of x and suffix

k

(x) denotes the last k symbols of x. The

string xy is a concatenation of two strings x and y. The concatenation of k copies

of x is denoted by x

k

. For two strings x = x

0

� � �x

n�1

and y = y

0

� � � y

m�1

such that

x

n�i

� � � x

n�1

= y

0

� � � y

i

for some i � 1 (that is, such that x has a su�x equal to a

pre�x of y), the string x

0

� � �x

n�1

y

i

� � � y

m�1

is said to be a superposition of x and y.

84

Validating and Decomposing Partially Occluded Two-Dimensional Images

Alternatively, we may say that x overlaps with y. A substring w of x is called a cover

of x if x can be constructed by concatenations and superpositions of w.

A two-dimensional string is an r�s array of symbols drawn from �. We will refer

to a two-dimensional string as a two-dimensional array or a two-dimensional image in

the sequel. We represent an r� s array X by X[0::r� 1; 0::s� 1]. A two-dimensional

p� q array Y is said to be a sub-array or a sub-image of X if the upper left corner of

Y can be aligned with X[i; j], i.e. Y [0::p� 1; 0::q � 1] = X[i::i+ p � 1; j::j + q � 1],

for some 0 � i � r � p and 0 � j � s� q. A square m�m sub-array Y is said to be

a pre�x of X, if Y occurs at position X[0::m� 1; 0::m� 1]. Similarly, Y is said to a

su�x of X if, Y occurs at position X[r �m::r� 1; s�m::s� 1].

2.2 De�nitions and properties of partially occluded images

In the following we assume that � is a �nite alphabet of symbols. We denote the

symbol # 62 � to be a special symbol called the background symbol.

De�nition 2.1 Let X be a r � s array called the image over the alphabet � and

let O = fS

1

; : : : ; S

k

g be a set of m �m arrays called the objects also over �. Then

the image X is said to be a valid image over O if and only if X = Z

i

for some

1 � i � rs� 1, where

Z

0

=

0

B

B

@

� � �

.

.

.

.

.

.

.

.

.

� � �

1

C

C

A

;

Z

i+1

=

0

B

B

B

B

B

B

B

B

B

B

B

@

pref(Z

i

) sub(Z

i

) sub(Z

i

)

sub(Z

i

) S

t

sub(Z

i

)

sub(Z

i

) sub(Z

i

) su�(Z

i

)

1

C

C

C

C

C

C

C

C

C

C

C

A

where S

t

2 O for some t 2 f1; : : : ; kg.

The recurrence equalities de�ned above are said to be the substitution rules and

the sequence Z

0

; Z

1

; : : : ; Z

i

is said to be the generating sequence of the image X over

the set of objects O = fS

1

; : : : ; S

k

g. We now construct such a generating sequence

for a partially occluded image in the following example.

Example 2.1 LetO =

�

S

1

=

�

c c

d b

�

; S

2

=

�

a b

b c

�

; S

3

=

�

a d

b c

�

; S

4

=

�

b b

c c

��

be the set of objects and let the image be

X =

0

B

B

B

B

B

B

B

B

@

a b a d

b c b c

c a b b

d b c c

a b d b

b c b c

1

C

C

C

C

C

C

C

C

A

85

Proceedings of the Prague Stringology Club Workshop '98

Then X is a valid image over O with the following generating sequence:

Z

0

=

0

B

B

B

B

B

B

B

B

@

#

#

#

#

#

#

1

C

C

C

C

C

C

C

C

A

; Z

1

=

0

B

B

B

B

B

B

B

B

@

a b # #

b c # #

#

#

#

#

1

C

C

C

C

C

C

C

C

A

; Z

2

=

0

B

B

B

B

B

B

B

B

@

a b # #

b c # #

c c # #

d b # #

#

#

1

C

C

C

C

C

C

C

C

A

;

Z

3

=

0

B

B

B

B

B

B

B

B

@

a b # #

b c # #

c a b #

d b c #

#

#

1

C

C

C

C

C

C

C

C

A

; Z

4

=

0

B

B

B

B

B

B

B

B

@

a b # #

b c # #

c a b #

d b c #

a b # #

b c # #

1

C

C

C

C

C

C

C

C

A

; Z

5

=

0

B

B

B

B

B

B

B

B

@

a b a d

b c b c

c a b #

d b c #

a b # #

b c # #

1

C

C

C

C

C

C

C

C

A

;

Z

6

=

0

B

B

B

B

B

B

B

B

@

a b a d

b c b c

c a b #

d b c #

a b a b

b c b c

1

C

C

C

C

C

C

C

C

A

; Z

7

=

0

B

B

B

B

B

B

B

B

@

a b a d

b c b c

c a b #

d b c c

a b d b

b c b c

1

C

C

C

C

C

C

C

C

A

; Z

8

=

0

B

B

B

B

B

B

B

B

@

a b a d

b c b c

c a b b

d b c c

a b d b

b c b c

1

C

C

C

C

C

C

C

C

A

:

The occurrence of the possibly occluded objects in X are underlined. From this

construction, it is obvious that the generating sequence of a partially occluded image

may not be unique. The decomposition of X into objects is not unique due to the

fact that some objects may be partially or totally occluded by others. For example,

since S

2

and S

3

share identical �rst rows, if the second column of S

2

or S

3

is occluded

in the image X then there is no way to di�erentiate between the two objects.

From the above example we can see that there exists many possible generating

sequences for a given image, since it's decomposition is not unique. In fact, it can be

shown that the number of distinct generating sequences may be exponential in the

size of the input image, see [IS-97]. This fact complicates the design of an iterative

algorithm for decomposing or even validating a two-dimensional image since it is

imperative not to inspect all possible generating sequences for a given image. The

de�nition of a valid image implies trivially that the objects are contained within the

image X. That is, we assume that there is no S

i

for all i 2 f1; : : : ; kg that is \cut

o�" on the edges of the image.

To analyse in more detail a partially occluded image we need to extend the notion

of a pre�x in two dimensions, which is not as clear and well de�ned as in the one

dimensional case.

De�nition 2.2 Let X be an array of size r � s. Then we de�ne a row-pre�x of X

as a rectangular sub-array of X occurring at positions X[i

1

::i

2

; 0::j] for some 0 �

i

1

� i

2

� r � 1 and 0 � j � s � 1. If i

1

= 0 then the sub-array X[0::i

2

; 0::j] is

called a proper row-pre�x of X. Similarly for columns, let a column-pre�x of X be

a rectangular sub-array of X occurring at X[0::i; j

1

::j

2

] for some 0 � i � r � 1 and

86

Validating and Decomposing Partially Occluded Two-Dimensional Images

0 � j

1

� j

2

� s�1. If j

1

= 0 then we say that the sub-array is a proper column-pre�x

of X. See Figure 1(i) for an example of a row-pre�x and a column-pre�x of X.

We can de�ne a row-su�x and a column-su�x in a similar way.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

column-prefix(X)

row-prefix(X)

(i)

8

7

6

5

0

1

2

3

4

0 1 2 3 4 5 6

extended-prefix(X)

(ii)

X = X =

(CP)

(RP)

(CP)

(RP)

(EP)

(EP)

Figure 1: (i) The rectangular sub-array X[3::6; 0::1] is a row-pre�x of X and

X[0::1; 2::4] is a column-pre�x of X. (ii) The staircase like array of points P =

fX[0::5; 0::`

i

� 1] : 0 � i � 5; `

i

= [5; 3; 3; 2; 1; 1]g is a decreasing extended-pre�x of

X since `

i

� `

i�1

8 0 � i � 5.

This leads to four basic resulting facts if X is a valid image over the set of objects

O = fS

1

; : : : ; S

k

g:

Fact 1: For some i 2 f1::kg there exists a pre�x of S

i

that is also a pre�x of X.

Fact 2: For some i 2 f1::kg there exists a row-pre�x and a column-pre�x of S

i

occur-

ring at positions X[l

1

::l

2

; 0::j] and X[0::l; j

1

::j

2

] respectively with 0 � l

1

; l

2

; l �

r � 1 and 0 �; j

1

; j

2

; j � s� 1.

Fact 3: For some i 2 f1::kg there exists a su�x of S

i

that is also a su�x of X.

Fact 4: For some i 2 f1::kg there exists a row-su�x and a column-su�x of S

i

occurring at positions X[l

1

::l

2

; s � j � 1::s � 1] and X[r � l � 1::r � 1; j

1

::j

2

]

respectively with 0 � l

1

; l

2

; l � r � 1 and 0 � j

1

; j

2

; j � s� 1.

This follows from the fact that some of the S

i

's must occur on the four edges, the

top left hand corner and bottom right hand corner of the image X for it to be valid.

In an analogue extension from the paper on one-dimensional occluded strings [IS-97],

we now break down the validity of a given image into three families of representations

of a valid image.

Proposition 2.1 Let X be an r � s array over � which contains no background

symbols #'s. Let O = fS

1

; : : : ; S

k

g be a set of objects all being m�m square arrays.

87

Proceedings of the Prague Stringology Club Workshop '98

The array X is a valid image over O if and only if one of the following conditions

holds:

X =

0

B

B

B

@

proper

pref(S

i

) Y

1

Y

2

Y

3

1

C

C

C

A

(7)

X =

0

B

B

B

B

B

B

@

Y

1

Y

2

proper

Y

3

su�(S

i

)

1

C

C

C

C

C

C

A

(8)

X =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

Y

1

Y

2

Y

3

Y

4

sub(S

i

) Y

5

Y

6

Y

7

Y

8

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(9)

where the following applies for each equation:

The image resulting from the superposition of an m�m array of symbols # on top

of properpref(S

i

), propersuff(S

i

) or sub(S

i

) together with the resulting sub-arrays

Y

j

, j 2 f1; 2; 3g for equation (7) and (8) and Y

j

, j 2 f1; : : : ; 8g for equation (9) must

be valid images over O.

By using the above classi�cation on valid images together with Facts 1 to 4, we

aim to achieve a method for e�ciently detecting invalid images as a primary task in

the design of the algorithm. However before doing so, we need to re�ne further the

notion of a pre�x and a su�x of a two-dimensional array.

De�nition 2.3 LetX be an array of size r�s. Then we denote by an extended-pre�x

or staircase pre�x of X a subset of points of X such that:

P = fX[0::r

0

; 0::`

i

� 1] : 0 � i � r

0

� r � 1; 0 � `

i

� sg

where `

i

is either an increasing or decreasing monotone sequence. If `

i

� `

i�1

8i 2

f0::r

0

g then P is a decreasing extended-pre�x and an increasing extended-pre�x oth-

erwise. See Figure 1 (ii) for an example of an decreasing extended-pre�x of X. If

r

0

< r � 1 and `

i

< s; 8i 2 f0::r

0

g then we say that P is a proper extended-pre�x of

X

We can de�ne an extended-su�x of X in a symmetrical way.

88

Validating and Decomposing Partially Occluded Two-Dimensional Images

Following the decomposition that was achieved in Proposition 2.1, we de�ne the

validity of a partially occluded image using extended-pre�xes.

Proposition 2.2 Let X be an r � s image over � which contains no background

symbols #'s. Let O = fS

1

; : : : ; S

k

g be a set of m � m square arrays called the

objects. Let P(S

j

) = fS[0::m

0

; 0::`

i

� 1] : 0 � i � m

0

� m � 1; 0 � `

i

� mg be a

decreasing extended-pre�x of some object S

j

2 O occurring at position X[p; q]. Then

the image X is valid over the set of objects O if and only if the following occurs for

any extended-pre�x P(S

j

) of X.

Lets assume �rst that P(S

j

) is a proper extended-pre�x of S

j

. Then we claim that

every neighbour to the right of the perimeter of the extended-pre�x is the occurrence

of a row-pre�x or a column-pre�x of some object in O for the image X to be valid.

If P(S

j

) is a non-proper extended-pre�x of S

j

then we can only claim that the neigh-

bouring point must be a member of a pre�x, a su�x or a substring of some object in

O for the image X to be valid.

A similar breakdown can be achieved for increasing extended-pre�xes and both

increasing and decreasing extended-su�xes.

3 Data Structures and Main Techniques

The algorithm presented here checks the validity of a given partially occluded image

according to the de�nition of a valid image in De�nition 2.1. The aim of the algorithm

is to decompose the occluded image into a �nite set of obstructed objects. If X is

valid over the set of objects O then the algorithm returns a (possible) generating

sequence for X, as described in Example 2.1. One can easily extend the case of a

rectangular image to that of a square image. In the following, we decompose a square

image with a set of square objects. Let X be a n � n array of symbols drawn from

some alphabet � called the image. Let a dictionary O = fS

1

; : : : ; S

k

g consist of a

�nite set of distinct objects representing m�m arrays of symbols drawn from �.

The main methods used in the algorithm rely upon the computation of the occur-

rences in X of the longest extended-pre�xes and extended-su�xes of the objects in

O and in particular chains of longest extended-pre�xes and extended-su�xes in X.

In order to achieve this we need to maintain and update several data structures.

Each extended-pre�x occurring in X has an associated pre�x-head at the start of

each row and an associated pre�x-tail at the end of each row. During the iterations

of the algorithm we aim to concatenate overlapping extended-pre�xes resulting in

extended-pre�x-chains. Every chain is given a head for the �rst extended-pre�x and

a tail for the last extended-pre�x at every row. All data structures mentioned above

also apply in a symmetrical way to deal with su�xes. These data structures will be

described in detail in the full version of this paper.

So as to perform queries concerning the longest pre�xes of each row of any object

occurring in the image X we need to use a trie representing common pre�xes.

De�nition 3.1 The common pre�x tree of k strings r

i

of length m is a rooted trie

(digital search tree) with k leaves such that:

89

Proceedings of the Prague Stringology Club Workshop '98

1. Each edge of the tree is labelled with a symbol from the alphabet � and is

directed away from the root.

2. No two edges emanating from the same node have the same label.

3. Each leaf u is uniquely identi�ed with a string r

i

, in the sense that the concate-

nation of the labels on the path from the root to u is r

i

.

4. Each internal node v of height 1 � h � m� 1 in the tree represents a subset of

strings having a common pre�x of length h.

3.1 Preprocessing

Step 1:

Construct the Aho-Corasick [AC-75] automata for the rows of each objects in the

dictionary O = fS

1

; : : : ; S

k

g. Let r

(j)

i

= S

j

[i; 0::m� 1] denote the ith row of the jth

object in the dictionary. Let R = fr

(1)

0

; : : : ; r

(1)

m�1

; : : : : : : ; r

(k)

0

; : : : ; r

(k)

m�1

g.

Building the Aho-Corasick automata for R takes O(km

2

log j�j) time, since there

are m rows each of length m for each of the k objects in the dictionary and the

Aho-Corasick depends on the alphabet �.

Step 2:

Construct a common pre�x tree �

i

for each of the rows of the objects in the dictionary.

Given a �xed row i, we build �

i

by re�ning �

i�1

. First, we set up a �rst path of

length m for the ith row of the �rst object S

1

[i; 0::m� 1]. Now we do a character

comparison for each of the remaining rows by walking down the tree that is being built

by querying the automata build in Step 1 and branching out when the symbols are

not equal. However the procedure of walking down the tree must be pre�x conserving

according to �

i�1

.

Once the tree is constructed, we order the internal nodes of the tree by assigning

indices to each of internal node. Each such index will represent a subset of objects

having a common pre�x.

Building a common pre�x tree for the k objects and a given row takes O(km log k)

time. To build m such trees (i.e for each row) will take O(km

2

log k) time.

Step 3:

Preprocess the trees build in Step 2 for answering Lowest Common Ancestor (LCA)

queries. By using the algorithm by Harel and Tarjan [HT-84] we can perform this

type of query in constant time allowing linear time, in the size of the input, for

preprocessing. This will help us answer constant time queries in the pre�x tree

concerning the longest pre�xes of objects.

Step 4:

Create a linked list from the �nal states in the Aho-Corasick automata of Step 1

pointing to the index of the node they belong to in the associated common pre�x

tree.

90

Validating and Decomposing Partially Occluded Two-Dimensional Images

Step 5:

Build a n � n table START , which stores the occurrence of the longest pre�x of

the �rst row among the objects for each position in X. Initialize a bulletin board of

size n � n corresponding to each position in X. Each position in the bulletin board

START stores the following values:

START [i; j] = (`; �); 0 � ` � m� 1; 1 � � � k;

where ` represents the length of the longest pre�x of the �rst row of any object in O.

The unique identi�er � represents the index found in the pre�x tree corresponding to

a subset of objects that share a common pre�x of length ` in their �rst row. This

table of size n

2

can be computed by using the common pre�x tree for the �rst row

(�

0

) of the objects in O(mn

2

log k) time.

The values computed in the table START identify the starting position of an

extended-pre�x. After these preprocessing steps we claim that the following can be

achieved during the computation of the main algorithm:

Corollary 3.1 Given the Aho-Corasick automaton AC(R) computed above for all

the km rows of the objects the query of testing whether

pre�x

l

(X[i; j

0

::j

0

+m]) = pre�x

l

(r

(j)

i

)

requires constant time for a �xed row i.

This fact will allow us to perform O(m) constant time queries for each position in

X, yielding a total time complexity of O(mn

2

) in the main algorithm.

Step 6:

Do all previous steps (1{5) for dealing in a symmetrical way with su�xes. That is,

we reverse all the rows of the objects and compute the AC automata for these rows.

Computing the longest common row pre�x trees and preprocessing these for an-

swering LCA queries is straightforward. Then we need to add to the START table

the additional su�x values (`; �), for the longest pre�xes of the last row of the objects.

3.2 Main Algorithm and Sub-procedures

The main ideas of the algorithm are outlined below. The algorithm iterates over the

points of X by sweeping from left to right over the rows of X. During the iterations

we will use the Aho-Corasick automaton and the pre�x trees from the preprocessing

to answer queries concerning the occurrence of longest row pre�xes and su�xes of

objects appearing in X. Additionally, we will use a data structure called a \window"

of size 2m�n which stores the information of extended-pre�xes and extended-su�xes

of objects occurring for each position in X. The process of building a decreasing

extended-pre�x at an arbitrary point X[p; q] with (`; �) from START [p; q] is done in

the following way:

procedure build extended pre�x(`; �;X[p; q::q+m� 1])

begin

(`

0

; �

0

) := (`; �);

91

Proceedings of the Prague Stringology Club Workshop '98

i := 1 ;

while `

i�1

6= 0 do

`

i

:= length of longest pre�x of the ith row ;

�

i

:= index of node at height `

i

in pre�x tree ;

Comment: feed X[p; q::q+m� 1] to the pre�x tree �

i

.

if �

i

6= �

i�1

then (`

i

; �

i

) LCA(�

i�1

; �

i

);

else `

i

:= minf`

i�1

; `

i

g;

W [i] := `

i

;

i := i+ 1;

return array W and the �nal �

i

end

One can extend this construction to the one of building increasing extended-

pre�xes and extended-su�xes in a symmetrical way.

The aim of this sweeping technique is to create extended-pre�xes and extended-

su�xes and chain them together to create valid sub-images. For each point that

needs to be validated we use the following decomposition principles which are based

on Proposition 2.2:

(i) The occurrence of an extended-pre�x of an object in a valid image must be

followed by a (not necessarily proper) row/column pre�x of an object.

(ii) If an occurrence of a extended-pre�x of an object in an image is followed by

an occurrence of a proper extended-su�x of an object, then the image is not

valid. In a valid image, the occurrence of a proper extended-su�x of an object

is always preceded by the extended-su�x of an object.

(iii) The occurrence of a extended-su�x of an object in a valid image can be followed

by either a pre�x, a su�x or a proper substring of an object.

(iv) The occurrence of a sub-array of an object in a valid image is preceded and

followed by valid images.

3.2.1 Step 0: Initialization of data structures

Initialization: Validate position X[0; 0]

begin

Initialize a 2m� n array called the \window" W .

(1) validate current row X[0; 0::m� 1].

if ` 2 START [0; 0] then (`; �) START [0; 0] ;

mark W [0; 0::`� 1] with X[0; 0] as pre�x-chain-head

else return 'image not valid'. Stop.

(2) Validate next row X[1; 0::`� 1].

(`

0

; �

0

) START [1; 0] ;

if `

0

2 START [1; 0] then Stop.

Comment: start of a new extended-pre�x on next iteration ;

else expand the extended-pre�x starting at X[0; 0].

Comment: looking recursively for an extended-pre�x down the rows

92

Validating and Decomposing Partially Occluded Two-Dimensional Images

at most m� 1 times using procedure build-extended-pre�x.

end

3.2.2 Main algorithm

The main steps of the algorithm are as follows:

1. Building chains of extended-pre�xes and extended-su�xes using the procedures

for augmenting them row by row and the decomposition principles.

2. Creating valid sub-images by concatenating adjacent extended-pre�x-chains and

extended-su�x-chains.

3. Two-dimensional pattern matching on the remaining blocks of substrings.

The full details of the algorithm will appear in the forthcoming full version of this

paper.

4 Conclusion and open problems

The algorithm presented here can be extended to handle variable length objects. An

interesting open practical problem is the validation of images with sets of objects that

are concave or non-continuous; of particular interest is the variant of the problem with

objects over �[f�g, where � is a transparent symbol and this alphabet de�nes a set

of strings with holes. Another interesting problem is the computation of the depth

of an object in an image, i.e. the number of objects applied onto an object after

the placement of an object in an image. Finally, approximate occlusion analysis is

of practical importance and therefore all the above mentioned problems need to be

extended to handle errors.

References

[AFI-91] A. Apostolico, M. Farach and C.S. Iliopoulos, Optimal superprimitivity

testing for strings, Information Processing Letters, (1991), 39, 17{20.

[AC-75] A.V. Aho and M.J. Corasick, E�cient string matching: an aid to bib-

liographic search, Comm. ACM, (1975), 18(6), 333{340.

[BC-94] W. Bischof and T. Caelli, Learning structural descriptions of patterns:

a new technique for conditional clustering and rule generation, Pattern

Recognition, (1994), 27(5), 689{699.

[CIK-98] M. Crochemore, C.S. Iliopoulos and M. Korda, Two-dimensional pre�x

string matching and covering on square matrices, Algorithmica, (1998),

20, 353{372.

[DS-96] A.M. Duval and W.F. Smyth, Covering a circular string with substrings

of �xed length, Int. J. of Foundations of Computer Science, (1996),

7(1), 87{93.

93

Proceedings of the Prague Stringology Club Workshop '98

[HT-84] D. Harel and R.E. Tarjan, Fast algorithms for �nding nearest common

ancestors, SIAM J. Comput., (1984), 13(2), 338{355.

[IR-97] C.S. Iliopoulos and J.F. Reid, An optimal parallel algorithm for

analysing occluded images, In Proc. 4th Annual Australasian Confer-

ence on Parallel And Real-Time Systems, (1997), University of Newcas-

tle, Australia. N. Sharda and A. Tam (eds), Springer-Verlag, 104{113.

[IS-97] C.S. Iliopoulos and J. Simpson, On-line validation and analysis of oc-

cluded images, In Proc. 8th Australasian Workshop on Combinatorial

Algorithms, (1997), Research on Combinatorial Algorithms, Queens-

land University of Technology, Australia, V. Estivill-Castro (ed), 25{

36.

[KMP-77] D.E. Knuth, J.H. Morris and V.R. Pratt, Fast pattern matching in

strings, SIAM J. Comput., (1997), 6, 322-350.

[MS-94] D.W.G. Moore and W.F. Smyth, An optimal algorithm to compute all

the covers of a string, Inform. Process. Lett., (1994), 50(5), 239{246.

[MS-95] D.W.G. Moore and W.F. Smyth, A correction to: An optimal algorithm

to compute all the covers of a string, Inform. Process. Lett., (1995), 54,

101{103.

[PL-94] P.A. Pevzner and R.J. Lipshutz, Towards DNA sequencing chips, In

Proc. 19th Int. Symp. on Mathematical Foundations of Computer Sci-

ence, (1994), Lecture Notes in Computer Science, Springer-Verlag, 841,

143{158.

94

Application of Sequence Alignment Methods to

Multiple Structural Alignment and

Superposition

1

Arthur M. Lesk

Department of Haematology

University of Cambridge Clinical School

MRC Centre

Hills Road

Cambridge CB2 2QH

United Kingdom

e-mail: aml2@mrc-lmb.cam.ac.uk

Abstract. With the goal of developing e�cient multiple structural alignment

methods, we have asked which of the pairwise structure alignment methods

lends itself most readily to generalization to multiple structure alignment. A

simple linear encoding of the sequence and associated residue conformation can

be treated by standard multiple sequence alignment methods.

Key words: Protein structure, multiple alignment

1 Introduction

One often wishes to analyse proteins that have similar folding patterns but too lit-

tle sequence similarity to permit the alignment of their residues by sequence-based

methods. Such proteins may be very distant relatives, or independently-evolved ex-

amples of the same folding pattern. For only two structures, it is possible to perform

a structural alignment; that is, to identify residues that occupy similar spatial po-

sitions within the structure [GL98]. However, just as multiple sequence alignments

are far more informative than pairs of aligned sequences, so the analysis of protein

structures requires alignment of more than two sequences.

Most previous approaches to multiple structure alignment have been based on pair-

wise structural alignments. The simplest approach is to choose a master structure and

align all the others to it. This has the obvious limitations of dependence on the choice

of the master structure, and failure to make use of relationships between pairs of non-

master sequences. Lesk & Fordham [LF96], in a study of the chymotrypsin-like serine

proteases, did structural alignments of all pairs of structures, and collated the results

into a common alignment table. However, the experience with those calculations

suggests that it would be useful to ask whether any of the known pairwise structural

1

This work was supported by the Wellcome Trust.

95

Proceedings of the Prague Stringology Club Workshop '98

superposition methods lends itself to generalisation to a true multiple superposition

approach. The problem is only to determine the residue{residue correspondences,

that is, the alignment. Once the alignment is known methods are available for the

multiple superposition of the molecules [SBPL92],[D92].

There have been numerous approaches to the problem of structural superposition

(for a review see [GL98]). Some operate in three-dimensional space, and are based

on detection of small well-�tting pieces and combining them [VS91],[ATG92]; others

are based on similarity of contact matrices [HS93],[NRTZ95],[L95].

However, the methods that would seem to be most directly generalizable to mul-

tiple alignment are those that reduce the three-dimensional structural superposition

problem to a one-dimensional problem. There are several ways to achieve this. One

is to characterise each residue by its pattern of neighbours [LVW85],[TO89]. Another

is to characterize each residue by its mainchain conformation [LSW84],[KdHN89]. (It

is clear that these approaches depend on the linear nature of the polypeptide chain.)

Still another is to classify each position in a polypeptide chain by its environment; this

also has application to structure prediction by asking whether a particular sequence

is compatible with a succession of encoded environments [BLE91].

In this report we pursue the idea that after encoding a protein by a one-dimension

characterization of the successive residues, together with limited amino acid sequence

information, multiple sequence alignment methods can be applied to produce a mul-

tiple structure alignment. We use a set of distantly-related globins as an example and

test of feasibility of the method.

Other approaches to multiple structure alignment have been published by Russell

& Barton [RB92], Taylor, Flores & Orengo [TFO94], and May & Johnson [MJ95].

Our approach is similar to that of

�

Sali & Blundell [

�

SB90].

2 Co-ordinates and Calculations

All co-ordinates are taken from the Protein Data Bank [B77]. For multiple sequence

alignment we used the program map, by Huang [H94].

We assign to each residue a symbol that combines information from the amino

acid sequence and from the residue conformation.

2.1 Encoding the sequence: reduced amino acid alphabet

We encode the amino acid sequence according to a reduced alphabet corresponding

to physico-chemical classes of amino acids:

Table 1. Reduced alphabet based on classifying amino acids into types of

similar physicochemical properties

GAST small nonpolar

CVILP small/medium hydrophobic

FYMW large hydrophobic

NQH polar

DE charged, negative

KR charged, positive

96

Application of Sequence Alignment Methods to Multiple Structural Alignment and : : :

2.2 Encoding the conformation

We make use of E�mov's dissection of the Sasisekhan{Ramachandran diagram [E93],

with modi�cations: The conformation of the mainchain of a protein is speci�ed by

conformational angles �, and !. Values of ! are limited to narrow ranges around

+180

�

and �180

�

. Allowed ranges for and � are limited by steric constraints to

discrete regions which can be charted in the Sasisekharan{Ramachandran plot. We

use the nomenclature of E�mov [E93] but extend his regions to assign to each residue

a symbol for the region to which it is closest. (E�mov's de�nitions cover only a subset

of the possible values of � and .) In this way we encode the structure of a protein

as a sequence of conformation states of the individual residues:

Table 2. Classi�cation of mainchain conformations based on that of A.V.

E�mov [E93]

A �

r

| right-handed ��helix

B � | extended strand

D throat between � and � regions

L �

l

| left-handed ��helix

E bottom of +=� region (in which � > 0; < 0)

C cis-peptide

X other

From the previous two tables we have assigned to each residue one of six symbols

based on its amino acid identity, and one of 7 symbols based on its conformation. By

assigning a unique symbol to each possible combination of these we represent each

residue by a single character in a 42-character alphabet. Each element of the substi-

tution matrix associated with this alphabet is the sum of a contribution from change

in amino acid class (see Table 1) and a contribution from change in conformation

class (see Table 2) according to the following rules:

Contribution from amino acid classi�cation:

Same class uncharged $ uncharged uncharged $ charged

(including polar)

10 5 0

Contribution from conformational classi�cation:

Same class di�erent class

0 �10

The initiate-gap penalty was 20 and the extend-gap penalty 5.

3 Results

We have implemented the methods described and applied them to three distantly-

related globin structures: sperm whale myoglobin, bloodworm globin and leghaemo-

globin from yellow lupin. The results are as follows. (The symbols, which correspond

to the assignment of a unique character to each ordered pair of reduced amino acid

alphabet and residue conformation, should be considered arbitrary.)

97

Proceedings of the Prague Stringology Club Workshop '98

. : . : . : . : . : . :

Sperm whale HBYAYMSGGGSGMA4GYA0G--AASASYGGG4GM4AUGYAGY4NY4M4S----H4BYAY

Bloodworm HBAAS4SGGAAAM4YGAEC0VDAAGA44GGG4MGAAUGSMAAGMDNA------EACZGA

Yellow lupin EJBYASAAGG4AAMYYMSAUG--G4SAS4MMGGGGYGCGAA4YGNAMG5EBAZHHSUTGY

. : . : . : . : . : . :

Sperm whale M4ABYYG44SAGAGGAAGAAGG447EUUYAYG4GGASASA--A4S7HHG4MGYMGAYAGG

Bloodworm GAAGAA4GGASGAGAGAUGA0YA4MG---ASM4AGAG4S4CNES5TH5ASMMYGGAAAGG

Yellow lupin GSA-SAA4GM4GGMYAAGSGYGAEHHHBZAAG4SGAAGSG--A6-DHBYASMGGG4YAGG

. : . : . : . : . : . :

Sperm whale SGGSA4UGAYOBAYASAAMS4AGYGM44YGAA4M4YGDNV

Bloodworm AAMYS4GEA4OTAAA4YAMAAAMAYGAAAGGAAGS

Yellow lupin 4AG4YGGEA6NBYYGSAAMAGAMYYGAGGG44YMYYA

A translation of these results back to the amino acid sequence follows:

Sperm whale VLSEGEWQLVLHVWAKVEADV--AGHGQDILIRLFKSHPETLEKFDRFKH----LKTEAE

Bloodworm GLSAAQRQVIAATWKDIAGADNGAGVGKKCLIKFLSAHPQMAAVFGFS------GASDPG

Yellow lupin GALTESQAALVKSSWEEFNANI--PKHTHRFFILVLEIAPAAKDLFSFLKGTSEVPQNNPE

. : . : . : . : . : . :

Sperm whale MKASEDLKKHGVTVLTALGAILKKKGHHEAELKPLAQSHA--TKHKIPIKYLEFISEAII

Bloodworm VAALGAKVLAQIGVAVSHLGDEGKMV---AQMKAVGVRHKGYGNKHIKAQYFEPLGASLL

Yellow lupin LQA-HAGKVFKLVYEAAIQLEVTGVVVTDATLKNLGSVHV--SK-GVADAHFPVVKEAIL

. : . : . : . : . : . :

Sperm whale HVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG

Bloodworm SAMEHRIGGKMNAAAKDAWAAAYADISGALISGLQS

Yellow lupin KTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMDDAA

In contrast, the following results are from applying the same multiple sequence alignment

program to the sequences alone:

Sperm whale VLSEGEWQLVLHVWAKVE-ADV-AGHGQDILIRLFKSHPETLEKFDRFKHLKTEAEMKA

Bloodworm GLSAAQRQVIAATWKDIAGADNGAGVGKKCLIKFLSAHPQMAAVFG-FS--------GA

Yellow lupin GALTESQAALVKSSWEEFN-ANI-PKHTHRFFILVLEIAPAAKDLFS-F--LKGTSEVPQ

. : . : . : . : . : . :

Sperm whale SE-DLKKHGVTVLTALG-AI--LKKKGHHEAE--LKPLAQSH---ATKHKIPIKYLEFIS

Bloodworm SDPGVAALGAKVLAQIGVAVSHLGDEGKMVAQ--MKAVGVRHKGYGNKH-IKAQYFEPLG

Yellow lupin NNPELQAHAGKVFKLVYEAAIQLEVTGVVVTDATLKNLGSVHVSKG----VADAHFPVVK

. : . : . : . : . : . :

Sperm whale EAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG

Bloodworm ASLLSAMEHRIGGKMNAAAKDAW-----------AAAYADIS--GALISGLQS

Yellow lupin EAILKTIKEVVGAKWSEELNSAW-----------TIAYDEL----AIV--IKKEMDDAA

The results were checked against the published structural alignments [LC80],[BCL87],

and it can be stated that the structure-based calculation performed somewhat better than

the purely sequence-based one. However, extensive tests on a variety of systems are required

to evaluate the e�ectiveness of the method properly. We suggest that the results presented

here encourage further development of the approach.

98

Application of Sequence Alignment Methods to Multiple Structural Alignment and : : :

Conclusions

We have designed and implemented a simple method for multiple structural align-

ment, using a one-dimensional representation of the conformation of a polypeptide

chain, combined with the sequence, and standard multiple sequence alignment meth-

ods to perform the alignment.

References

[ATG92] Alexandrov, N.N., Takahashi, K. & G�o, N. (1992). Common spatial ar-

rangement of backbone fragments in homologous and non-homologous pro-

teins. J. Mol. Biol. 225. 5{9.

[BCL87] Bashford, D., Chothia, C. & Lesk, A.M. (1987). Determinants of a protein

fold: Unique features of the globin amino acid sequences J. Mol. Biol. 196,

199{216.

[B77] Bernstein, F.C, Koetzle, T.F., Williams, G.J.B., Meyer, E.F. Jr., Brice,

M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977).

The Protein Data Bank: a computer based archival �le for macromolecular

structures. J. Mol. Biol. 112, 535{542.

[BLE91] Bowie, J.U., L�uthy, R. & Eisenberg, D. (1991). A method to identify protein

sequences that fold into a known three-dimensional structure. Science 253:

164{170.

[D92] Diamond, R. (1992). On the multiple simultaneous superposition of molec-

ular structures by rigid body transformations. Protein Science 1, 1279{

1287.

[E93] E�mov, A.V. (1993). Standard structures in proteins. Prog. Biophys.

Molec. Biol. 60, 201-239.

[GL98] Gerstein, M. & Levitt, M. (1998) Comprehensive assessment of automatic

structural alignment against a manual standard, the scop classi�cation of

proteins. Prot. Sci. 7, 1{12.

[HS93] Holm, L. & Sander, C. (1993). Protein structure comparison by alignment

of distance matrices. J. Mol. Biol. 233, 123{138.

[H94] Huang, X. (1994) On global sequence alignment. Computer Applications

in the Biosciences 10, 227{235.

[KdHN89] Karpen, M.E., de Haseth, P.L. & Neet, K.E. (1989). Comparing short pro-

tein substructures by a method based on backbone torsion angles. Proteins:

Structure, Function and Genetics 6, 155{167.

[LC80] Lesk, A.M. & Chothia, C. (1980). How di�erent amino acid sequences

determine similar protein structures: The structure and evolutionary dy-

namics of the globins J. Mol. Biol. 136, 225{270.

99

Proceedings of the Prague Stringology Club Workshop '98

[L95] Lesk, A.M. (1995). Three-dimensional pattern matching in protein struc-

ture analysis In: Combinatorial Pattern Matching, Z. Galil, E. Ukkonen,

eds. Lecture Notes in Computer Science 937. Springer-Verlag, Berlin, pp.

248{260.

[LF96] Lesk, A.M. & Fordham, W.D. (1996). Conservation and variability in the

structures of serine proteases. J. Mol. Biol. 258, 501{537 (1996).

[LSW84] Levine, M., Stuart, D. & Williams, J. (1984). A method for systematic com-

parison of the three-dimensional structures of proteins and some results.

Acta crystallographica A40, 600{610.

[LVW85] Liebman, M. N., Venanzi, C.A. & Weinstein, H. (1985). Structural analysis

of carboxypeptidase A and its complexes with inhibitors as a basis for

modelling enzyme recognition and speci�city. Biopolymers 24, 1721{1758.

[MJ95] May, A.C.W. & Johnson, M.S. (1995). Improved genetic algorithm-based

protein-structure comparisons { pairwise and multiple superpositions. Pro-

tein Engineering 8, 873{882.

[NRTZ95] Nichols, W.L, Rose, G.D, Ten Eyck, L.F. & Zimm, B.H. (1995). Rigid

Domains in Proteins: An Algorithmic Approach to their Identi�cation.

Proteins: Structure, Function, Genetics 23, 38{48.

[RB92] Russell, R. B. & Barton, G. J. (1992), Multiple sequence alignment from

tertiary structure comparison: assignment of global and residue con�dence

levels. PROTEINS: Struc. Func. Genet., 14, 309{323.

[

�

SB90]

�

Sali, A & Blundell, T.L. (1990). De�nition of general topological equiva-

lence in protein structures. A procedure involving comparison of properties

and relationships through simulated annealing and dynamic programming.

J. Mol. Biol., 212, 203{228.

[SBPL92] Shapiro, A., Botha, J.D., Pastore, A. & Lesk, A.M. (1992). A method for

multiple superposition of structures. Acta Crystallographica A48, 11{14.

[TFO94] Taylor, W.R., Flores, T.P. & Orengo, C. (1994) Multiple protein structure

alignment. Prot. Sci. 3, 1858-1870.

[TO89] Taylor, W.R. & Orengo, C.A. (1989). Protein structure alignment. J. Mol.

Biol. 208, 1{22.

[VS91] Vriend, G. & Sander, C. (1991). Detection of common three-dimensional

substructures in proteins. Proteins: Structure, Function and Genetics 11,

52{58.

100

Approximate String Matching by Fuzzy

Automata

V�aclav Sn�a�sel

Department of Computer Science

Palacky University

Tomkova 40

771 00 Olomouc

Czech Republic

e-mail: Vaclav.Snasel@uplo.cz

Abstract. I explain new ways of construction of search algorithms using fuzzy

sets. I de�ne Fuzzy Automata and I discuss the possibilities of use.

Key words: fuzzy automata, searching

101

The Factor Automaton

1

Milan

�

Sim�anek

Department of Computer Science & Engineering

Faculty of Electrical Engineering

Czech technical University

Karlovo n�am. 13, 121 35 Prague 2

e-mail: simanek@fel.cvut.cz

Abstract. The direct acyclic word graph (DAWG) is a good data structure

representing a set of strings related to some word with very small space com-

plexity. The famoust DAWG is the factor DAWG which is representing the

set Fac(text) of all factors (substrings) of the string text . Bellow we call factor

DAWG as DAWG. Finite automaton implementing this data structure is able

to make out any substring of string text in time proportional only to length

of the substring while its space complexity is linear to the length of the string

text . We can de�ne several operations on DAWG. Operations are usefull for

fast derivating of the DAWG automaton from a similar one. This paper con-

cern operation L-delete on factor graph DAWG and the relationship between

deterministic and nondeterministic factor automaton.

Key words: DAWG, factor automaton, substring, pattern matching, fast search-

ing

1 Introduction

The factor automaton is a �nite automaton which accepts the set of all substrings

of the string [1, chapter 6]. The set of all substrings (factors) of the string text is

Fac(text).

This factor automaton can be formulated as a deterministic one or a nondeter-

ministic one. The nondeterministic factor automaton is a good abstraction for formal

description of its behaviour and of operations performed on it. On the other hand

the deterministic one is used for implementation and practical use. This version is

sometimes called direct acyclic word graph, DAWG, because it has no transition

loop.

The main advantage of the DAWG is very fast substrings searching while it keeps

small memory requirments. Any matching string can be found in time equal to the

length of the pattern looking for. The size of the factor automaton DAWG(text) is

linear with respect to the length of the string text . Total number of the nodes is less

then double length of the input string text . The proof is in [1, Theorem 6.1].

1

This research has been supported by GA

�

CR grant No. 201/98/1155

102

The Factor Automaton

2 Construction

2.1 Nondeterministic factor automaton

The nondeterministic factor automaton, which accepts all substrings of the string

text , has N + 1 states and 2N � 1 transitions, where N is the length of the string

text . The structure of this automaton for string text= a

1

a

2

a

3

a

4

:::a

N

is shown on the

next picture.

2.2 Deterministic factor automaton

The deterministic factor automaton DAWG can be obtained from nondeterministic

one [3] or we can construct it step by step using an incremental construction algorithm

[1, 6.3 On-line construction]. Although we have a construction algorithm, in general,

we cannot say anything about the structure of transitions except nonexistence of the

circle and an estimate bounds of the number of states. The pattern matching using

this automaton has optimal speed. The number of comparations (or other elementar

operations) is linear to the length of the searching pattern.

2.3 Relation between deterministic and nondeterministic

automata

It appears that every construction method produces equivalent (isomorphic) deter-

ministic factor automaton. We can say the deterministic factor automaton is the best

simulation of the nondeterministic one. In this simulation every state in determinis-

tic automaton corresponds to a set of active states in nondeterministic automaton.

This relationship can by very usefull for discovering and proving new algorithms for

deterministic automata.

3 Operations on factor automaton

We can de�ne a number of operations on factor automaton. Each operation modify

given factor automaton representing string text to a new factor automaton represent-

ing another string text' while strings text and text' are very similar. It is important

that both new and old factor automaton will be similar too and therefore performing

the operation spend a little amount of time.

We will deal with this operations on a factor automaton:

103

Proceedings of the Prague Stringology Club Workshop '98

operation action text'

Append the string text' will be longer by a character

Insert inserts a character before the �rst character

of the string text'

R� delete text' is the string text without the last character

L� delete text' is the string text without the �rst character

Replace replaces one character in string text by another one

The algorithms for some operations have been yet discovered (Append;R�delete),

but the algorithms of Insert and Replace are not known. This article concern about

the algorithm of the L� delete operation.

This operation modi�es DAWG(a

0

a

1

a

2

a

3

:::a

n

) to another factor automaton ac-

cepting all substrings of the string a

1

a

2

a

3

:::a

n

which is by a �rst character a

0

shorter

then the original string a

0

a

1

a

2

a

3

:::a

n

. The algorithm is shown bellow.

The combination of operations Append and L-delete enables fast searching in the

compression method known as LZ77 which use so called sliding window. Sliding

window contains a part of source text with constatnt length. The window is moving

through the text so at the begining it contains the �rst k characters of the text and

at the end operating it contains the last k characters of the source text.

4 DAWG in details

To enable incremental construction of this factor automata (append operations) re-

quires to keep a bit more information about the DAWG working on. In every step we

should know the set of states (a state of �nite automaton per a node of the DAWG),

transitions between the states (representing edges of the DAWG), and the fail func-

tion. The fail function is used for creating and extending DAWG. We will need know

which is the next character for each state for the L-delete operation.

Before we will show the algorithm we should make some denotation. Next(q)

is a following character in source string text for each state q in the DAWG factor

automaton. Concatenation of Next(q

0

) + Next(Next(q

0

)) + ::: gives the string text

for DAWG(text). There is de�ned the fail function Fail(q) for each state q of DAWG

automaton. If the automaton is in the state q

1

after reading substring uv and in

the state q

2

after reading substring v which is the longest possible then Fail(q

1

)=q

2

.

Factor automaton being in state q

2

accepts each su�x which is accepted in state q

1

.

Skip(q) is the set of states p

i

which Fail(p

i

) is equal to state q. Function Skip is the

inverse function of function Fail: p 2 Skip(q) i� q = Fail(p).

5 The algorithm of L-delete operation

Let main chain is a sequence of states q

0

, q

1

=�(q

0

, Next(q

0

)), . . ., q

i

=�(q

i�1

, Next(q

i�1

),

. . ., q

n

. The idea of this algorithm is to disable passing only through a part of the

main chain but to protect passing anyway through at least one skip transition.

This algorithm duplicates the starting part of main chain of states. One copy

(original) of begin of main chain is used for processing these substrings which will pass

through some skip transition later. Second copy (duplicated) is used for processing

these states which have passed some skip transition before.

104

The Factor Automaton

Not all main chains will be duplicated. The duplication process stops at the state

where is obvious which shift transition will be pass. This stop state is determined by

a value of Skip function. Assume last duplicated state is r. Next state to be duplicate

is s. Let state t = �(s;Next(s)) is the next state after s. If the set of states Skip(t)

is empty then duplication process stops, because no shift transition can be pass. If

the set of states Skip(t) contain only one state, then duplication process stops too,

because only one shift transition is possible and therefore it can be done immediately.

Otherway if the number of states Skip(t) is greater then one then duplication process

continue.

INPUT: DAWG(aw)

OUTPUT: DAWG(w)

LOCAL VARIABLES: a { a character

q

0

, q

1

, r, s, t, d { states

q

0

{ the initial state

a:=Next(q

0

)

q

1

:=�(q

0

,a)

if jSkip(q

1

)j = 0 then

�(q

0

; a) := nil

delete(q

1

) possible recursive delete

else if jSkip(q

1

)j = 1 then

�(q

0

; a) := Skip(q

1

)

delete(q

1

) possible recursive delete

else

r:=q

0

s:=q

1

loop

a:=Next(s)

t:=�(s,a)

if jSkip(t)j < 2 then break

d:=duplicate(t)

�(r,a):=d

Fail(t):=d

r:=d

s:=t

endloop

if jSkip(t)j = 1 then

�(s,a):=Skip(t)

else

�(s,a):=nil

endif

endif

105

Proceedings of the Prague Stringology Club Workshop '98

6 Time and memory complexity

It seems that the time complexity of one L-delete operation is at least constant or in

the worst case linear to length of the text text . The DAWG(text) for string text of

length N has at most 2 �N states [1]. Therefore the time complexity of sequence of

N L-delete operations is linear to N .

The number of states of DAWG(text) is limited by 2:N where N is number of

characters in source string text . Moreover, DAWG(text) has less than 3:N edges.

This is independent of the size of the alphabet [1, Theorem 6.1].

7 Conclusion

The power of operation L-delete grows up in conjunction with the operation append.

We can apply k-times operation append which constructs the base DAWG for �rst

k characters of the text. Then we will apply repeatively a couple of operations L-

delete and append. We will get a moving window for fast searching in this part of

the text. The speed of searching is independent of size of the searching window

and depends only on the size of pattern looking for. The main application can be

LZ77 compression algorithm. The part consuming the largest amount of time is just

the algorithm searching for a pattern in a searching window. Using this searching

algorithm should speed up compression.

References

[1] Crochemore, M., Rytter, W.: Text Algorithms, chapter 6, Subword

graphs, Oxford University Press, 1994

[2] Chen, M. T., Seiferas, J.: E�cient and elegant subword tree con-

struction, Combinatorial Algorithms on Words, NATO Advanced Science

Institutes, Series F, vol. 12, Springer-Verlag, Berlin, 1985, 97{107

[3] Melichar, B.: The construction of factor automaton, Workshop 98,

Czech Technical University, Prague 1998, 189{190

106

Directed Acyclic Subsequence Graph

1

Zden�ek Tron���cek and Bo�rivoj Melichar

Department of Computer Science and Engineering

Czech Technical University

Karlovo n�am�est�� 13, 121 35 Prague 2, Czech Republic

phone: ++420 2 2435 7287, fax: ++420 2 298098

e-mail: ftronicek,melicharg@fel.cvut.cz

Abstract. Directed Acyclic Subsequence Graph is an automaton, which ac-

cepts all subsequences of the given string. We introduce a left-to-right algorithm

for incremental construction of DASG. The algorithm requires O(z) extra space

and O(nz log z) time for arbitrary alphabet (O(nz) for �xed alphabet), where

z = min(j�j; n). The number of transitions can be reduced by encoding input

symbols using k digits, where k < min(j�j; n). We introduce a left-to-right

algorithm for incremental construction of DASG for k = 2. We show the ex-

tension of the algorithm for the set of strings and its application for the longest

common subsequence problem.

Key words: Directed Acyclic Subsequence Graph, �nite automaton, searching

subsequences

1 Introduction

A subsequence of a string is any string obtained by deleteing zero or more symbols

from the given string. Directed Acyclic Subsequenc Graph (DASG) is an automaton,

which accepts all subsequences of the given text. It was introduced in [2] (preliminary

version was published in [1]). DASG is analogous to Directed Acyclic Word Graph

(DAWG) [3] using subsequences instead of substrings.

Let us suppose an alphabet � and a text T = t

1

t

2

: : : t

n

over this alphabet. DASG

for the text T is an automaton A = (Q;�; �; q

0

; F), where Q is a �nite set of states,

� is an input alphabet, � is a transition function, q

0

is the initial state and F is a set

of �nal states. States are denoted by numbers in this article.

In [2], there is described a right-to-left algorithm for construction of DASG and

encoding for reducing the number of transitions. In section 3 we introduce an incre-

mental left-to-right algorithm for construction of DASG, and in section 4 its modi�-

cation for encoded DASG. In section 5 we show the extension of the algorithm for a

set of strings and its application for the longest common subsequence problem.

1

This research has been supported by GA

�

CR grant No. 201/98/1155

107

Proceedings of the Prague Stringology Club Workshop '98

2 Motivation

Let Sub(T) denotes the set of all subsequences of the text T = t

1

t

2

: : : t

n

. The set

Sub(T) can be described recursively by the regular expression (" is empty subse-

quence):

Sub

0

= "

Sub

i

= Sub

i�1

("+ t

i

)

Sub(T) = Sub

n

For the set Sub

n

then holds:

Sub

n

= Sub

n�1

("+ t

n

) = Sub

n�2

("+ t

n�1

)("+ t

n

) = ("+ t

1

)("+ t

2

) : : : ("+ t

n

)

This expression gives us the direction for construction of the nondeterministic version

of DASG. The example of such nondeterministic �nite automaton (NFA) is in Fig. 1.

It also holds:

Sub

n

= Sub

n�1

+ Sub

n�1

t

n

= "+ Sub

0

t

1

+ Sub

1

t

2

+ : : :+ Sub

n�2

t

n�1

+ Sub

n�1

t

n

The last expression can be used for construction of the nondeterministic DASG with-

out "-transitions (the example is in Fig. 2). If all the symbols of T are di�erent, we

obtain directly the deterministic �nite automaton (DFA). The example of determin-

istic DASG is in Fig. 3.

0

a

"

1

b

"

2

b

"

3

c

"

4

Figure 1: NFA accepting all subsequences of T = abbc (with "-transitions).

0

a

b

b

c

1

b

b

c

2

b

c

3

c

4

Figure 2: NFA accepting all subsequences of T = abbc (without "-transitions).

3 Construction of DASG

Let us suppose an alphabet � and a text T = t

1

t

2

: : : t

n

over this alphabet. For

each symbol a of the alphabet � we will maintain the value f

a

, which is the smallest

number of the state not having an output transition labeled with a. We start with

an automaton with the only state 0. Each state of the automaton is �nal.

Lemma 1: The automaton constructed by Algorithm 1 has (n+ 1) states.

108

Directed Acyclic Subsequence Graph

0

a

b

c

1

b

c

2

b

c

3

c

4

Figure 3: DASG for the string T = abbc.

1: for each a 2 � do

2: f

a

 0

3: end for

4: for k 1 to n do

5: add state k

6: for s f

t

k

to (k � 1) do

7: add a transition labeled t

k

from the state s to the state k

8: end for

9: f

t

k

 k

10: end for

Figure 4: Algorithm 1 (incremental construction of DASG)

Proof: We start with the automaton with one state. The main cycle of the

algorithm is performed n times. During each step of the cycle we add just one new

state.

Lemma 2: The automaton constructed by Algorithm 1 accepts just all subse-

quences of T .

Proof: We prove the lemma in two steps.

1. If S is a subsequence of the string T then S is accepted by the automaton (induction

by the length of S):

Step 1: jSj = 1; S = s

1

. If s

1

occurs in T then state 0 of the automaton has transition

labeled with s

1

and the automaton accepts S.

Step 2: A string S

k

= s

1

s

2

: : : s

k

is a subsequence of T and is accepted by the

automaton. Let us create a new string S

k+1

= s

1

s

2

: : : s

k

s

k+1

by adding a symbol

s

k+1

to the end of S

k

. There exists a sequence i

1

; i

2

; : : : ; i

k

such that s

1

= t

i

1

; s

2

=

t

i

2

; : : : ; s

k

= t

i

k

(the automaton will �nish in state i

k

after accepting S

k

). If there

exists i

k+1

such that i

k

< i

k+1

� n and s

k+1

= t

i

k+1

, then state i

k

has transition

labeled with s

k+1

and the automaton accepts S

k+1

.

2. If S is accepted by the automaton then S is a subsequence of T (induction by the

length of S):

Step 1: jSj = 1; S = s

1

. If S is accepted by the automaton then state 0 has the

transition labeled with s

1

. State 0 has transition labeled with s

1

only if there exists

j; 1 � j � n such that s

1

= t

j

.

Step 2: A string S

k

= s

1

s

2

: : : s

k

is accepted by the automaton and there exists a

sequence i

1

; i

2

; : : : ; i

k

such that s

1

= t

i

1

; s

2

= t

i

2

; : : : ; s

k

= t

i

k

. We create a new string

S

k+1

= s

1

s

2

: : : s

k

s

k+1

by adding a symbol s

k+1

to the end of S

k

. The automaton will

�nish in state i

k

after accepting S

k

. If state i

k

has transition labeled s

k+1

then there

exists i

k+1

; i

k

< i

k+1

� n such that s

k+1

= t

i

k+1

. 4

109

Proceedings of the Prague Stringology Club Workshop '98

3.1 Number of transitions

De�nition 1: Let � be an alphabet and T = t

1

t

2

: : : t

n

a string over this alphabet.

Let �

e

denotes the set of all symbols, which are contained in T . We de�ne the e�ective

size of � as z = j�

e

j.

The minimum number of transitions is n (if and only if all the symbols of T are

the same).

For each state k, the maximum number of its output transitions is:

max out deg

k

= min(z; n� k)

It results from that the �rst (n+1� z) states may have at most z output transitions

and for the last z states the maximum number of output transitions decreases to 0.

Then, the maximum total number of transitions is:

(n+ 1 � z)z + (z � 1) + : : :+ 2 + 1 + 0 = (n+ 1� z)z +

z(z � 1)

2

=

2zn + z � z

2

2

DASG has this number of transitions if and only if the last z symbols of T are di�erent.

3.2 Complexity

The main cycle of the Algorithm 1 (lines 4{10) is performed n times. The lines 5 and

9 take constant time. At lines 6{8 are added all the transitions. Therefore, the total

time complexity of lines 6{8 is O(nz).

For �xed alphabet we suppose that adding or looking up the transition takes

constant time. Then, the algorithm requires time O(n + nz) in the worst case. The

time of subsequence test is O(m) in the worst case.

For arbitrary alphabet we suppose that adding or looking up the transition takes

time O(log z). Then, all the complexities must be multiplied by factor log z. In this

case, we use a balanced tree for values f

a

; a 2 �.

In both cases the algorithm requires O(z) extra space.

4 Encoding of input symbols

Encoding as a method for reducing the number of transitions was introduced in [2].

The method use k < z digits for encoding the input symbols, where z is the e�ective

size of the alphabet. The number of states grows at most to ndlog

k

ze + 1, but the

number of transitions usually decreases (see [2] for details). Fig. 5 shows the encoded

version of DASG for the text T = abbc (in this case encoding does not reduce the

number of transitions). The symbols are coded this way: a = 00, b = 01, c = 10.

0

0

1

5

1

6

1

7

0

81

0

1

2

0

1

3

1

4

0

1

Figure 5: Encoded DASG for the string T = abbc.

110

Directed Acyclic Subsequence Graph

Let us suppose an alphabet � and a text T = t

1

t

2

: : : t

n

over this alphabet.

Each symbol a of � we encode using digits 0 and 1. For that we need at least

c = dlog

2

ze digits. The algorithm is incremental. When we add a new symbol en-

coded as e

1

e

2

: : : e

c

, we need to ensure, that all previous �nal states have an output

path labeled with e

1

e

2

: : : e

c

. We use a binary tree as an auxiliary structure. The

tree is built during the construction of the automaton. Each inner node of the tree

has two lists (for 0 and for 1), which contents states, where ends the path labeled

with the same symbols as the path in the tree, starting at any �nal state and is the

longest possible. So, if a state s is in the list l

e

in the node with the path p

1

p

2

: : : p

q

from the root, there exists a path in the DASG from any �nal state to state s, which

is labeled p

1

p

2

: : : p

q

and state s has no output transition labeled e. We start with

an automaton with the only state 0. States (tc) for t = 0; 1; : : : ; n are �nal. At the

beginning, the tree has only the initial node.

1: l

"

0

 f0g, l

"

1

 f0g

2: for k 0 to (n� 1) do

3: encode the symbol t

(k+1)

as e

1

e

2

: : : e

c

4: set the root as the actual node in the tree

5: for b 1 to c do

6: add state (ck + b)

7: for each state s in the list l

e

b

in the actual node of the tree do

8: add a transition labeled e

b

between states s and (ck + b)

9: remove s from the list l

e

b

10: end for

11: go to the child of the actual node of the tree through the transition

labeled e

b

and set the child as the actual node (if the child does not

exist, create it and set both lists of new node empty)

12: if b < c then

13: add the state (ck + b) to the both lists in the actual node

14: end if

15: end for

16: mark the state (ck + c) as a �nal state and add it to the both lists in

the root of the tree

17: end for

Figure 6: Algorithm 2 (incremental construction of encoded DASG)

The algorithm is demonstrated in Fig. 7{11. The lists maintained in the node

with the path p from the root are denoted as l

p

0

and l

p

1

, the symbols are coded this

way: a = 00, b = 01, c = 10.

0

l

"

0

= f0g, l

"

1

= f0g

Figure 7: Encoded DASG for the string T = ".

111

Proceedings of the Prague Stringology Club Workshop '98

0

0

1

0

2

0

0

l

"

0

= f2g, l

"

1

= f0; 2g

l

0

0

= fg, l

0

1

= f1g

Figure 8: Encoded DASG for the string T = a.

0

0

1

0

1

2

0

3

1

4

0

0

1

l

"

0

= f4g, l

"

1

= f0; 2; 4g

l

0

0

= f3g, l

0

1

= fg

Figure 9: Encoded DASG for the string T = ab.

4.1 Number of transitions

The number of states grows to 1 + nc = 1 + ndlog

2

ne. The maximum number of

transitions is c(2n�

1

2

(c+ 1)) = dlog

2

ze(2n �

1

2

(dlog

2

ze+ 1)).

4.2 Complexity

The main cycle (line 2{15) is performed n times. Lines 1,3,4,6,11,12,13 and 16 require

constant time. The cycle on line 5 is performed O(log

2

z) times. The total number

of transitions is O(n log

2

z). Therefore, the total time complexity of lines 7{10 is

O(n log

2

z). Hence, the total time complexity is O(n log

2

z).

The algorithm needs O(z + n log

2

z) extra space for the tree and for the lists in

its nodes. The subsequence test requires O(m log

2

z) time in the worst case.

0

0

5

1

61

0

1

2

0

3

1

4

0

0

0

1

l

"

0

= f6g, l

"

1

= f0; 2; 4; 6g

l

0

0

= f3; 5g, l

0

1

= fg

Figure 10: Encoded DASG for the string T = abb.

112

Directed Acyclic Subsequence Graph

0

0

1

5

1

6

1

7

0

81

0

1

2

0

1

3

1

4

0

1

0

1

0

1

0

l

"

0

= f6; 8g, l

"

1

= f8g

l

0

0

= f3; 5g, l

0

1

= fg

l

1

0

= fg, l

1

1

= f7g

Figure 11: Encoded DASG for the string T = abbc.

5 DASG for a set of strings

Let us suppose an alphabet � and strings T

1

; T

2

; : : : ; T

w

over this alphabet. We extend

Algorithm 1 to a set strings fT

1

; T

2

; : : : ; T

w

g. Let L =

P

w

i=1

length(T

i

).

The construction of DASG has two steps:

� Construction of inverted trie for reversed strings.

� Construction of an automaton.

Construction of inverted trie: Inverted trie arises from trie by reversing the

transitions and can be constructed during the construction of trie (each node of trie

will have one inverted transition). Final nodes of trie are initial nodes of inverted

trie. Inverted trie is used as an auxiliary structure and served for �nding common

su�xes of the strings.

Construction of an automaton: For each string T

i

; 1 � i � w we will maintain:

� lists l

i

a

; a 2 � of states, which have no output transition for the symbol a

� actual position act

i

in inverted trie

� actual position last

i

in the automaton

In each node of inverted trie we save the number of corresponding state in the au-

tomaton. Let v denotes this number, let denotes the transition function in trie,

and let � denotes the transition function in the automaton. For each transition of the

automaton we have to remember, which strings it belongs to. This set is denoted E.

We start with the automaton with the only state 0. Each state of the automaton is

�nal. Set is ordered set with two de�ned operation: first return the �rst string in

the set and next return the successor of the string. The total number of states after

each step is in the variable states.

The algorithm is demonstrated in Fig. 15{18.

113

Proceedings of the Prague Stringology Club Workshop '98

1: for i 1 to w do

2: for each a 2 � do

3: l

i

a

 f0g

4: end for

5: act

i

 �nal state for the string T

i

in trie

6: last

i

 0

7: end for

8: for each node i in trie do

9: v(i) 0

10: end for

11: Set fT

1

; T

2

; : : : ; T

w

g

12: states 1

13: c 1

14: p 1

15: for k 1 to L do

16: M ;

17: symbol p-th symbol of T

c

18: act

c

 (act

c

; symbol)

19: if �(last

c

; symbol) 6= ; then

20: new state �(last

c

; symbol)

21: else if v(act

c

) > 0 then

22: new state v(act

c

)

23: else

24: add state states

25: new state states

26: v(act

c

) states

27: states states+ 1

28: end if

29: last

c

 new state

30: for each s 2 l

c

symbol

do

31: if �(s; symbol) 6= ; then

32: M M [f�(s; symbol)g

33: E(s; symbol) E(s; symbol) [fcg

34: else

35: �(s; symbol) new state

36: E(s; symbol) fcg

37: end if

38: end for

39: l

c

symbol

 ;

40: M M [fnew stateg

41: for each a 2 A do

42: l

c

a

 l

c

a

[M

43: end for

44: if p = length(T

c

) then

45: Set Set n fT

c

g

46: end if

47: if next(Set; c) is de�ned then

48: d is de�ned as follows: next(Set; c) = T

d

49: else

50: d is de�ned as follows: first(Set; c) = T

d

51: p p+ 1

52: end if

53: c d

54: end for

Figure 12: Algorithm 3 (extension of DASG for a set of strings fT

1

; T

2

; : : : ; T

w

g)

114

Directed Acyclic Subsequence Graph

a

a

b

a

b

Figure 13: Trie for the reversed strings aaa and bba.

a

b

a

b

a

Figure 14: Inverted trie for the reversed strings aaa and bba.

0

l

1

a

= f0g, l

1

b

= f0g

l

2

a

= f0g, l

2

b

= f0g

Figure 15: Extension of DASG for the Set = f"g.

0

a

b

1

2

l

1

a

= f1g, l

1

b

= f0; 1g

l

2

a

= f0; 2g, l

2

b

= f2g

E(0; a) = f1g, E(0; b) = f2g

Figure 16: Extension of DASG for the Set = fa; bg.

0

a

b

1

a

2

b

3

l

1

a

= f3g, l

1

b

= f0; 1; 3g

l

2

a

= f0; 2; 3g, l

2

b

= f3g

E(0; a) = f1g, E(0; b) = f2g

E(1; a) = f1g, E(2; b) = f2g

Figure 17: Extension of DASG for the Set = faa; bbg.

115

Proceedings of the Prague Stringology Club Workshop '98

0

a

b

1

a

2

b

a

3

a

4

l

1

a

= f4g, l

1

b

= f0; 1; 3; 4g

l

2

a

= f1; 4g, l

2

b

= f1; 3; 4g

E(0; a) = f1g, E(0; b) = f2g

E(1; a) = f1g, E(2; b) = f2g

E(3; a) = f1g, E(2; a) = f2g

Figure 18: Extension of DASG for the Set = faaa; bbag.

5.1 Number of states

For each symbol of the string, except for the last, a new state can be added. Hence, the

DASG constructed in Algorithm 3 has at most 1+

P

w

i=1

(length(T

i

)�1)+1 = 2+L�w

states. DASG has this number of states if no two strings have any common nonempty

pre�x and su�x.

Each state can have at most z output transitions. Therefore, the total number of

transitions is O(Lz).

5.2 Complexity

Construction of inverted trie requires O(L) time and O(L) extra space. For the

time analysis of the Algorithm 3 is important the time complexity of set operations.

We use four of them: insert a member, delete a member, assign a value and union.

Suppose, that we use a balanced tree for the representation of the set M (another

possibilities are a member function or a list). Then, the operations assign and union

require O(jM j) time and the other operations require O(log jM j) time.

Lines 1{7 requireO(wz) time, lines 8{10 requireO(L) time, line 11 requires O(w)

time. The main cycle (lines 15{53) is performed L times. Line 16 requires O(L) time,

and lines 18{20 require O(log z) time. The cycle on the lines 30{38 is performed at

most L times. Its time complexity is O(L log L) (line 32 requires O(logL) time).

Line 40 requiresO(log L) time, lines 41{43 require O(Lz) time. Hence, the total time

complexity is O(L

2

+ L

2

logL+ L log L+ L

2

z) � O(L

2

logL) for arbitrary alphabet.

We need O(L) space for trie, O(L) space for the set M , and O(Lwz) space for

the lists l

c

a

. Hence, the total required extra space is O(Lwz).

5.3 Application: the longest common subsequence problem

The longest common subsequence (LCS) problem is known problem with applications

in many areas. There are e�cient algorithms that solve the LCS problem for two

strings, for example [4].

Let us de�ne the following problem (as in [2]): What is the longest common

subsequence between any k � w strings in a set S of w strings?

To solve this problem, we construct DASG for the set S and append to each

transition �(q; a) the number of strings in the set E (denoted as num(q; a)) and to

116

Directed Acyclic Subsequence Graph

each state q the number of its input edges (denoted as c

q

) and the number of its

input edges with num(q; a) greater or equal k (denoted as ck

q

). We do not need the

set E in this case. Then, we traverse DASG. During the traversing we use LIFO

(Last-In-First-Out) memory as an auxiliary structure (denoted as Stack). Dot (.)

denotes concatenation. The longest sequence of input symbols from the initial state

to the state q is stored in cs

q

.

1: lcs "

2: for each state q do

3: cs

q

 "

4: end for

5: Stack 0

6: while Stack is not empty do

7: q Pop

8: if length(cs

q

) > length(lcs) then

9: lcs cs

q

10: end if

11: for each a 2 � such that �(q; a) 6= ; do

12: r �(q; a)

13: c

r

 c

r

� 1

14: if c

r

= 0 then

15: Push(r)

16: end if

17: if num(q; a) � k then

18: ck

r

 ck

r

� 1

19: if ck

r

= 0 then

20: cs

r

 cs

q

:a

21: end if

22: end if

23: end for

24: end while

Figure 19: Algorithm 4 (the longest common subsequence)

The traversion of DASG requires O(Lz) time. For common subsequences cs

q

we

need O(Ly) space, where y = maxflength(T

i

)g. Hence, the general longest com-

mon subsequence problem of w strings requires O(L

2

logL + Lz) time for arbitrary

alphabet. It is a better solution than presented in [2].

6 Conclusion

In section 3, we introduced a left-to-right algorithm for construction of DASG. It re-

quiresO(nz log z) time and O(z) extra space for arbitrary alphabet. The subsequence

test takes O(m log z) time.

In section 4, we showed the modi�cation of that algorithm for encoded DASG.

The modi�ed algorithm requires O(n log z) time and O(z+ n log z) extra space. The

subsequence test takes O(m log z) time.

In section 5, we extended DASG for a set of strings and used it to solve the general

longest common subsequence problem. Construction of DASG takes O(L

2

logL) time

and O(Lwz) extra space. The traversion of DASG requires O(Lz) time. Hence, the

117

Proceedings of the Prague Stringology Club Workshop '98

solution of the general longest common subsequence problem requires O(L

2

logL)

total time and O(Lwz + Ly) space, where y = maxflength(T

i

)g.

References

[1] Baeza-Yates, R. A.: The Subsequence Graph of a Text. TAPSOFT'89, Pro-

ceedings of the International Joint Conference on Theory and Practice of Sot-

ware Development, Volume 1: Advanced Seminar on Foundations of Innovative

Software Development I and Colloquium on Trees in Algebra and Programming

(CAAP'89), Lecture Notes in Computer Science 351, Barcelona, Spain, March

1989, pages 104{118.

[2] Baeza-Yates, R. A.: Searching subsequences. Theoretical Computer Science 78

(1991), pages 363{378.

[3] Crochemore, M., Rytter, W.: Text algorithms. Oxford University Press, 1994.

[4] Hunt, J., Szymanski, T.: A fast algorithm for computing longest common subse-

quences. Communication of ACM 20, 1977, pages 350{353.

[5] Hirschberg, D. S.: A linear space algorithm for computing maximal common

subsequences. Communication of ACM, 18(6), 1975, pages 341{343.

118

An Early-Retirement Plan for the States

Bruce W. Watson

1;2

and Richard E. Watson

2

1

Department of Computer Science

University of Pretoria

Hillcrest 0083, Pretoria

South Africa

2

Ribbit Software Systems Inc.

IST Technologies Research Group

Box 24040, 297 Bernard Ave., Kelowna

British Columbia, V1Y 9P9, Canada

e-mail: watson@cs.up.ac.za, fwatson, rwatsong@RibbitSoft.com

Abstract. New applications of �nite automata, such as NLP and asynchronous

circuit simulation, can require automata of millions or even billions of states. All

known construction methods (in particular, the interesting reachability-based

ones that save memory, such as the subset construction, and simultaneously

minimizing constructions, such as Brzozowski's) have intermediate memory us-

age much larger than the �nal automaton, thereby restricting the maximum size

of the automata which can be built. In this paper, we present a reachability-

based optimization which can be used in any one of the construction algorithms

to reduce the intermediate memory requirements. The optimization is pre-

sented in conjunction with an easily understood (and implemented) canonical

automaton construction algorithm.

Key words: �nite automata, very large automata, automata construction,

memory constraints, reachability algorithms

1 Introduction

Automata (in the form of acceptors or transducers) are now being heavily used in com-

putational linguistics applications, hardware simulation, text indexing and searching

applications. In contrast to their traditional use in compilers, these newer applica-

tions make use of automata that are several orders of magnitude larger (in terms

of both states and transitions, and therefore memory consumption) than previously

contemplated. This can lead to memory problems with constructing the automata

and also to runtime ine�ciencies

1

.

Automata can be constructed in a number of ways, however, in this paper we

restrict ourselves to building them from regular expressions (REs). Constructing an

automaton from an RE proceeds (conceptually) in three phases:

1

Addressing some of the runtime ine�ciencies is the subject of [4].

119

Proceedings of the Prague Stringology Club Workshop '98

1. An abstract state automaton is built, in which each state contains additional

information (it is an object in memory), for example a position within the reg-

ular expression. This additional information allows us to determine the out-

transitions from the state and whether the state is �nal or not. The additional

information is typically encoded as one of the following:

� a set of items (dots) representing positions in the RE (this is used in all of

the item-set constructions [3] and these are used in this paper);

� a set of symbol-positions representing the speci�c symbols (within the RE)

which can be seen next (this is used in the Berry-Sethi, McNaughton-

Yamada-Glushkov and Aho-Sethi-Ullman constructions [3]); or

� an RE representing a derivative of the original RE (this is used in An-

timirov's and Brzozowski's constructions [3]).

2. From the abstract state automaton, we build a concrete automaton (isomorphic

to the abstract state automaton) in which each state is represented only as an

integer, with a single bit devoted to indicating whether it is �nal or not.

3. The abstract state automaton is retired, freeing up the memory, leaving only

the concrete one.

Of course, a real implementation would not directly implement this conceptual model.

As we see in x2, the construction of the �nal automaton representation could be done

incrementally as parts of the underlying abstract state automaton are built. Still,

all of the abstract states are kept in memory until the whole of the �nal automaton

is built, after which they are freed. In the case of a deterministic automaton of a

million states, the concrete representation may require less than 32MB. Unfortunately,

each abstract state can take up a lot more memory as its concrete counterpart, so

the intermediate data-structures could have a peak memory requirement of up to

2GB. Clearly, this is beyond even the realistic virtual memory capacity of an average

processor and operating system. In this paper, we present Ribbit's solution to the

problem.

All of the abstract states are usually kept in memory throughout the construction

process since a transition (from the state under construction) can go to any one of the

other abstract states. In the optimization, we use a reachability relation to determine

which abstract states are no longer reachable during the construction phase. Those

abstract states may then be removed from memory (retired).

This optimization technique is quite di�erent from the obvious (and well-under-

stood) optimization of removing unreachable states | which yields smaller automata.

In our later discussion, that optimization happens to be included (simply by our use

of reachability during automata construction), but the new optimization goes much

further | reducing the memory used during the construction process.

2 A canonical automata construction method

In this section, we briey outline a canonical

2

construction method for deterministic

automata. The algorithm is essentially a reachability-based version of the traditional

2

It is a canonical construction because it is used as the starting point of a taxonomy in [3].

120

An Early-Retirement Plan for the States

three-step algorithm outlined in x1. Since the construction will only be used to

illustrate the retirement plan, we will not present it formally. See [3] for a more

in-depth discussion of various construction algorithms.

In the construction method, each abstract state consists of a set of items where an

item is a dot

3

placed within the input RE (in much the same way as the LR parsing

item appears within grammar production right-hand sides). A relation, called `dot

closure', takes an item set and propagates each item through the RE without jumping

over alphabet symbols within the RE. More precisely, it is the reexive and transitive

closure of the following relation:

1. A dot before the empty string (�) RE yields the dot after the empty string RE.

Symbolically, �� is mapped to ��.

2. A dot before an alternation (union) yields dots in front of each branch of the

alternation. Likewise, a dot after either branch of an alternation yields a dot

after the entire alternation. Symbolically, �(E [F) is mapped to (�E [�F),

(E � [F) is mapped to (E [F)� and (E [F�) is mapped to (E [F)�.

3. A dot before a concatenation yields a dot in front of the �rst operand. A

dot after the left part of a concatenation yields a dot in front of the second

part. A dot after the second part yields a dot after the entire concatenation.

Symbolically, �(EF) is mapped to (�E)F , (E�)F is mapped to E(�F), and

E(F�) is mapped to (EF)�.

4. A dot before a Kleene closure yields a dot after the entire Kleene closure and

a dot before the (single) operand of the closure. A dot after the operand of a

Kleene closure yields a dot before the same operand and a dot after the entire

Kleene closure. Symbolically, �(E

�

) is mapped to ((�E)

�

)� and (E�)

�

is mapped

to ((�E)

�

)�.

(For simplicity in this paper, we omit the other possible RE operators such as inter-

section.) In the algorithm, we maintain the invariant that all of our abstract states

already have the dot closure operation applied to them.

To compute the destination abstract state of a transition from an abstract state

on a symbol a, do the following:

1. For every dot in front of an a in the abstract state, place a dot behind the

corresponding a in the destination abstract state. Include no other dots in the

destination.

2. Perform the dot closure operation on the destination abstract state.

For example, abstract state

�(�a [(�a)b)

has a transition on a to

(a � [(a�)(�b))�

The closure of the union of the transition relation (over all alphabet symbols) with

the dot closure relation constitutes a reachability relation over abstract states. This

reachability relation plays an important role in the optimization.

3

We speak of `dots' and `items' interchangeably.

121

Proceedings of the Prague Stringology Club Workshop '98

To determine the start abstract state, place the dot before the entire RE and

perform the dot closure operation. A state is �nal if a dot appears after the main

RE.

During the construction, we use a bijective data-structure (which we call the

namer), which maps abstract states to concrete ones. We also use either a queue or a

stack of abstract states

4

, called the ready pool. For the actual construction algorithm,

we perform the following steps:

1. Create the start abstract state and the corresponding new concrete state; place

the abstract state in the ready pool and use the namer to map the start state

to it.

2. While the ready pool is not empty: select the next state (call it the current

state), remove it from the pool and do the following:

(a) Lookup the corresponding abstract state in the namer. If it is a �nal state,

mark the current state as �nal too.

(b) For each alphabet symbol a such that �a appears as a subitem in the

abstract state, do the following:

i. Construct the destination abstract state for the alphabet symbol, using

the transitions explained earlier.

ii. Check if the destination abstract state is in the namer. If not, create a

new concrete state and map the destination to it in the namer, while

placing the destination abstract state in the ready pool (so that its

out-transitions will eventually be constructed).

iii. Construct a concrete transition on the alphabet symbol from the cur-

rent concrete state to the concrete state which the destination is

mapped to.

3. Delete the abstract states, the namer and the ready pool.

Clearly, the contents of the namer grow to include all of the abstract states mapped

to their corresponding concrete states and none of these pairs are removed until the

�nal step. Since this is the source of the memory problem, in the next section we

consider how to retire as many as possible of the abstract states on-the-y in the

second step.

3 An early-retirement plan

Some of the abstract states (appearing in the namer) may be unreachable, regardless

of the sequence of transitions, from any of the abstract states still in the ready pool.

Indeed, the only abstract states which will be needed in the namer are those reachable

(directly or indirectly) from an abstract state whose concrete state is in the ready

pool. This follows directly from our use of a reachability algorithm.

4

Using a queue for the ready pool leads to constructing the automaton transition graph breadth-

�rst, while a stack leads to a depth-�rst construction. The data-structure could just as easily contain

concrete states, since we have a bijection between abstract and concrete states.

122

An Early-Retirement Plan for the States

Conceptually, our solution is to compute the reachability relation (or some ap-

proximation containing it) for abstract states. After we have removed a state from

the ready pool and built its out-transitions (in step two), we traverse the namer

and purge any abstract states (and corresponding concrete ones) which are no longer

reachable from an element of the ready pool.

Our implementation maintains the set of abstract states which are reachable from

any of the states in the ready pool. Using the canonical construction, we can maintain

this set, R, particularly cheaply: it is the � and letter transition closure of the set of

all items present in the ready pool abstract states. For example, if the ready pool

contains two states (�a) [b and a [(b�), we have R = ((�a�) [(b�))�. An abstract

state, q, in the namer is reachable from one in the ready pool if q's constituent items

are entirely contained in the set of possibly reachable items, R. In our example, the

start state would be �((�a) [(�b)) (the dot closure of �(a [b)), which is not wholly

contained in R, is therefore unreachable by either of the states in the ready pool and

can be removed from the namer.

For e�ciency, we implement a set of items by numbering all of the possible item

positions within the input RE (there are a �nite number of them) and using bit-

vectors to represent the sets of items. Consequently, the closure and set containment

operations can be performed extremely quickly on most computer hardware using

bitwise instructions.

4 Observations and performance

Benchmarking data are still being collected as this paper is submitted. Preliminary

data, collected while constructing a number of very large automata, shows a reduction

of required working memory by a factor of roughly two. There is also a signi�cant

running time penalty of up to a factor of ten for constructing the automata, even

discounting the obvious memory paging time.

There are other variants of the reachability algorithm which are being explored.

One of the most interesting possibilities is to determine the number of in-transitions

to each abstract state. Once the in-transitions of the corresponding concrete state

have all been built, the abstract state can immediately be purged from the namer.

Unfortunately, it is di�cult to e�ciently count a state's in-transitions before they

have all been built. It is not yet clear whether this approach will improve e�ciency.

Conclusions and comments

A number of conclusions can be drawn about the approach presented here:

� This technique serves only to minimize the amount of memory consumed during

the construction of the automaton. It does not optimize the running time of the

automaton, or even the memory consumed by the �nal automaton. As such,

it is only applicable to the massive automata which occur in applications such

as NLP or hardware simulation. In that role, the technique is not only very

e�ective, but it is also the only known technique available.

123

Proceedings of the Prague Stringology Club Workshop '98

� The technique presented in this paper can signi�cantly slow the construction

process by having to evaluate the reachability relation on abstract states. This

tradeo� is necessary when constructing very large automata.

� This technique has become necessary because even virtual memory has its limits.

The current generation of programmers thinks in terms of a 32-bit address space

(4GB), which appears boundless. Not only is the virtual address space not large

enough for the construction of some automata using the older algorithms, but

most systems do not have 4GB of virtual memory available (due to limited

physical swap space).

� Algorithms for minimizing deterministic �nite automata have a similar memory

constraint. During the minimization process, the set of states are grouped into

equivalence classes, which will each represent a new state in the minimized

automaton. (The equivalence classes are essentially abstract states.) If the

input automaton is already nearing the limits of the available memory, any

reasonable representation of the equivalence classes is unlikely to �t within the

memory. It appears that some of the same techniques could be applied, using an

incremental minimization algorithm such as Watson's [3]. In the case of acyclic

automata, this would yield an algorithm similar to the one presented in [2].

� This technique minimizes the number of abstract states present in the mapping

from abstract states to concrete states. There are many potential speed op-

timizations which can be applied, such as minimizing the number of times an

abstract state is copied. These possibilities have not yet been explored.

Acknowledgements:

We would like to thank Nanette Saes for proofreading this paper.

References

[1] Aho, A.V., R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, Reading, MA, 1988.

[2] Daciuk, J., B.W.Watson and R.E. Watson. \Incremental Construction of Minimal

Acyclic Finite State Automata and Transducers," also submitted to FSMNLP 98.

[3] Watson, B.W. Taxonomies and Toolkits of Regular Language Algorithms. Ph.D

dissertation, Eindhoven University of Technology, The Netherlands, 1995.

[4] Watson, B.W. \Practical Optimizations for Automata," Second Annual Work-

shop on Implementing Automata, London, Canada, 1997. Also available from

www.RibbitSoft.com/research/watson/.

124

