
A New Pra
ti
al Linear Spa
e Algorithm for the

Longest Common Subsequen
e Problem

�

H. Goeman, M. Clausen

Institut f�ur Informatik V

Universit�at Bonn

R�omerstra�e 164

D{53117 Bonn

Germany

e-mail: fgoeman,
lauseng�
s.uni-bonn.de

Abstra
t. This paper deals with a new pra
ti
al method for solving the longest


ommon subsequen
e (LCS) problem. Given two strings of lengths m and n,

n � m, on an alphabet of size s, we �rst present an algorithm whi
h determines

the length p of an LCS in O(ns + minfmp; p(n � p)g) time and O(ns) spa
e.

This result has been a
hieved before [Ri
94, Ri
95℄, but our algorithm is signi�-


antly faster than previous methods. We also provide a se
ond algorithm whi
h

generates an LCS in O(ns+minfmp;m logm+ p(n� p)g) time while preserv-

ing the linear spa
e bound, thus solving the problem posed in [Ri
94, Ri
95℄.

Experimental results 
on�rm the eÆ
ien
y of our method.

Key words: Design and analysis of algorithms, edit distan
e, longest 
ommon

subsequen
e.

1 Introdu
tion

Let x = x

1

: : : x

m

and y = y

1

: : : y

n

, n � m, be two strings over an alphabet � =

f�

1

; : : : ; �

s

g of size s. A subsequen
e of x is a sequen
e of symbols obtained by deleting

zero or more 
hara
ters from x. The Longest Common Subsequen
e (LCS) Problem

is to �nd a 
ommon subsequen
e of x and y whi
h is of greatest possible length.

It will be 
onvenient to des
ribe the problem in another way. An ordered pair

(k; `), 1 � k � m, 1 � ` � n, is 
alled a mat
h if x

k

= y

`

. The set M of all mat
hes


an be identi�ed with a mat
hing matrix of size m�n in whi
h ea
h mat
h is marked

with a dot. For example, if x = aba
b
ba and y = 
babba
a
, then M is as shown

in Fig. 1 (a). De�ne a partial order � on N � N by establishing (k; `) � (k

0

; `

0

)

i� both k < k

0

and ` < `

0

. A 
hain C � M is a set of points whi
h are pairwise


omparable, i.e., for any two distin
t p

1

; p

2

2 C, either p

1

� p

2

or p

1

� p

2

, where

p

1

� p

2

means p

2

� p

1

. Then the LCS problem 
an be viewed as �nding a 
hain of

maximal 
ardinality in M . One su
h 
hain is indi
ated as a path in Fig. 1 (b).

Finding an LCS is 
losely related with the 
omputation of string edit distan
es

[LW75, MP80, Wag75, WC76℄ and shortest 
ommon supersequen
es [GMS80℄. It was

�
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Figure 1: (a) mat
hing matrix, (b) path representing an LCS.

�rst used by mole
ular biologists to study similar amino a
ids [Day65, Day69, NW70,

SC73℄. Other appli
ations are in data 
ompression [AHU76, GMS80, Mai78℄ and

pattern re
ognition [FB73, LF78℄.

The LCS problem 
an be solved in O(mn) time by a dynami
 programming ap-

proa
h [SK83, WF74℄, while the asymptoti
ally fastest general solution uses the \four

russians" tri
k and takes O(nm= logn) time [MP80℄. A lot of other algorithms have

also been developed whi
h are sensitive to other problem parameters, e.g., the length

p of an LCS. They usually perform mu
h better than the latter algorithms, although

they all have a worst 
ase time 
omplexity at least of 
(mn). For example, Hunt and

Szymanski [HS77℄ have presented an O((r+n) logn) algorithm, where r := jM j. Thus

their appro
h is fast when r is small, e.g., r = O(n), but its worst{
ase time 
omplex-

ity is O(n

2

logn). Later, this has been improved to O(mn) [Apo86℄. There are also

several routines whi
h run in O(n(n+1�p)) or O(n(m+1�p)) time, and thus are ef-

�
ient when an LCS is expe
ted to be long [Mye86, NKY82, Ukk85, WMM90℄. Other

algorithms have running times O(n(p + 1)) or O(m(p + 1)) and should be used for

short LCS [Apo87, AG87, Hir77, HD84℄. However, it might be very diÆ
ult to a pri-

ori sele
t a good strategy be
ause in general the length p 
annot be easily estimated.

Also, when having a small alphabet, we 
an expe
t p to be of intermediate size, e.g.,

for s = 4, the average length of an LCS is bounded between 0:54 �m � p � 0:71 �m

[CS75, DP94, Dek79, PD94, SK83℄. Then none of the above methods performs well.

Therefore re
ent resear
h has been 
on
entrated on more 
exible algorithms whi
h

are eÆ
ient for short, intermediate, and long LCS, su
h as the method proposed by

Chin/Poon [CP94℄. Another approa
h from Ri
k [Ri
94, Ri
95℄ with running time

O(ns+minfmp; p(n� p)g) has been widely a

epted as the fastest algorithm for the

general LCS problem.

In this paper, we shall develop a new algorithm whi
h is based on a kind of

dualization of Ri
k's method. A detailed des
ription of the theoreti
al ba
kground

will be given in Se
t. 2 and 3. Our idea does not improve the O(ns+minfmp; p(n�

p)g) time bound, but two important advantages are obtained. First, the number of

mat
hes pro
essed while 
omputing the length of an LCS is signi�
antly de
reased,

resulting in a faster exe
ution speed. The 
orresponding algorithm will be presented

in Se
t. 4. Se
ond, when generating an LCS, we 
an a
hieve linear spa
e through a

divide{and{
onquer s
heme similar to that of other (but slower) algorithms [ABG92,

41



Pro
eedings of the Prague Stringology Club Workshop '99

Hir75, KR87℄. This will be explained in Se
t. 5. The methods mentioned before all

need at least 
(nm= logn) spa
e in their worst 
ases (see [PD94℄ for a survey), and

most of them, in
luding Ri
k's approa
h, 
annot be 
ombined with the divide{and{


onquer te
hnique. The open problem of a linear spa
e implementation of Ri
k's

algorithm [Ri
95℄ is hereby solved. Experimental results presented in Se
t. 6 
on�rm

the eÆ
ien
y of our method.

2 A New Approa
h to the LCS Problem

As already mentioned in the introdu
tion, the LCS problem is equivalent to �nding a


hain of maximum 
ardinality in M . Dilworth's fundamental theorem [Dil50℄ states

that this 
ardinality equals the minimum number of disjoint anti
hains into whi
h

M 
an be de
omposed (an anti
hain of M 
onsists of mat
hes whi
h are pairwise

in
omparable). In our example, this number (
alled the Sperner number ofM) equals

�ve. A suitable de
omposition is shown in Fig. 2 (f). To �nd su
h a minimum

de
omposition, we �rst split [1 : m℄� [1 : n℄ into subsets denoted by T

i

, L

i

, B

i

, and

R

i

, where

T

i

:= fig � [i : n+ 1� i℄

L

i

:= [i+ 1 : m + 1� i℄� fig

B

i

:= fm+ 1� ig � [i + 1 : n+ 1� i℄

R

i

:= [i+ 1 : m� i℄� fn+ 1� ig

and 1 � i � dm=2e (see Fig. 2 (a) for an illustration). Additionally, let

T

�i

:=

[

j�i

T

j

; L

�i

:=

[

j�i

L

j

; B

�i

:=

[

j�i

B

j

; R

�i

:=

[

j�i

R

j

:

Now for i = 1; 2; : : : ; dm=2e, we 
onstru
t four sets of anti
hains A

T;i

, A

L;i

, A

B;i

, and

A

R;i

whi
h de
ompose (a suitable subset of) T

�i

, L

�i

, B

�i

, and R

�i

, respe
tively. The

de
ompositions are generated by updating the previous sets, using the mat
hes found

in T

i

, L

i

, B

i

, and R

i

(details are given below). We use A

u

A

T;i

to denote an anti
hain in

A

T;i

, where u is an index between 1 and the size e

T;i

:= jA

T;i

j of A

T;i

. Therefore e

T;i

is also 
alled the end index of A

T;i

. For A

L;i

, A

B;i

, and A

R;i

, we introdu
e analogous

notations. Furthermore, there are two start indi
es s

TL;i

and s

BR;i

. The �rst one is

used to split both A

T;i

and A

L;i

into two parts. One part 
ontains all anti
hains with

indi
es less than s

TL;i

, and the other part 
onsists of the rest. Only the latter part

will be used for the updating pro
ess, whereas the former one will be 
opied to A

T;i+1

resp. A

L;i+1

without 
hange. s

BR;i

similarly splits A

B;i

and A

R;i

.

Fig. 2 (b), (
), (d), and (e) give a preview of the 
onstru
tion in the sample

mat
hing matrix after step i = 1, 2, 3, and 4, respe
tively. The 
entered grey box

represents the remaining part of M whi
h has not been pro
essed so far. By our


onstru
tion, with ea
h step, it shrinks by two rows and 
olumns.

We need the following terminology for the des
ription of the 
onstru
tion pro
ess.

For two anti
hains C;D �M the set

IP(C;D) := fp

1

2 C j 8 p

2

2 D : :(p

1

� p

2

_ p

1

� p

2

)g
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Figure 2: (a) splitting of M , (b){(e) 
onstru
tion of anti
hains, (f) �nal de
ompo-

sition.

is 
alled the in
omparable part of C relative to D. Clearly, IP(C;D) [ D is the

greatest anti
hain above D 
ontained in C [ D. We say C is in
omparable to D if

IP(C;D) = C, and a single mat
h p

1

2M is in
omparable toD if IP(fp

1

g; D) = fp

1

g.

We are now prepared to dis
uss the generation of the anti
hains in more detail.

Initially, there are no anti
hains, i.e., we have A

T;0

= A

L;0

= A

B;0

= A

R;0

= ; by

initializing ea
h start and end index to 1 and 0, respe
tively. Then, for ea
h step

i = 1; : : : ; dm=2e, we start with T

i

to determine A

T;i

from A

T;i�1

. Let s := s

TL;i�1

and e := e

T;i�1

. The �rst s � 1 anti
hains remain un
hanged and are simply 
opied

from A

T;i�1

to A

T;i

. Now de�ne A

s

A

T;i

as A

s

A

T;i�1

[IP(T

i

\M;A

s

A

T;i�1

). For example, when

pro
essing T

2

in Fig. 2 (b), IP(T

2

\M;A

1

A

T;1

) = f(2; 2)g, and thus the mat
h (2; 2)

43



Pro
eedings of the Prague Stringology Club Workshop '99


ombined with A

1

A

T;1

makes up A

1

A

T;2

as shown in Fig. 2 (
). Next, for u = s+ 1; : : : ; e,

the anti
hain A

u

A

T;i�1

is handled in the same way to set up A

u

A

T;i

, but only those mat
hes

in T

i

not belonging to A

s

A

T;i

; : : : ; A

T;i

A

u�1

are 
onsidered. Finally, we establish s

TL;i

:= s

and, if there are no mat
hes left, e

T;i

:= e. Otherwise, we set e

T;i

to e+1 and 
olle
t all

remaining mat
hes in a new anti
hain A

T;i

A

e+1

. Also, if A

R;i�1

6= ;, we 
he
k whether its

last anti
hain A

~e

A

R;i�1

, ~e := e

R;i�1

, is in
omparable to A

T;i

A

e+1

. In this 
ase we say A

~e

A

R;i�1

is ina
tivated by A

T;i

A

e+1

, and we remove A

~e

A

R;i�1

from A

R;i

by setting e

R;i

:= e

R;i�1

.

Continuing our example with T

2

in Fig. 2 (b), we see there are two mat
hes (2; 4)

and (2; 5) left after pro
essing A

1

A

T;2

. Therefore a new anti
hain A

2

A

T;2

is 
reated, but

A

1

A

R;1

remains un
hanged be
ause, for example, (2; 4) � (4; 9). The �nal set A

T;2

is

shown in Fig. 2 (
) (the modi�
ations to the other anti
hains are des
ribed below).

Now let us 
onsider the work involved with T

3

. The mat
h (3; 3) 
annot be put into

A

1

A

T;3

, but into A

2

A

T;3

, and the other mat
h (3; 6) makes up the new anti
hain A

3

A

T;3

. This

time (3; 6) ina
tivates (3; 8), and thus A

2

A

R;2

is removed. The result is illustrated in

Fig. 2 (d) (all mat
hes lo
ated in deleted anti
hains are indi
ated by grey dots).

S := T

i

\M ; (� Determine A

T;i

�)

For u := s

TL;i�1

To e

T;i�1

Do f

A

u

A

T;i

:= A

u

A

T;i�1

[ IP(S;A

u

A

T;i�1

);

S := S n IP(S;A

u

A

T;i�1

);

5 g;

If S 6= ; Then f

e

T;i

:= e

T;i�1

+ 1; e := e

T;i

; A

e

A

T;i

:= S;

e

R;i

:= e

R;i�1

; ~e := e

R;i

;

If s

BR;i�1

� e

R;i�1

Then f

10 If IP(A

~e

A

R;i�1

; A

e

A

T;i

) = A

~e

A

R;i�1

Then f

D

TR

:= D

TR

[A

~e

A

R;i�1

;

e

R;i

:= ~e� 1;

g;

g;

15 g Else f e

T;i

:= e

T;i�1

; e

R;i

:= e

R;i�1

g;

For u := 1 To s

TL;i�1

� 1 Do A

u

A

T;i

:= A

u

A

T;i�1

;

S := L

i

\M ; (� Determine A

L;i

�)

For u := s

TL;i�1

To e

L;i�1

Do f

A

u

A

L;i

:= A

u

A

L;i�1

[ IP(S;A

u

A

L;i�1

);

20 S := S n IP(S;A

u

A

L;i�1

);

g;

If S 6= ; Then f

e

L;i

:= e

L;i�1

+ 1; e := e

L;i

; A

e

A

L;i

:= S;

e

B;i

:= e

B;i�1

; ~e := e

B;i

;

25 If s

BR;i�1

� e

B;i�1

Then f

If IP(A

~e

A

B;i�1

; A

e

A

L;i

) = A

~e

A

B;i�1

Then f

D

BL

:= D

BL

[ A

~e

A

B;i�1

;

e

B;i

:= ~e� 1;

g;

30 g;

g Else f e

L;i

:= e

L;i�1

; e

B;i

:= e

B;i�1

g;

For u := 1 To s

TL;i�1

� 1 Do A

u

A

L;i

:= A

u

A

L;i�1

;

33 s

TL;i

:= s

TL;i�1

;

S := B

i

\M ; (� Determine A

B;i

�)

For u := s

BR;i�1

To e

B;i

Do f

A

u

A

B;i

:= A

u

A

B;i�1

[ IP(S;A

u

A

B;i�1

);

S := S n IP(S;A

u

A

B;i�1

);

g;

If S 6= ; Then f

e

B;i

:= e

B;i

+ 1; e := e

B;i

; A

e

A

B;i

:= S;

If s

TL;i

� e

L;i

Then f

~e := e

L;i

;

If IP(A

~e

A

L;i

; A

e

A

B;i

) = A

~e

A

L;i

Then f

D

BL

:= D

BL

[ A

~e

A

L;i

;

e

L;i

:= ~e� 1;

g;

g;

g;

For u := 1 To s

BR;i�1

� 1 Do A

u

A

B;i

:= A

u

A

B;i�1

;

S := R

i

\M ; (� Determine A

R;i

�)

For u := s

BR;i�1

To e

R;i

Do f

A

u

A

R;i

:= A

u

A

R;i�1

[ IP(S;A

u

A

R;i�1

);

S := S n IP(S;A

u

A

R;i�1

);

g;

If S 6= ; Then f

e

R;i

:= e

R;i

+ 1; e := e

R;i

; A

e

A

R;i

:= S;

If s

TL;i

� e

T;i

Then f

~e := e

T;i

;

If IP(A

~e

A

T;i

; A

e

A

R;i

) = A

~e

A

T;i

Then f

D

TR

:= D

TR

[A

~e

A

T;i

;

e

T;i

:= ~e� 1;

g;

g;

g;

For u := 1 To s

BR;i�1

� 1 Do A

u

A

R;i

:= A

u

A

R;i�1

;

s

BR;i

:= s

BR;i�1

;

(a) (b)

Figure 3: The algorithms for generating A

T;i

& A

L;i

(a), and A

B;i

& A

R;i

(b).

Having determined A

T;i

, we 
ontinue with the ne
essary 
al
ulations for A

L;i

whi
h

are very similar. The �rst s� 1 anti
hains are 
opied and then, for u = s; : : : ; e

L;i�1

,

A

u

A

L;i

is de�ned as the union of A

u

A

L;i�1

and the in
omparable part of L

i

relative to

A

u

A

L;i�1

, where only those mat
hes are 
onsidered whi
h have not already been used.

Remaining mat
hes form a new anti
hain and, if they are in
omparable to the last
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anti
hain in A

B;i�1

, we de
rease e

B;i

by one. The 
orresponding algorithm in Fig. 3 (a)

also introdu
es two additional sets D

TR

and D

BL

whi
h 
ontain all deleted mat
hes.

Details will be given in the next se
tion.

Before pro
essing A

B;i�1

and A

R;i�1

in an analogous way, we �rst 
he
k whether

the �rst anti
hain in A

T;i

or A

L;i

is TL{
omplete, i.e., whether one of them 
ontains a

mat
h (k; `) su
h that 1 � k; ` � i. For example, in the 
on�guration shown in Fig. 2

(
), A

1

A

T;2

is TL{
omplete due to the mat
h (2; 2). As soon as A

s

A

T;i

is dete
ted to be

TL{
omplete, s

TL;i

is in
reased by one, thus the �rst anti
hains in both 
orresponding

sets whi
h are 
he
ked for additional mat
hes remain un
hanged from now on. If there

is no su
h anti
hain in A

L;i

(i.e. s > e

L;i

), but s

BR;i�1

� e

B;i

, then we additionally

test whether A

s

A

T;i

is in
omparable to the last anti
hain in A

B;i�1

and, should this

situation arise, delete this anti
hain from A

B;i

by de
reasing e

B;i

.

Now assume A

s

A

L;i

is TL{
omplete. Then, as shown in Fig. 4 (a), we also in
rease

s

TL;i

, and similarly, if s > e

T;i

and s

BR;i�1

� e

R;i

, we de
rease e

R;i

if A

s

A

L;i

ina
tivates

the last anti
hain in A

R;i

.

(� Che
k A

T;i

for TL{
ompleteness �)

If s

TL;i

� e

T;i

Then f

s := s

TL;i

;

If 9 (k; `) 2 A

s

A

T;i

: k; ` � i Then f

5 If s > e

L;i

Then f

If s

BR;i�1

� e

B;i

Then f

~e := e

B;i

;

If IP(A

~e

A

B;i�1

; A

s

A

T;i

) = A

~e

A

B;i�1

Then f

D

BL;i

:= D

BL;i

[A

~e

A

B;i�1

;

10 e

B;i

:= ~e� 1;

g;

g;

e

L;i

:= s; A

s

A

L;i

:= ;;

g;

15 s

TL;i

:= s+ 1;

g;

g;

(� Che
k A

L;i

for TL{
ompleteness �)

If s

TL;i

� e

L;i

Then f

20 s := s

TL;i

;

If 9 (k; `) 2 A

s

A

L;i

: 1 � k; ` � i Then f

If s > e

T;i

Then f

If s

BR;i�1

� e

R;i

Then f

~e := e

R;i

;

25 If IP(A

~e

A

R;i�1

; A

s

A

L;i

) = A

~e

A

R;i�1

Then f

D

TR;i

:= D

TR;i

[A

~e

A

R;i�1

;

e

R;i

:= ~e� 1;

g;

g;

30 e

T;i

:= s; A

s

A

T;i

:= ;;

g;

s

TL;i

:= s+ 1;

g;

34 g;

(� Che
k A

B;i

for BR{
ompleteness �)

If s

BR;i

� e

B;i

Then f

s := s

BR;i

;

If 9 (k; `) 2 A

s

A

B;i

: k > m� i ^ ` > n� i Then f

If s > e

R;i

Then f

If s

TL;i

� e

T;i

Then f

~e := e

T;i

;

If IP(A

~e

A

T;i

; A

e

A

R;i

) = A

~e

A

T;i

Then f

D

TR;i

:= D

TR;i

[ A

~e

A

T;i

;

e

T;i

:= ~e� 1;

g;

g;

e

R;i

:= s; A

s

A

R;i

:= ;;

g;

s

BR;i

:= s+ 1;

g;

g;

(� Che
k A

R;i

for BR{
ompleteness �)

If s

BR;i

� e

R;i

Then f

s := s

BR;i

;

If 9 (k; `) 2 A

s

A

R;i

: k > m� i ^ ` > n� i Then f

If s > e

B;i

Then f

If s

TL;i

� e

L;i

Then f

~e := e

L;i

;

If IP(A

~e

A

L;i

; A

e

A

B;i

) = A

~e

A

L;i

Then f

D

BL;i

:= D

BL;i

[A

~e

A

L;i

;

e

L;i

:= ~e� 1;

g;

g;

e

B;i

:= s; A

s

A

B;i

:= ;;

g;

s

BR;i

:= s+ 1;

g;

g;

(a) (b)

Figure 4: The algorithms for handling 
omplete anti
hains in A

T;i

& A

L;i

(a), and in

A

B;i

& A

R;i

(b).

The remaining work in step i 
on
erns with the analogous 
onstru
tion of A

B;i

and

A

R;i

. (The analogue of TL{
ompleteness is 
alled BR{
ompleteness. An anti
hain is

BR{
omplete if it 
ontains a mat
h (k; `) with m � i < k � m and n � i < ` � n.)

Details are available from the algorithms shown in Fig. 3 (b) and Fig. 4 (b).
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The main program shown in Fig. 5 is straightforward. Our next task is to elaborate

the 
onne
tion between the generated anti
hains and a minimal de
omposition of M .

This is done in the next se
tion.

i := 1; (� Initialization �)

s

T;0

:= 1; s

L;0

:= 1; s

B;0

:= 1; s

R;0

:= 1;

e

T;0

:= 0; e

L;0

:= 0; e

B;0

:= 0; e

R;0

:= 0;

For i := 0 To dm=2e Do D

TL;i

:= ;;

5 For i := 0 To bm=2
 Do D

BR;i

:= ;;

While i � bm=2
 Do f (� Main loop �)

Determine A

T;i

and A

L;i

; (� see Fig. 3 (a) �)

Look for TL-
omplete anti
hains in A

T;i

and A

L;i

; (� see Fig. 4 (a) �)

Determine A

B;i

and A

R;i

; (� see Fig. 3 (b) �)

10 Look for BR-
omplete anti
hains in A

B;i

and A

R;i

; (� see Fig. 4 (b) �)

i := i+ 1;

g;

If Odd(m) Then f

Determine A

T;dm=2e

and A

L;dm=2e

; (� see Fig. 3 (a) �)

15 Look for TL-
omplete anti
hains in A

T;dm=2e

and A

L;dm=2e

; (� see Fig. 4 (a) �)

g;

Figure 5: The main program for de
omposing M

3 Analysis of the Constru
tion

In this se
tion, we study how to 
ombine the anti
hains into larger ones su
h that

a minimal de
omposition of M is obtained. We further establish some results whi
h

later help us to 
onstru
t an LCS in linear spa
e.

Let us assume m is odd, and let i = dm=2e. For te
hni
al reasons, we then put

A

u

A

B;i

:= A

u

A

B;i�1

and A

u

A

R;i

:= A

u

A

R;i�1

for all 1 � u � e

B;i�1

and 1 � u � e

R;i�1

. We also

set s

BR;i

:= s

BR;i�1

, e

B;i

:= e

B;i�1

, and e

R;i

:= e

R;i�1

. Furthermore, for 0 � i � dm=2e,

we de�ne A

u

A

T;i

:= ;, A

u

A

L;i

:= ;, A

u

A

B;i

:= ;, and A

u

A

R;i

:= ; for u > e

T;i

, u > e

L;i

, u > e

B;i

,

and u > e

R;i

, respe
tively.

Lemma 3.1 Let 1 � i � dm=2e. Then the following holds:

a) 8 s

TL;i�1

� u < v � e

T;i

8 p

1

2 A

v

A

T;i

9 p

2

2 A

u

A

T;i

: p

1

� p

2

:

b) 8 s

TL;i�1

� u < v � e

L;i

8 p

1

2 A

v

A

L;i

9 p

2

2 A

u

A

L;i

: p

1

� p

2

:


) 8 s

BR;i�1

� u < v � e

B;i

8 p

1

2 A

v

A

B;i

9 p

2

2 A

u

A

B;i

: p

1

� p

2

:

d) 8 s

BR;i�1

� u < v � e

R;i

8 p

1

2 A

v

A

R;i

9 p

2

2 A

u

A

R;i

: p

1

� p

2

:

Proof. We only show the �rst 
laim, the other proofs are similar. Let p

1

= (k; `). Sin
e

A

v

A

T;i

� T

�dm=2e

, p

1

has been added to A

v

A

T;k

while pro
essing T

k

in step k, and k � i.

Clearly, from the way S is handled in lines 1{5 of Fig. 3 (a), p

1

=2 IP(T

k

\M;A

j

A

T;k�1

),

for s

TL;k�1

� j < v. Hen
e, sin
e s

TL;k�1

� s

TL;i�1

� u < v, there is some p

2

2 A

u

A

T;k�1

su
h that p

1

� p

2

or p

1

� p

2

. But the se
ond 
ase would imply p

2

2 T

k

0

for some

k

0

> k whi
h is impossible during the �rst k steps of our 
onstru
tion. Finally observe

that the algorithm never removes mat
hes while updating an anti
hain, thus p

2

is still

present in A

u

A

T;i

. 2
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Lemma 3.2 The following holds:

a) 8 1 � i � dm=2e 8 v : v < s

TL;i

() A

v

A

T;i

or A

v

A

L;i

is TL{
omplete :

b) 8 1 � i � dm=2e 8 v : v < s

BR;i

() A

v

A

B;i

or A

v

A

R;i

is BR{
omplete :

Proof. We only prove the �rst 
laim, the other one is similar.

If. By 
ontradi
tion, let i be the �rst step su
h that A

v

A

T;i

or A

v

A

L;i

is TL{
omplete,

but v � s

TL;i

. Clearly v 6= s

TL;i�1

, otherwise the TL{
ompleteness would have been

dete
ted by the algorithm shown in Fig. 4 (a), and thus, 
ontradi
ting the property of

v, we would have v < s

TL;i

= s

TL;i�1

+1. Hen
e v > s

TL;i�1

. By the TL{
ompleteness,

there is some mat
h (k; `) 2 A

v

A

T;i

[A

v

A

L;i

su
h that 1 � k; ` � i. Furthermore, by Lemma

3.1, there exists some mat
h (k

0

; `

0

) 2 A

T;i

A

v�1

[A

L;i

A

v�1

su
h that (k

0

; `

0

)� (k; l). But then

1 � k

0

; `

0

< i, and therefore either A

T;i

A

v�1

or A

L;i

A

v�1

would be TL-
omplete after step i�1,

a 
ontradi
tion to the 
hoi
e of i.

Only if. Obvious from the management of the start indi
es. 2

Lemma 3.3 For all i; u de�ne A

u

A

TL;i

:= A

u

A

T;i

[ A

u

A

L;i

and A

u

A

BR;i

:= A

u

A

B;i

[ A

u

A

R;i

. Then

a) 8 0 � i � dm=2e 8 1 � u � minfe

T;i

; e

L;i

g : A

u

A

TL;i

is an anti
hain .

b) 8 0 � i � dm=2e 8 1 � u � minfe

B;i

; e

R;i

g : A

u

A

BR;i

is an anti
hain .

Proof. We prove the �rst 
laim by indu
tion on i. The base i = 0 it trivial be
ause

A

T;0

= A

L;0

= ;. For the indu
tion step i� 1! i, we 
onsider three di�erent 
ases.

Case a: 1 � u < s

TL;i�1

. Then A

u

A

T;i

= A

u

A

T;i�1

and A

u

A

L;i

= A

u

A

L;i�1

(see lines 15 and 30

in Fig. 3 (a), respe
tively). Thus, by the indu
tion hypothesis, A

u

A

TL;i

is an anti
hain.

Case b: s

TL;i�1

� u � minfe

T;i�1

; e

L;i�1

g. By de�nition the set T := IP(S;A

u

A

T;i�1

)

added toA

u

A

T;i

in line 3 (Fig. 3 (a)) is in
omparable to A

u

A

T;i�1

, but it is also in
omparable

to A

u

A

L;i

as we now demonstrate. Let (k; `) 2 IP(S;A

u

A

T;i�1

) and (k

0

; `

0

) 2 A

u

A

L;i

. Observe

k = i and ` � i. Also note that k

0

> `

0

and `

0

� i be
ause A

u

A

L;i

� L

�i

. Thus

(k; `) � (k

0

; `

0

) would 
ontradi
t ` � i � `

0

. Furthermore, (k

0

; `

0

) � (k; `) would

imply `

0

< k

0

< k = i, i.e., A

u

A

L;i�1

would be TL-
omplete, a 
ontradi
tion to Lemma

3.2 and the 
hoi
e of u. Similar arguments 
an be used for the set L := IP(S;A

u

A

L;i�1

)

added to A

u

A

L;i

in line 19. Finally note that T � T

i

and L � L

i

are also in
omparable.

Case 
: minfe

T;i�1

; e

L;i�1

g < u � minfe

T;i

; e

L;i

g. Clearly, this 
ase is only possible

if u = e

T;i

= e

T;i�1

+ 1 or u = e

L;i

= e

L;i�1

+ 1. If both 
onditions hold, then

A

u

A

T;i

� T

i

\M (lines 1 and 7) and A

u

A

L;i

� L

i

\M (lines 17 and 23), thus their union

obviously makes up an anti
hain. Otherwise, only one new anti
hain is generated

whereas the other one is updated, and we 
an argument as in the se
ond 
ase to show

that both anti
hains are in
omparable.

The proof of the se
ond 
laim is similar. 2

Lemma 3.4 Let 1 � i � dm=2e. Then the following holds:

a) 8 j � maxfe

T;i

; e

L;i

g 8 p

j

2 A

j

A

TL;i

9 p

1

2 A

1

A

TL;i

; : : : ; p

j�1

2 A

j�1

A

TL;i

:

p

1

� : : :� p

j

:
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b) 8 j � maxfe

B;i

; e

R;i

g 8 p

j

2 A

j

A

BR;i

9 p

1

2 A

1

A

BR;i

; : : : ; p

j�1

2 A

j�1

A

BR;i

:

p

1

� : : :� p

j

:

Proof. We prove the �rst 
laim by 
hoosing p

v

for v = j � 1; : : : ; 1.

Consider step j

0

� i when p

v+1

was added to A

v+1

A

TL;j

0

� A

v+1

A

TL;i

. Then Lemma 3.1

implies the existen
e of p

v

if v � s

TL;j

0

�1

. Otherwise, by Lemma 3.2, A

v

A

T;j

0

�1

or A

v

A

L;j

0

�1

has been dete
ted to be TL{
omplete before step j

0

, i.e., A

v

A

TL;j

0

�1


ontains a mat
h

(k

0

; `

0

) su
h that k

0

; `

0

< j

0

. But p

v+1

is of the form (k; `) with k; ` � j

0

, thus we 
an


hoose p

v

:= (k

0

; `

0

).

Similar arguments 
an be used for the se
ond 
laim. 2

Lemma 3.5 For 0 � i � dm=2e, there are two 
hains

C

TR;i

; C

BL;i

� T

�i

[ L

�i

[ B

�i

[ R

�i

of length e

T;i

+ e

R;i

and e

B;i

+ e

L;i

, respe
tively.

Proof. We prove the existen
e of the �rst 
hain C

TR;i

by indu
tion on i. The base

i = 0 is trivial. For the indu
tion step (i� 1)! i, we have to analyse the situations

whi
h 
ause e

T;i

+ e

R;i

to be greater than e

T;i�1

+ e

R;i�1

. One su
h situation is given

in lines 7{14 of Fig. 3 (a) if the 
ondition in line 10 is not satis�ed be
ause then

e := e

T;i

= e

T;i�1

+ 1 and ~e := e

R;i

= e

R;i�1

. But sin
e IP(A

~e

A

R;i�1

; A

e

A

T;i

) 6= A

~e

A

R;i�1

there exist two 
omparable mat
hes 


T

2 A

e

A

T;i

and 


R

2 A

~e

A

R;i�1

. More pre
isely, sin
e




T

2 T

i

and 


R

2 R

�i�1

, we must have (k; `)� (k

0

; `

0

). Thus, by Lemma 3.4, we 
an


onstru
t a 
hain

p

1

� : : :� p

e�1

� 


T

� 


R

� p

0

~e�1

� : : :� p

0

1

of length e + ~e.

Similar arguments 
an be used for the remaining situations and for the other


hain. 2

Our next task is to reveal the stru
ture in D

TR

and D

BL

. We shall show that

for ea
h deleted mat
h there always is some anti
hain whi
h is in
omparable to this

mat
h. In order to prove this property, we keep tra
k of ea
h deleted mat
h by assign-

ing it to some anti
hain during the 
onstru
tion pro
ess. More pre
isely, whenever

an anti
hain A is removed due to the existen
e of some other anti
hain B whi
h ina
-

tivates it, all mat
hes in A are assigned to B, e.g., 
onsidering the situation in Fig. 2

(d), the mat
h (3; 8) is assigned to A

3

A

T;3

. Furthermore, all previously deleted mat
hes

assigned to A now also belong to B. The assigned mat
hes are inherited when an

anti
hain is updated, e.g., in Fig. 2 (e), (3; 8) also belongs to A

3

A

T;4

. These rules guar-

antee that after step i, ea
h deleted mat
h is assigned to exa
tly one anti
hain in

A

T;i

[A

L;i

[A

B;i

[A

R;i

. We write D(A) to denote the set of mat
hes assigned to an

anti
hain A.

Lemma 3.6 Let 1 � i � dm=2e, and assume (k; `) 2 D(A) for some anti
hain A in

A

T;i

, A

L;i

, A

B;i

, or A

R;i

. Then

a) (k; `) 2 D

TR

=) 8 (k

0

; `

0

) 2 A : k � k

0

^ ` � `

0

.
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b) (k; `) 2 D

BL

=) 8 (k

0

; `

0

) 2 A : k � k

0

^ ` � `

0

.

Proof. For the �rst 
laim, let us assume (k; `) was assigned to A while exe
uting line

11 in Fig. 3 (a) during step j � i (the following arguments 
an analogously be applied

to the other instru
tions whi
h modify D

TR

). Thus A = A

e

A

T;i

, where e = e

T;j

. Now

we 
onsider two 
ases 
on
erning the status of (k; `) before step j.

Case a: (k; `) 2 A

~e

A

R;j�1

� R

�j�1

, ~e = e

R;j�1

. Then ` > n � j + 1. From lines 1,

6, 7, and 10 we see that (k; `) is in
omparable to any mat
h (k

00

; `

00

) in A

e

A

T;j

. But

A

e

A

T;j

� T

j

, thus k

00

= j and `

00

� n� j +1. Hen
e, the in
omparability implies k � j.

Now observe that A

e

A

T;j

is the �rst 
onstru
ted part of A

e

A

T;i

, later extensions are taken

from T

j+1

; : : : ; T

i

. Thus every mat
h (k

0

; `

0

) 2 A

e

A

T;i

ful�lls k

0

� j and `

0

� n� j + 1,

and the 
laim follows.

Case b: (k; `) is assigned to A

~e

A

R;j�1

. We 
an indu
tively assume

8 (k

00

; `

00

) 2 A

~e

A

R;j�1

: k � k

00

^ ` � `

00

Deleted mat
hes are never assigned to empty anti
hains. Thus there is at least one

mat
h (k

00

; `

00

) 2 A

~e

A

R;j�1

, and we 
an prove as in the �rst 
ase that k

00

� k

0

and `

00

� `

0

.

Hen
e we have k � k

0

and ` � `

0

.

The proof of the se
ond 
laim follows similar arguments and is therefore omitted. 2

Lemma 3.7 Let 1 � i � dm=2e. Then the following holds:

a) 8 1 � u � e

T;i

: D

BL

\D(A

u

A

T;i

) 6= ; =) A

u

A

L;i

= ; ^ A

u

A

T;i

is TL{
omplete .

b) 8 1 � u � e

L;i

: D

TR

\D(A

u

A

L;i

) 6= ; =) A

u

A

T;i

= ; ^ A

u

A

L;i

is TL{
omplete .


) 8 1 � u � e

B;i

: D

TR

\D(A

u

A

B;i

) 6= ; =) A

u

A

R;i

= ; ^ A

u

A

B;i

is BR{
omplete .

d) 8 1 � u � e

R;i

: D

BL

\D(A

u

A

R;i

) 6= ; =) A

u

A

B;i

= ; ^ A

u

A

R;i

is BR{
omplete .

Proof. We again only show the �rst 
laim. From lines 10 and 11 in Fig. 3 (a),

we see that all mat
hes assigned there to A

u

A

T;i

are either pla
ed into D

TR

, or they

have been assigned before to some non{
omplete anti
hain in A

R;i�1

. But 
on
erning

the latter 
ase, we see from lines 26 and 27 in Fig. 3 (b) that any su
h mat
h has

been put into D

TR

as well, or again belongs to some non{
omplete anti
hain in A

T;j

,

j < i. Repeating this argument, we 
on
lude that all mat
hes assigned to A

T;i

are


ontained in D

TR

. The only ex
eption is given by lines 8 and 9 in Fig. 4 (a), where

deleted mat
hes are assigned to A

u

A

T;i

, but added to D

BL

. But then, from lines 3, 4,

and 13, the 
laim follows. 2

Lemma 3.8 All mat
hes assigned to an anti
hain A are pairwise in
omparable, thus

by Lemma 3.6, they extend the anti
hain to a larger one.

Proof. Whenever a mat
h is deleted, the algorithm always removes a 
omplete an-

ti
hain. By indu
tion, this anti
hain B together with its assigned mat
hes forms a

larger anti
hain C. If there already is a set of mat
hes D assigned to A (whi
h is

only possible when A is dete
ted to be 
omplete), then, following the arguments given
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in the proof of Lemma 3.7, C � D

BL

and D � D

TR

or vi
e versa, and Lemma 3.6

immediately implies that B and D are pairwise in
omparable. 2

We are now prepared to 
onstru
t a minimal de
omposition of M . We start by

de
omposing M n (D

TR

[D

BL

), the deleted mat
hes are later 
onsidered in Thm. 3.9

below. The 
onstru
tion is as follows. Using Lemma 3.3, we 
ombine the �rst

e

TL

:= minfe

T;dm=2e

; e

L;dm=2e

g anti
hains in A

T;dm=2e

and A

L;dm=2e

to larger ones. We

also 
onne
t the �rst e

BR

:= minfe

B;dm=2e

; e

R;dm=2e

g anti
hains in A

B;dm=2e

to the 
orre-

sponding ones in A

R;dm=2e

. For example, in Fig. 2 (e), we have e

T;dm=2e

= e

B;dm=2e

= 3

and e

L;dm=2e

= e

R;dm=2e

= 2, thus this generates four 
ombined anti
hains. Con
erning

the remaining anti
hains we 
onsider four di�erent 
ases.

Case a: e

T;dm=2e

� e

L;dm=2e

and e

B;dm=2e

� e

R;dm=2e

. Then we leave the remaining

anti
hains as they are and have p := e

L;dm=2e

+ e

B;dm=2e

anti
hains in total. But by

Lemma 3.5, there also exists a 
hain of this length. Thus, by Dilworth's theorem, the

de
omposition is minimal.

Case b: e

T;dm=2e

> e

L;dm=2e

and e

B;dm=2e

� e

R;dm=2e

. Similar to the �rst 
ase we have

p := e

T;dm=2e

+ e

R;dm=2e

anti
hains, and also a 
hain of this length.

Case 
: e

T;dm=2e

� e

L;dm=2e

and e

B;dm=2e

< e

R;dm=2e

. From the management of the

start and end indi
es, we have e

T;dm=2e

� s

TL;dm=2e

� 1. Thus, by Lemma 3.2, A

u

A

L;dm=2e

is not TL{
omplete for u > e

T;dm=2e

. This implies k > dm=2e and ` � dm=2e for

any mat
h (k; `) 2 A

u

A

L;dm=2e

� L

�dm=2e

. For all v > e

B;dm=2e

and (k

0

; `

0

) 2 A

v

A

R;dm=2e

we similarly have k

0

� dm=2e and `

0

> n � bm=2
 � dm=2e. Thus A

u

A

L;dm=2e

and

A

v

A

R;dm=2e

are in
omparable. Now assume e

L;dm=2e

� e

R;dm=2e

. Then we 
an 
onne
t

all remaining anti
hains in A

R;dm=2e

to 
orresponding ones in A

L;dm=2e

and obtain

p := e

L;dm=2e

+ e

B;dm=2e

anti
hains in total, thus again a minimal de
omposition. If

e

L;dm=2e

< e

R;dm=2e

, then similarly p := e

T;dm=2e

+ e

R;dm=2e

is the optimal length of a


hain in M n (D

TR

[D

BL

).

Case d : e

T;dm=2e

> e

L;dm=2e

and e

B;dm=2e

> e

R;dm=2e

. Finding a minimal de
omposition

is slightly more 
ompli
ated in this 
ase. Consider the following algorithm. Starting

with u := e

T;dm=2e

and v := e

R;dm=2e

+ 1, we 
he
k whether A

u

A

T;dm=2e

and A

v

A

B;dm=2e

are

in
omparable. If they are not, then we ba
kup u and v in ~u and ~v, respe
tively, and

in
rease v by one. Otherwise the anti
hains are 
onne
ted, u is set to u� 1, and v is

set to v+1. We repeat this until all remaining anti
hains in either A

T;dm=2e

or A

B;dm=2e

have been used, i.e., u = e

L;dm=2e

or v > e

B;dm=2e

. Then the total number of anti
hains

is p := u + e

B;dm=2e

. Thus, if u = e

L;dm=2e

, we have p = e

L;dm=2e

+ e

B;dm=2e

, and the

de
omposition is optimal. Now assume u > e

L;dm=2e

. If ~u and ~v are unused, then all

remaining anti
hains in A

B;dm=2e

have been 
onne
ted to 
orresponding anti
hains in

A

T;dm=2e

, and we have p = e

T;dm=2e

+e

R;dm=2e

. Hen
e, in this 
ase the de
omposition is

also a minimal one. Finally assume that ~u and ~v have been used for saving u and v at

least on
e. Then for j = ~v + 1; : : : ; e

B;dm=2e

, A

j

A

B;dm=2e

has been 
onne
ted to A

~u+~v�j

A

T;dm=2e

,

and we have u = ~u� (e

B;dm=2e

� ~v). Thus p = ~u� (e

B;dm=2e

� ~v) + e

B;dm=2e

= ~u+ ~v.

But from the properties of ~u and ~v, it 
an be shown (similar to the proof of Lemma

3.5) that there is a 
hain of length ~u + ~v whi
h 
ontains two mat
hes p

1

2 A

~u

A

T;dm=2e

and p

2

2 A

~v

A

B;dm=2e

. Hen
e, the 
onstru
ted de
omposition is optimal.

Let us 
onsider our example. Case d applies to the situation in Fig. 2 (e), and A

3

A

T;4

is 
ompared with A

3

A

B;4

. Sin
e these anti
hains are in
omparable, they are 
onne
ted,

and we obtain a de
omposition 
onsisting of 5 anti
hains in total.
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Theorem 3.9 The length of an LCS in M equals p as de�ned in the four 
ases above.

Proof. Consider a 
ombined anti
hain A of the de
omposition. Assume an anti
hain

A

u

A

T;dm=2e

2 A

T;dm=2e

is one 
omponent of it (otherwise, we 
an handle the following


onstru
tion in a similar way).

Case a: A

u

A

T;dm=2e

is the only 
omponent of A. Then we extend A with the set B of

deleted mat
hes assigned to A

u

A

T;dm=2e

. Lemma 3.8 guarantees that the result is still

an anti
hain.

Case b: A

u

A

T;dm=2e

has been 
ombined with A

u

A

L;dm=2e

. By Lemma 3.7, B � D

TR

. Let

(k; `) 2 A

u

A

L;dm=2e

and (k

0

; `

0

) 2 A

u

A

T;dm=2e

. From (k; `) 2 L

dm=2e

, (k

0

; `

0

) 2 T

dm=2e

, and

the in
omparability of (k; `) and (k

0

; `

0

), we have k � k

0

^ ` � `

0

. Now 
onsider a

mat
h (k

00

; `

00

) 2 B. By Lemma 3.6, we have k � k

0

� k

00

and ` � `

0

� `

00

. Hen
e,

A

u

A

L;dm=2e

is in
omparable to B. We 
an use a similar way to show that the set C of

deleted mat
hes assigned to A

u

A

L;dm=2e

is a subset of D

BL

and in
omparable to A

u

A

T;dm=2e

.

Finally, B and C are 
learly in
omparable as well. Thus A

u

A

T;dm=2e

[ A

u

A

L;dm=2e

[B [ C

is still an anti
hain.

Case 
: A

u

A

T;dm=2e

has been 
ombined with some other anti
hain D 2 A

B;i

. Then,

similar to the proof of the se
ond 
ase, we 
an show that the union of A and the two


orresponding sets of assigned mat
hes still make up an anti
hain.

By handling ea
h 
ombined anti
hain in this way, we 
an 
onstru
t a de
omposi-

tion of M without generating any additional anti
hains. The proof is 
omplete. 2

Fig. 2 (f) illustrates the 
orresponding de
omposition for our example.

4 Implementation

We now des
ribe an eÆ
ient implementation for the given algorithm and analyse its

time and spa
e 
omplexity.

All new anti
hains 
reated in step i are extensions from anti
hains generated

during step i�1. Furthermore, the only anti
hains used for de
omposingM are from

the last step. Thus for the implementation it is suÆ
ient to update the anti
hains of

interest. The same is true for the start and end indi
es, and we thus sometimes drop

the index i from now on. The ne
essary information for ea
h a
tual anti
hain 
an be

kept in one single number as follows. Let 1 � i � dm=2e and 1 � u � e

T;i

. We de�ne

ThreshT [u℄ as the leftmost 
olumn used by some mat
h in A

u

A

T;i

, i.e.,

ThreshT [u℄ := minf` j 9 k : (k; `) 2 A

u

A

T;i

g :

For example, in Fig. 2 (b), ThreshT [1℄ = 3, and in Fig. 2 (d), Top-Thresh[1℄ = 2,

ThreshT [2℄ = 3, and ThreshT [3℄ = 6. To update this array in ea
h step, we use an

auxiliary array LeftPos on �� [1 : n+ 1℄ given by

LeftPos [
; `℄ := min(fn+ 1g [ fj j ` � j � n ^ y

`

= 
g) ;

i.e., LeftPos[a

i

; `℄ equals the 
olumn number of the leftmost o

uren
e of a mat
h in

row i lo
ated right to 
olumn `, and equals n + 1 if there is no su
h mat
h. In our

example (y = 
babba
a
), we obtain the following values:
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a 3 3 3 6 6 6 8 8 10 10

b 2 2 4 4 5 10 10 10 10 10


 1 7 7 7 7 7 7 9 9 10

Now it is not diÆ
ult to see that the following routine 
orre
tly updates ThreshT

when pro
essing T

i

, representing lines 1{7 in Fig. 3 (a). (Similar pro
edures are used

in [AG87, Ri
94, Ri
95℄ to determine 
ontours whi
h 
orrespond to the anti
hains

used here.)

k := LeftPos[a

i

; i℄;

For u := s

TL

To e

T

Do f

j := ThreshT [u℄;

If k � j And k � n� i+ 1 Then f

ThreshT [u℄ := k; k := LeftPos [a

i

; j + 1℄;

g;

g;

If k � n� i+ 1 Then f e

T

:= e

T

+ 1; ThreshT [e

T

℄ := k g;

For A

L;i

, A

B;i

, and A

R;i

we introdu
e additional arrays ThreshL, ThreshB , and

ThreshR whi
h similarly store the topmost rows, rightmost 
olumns, and bottommost

rows used by the 
orresponding anti
hains. To handle them analogously to ThreshT ,

we also need three more auxiliary arrays given by

TopPos[
; k℄ := min(fm + 1g [ fj j k � j � m ^ x

j

= 
g) ; (1 � k � m + 1) ;

RightPos[
; `℄ := max(f0g [ fj j 1 � j � ` ^ y

`

= 
g) ; (0 � ` � n) ;

BottomPos[
; k℄ := max(f0g [ fj j 1 � j � k ^ x

j

= 
g) ; (0 � k � m) :

Note that in Fig. 3 and Fig. 4, ea
h test for the in
omparability of two anti
hains


an be repla
ed by a rather simple 
onditional statement. For example, 
onsidering

line 10 in Fig. 3 (a), we know that all mat
hes in T

i

are lo
ated to the left of any

mat
h in R

�i�1

. Thus, with e := e

T;i

and ~e := e

R;i

, A

e

A

T

and A

~e

A

R

are in
omparable if

and only if A

~e

A

R

is also 
ompletely 
ontained in the �rst i rows, i.e., ThreshR[~e℄ � i.

The algorithm presented in Fig. 6 shows how the other situations are handled. It also

makes use of some spe
ial implementation details whi
h 
annot be dis
ussed here,

e.g., the 
onstru
tion starts with the bottommost row instead of the topmost one

when m is even. In Fig. 6 some lines are marked with a dot (�) on their left sides.

These lines are used for the 
onstru
tion of an LCS and should be ignored for the

moment.

The 
omplexity of the algorithm may be dedu
ed as follows. The four auxiliary

arrays 
an be easily prepro
essed in O(ns) time and spa
e, where s = j�j. Clearly,

during one of the dm=2e iterations of the main loop, none of the four inner While{

loops takes more than O(p) time, and when determining p, at most dm=2e pairs of

anti
hains have to be 
ompared. Thus the algorithm takes at most O(ns+mp) time.

Furthermore, observe that the j{th anti
hain in A

T

(whi
h is added to A

T

during

some step i � j) must 
ontain a mat
h (k; `) with ` � n� (p� j), otherwise it would

be impossible to 
onstru
t a 
hain of length p. But then this anti
hain is dete
ted

to be TL{
omplete after step n� (p� j), therefore it is only 
onsidered for at most

n� (p� j)� i � n� p times in the 
orresponding While{loop (lines 59{65). Similar

arguments 
an be given for anti
hains in A

L

, A

B

, and A

R

. Hen
e, we have shown the

following theorem.
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Determine TopPos and LeftPos;

Determine BottomPos and RightPos;

For u := 0 To dm=2e Do f

ThreshT [u℄ := 0; ThreshL[u℄ := 0;

5 g;

For u := 0 To bm=2
 Do f

ThreshB [u℄ := n+ 1; ThreshR[u℄ := m+ 1;

g;

t := 1; ` := 1; b := m; r := n;

10 s

TL

:= 1; e

T

:= 0; e

L

:= 0;

s

BR

:= 1; e

B

:= 0; e

R

:= 0;

If Odd(m) Then Goto Line 57;

While t � b Do f (� Main loop �)

k := RightPos [x

b

; r℄; (� Update A

B

�)

15 u := s

BR

;

While u � e

B

Do f

j := ThreshB [u℄;

If k � j Then f

ThreshB [u℄ := k; k := RightPos [x

b

; j � 1℄;

20 g;

u := u+ 1;

g;

If k � ` Then f

e

B

:= u; ThreshB [e

B

℄ := k;

25 If ThreshL[e

L

℄ � b Then e

L

:= e

L

� 1

� Else Update 


B

, 


L

, `

BL

;

g;

k := BottomPos [y

r

; b� 1℄; (� Update A

R

�)

u := s

BR

;

30 While u � e

R

Do f

j := ThreshR[u℄;

If k � j Then f

ThreshR[u℄ := k; k := BottomPos [y

r

; j � 1℄;

g;

35 u := u+ 1;

g;

If k � t Then f

e

R

:= u; ThreshR[e

R

℄ := k;

If ThreshT [e

T

℄ � r Then e

T

:= e

T

� 1

� Else Update 


T

, 


R

, `

TR

;

g;

(� Che
k for BR{
omplete anti
hains �)

If ThreshB [s

BR

℄ = r Then f

If s

BR

> e

R

Then f

45 If ThreshT [e

T

℄ � r Then e

T

:= e

T

� 1

� Else Update 


T

, 


R

, `

TR

;

g;

s

BR

:= s

BR

+ 1;

g Else If ThreshR[s

BR

℄ = b Then f

50 If s

BR

> e

B

Then f

If ThreshL[e

L

℄ � b Then e

L

:= e

L

� 1

� Else Update 


B

, 


L

, `

BL

;

g;

s

BR

:= s

BR

+ 1;

55 g;

t := t+ 1; ` := `+ 1;

k := LeftPos [x

t

; `℄; (� Update A

T

�)

u := s

TL

;

While u � e

T

Do f

60 j := ThreshT [u℄;

If k � j Then f

ThreshT [u℄ := k; k := LeftPos[x

t

; j + 1℄;

g;

u := u+ 1;

65 g;

If k � r Then f

e

T

:= u; ThreshT [e

T

℄ := k;

If ThreshR[e

R

℄ � t Then e

R

:= e

R

� 1

� Else Update 


T

, 


R

, `

TR

;

70 g;

k := TopPos [y

l

; t℄; (� Update A

L

�)

u := s

TL

;

While u � e

L

Do f

j := ThreshL[u℄;

75 If k � j Then f

ThreshL[u℄ := k; k := TopPos[y

l

; j + 1℄;

g;

u := u+ 1;

g;

80 If k � b Then f

e

L

:= u; ThreshL[e

L

℄ := k;

If ThreshB [e

B

℄ � ` Then e

B

:= e

B

� 1

� Else Update 


B

, 


L

, `

BL

;

g;

85 (� Che
k for TL{
omplete anti
hains �)

If ThreshT [s

TL

℄ = ` Then f

If s

TL

> e

L

Then f

If ThreshB [e

B

℄ � ` Then e

B

:= e

B

� 1

� Else Update 


B

, 


L

, `

BL

;

90 g;

s

TL

:= s

TL

+ 1;

g Else If ThreshL[s

TL

℄ = t Then f

If s

TL

> e

T

Then f

If ThreshR[e

R

℄ � t Then e

R

:= e

R

� 1

� Else Update 


T

, 


R

, `

TR

;

g;

s

TL

:= s

TL

+ 1;

g;

b := b� 1; r := r � 1;

100 g;

(� Determine length p of an LCS �)

If e

T

> e

L

And e

B

> e

R

Then f

If s

TL

� e

L

Then s

TL

:= e

L

+ 1;

If s

BR

� e

R

Then s

BR

:= e

R

+ 1;

105 u := e

T

; v := s

BR

;

While u � s

TL

And v � e

B

Do f

If ThreshT [u℄ � ThreshB [v℄

Then u := u� 1

� Else f ~u := u; ~v := v g;

110 v := v + 1;

g;

p := u+ e

B

;

113 g Else p := maxfe

L

+ e

B

; e

T

+ e

R

g;

Figure 6: The O(ns+minfmp; p(n� p)g) algorithm for determining the length p of

an LCS.

Theorem 4.1 The length p of an LCS 
an be 
omputed in O(ns+minfmp; p(n�p)g)

time and O(ns) spa
e.

This result has been a
hieved before by Ri
k [Ri
94, Ri
95℄, and in fa
t, the algo-

rithm presented here is some kind of dualization of Ri
k's method, but our algorithm
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is signi�
antly faster as we shall show in Se
t. 6.

5 Constru
tion of an LCS in Linear Spa
e

This se
tion deals with the generation of an LCS. The idea is to apply the divide{

and{
onquer s
heme [ABG92, Hir75, KR87℄ whi
h �rst identi�es at least one point

of an LCS su
h that this LCS is splitted into two parts of roughly the same size.

Then the remainder is 
omputed by re
ursive 
alls. The method presented here

usually determines two LCS{neighbouring mat
hes 


TL

and 


BR

whi
h are lo
ated

in T

�dm=2e

[ L

�dm=2e

and B

�dm=2e

[ R

�dm=2e

, respe
tively. This is a

omplished as

follows.

In ea
h step i of the 
onstru
tion des
ribed in Se
t. 2, we subsequently update

the following variables:

� p

TL

is the mat
h whi
h 
aused A

s

A

T;i

or A

s

A

L;i

to be
ome TL{
omplete, s = s

TL;i

�1.

For example, in Fig. 2 (
), p

TL

= (2; 2), and in Fig. 2 (d) and (e), p

TL

= (3; 3).

� p

BR

has a 
orresponding meaning for the last BR{
omplete anti
hain in A

B;i

and A

R;i

, e.g., in Fig. 2 (d), p

BR

= (6; 7).

� 


T

and 


R

are the two mat
hes introdu
ed in the proof of Lemma 3.5. They

both lie in C

TR;i

and are neighbours in this 
hain. Furthermore, 


T

and 


R

are always lo
ated in the �rst i topmost rows and i rightmost 
olumns of M ,

respe
tively.

� 


B

and 


L

have analogous properties for C

BL;i

.

� `

TR

and `

BL

is the position of 


T

in C

TR;i

and of 


L

in C

BL;i

, respe
tively. Also,

`

TR

+1 and `

BL

+1 is the position of 


R

in C

TR;i

and of 


B

in C

BL;i

, respe
tively.

p

TL

and p

BR


an be easily updated. For example, 
onsider lines 85{98 in Fig. 6 where

new TL{
omplete anti
hains are handled. Let p

TL

= (u; v). If the 
ondition in line

86 is satis�ed, then we know p

TL

has to be set to the bottommost mat
h lo
ated in

the �rst t rows and 
olumn `. Therefore two additional statements 
an be inserted

between lines 86 and 87 su
h that u is set to BottomPos[y

`

; t℄ and v is set to `. Similar

statements apply for the situation in lines 92{98, and this 
ompletes the des
ription

of the management for p

TL

. p

BR


an be handled in a similar way.




T

, 


R

, and `

TR

must be updated whenever the length of C

TR;i

in
reases. These

situations are indi
ated in lines 40, 46, 69, and 95 in Fig. 6, and here we only sket
h

how to manage them. By arguments analogous to the ones given in the proof of

Lemma 3.4, we have to distinguish two 
ases when updating 


T

. If s

TL;i

> e

T;i

, then




T

is set to p

TL

, otherwise 


T


an be determined by some additional statements whi
h

are similar to the ones used for updating p

TL

. In either 
ase, we set `

TR

to e

T;i

be
ause

e

T;i

is the position of 


T

in C

TR;i

, as seen in the proof of Lemma 3.5. The management

of 


B

, 


L

, and `

BL

is similar.

Now let us review the 
onstru
tion of the �nal de
omposition given in the end of

Se
t. 3. If p is set to e

T;dm=2e

+ e

R;dm=2e

, then we 
an use 


T

and 


R

as the appropriate

mat
hes for 


TL

and 


BR

. Similarly, if p = e

B;dm=2e

+ e

L;dm=2e

, we establish 


TL

= 


L

and 


BR

= 


B

. Finally, if a longest 
hain is determined by the algorithm des
ribed in
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ase d of the 
onstru
tion (
orresponding to lines 103{112 in Fig. 6), and p is not set

to one of the above values, then we 
an use the ba
kup values ~u and ~v to determine




TL

:= (BottomPos[y

û

; b℄; y

û

) and 


BR

:= (TopPos[y

v̂

; t℄; y

v̂

), where û := ThreshT [~u℄

and v̂ := ThreshB [~v℄.

Before re
ursively 
alling the algorithm for the remaining parts of the LCS, we

see it is ne
essary for our routine to not only work on the 
omplete matrix of size

[1 : m℄� [1 : n℄, but also on any subarea [k

1

: k

2

℄� [`

1

: `

2

℄. The ne
essary 
hanges are

quite straightforward, and we do not provide any details here. Moreover, it might be

impossible to lo
ate both 


TL

and 


BR

(e.g., when jM j = 1), but then one re
ursive


all 
an simply be skipped.

Theorem 5.1 An LCS 
an be 
onstru
ted in O(ns+minfmp;m logm+ p(n� p)g)

time and O(ns) spa
e.

Proof. Clearly, for the top{level 
all, the additional overhead needed to keep tra
k

of the new variables is bounded by O(m). Thus, not taking into a

ount the time


onsumed by prepro
essing or any re
ursive 
alls, we 
an assume the number of ele-

mentary operations to be bounded by d(m+minfmp; p(n�p)g), for some appropriate


onstant d. We �rst examine the bound d(m+mp). Let 


TL

= (k; `) and 


BR

= (k

0

; `

0

)

(if only one mat
h has been determined, the analysis is similar). Consider the two

�rst{level re
ursive 
alls 
on
erning the areas M

1

:= [1 : k � 1℄ � [1 : ` � 1℄ and

M

2

:= [k

0

+1 : m℄� [`

0

+1 : n℄. Let p

1

and p

2

denote the length of an LCS in M

1

and

M

2

, respe
tively, i.e., p

1

+ p

2

= p � 2. Re
all that 


TL

is lo
ated in the �rst dm=2e

rows and 
olumns, i.e., the length of one side of M

1

is bounded by dm=2e � 1. The

same is true for M

2

, and thus the number of operations taken for both �rst{level 
alls

is bounded by

d(dm=2e � 1)(p

1

+ 1) + d(dm=2e � 1)(p

2

+ 1) � dp

m

2

Repeating this argument, we obtain a dmp=2

i

bound for the at most 2

i

ith{level

re
ursive 
alls. Sin
e re
ursion ends at level dlog(m=2)e, this sums up to at most

2 � dmp for the 
omplete algorithm.

For the other bound d(m + p(n � p)), let g := (

p

5 � 1)=2 � 0:618 and 
onsider

the following two 
ases.

Case a: p � gm. Then

2 � dmp �

2

1� g

d(1� g)mp =

2

1� g

d(m� gm)p �

2

1� g

d(m� p)p �

2

1� g

d(n� p)p

Case b: p > gm. Let h := maxfk � 1; `� 1g and h

0

:= maxfm� k

0

; n� `

0

g. Clearly

h+ h

0

� n� 2. Also note that p

1

; p

2

� dm=2e� 1 be
ause an LCS 
annot ex
eed the

length of any side of M

1

and M

2

. But then the two �rst{level re
ursive 
alls use at

most

d(dm=2e � 1 + p

1

(h� p

1

)) + d(dm=2e � 1 + p

2

(h

0

� p

2

))

� d(m+ p

1

(h� p

1

) + p

2

(h

0

� p

2

)) � d(m+ (dm=2e � 1)(h� p

1

+ h

0

� p

2

))

� d(m+ (dm=2e � 1)(n� p)) � d(m+

1

2g

p(n� p))
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operations. Similarly, all ith{level re
ursive 
alls together use at most

d(m + p(n� p)=(2g)

i

)

operations. This sums up to

d(m logm+

1

1� 1=(2g)

p(n� p)) = d(m logm +

2

1� g

p(n� p)) :

Both 
ases imply that the algorithm takes at mostO(ns+minfmp;m logm+p(n�p)g)

time, and the worst 
ase overhead fa
tor 
an be expe
ted to be 2=(1 � g) < 5:25.

Furthermore, when 
omparing the divide{and{
onquer routine with the algorithm

whi
h determines the length p of an LCS, we only need O(logm) additional sta
k

spa
e, and thus the O(ns) spa
e bound is still valid. 2

6 Experimental Results

We 
ompared our routine with the algorithm proposed by Ri
k [Ri
94, Ri
95℄ whi
h


learly outperforms any other method when 
onstru
ting longest 
ommon subse-

quen
es of intermediate lengths. Ri
k's algorithm is also a 
exible one, being very

eÆ
ient for short and long LCS as well. It uses a strategy similar to the one pre-

sented here, but only 
onstru
ts anti
hains (or 
ontours) from the top and left side

of M . While this substantially simpli�es the implementation and also the prepro-


essing phase (i.e., we only have to 
ompute LeftPos and TopPos), there are two

severe drawba
ks. First, in order to re
over an LCS after determining its length, the

so{
alled dominant mat
hes must be saved during the 
onstru
tion of the 
ontours,

and this might take 
(mn) spa
e. Se
ond, the number of 
he
ks of Thresh{values is

signi�
antly in
reased when de
omposing M from only two sides. For an alphabet of

size 8, Table 1 shows some sample results when determining p for di�erent settings

of m, n, and p.

Table 1: Frequen
y of 
he
ks of Thresh{values

m n p Ri
k [Ri
95℄ New method

500 500 100 16864 14983

500 500 200 28962 23078

500 500 300 33276 23394

500 500 400 20384 13276

m n p Ri
k [Ri
95℄ New method

1500 1500 300 145129 126796

1500 1500 600 265107 216845

1500 1500 900 280026 207000

1500 1500 1200 172846 121516

The 
orresponding running times are presented in Table 2. Both algorithms were

programmed in a straightforward way, using no spe
ial optimizations, and were tested

on an Intel Pentium II at 300 MHz. It 
an be seen that our algorithm only takes

about 70% of the time needed by Ri
k's method when 
omputing the length of an

LCS whi
h is of intermediate length. For very short or very long LCS our method

slightly su�ers from the additional overhead during the prepro
essing phase, but is

still very eÆ
ient.

Finally, we 
he
ked the running times and the 
onsumed spa
e when generating

an LCS. Table 3 shows that in spite of the linear spa
e restri
tion, our algorithm
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Table 2: Running times in mi
rose
onds for determining the length p of an LCS.

m n p Ri
k [Ri
95℄ New method

500 500 100 3352 3626

500 500 200 5659 4725

500 500 300 6978 4890

500 500 400 5000 3516

m n p Ri
k [Ri
95℄ New method

1500 1500 300 24451 21868

1500 1500 600 46099 34835

1500 1500 900 54176 33791

1500 1500 1200 38791 22308

sometimes runs more than twi
e as fast as Ri
k's method. This is due to the signi�
ant

overhead in Ri
k's routine whi
h is 
aused by the additional statements responsible

for saving the 
ontours in memory. Furthermore, the worst 
ase fa
tor 5.25 
al
ulated

in the proof of Thm. 5.1 is mu
h too pessimisti
 in pra
ti
al situations. Instead, a


omparison with Table 2 shows that it roughly equals 2.

Table 3: Running times in mi
rose
onds for 
onstru
ting an LCS of length p.

m n p Ri
k [Ri
95℄ New method

500 500 100 6319 6044

500 500 200 14341 9066

500 500 300 19505 9890

500 500 400 15769 7802

m n p Ri
k [Ri
95℄ New method

750 750 250 23132 16374

750 750 400 39835 20495

750 750 550 38516 16758

750 750 700 16319 9945

Table 4: Allo
ated spa
e in bytes for 
onstru
ting an LCS of length p.

m n p Ri
k [Ri
95℄ New method

500 500 100 64284 34072

500 500 200 143820 34072

500 500 300 199464 34072

500 500 400 176328 34072

m n p Ri
k [Ri
95℄ New method

750 750 250 219244 51072

750 750 400 390172 51072

750 750 550 396136 51072

750 750 700 193780 51072

Con
lusions

We have investigated a new algorithm for the Longest Common Subsequen
e Problem.

In spite of the quite 
ompli
ated te
hni
al details ne
essary for the 
onstru
tion and

analysis, the �nal routines proved to be extremely pra
ti
al. More pre
isely, we have

shown three results. First, we have presented a new fast method for determining the

length of an LCS. Se
ond, we have developed a linear spa
e algorithm for 
onstru
ting

an LCS in O(ns+minfmp;m logm+ p(n� p)g) time, thus solving a previously open

problem. And third, we have shown by some experimental results that this algorithm

is by far the fastest one when dealing with usual appli
ations.
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