
Binary Image Compression via

Monochromatic Pattern Substitution:

A Sequential Speed-Up

Luigi Cinque1, Sergio De Agostino1, and Luca Lombardi2

1 Computer Science Department, Sapienza University, 00198 Rome, Italy
deagostino@di.uniroma1.it

2 Computer Science Department, University of Pavia, 27100 Pavia, Italy

Abstract. A method for compressing binary images is monochromatic pattern sub-
stitution. Monochromatic rectangles inside the image are detected and compressed by
a variable length code. Such method has no relevant loss of compression effectiveness
if the image is partitioned into up to a thousand blocks and each block is compressed
independently. Therefore, it can be implemented in parallel on both small and large
scale arrays of processors with distributed memory and no interconnections. We show
in this paper that such method has a speed-up if applied sequentially to the partitioned
image. Experimental results show that the speed-up happens if the image is partitioned
into up to 256 blocks and sequentially each block is compressed independently. It fol-
lows that the sequential speed-up can also be applied to a parallel implementation on
a small scale system.

Keywords: lossless compression, binary image, sequential algorithm, parallel comput-
ing, distributed system

1 Introduction

A low-complexity binary image compressor has been designed in [3], which employs
monochromatic pattern substitution and is implementable on small and large scale
parallel systems. When it comes to parallel implementations, we wish to remark that
parallel models have two types of complexity, the interprocessor communication and
the input-output mechanism. While the input/output issue is inherent to any parallel
algorithm and has standard solutions, the communication cost of the computational
phase after the distribution of the data among the processors and before the output
of the final result is obviously algorithm-dependent. So, we need to limit the inter-
processor communication and involve more local computation to design a practical
algorithm. The simplest model for this phase is, of course, a simple array of proces-
sors with no interconnections and, therefore, no communication cost. Compression
via monochromatic pattern substitution has no relevant loss of effectiveness if the
image is partitioned into up to a thousand blocks and each block is compressed inde-
pendently. Therefore, it can be implemented in parallel on both small and large scale
arrays of processors with distributed memory and no interconnections.
Another low-complexity compressor for binary images is BLOCKMATCHING [6], [7],
which extends data compression via textual substitution to two-dimensional data by
compressing sub-images rather than substrings [5], [8]. However, it does not work
locally since it applies a generalized LZ1-type method with an unrestricted window
and it is not scalable [2], [4].
In this paper, we show that monochromatic pattern substitution has a speed-up if

Luigi Cinque, Sergio De Agostino, Luca Lombardi: Binary Image Compression via Monochromatic Pattern Substitution: A Sequential Speed-Up,

pp. 220–225.

Proceedings of PSC 2011, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04870-2 c© Czech Technical University in Prague, Czech Republic



Luigi Cinque et al.: Binary Image Compression via Monochromatic Pattern Substitution 221

applied sequentially to the partitioned image. Experimental results show that the
speed-up happens if the image is partitioned into up to 256 blocks and sequentially
each block is compressed independently. It follows that the sequential speed-up can
also be applied to a parallel implementation on a small scale system. Such speed-
up depends on the fact that monochromatic rectangles crossing boundaries between
blocks are not computed. We refine the partition by splitting the blocks horizontally
and vertically and, after four refinements, experimentations show that no further im-
provement is obtained.
Compression via monochromatic pattern substitution is described in section 2. Sec-
tion 3 presents the experimental results of the sequential speed-up. The experimental
results of the sequential speed-up applied to small scale parallel computation are
shown in section 4. Conclusions and future work are given in section 5.

Image 1 block 4 blocks 16 blocks 64 blocks 256 blocks

ccitt1 87.84 76.67 50.32 39.30 32.97
ccitt2 105.48 88.48 66.05 46.90 33.98
ccitt3 73.99 67.02 55.90 47.10 40.77
ccitt4 68.41 64.58 59.10 55.28 50.18
ccitt5 77.59 72.92 60.55 51.85 38.94
ccitt6 69.63 61.57 52.08 40.91 36.24
ccitt7 69.46 66.02 63.27 58.91 52.90
ccitt8 77.74 73.84 61.44 50.12 42.51

Figure 1. Sequential compression times on the CCITT images (ms.)

Image 1 block 4 blocks 16 blocks 64 blocks 256 blocks

ccitt1 43.67 38.75 26.87 20.95 17.85
ccitt2 49.21 41.61 32.10 23.47 17.76
ccitt3 38.46 35.44 31.31 26.83 23.31
ccitt4 38.11 36.46 34.73 33.02 30.35
ccitt5 40.23 37.83 33.11 26.79 22.65
ccitt6 36.26 32.79 28.56 22.85 20.33
ccitt7 37.59 35.97 35.01 33.26 30.46
ccitt8 38.39 36.74 31.79 26.42 22.82

Figure 2. Sequential decompression times on the CCITT images (ms.)

2 Monochromatic Pattern Substitution

Monochromatic rectangles inside the image are compressed by a variable length code.
Such monochromatic rectangles are detected by means of a raster scan (row by row).
If the 4×4 subarray in position (i, j) of the image is monochromatic, then we compute
the largest monochromatic rectangle in that position else we leave it uncompressed.
The encoding scheme for such rectangles uses a flag field indicating whether there is
a monochromatic match (0 for the white ones and 10 for the black ones) or not (11).
If the flag field is 11, it is followed by the sixteen bits of the 4×4 subarray (raw data).



222 Proceedings of the Prague Stringology Conference 2011

Image 4 blocks 16 blocks 64 blocks 256 blocks

ccitt1 24.99 22.65 18.55 13.25
ccitt2 43.07 29.85 20.18 17.77
ccitt3 22.84 22.69 17.16 14.73
ccitt4 31.77 19.61 19.65 18.33
ccitt5 26.03 23.20 17.24 13.48
ccitt6 21.37 22.53 15.35 12.81
ccitt7 32.82 25.34 20.62 18.03
ccitt8 26.76 27.96 19.44 14.61

Figure 3. Parallel compression times on the CCITT images (ms.)

Image 4 blocks 16 blocks 64 blocks 256 blocks

ccitt1 13.10 9.56 7.02 5.83
ccitt2 18.56 13.07 8.78 5.69
ccitt3 12.97 9.02 8.29 6.61
ccitt4 20.86 11.02 9.35 8.71
ccitt5 15.42 10.16 8.10 6.67
ccitt6 11.43 9.13 6.99 6.12
ccitt7 21.51 10.72 9.40 8.59
ccitt8 10.83 10.65 8.18 7.05

Figure 4. Parallel decompression times on the CCITT images (ms.)

Image 1 block 256 blocks

1 410 310
2 400 310
3 420 310
4 420 310
5 410 310

Figure 5. Sequential compression times on the 4096× 4096 pixels images (ms.)

Otherwise, we bound by twelve the number of bits to encode either the width or the
length of the monochromatic rectangle. We use either four or eight or twelve bits to
encode one rectangle side. Therefore, nine different kinds of rectangle are defined. A
monochromatic rectangle is encoded in the following way:

– the flag field indicating the color;
– three or four bits encoding one of the nine kinds of rectangle;
– bits for the length and the width.

Four bits are used to indicate when twelve bits or eight and twelve bits are needed
for the length and the width. This way of encoding rectangles plays a relevant role
for the compression performance. In fact, it wastes four bits when twelve bits are
required for the sides but saves four to twelve bits when four or eight bits suffice.
The procedure for computing the largest monochromatic rectangle with left upper
corner in position (i, j) takes O(M logM) time, where M is the size of the rectan-
gle [3]. The positions covered by the detected rectangles are skipped in the linear



Luigi Cinque et al.: Binary Image Compression via Monochromatic Pattern Substitution 223

Image 1 block 256 blocks

1 200 160
2 200 160
3 210 160
4 210 160
5 200 160

Figure 6. Sequential decompression times on the 4096× 4096 pixels images (ms.)

Image 16 blocks 256 blocks

1 40 30
2 40 30
3 40 30
4 40 30
5 40 30

Figure 7. Parallel compression times on the 4096× 4096 pixels images (ms.)

Image 16 blocks 256 blocks

1 20 10
2 20 10
3 20 10
4 20 10
5 20 10

Figure 8. Parallel decompression times on the 4096× 4096 pixels images (ms.)

scan of the image and the sequential time to compress an image of size n by rectangle
matching is Ω(n logM). The analysis of the running time of this algorithm involves
a waste factor, defined as the average number of detected monochromatic rectangles
covering the same pixel. We experimented that the waste factor is less than 2 on
realistic image data. Therefore, the heuristic takes O(n logM) time. On the other
hand, the decoding algorithm is linear.

3 The Sequential Speed-Up

The variable length coding technique explained in the previous section has been ap-
plied to the CCITT test set of bi-level images. The images of the CCITT test set
are 1728 × 2376 pixels. If these images are partitioned into 4k sub-images and the
compression heuristic is applied independently to each sub-image, the compression ef-
fectiveness remains about the same for 1 ≤ k ≤ 4. Though the waste factor decreases
with the increasing of k. As mentioned in the previous section, the waste factor is
less than 2 on realistic image data (as the CCITT test set) for k = 0 and decreases
to about 1 when k = 4. It follows that if we refine the partition by splitting the
blocks horizontally and vertically, after four refinements no further relevant speed-up
is obtained (we consider a speed-up relevant if it has the order of magnitude of one
centisecond). The experimental results in figure 1 show the speed-up obtained if the



224 Proceedings of the Prague Stringology Conference 2011

image is partitioned into up to 256 blocks and sequentially each block is compressed
independently. Obviously, there is a similar speed-up for the decompressor as shown
in figure 2. Decompression is about twice faster than compression. Compression and
decompression running times were obtained using a single core of a quad core with a
CPU Intel Core 2 Quad Q9300 – 2.5GHz with 3.25GB of RAM.
The sequential speed-up can also be applied to a parallel implementation on a small
scale system since the experimental results show that the speed-up happens for an
image partitioned into less than 256 blocks. However, in order to decompress in par-
allel raw data are associated with the flag field 110 so that we can indicate with
111 the end of the encoding of a block. The parallel compression and decompression
running times on the CCITT image test set are given in figures 3 and 4 using the four
cores of the quadcore machine. Obviously, a similar experiment could be run using
two refinemets or one refinement of the partition on a system with 16 or 64 cores re-
spectively. Experimental results with 16 processors on test set of larger topographic
images are presented in the next section.

4 Speeding-Up Parallel Computation

The compression effectiveness of the variable-length coding technique depends on the
sub-image size rather than on the whole image. In fact, if we consider a test set
of larger binary images as the five 4096 × 4096 pixels half-tone topographic images
shown in [3] and these images are partitioned into 4k sub-images, again we obtain
about the same compression effectiveness for 1 ≤ k ≤ 4 and a sequential speed-up
with the increasing of k. On the other hand, no further speed-up is obtained for
k = 5, that is, the waste factor seems to be determined by the number of refinements
independently from the image size on realistic data. We give in figures 5 and 6 the
compression and decompression running times with one processor of a 256 Intel Xeon
3.06GHz CPU’s machine (avogadro.cilea.it) on the five images before and after
the partition into 256 blocks. The compression and decompression running times with
16 processors before and after the partition into 256 blocks are given in figures 7 and
8. This means that each processor works on a sub-image partitioned into 16 blocks
when the number of blocks is 256. Running times are given as milliseconds, which are
the time units used for the quadcore experiments, but the centisecond is the actual
time unit employed with the avogadro machine and the running time is provided as
an integer number.

5 Conclusions

In this paper, we showed that the most efficient way to apply monochromatic pattern
substitution to binary image compression with a sequential algorithm is to com-
press independently the 256 blocks of a partitioned input image. Since a speed-up
is obtained as well with partitions of lower cardinality, this can be used to improve
the performance of parallel compression on a small scale distributed system. We pre-
sented experimental results with four and sixteen processors. As future work, we wish
to experiment with more processors by implementing the procedure on a graphical
processing unit [1].

avogadro.cilea.it


Luigi Cinque et al.: Binary Image Compression via Monochromatic Pattern Substitution 225

References

1. L. Bianchi, R. Gatti, and L. Lombardi: The future of parallel computing: Gpu vs cell - general

purpose planning against fast graphical computation architecture, which is the best solution for

general purpose computation, in Proceedings GRAPP, 2008, pp. 419–425.
2. L. Cinque, S. D. Agostino, and L. Lombardi: Speeding-up lossless image compression:

Experimental results on a paralle machine, in Proceedings Prague Stringology Conference, 2008,
pp. 35–45.

3. L. Cinque, S. D. Agostino, and L. Lombardi: Binary image compression via monochromatic

pattern substitution: Scalability and effectiveness, in Proceedings Prague Stringology Conference,
2010, pp. 103–115.

4. L. Cinque, S. D. Agostino, and L. Lombardi: Scalability and communication in parallel

low-complexity lossless compression. Mathematics in Computer Science, 3 2010, pp. 391–406.
5. A. Lempel and J. Ziv: A universal algorithm for sequential data compression. IEEE Transac-

tions on Information Theory, 23 1977, pp. 337–343.
6. J. A. Storer: Lossless image compression using generalized lz1-type methods, in Proceedings

IEEE Data Compression Conference, 1996, pp. 290–299.
7. J. A. Storer and H. Helfgott: Lossless image compression by block matching. The Computer

Journal, 40 1997, pp. 137–145.
8. J. A. Storer and T. G. Szymanski: Data compression via textual substitution. Journal of

ACM, 29 1982, pp. 928–951.


