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Abstract. We present a number of performance tuning techniques as applied to the
Dead-Zone algorithm for exact single (keyword) pattern matching in strings in sequen-
tial processing. The tuning techniques presented here are focused on the algorithm
skeleton as well as how the shifters are used, and include: removal of some redundant
computation, and shifting using 2-grams, among others. Benchmarking results are given
for the C implementation in a modern processor without penalties for misaligned mem-
ory access.

1 Introduction

String searching is a common task in any software which processes text. The task can
be implemented either as an index search, like in web search engines, or as a local
search—as in a web browser showing a loaded web page. Here we consider only the
latter one where the text to be searched has not been processed beforehand. Formally,
the exact string matching problem is defined as follows: given a pattern P = p0 · · · pm−1

and a text T = t0 · · · tn−1 both in an alphabet Σ, find all the occurrences (including
overlapping ones) of P in T . So far, dozens of algorithms have been developed for
this problem, see e.g. [5].

We present a number of performance tuning techniques as applied to the Dead-
Zone algorithms for exact single pattern matching in strings in sequential processing.
The original algorithm is actually a family of algorithms, accommodating numerous
possible shifters in a way similar to what the Boyer-Moore family does. Because the
Dead-Zone algorithm applies two-way shifting, it is possible to construct inputs for
which the algorithm makes fewer comparisons than other comparison-based algo-
rithms.

The tuning techniques presented here are focused on the algorithm skeleton as
well as how the shifters are used, and include: removal of some redundant computa-
tion (surprisingly, not caught by the optimising compiler), and shifting using 2-grams,
among others. Benchmarking results are given for the C implementation. The exper-
iments show that tuning triples the speed of the algorithm.

The rest of the paper is organised as follows. Section 2 present principles of the
Dead-Zone algorithms and introduces the base algorithm. Section 3 shows how we
optimised the base algorithm. Section 4 gives the results of our practical experiments,
and the discussion of Section 5 concludes the article.

2 Background

Here, we only give a brief introduction to the functioning of the Dead-Zone, while some
other papers [3,12,16,17] provide a broader picture. Some of the performance details
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are discussed in [12], which also offers more pointers to various Dead-Zone versions
as well as correctness proofs. In particular, that paper gives some simple recursive
versions of Dead-Zone before presenting a loop-based (non-recursive) implementation
which explicitly maintains a stack for efficiency. That loop-based version, known as
DZ(iter,sh) in [12], is slightly improved and presented here as Algorithm DZ0—with
an explanation below.

Algorithm DZ0 (Dead-Zone)
1 lo← 0;hi← n− (m− 1)
2 count ← 0
3 push(0,max)
4 while true do
5 probe ← ⌊(lo+ hi)/2⌋
6 i← 0
7 while i < m and pi = tprobe+i do i← i+ 1
8 if i = m then count ← count + 1
9 kdleft ← probe − shl [tprobe ] + 1
10 kdright ← probe + shr [tprobe+m−1]
11 if lo < kdleft then
12 push(kdright , hi)
13 hi← kdleft

14 else
15 lo ← kdright

16 if lo ≥ hi then
17 while top.first ≥ top.second do pop
18 if top.second = max then return count

19 else
20 lo ← top.first
21 hi← top.second
22 pop

As mentioned earlier, rather than recursion, this version of Dead-Zone maintains
a stack of ‘live-zones’—substrings of the text T still to be considered for matches;
each such substring is represented by its beginning index ‘lo’ (inclusive) and end
index ‘hi’ (not inclusive) [12]. Line 3 pushes a sentinel live-zone onto the stack to
make empty-stack detection more efficient, and initialises the lo and hi variables to
indicate that the entire string is still a live-zone, keeping in mind that the upper
bound is n− (m− 1) because matches cannot occur in the last m− 1 symbols.

The outer while loop introduced in line 4 has no guard and is exited when the
sentinel element of the stack is popped, indicating there are no more live-zones to
consider.

In general, Dead-Zone algorithm variants are divide-and-conquer style—with a
resemblance to Quick Sort. Lines 5–8 determines the mid-point/probe of the current
live-zone (line 5), then uses a small inner loop (called a match loop) to make a match
attempt at that position (lines 6 and 7), and notes any match by incrementing a
counter (line 8); as with the SMART framework1, only the number of matches is
tracked as opposed to the positions of all matches.

Line 10 (we return to line 9 shortly) uses a (precomputed) lookup table shr giving a
right shift used to split the current live-zone and compute the new lo of the right-hand
portion. In this particular version, the lookup table is indexed by the character aligned

1 https://www.dmi.unict.it/∼faro/smart/
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with the end of P , namely tprobe+m−1; this is known as the Horspool shifter [7], and its
precomputation is not discussed here. In fact, any Boyer-Moore style shift function
could have been used, and this is one of the optimisation opportunities discussed in
the next section. Line 9 similarly uses a symmetrical left shift table shl 2 to give the
new hi of the left-hand split of the current live-zone. Again, precomputation of that
shift table is not discussed here.

Because shifters are symmetrical and kdleft is a lower bound pointing to the first
dead position, one must be added to it in line 9. Alternatively, this addition could be
incorporated into the table shl.

Lines 11–13 evaluate whether the newly-determined left-hand portion is empty
(test, line 11)—if not, it needs to be explored, and the newly-determined right-hand
portion is pushed onto the stack (line 12) for later consideration before proceeding
with the left-hand portion (line 13).

Lines 14 onwards are for the case where the left-hand portion is empty, meaning
that we proceed only with the newly-determined right-hand portion, starting with
line 15. Line 16 onwards considers the possibility that this newly-determined right-
hand portion is also empty, in which case elements are repeatedly popped from the
stack (loop on line 17) until the top-of-stack contains a non-empty live-zone. If the
top-of-stack is the sentinel pushed in line 3, the algorithm has fully explored T and
it returns (line 18). If not, the top-of-stack contains the live-zone to use and lo and
hi are appropriately updated and that element popped.

Execution then continues (in the live-zone just determined in lines 11–22) at the
top of the loop in line 4.

3 Development

Our aim was to develop a faster version of the Dead-Zone algorithm. We tried several
local changes to Algorithm DZ0 and evaluated experimentally how they affected the
performance. As a result, we ended up suggesting three local optimisations to the
Dead-Zone algorithm.

3.1 Elimination of Dead-Zones in the Stack

We noticed that Algorithm DZ0 may sometimes push dead-zones onto the stack. This
can be eliminated by adding the test kdright < hi to line 12 before pushing. After
this change, the stack contains only live-zones and popping of dead-zones in line 17
can be removed. These changes make the algorithm a bit faster on average. Let us
call the modified version Algorithm DZ1. The pseudocode of DZ1 given below shows
the changes to Algorithm DZ0.

3.2 Shifting with 2-Grams

Shifting in Algorithms DZ0 and DZ1 is based on single characters according to
Horspool’s shift [7]. We tried several alternatives for Horspool’s shift. It would be
possible to apply a different strategy to left shift than to right shift but we decided
to use the same strategy to the both directions in order to reduce the number of
alternatives.

2 Usually this is literally a mirror image of the right shift table, Horspool in this case. That is not
a requirement and other left shifters may be used.
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Algorithm DZ1 (Changes to DZ0)
11 if lo < kdleft then
12 if kdright < hi then push(kdright , hi)
13 hi← kdleft

14 else
15 lo ← kdright

16 if lo ≥ hi then
17
18 if top.second = max then return count

Sunday’s shift [14] is a natural choice for the Dead-Zone algorithm, because it is
applied after exiting the match loop testing an alignment window tprobe · · · tprobe+m−1

in the text against the pattern. The test characters of shift tprobe−1 and tprobe+m are
outside the alignment window, whereas the test character is the first/last character of
the alignment window in Horspool’s shift. Thus the maximal shift of Sunday is m+1
to the both directions, i.e. one more than Horspool’s maximal shift. On average, DZ1
with Sunday’s shift runs slightly faster than DZ1.

Shifting based on 2-grams is a better choice for making the algorithm more
efficient. The original lookup tables shl and shr of DZ1 are replaced by new two-
dimensional lookup tables shl2 and shr2, respectively. We tried three 2-gram shifters,
in which the locations of the test 2-grams are different as well as the preprocessing
of the lookup tables.

First we tried the Zhu–Takaoka shift [18]. The original method consists of two
shift functions like the Boyer–Moore algorithm [2]. We applied only the 2-gram shift
based on the occurrence heuristic (a.k.a. the bad character heuristic). We denote this
shifter by ZT. The test 2-grams are the first and last 2-gram of the alignment window.
The maximal shift of ZT is m.

Next we tested the Berry–Ravindran (BR) shift3 [1] which is an extension of
Sunday’s shift. The tested 2-grams tj−2tj−1 and tj+mtj+m+1 (j = probe) are outside
the alignment window. The maximal shift of BR is m+ 2.

The third 2-gram shifter is BRX introduced by Kalsi et al. [9]. BRX is an interme-
diate approach of ZT and BR. The test 2-grams are tj−1tj and tj+m−1tj+m, j = probe.
The maximal shift of BRX is m+1. Figure 1 shows the locations of the test 2-grams
of ZT, BRX, and BR in an alignment of a pattern.

In our experiments (see Section 4), the three 2-gram shifters gave a significant
speed-up over Algorithm DZ1. BR was the slowest. ZT and BRX were almost equally
good, but BRX was the winner in case of short DNA patterns. We selected BRX for
further development.

3 Mauch [11] (and related publications) was the first to apply the BR shift to the Dead-Zone
algorithm.

P: acctcg

T: acccgtatgactta

ZT: xx xx

BRX: xx xx

BR: xx xx

Figure 1. Locations of test 2-grams of ZT, BRX, and BR in an alignment.
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Let us consider detailed conditions for the shift tables of BRX. The test 2-qram
y = y1y2 of the right-hand shift is tprobe+m−1tprobe+m. If y is present in P , then

shr2 [y] = m−max(i | y = pipi+1)− 1

Otherwise shr2 [y] is m + 1 if y2 6= p0 and m if y2 = p0. The left-hand shift is
symmetrical to the right-hand shift. The test 2-qram x = x1x2 is tprobe−1tprobe . If x is
present in P , then

shl2 [x] = min(i | x = pipi+1) + 1

Otherwise shl2 [x] ism+1 if x1 6= pm−1 andm if x1 = pm−1. Based on these conditions,
it is straightforward to program the preprocessing of shr2 and shl2 .

We modified the BRX shifter further. Instead of two-dimensional shift tables, we
implemented the handling of 2-grams as 16-bit entities. This version is called Algo-
rithm DZ2. Notation q(x, h) refers to a h-gram starting at x. At the implementation
level q(x, 2) is *((uint16_t*)x). The pseudocode of DZ2 given below shows the
changes to Algorithm DZ1.

Algorithm DZ2 (Changes to DZ1)
9 kdleft ← probe − shl2 [q(tprobe−1, 2)] + 1
10 kdright ← probe + shr2 [q(tprobe+m−1, 2)]

3.3 Guard Test

Guard test [7,13] is a widely used technique to speed-up string matching. The idea
is to test certain pattern positions before entering a match loop. Guard test is a
representative of a general optimisation technique called loop peeling, where a number
of iterations are moved in front of the loop. As a result, the computation becomes
faster because of fewer loop tests.

We decided to try such a guard test where the first q-gram try of an alignment
in the text is compared with prefix, the first q-gram of the pattern. As a result, the
match loop is entered more seldom. We tried values q = 2 and 4. We decided to apply
the latter, because it performed better. Let us call the modified version Algorithm
DZ3. The pseudocode of DZ3 given below shows the changes to Algorithm DZ2.

Algorithm DZ3 (Changes to DZ2)
5b try ← q(tprobe , 4)
5c if try = prefix then
6 i← 4
7 while i < m and pi = tprobe+i do i← i+ 1
8 if i = m then count ← count + 1

Algorithm DZ3 in the present form does not work for patterns shorter than four
characters. However, it is trivial to add separate code for them if necessary.

Beyond the Dead-Zone algorithm, the guard test with a q-gram might improve
the performance of some other algorithms as well. Testing of q-grams as entities has
been earlier used by Faro and Külekci [4] and Khan [10]. If wider q-grams than four
characters are applied to long patterns, separate code is necessary for short patterns.
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With old processors, there is a performance penalty for reading q-grams at mis-
aligned memory locations, i.e. the q-gram does not start at a word boundary. This
penalty decrease the benefit of processing q-grams as entities for shifting or guarding.
However, for newer processor microarchitectures of Intel starting from Sandy Bridge
and Nehalem, there is no such penalty [6].

4 Experiments

The experiments were run on Intel Core i7-4578U with 4MB L3 cache and 16 GB
RAM; this CPU has a Haswell microarchitecture which is subsequent to Sandy Bridge
and therefore has none of the misaligned access performance penalties mentioned
above. Algorithms were written in the C programming language and compiled with
gcc 5.4.0 using the O3 optimisation level. Testing was done in the framework of Hume
and Sunday [8]. We used two texts: English (four concatenated copies of the KJV
Bible, totaling 16.2MB) and DNA (four concatenated copies of the genome of E. Coli,
totaling 18.6MB) for testing. The base texts were taken from the SMART corpus.
Because of the irregular scanning order, the Dead-Zone algorithms benefit from cache
more than other algorithms. This was noticeable for texts shorter than 6MB in our
test setting, and therefore we decided to use longer texts. Sets of patterns of lengths 5,
10, and 20 were randomly taken from the both texts. Each set contains 200 patterns.
The running times of 200 patterns in Table 1 are averages of 100 runs excluding
the preprocessing time. For the 2-gram shifters, preprocessing took about 10 ms per
200 patterns. We used Horspool’s algorithm (Hor) [7] and Sbndm4b [15] as reference
methods. Hor is a representative of classical algorithms and Sbndm4b is an example
of a fairly efficient algorithm. The code of Hor was taken from the SMART repository.

Table 1. Running times (in seconds) of algorithms.

English, m DNA, m
Alg. 5 10 20 5 10 20
DZ0 5.25 3.64 2.77 13.43 10.74 10.27
DZ1 4.99 3.56 2.73 12.76 10.26 9.83
DZ1s 4.39 3.20 2.47 12.38 10.99 10.55
DZ1br 3.67 2.19 1.43 8.96 6.62 5.30
DZ1zt 3.19 1.97 1.33 9.24 5.26 3.63
DZ1brx 2.98 1.87 1.26 6.97 4.81 3.57
DZ2 2.71 1.72 1.16 6.47 4.50 3.38
DZ3 2.12 1.41 0.99 4.09 3.02 2.37
Hor 4.17 2.41 1.49 10.30 7.39 7.10
Sbndm4b 1.18 0.42 0.30 1.50 0.63 0.45

For Algorithm DZ1 using Horspool’s shift we tried four alternative shifters:

1. DZ1s: Sunday [14]
2. DZ1br: Berry–Ravindran [1]
3. DZ1zt: Zhu–Takaoka [18] (occurrence shift)
4. DZ1brx: Kalsi et al. [9]

Algorithm DZ1s ran slightly faster than DZ1 for English data. Although the av-
erage shift of DZ1s is longer than that of DZ1, DZ1s was slower than DZ1 for DNA
patterns of 10 and 20 characters. All the 2-gram approaches DZ1br, DZ1zt, and
DZ1brx were significantly faster than the single character shifters DZ1 and DZ1s.
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Algorithm DZ1br was the slowest of the 2-gram shifters. This is obvious for DNA
because the average shift of DZ1br is shorter than that of DZ1zt for m > 7. The rea-
son for the poor performance of DZ1br for English data is partly due to appearances
of common characters like space as p0 or pm−1 which decreases the average length
of shift (see justification in [9]). DZ1brx was slightly better than DZ1zt for English
data, but the former was a clear winner in the case of short DNA patterns.

Algorithm DZ3 was clearly faster than Hor but left noticeably behind Sbndm4b.
Comparison of Dead-Zone algorithms and efficient left-to-right algorithms is some-
what unfair in sequential processing, because the former algorithms contain more
bookkeeping and they do not benefit from locality as much as the latter ones.

Table 2. Speed-ups of algorithms (Alg. DZ0 is one).

English, m DNA, m
Alg. 5 10 20 5 10 20 Avg.
DZ0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DZ1 1.05 1.02 1.01 1.05 1.05 1.04 1.04
DZ1s 1.20 1.14 1.12 1.08 0.98 0.97 1.08
DZ1br 1.43 1.66 1.93 1.50 1.62 1.94 1.68
DZ1zt 1.64 1.85 2.08 1.45 2.04 2.83 1.98
DZ1brx 1.76 1.95 2.20 1.93 2.23 2.88 2.16
DZ2 1.94 2.11 2.38 2.08 2.38 3.03 2.32
DZ3 2.48 2.59 2.79 3.28 3.56 4.34 3.17

Table 2 shows speed-ups of the developed Dead-Zone versions against Algorithm
DZ0. Algorithm DZ3 clearly tripled the speed of the original algorithm DZ0 on aver-
age. The gain was larger for DNA than for English.

5 Concluding Remarks

Although the Dead-Zone algorithm is clearly oriented to parallel processing, we man-
aged to substantially improve its performance in sequential processing. Only some of
the optimisations are unique to the Dead-Zone algorithm, and the others could be
used to benefit many of the other well-known algorithms when they are not already
used. In particular, multi-gram shifting is an interesting tradeoff of memory (for shift
tables) against performance, while the guard test optimisation could be applied in
most Boyer-Moore style algorithms. It is somewhat surprising that the guard test
optimisation is not automatically part of gcc’s O3 level, as such optimisations are
well known in the compiler literature. In short, despite continuous compiler and algo-
rithmic improvement, there remain interesting opportunities for skilled programmers
to manually tune implementations.

Some optimisations may be sensitive to misaligned memory accesses—though this
was not the case on the benchmarking system used for this paper. This indicates that
future work could include optimisations on other architectures where misalignment
gives a performance penalty, or on alternative architectures such as the Arm. Ad-
ditional future work includes using this paper’s optimisations on multiple-keyword
Dead-Zone.
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