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Abstract. In this paper, we propose a new dynamic compressed index of O(w) space
for a dynamic text T , where w = O(min(z logN log∗ M,N)) is the size of the sig-
nature encoding of T , z is the size of the Lempel-Ziv77 (LZ77) factorization of T ,
N is the length of T , and M ≥ 4N is an integer that can be handled in constant
time under word RAM model. Our index supports searching for a pattern P in T

in O(|P |fA + logw log |P | log∗ M(logN + log |P | log∗ M) + occ logN) time and inser-
tion/deletion of a substring of length y in O((y + logN log∗ M) logw logN log∗ M)

time, where fA = O(min{ log logM log logw

log log logM
,
√

logw

log logw
}). Also, we propose a new space-

efficient LZ77 factorization algorithm for a given text of length N , which runs in
O(NfA + z logw log3 N(log∗ N)2) time with O(w) working space.

1 Introduction

1.1 Dynamic compressed index

Given a text T , the string indexing problem is to construct a data structure, called an
index, so that querying occurrences of a given pattern in T can be answered efficiently.
As the size of data is growing rapidly in the last decade, many recent studies have
focused on indexes working in compressed text space (see e.g. [11,12,7,6]). However
most of them are static, i.e., they have to be reconstructed from scratch when the
text is modified, which makes difficult to apply them to a dynamic text. Hence, in
this paper, we consider the dynamic compressed text indexing problem of maintain-
ing a compressed index for a text string that can be modified. Although there exists
several dynamic non-compressed text indexes (see e.g. [24,3,9] for recent work), there
has been little work for the compressed variants. Hon et al. [15] proposed the first
dynamic compressed index of O(1

ǫ
(NH0 +N)) bits of space which supports searching

of P in O(|P | log2 N(logǫ N + log |Σ|) +occ log1+ǫ N) time and insertion/deletion of a

substring of length y in O((y +
√
N) log2+ǫ N) amortized time, where 0 < ǫ ≤ 1 and

H0 ≤ log |Σ| denotes the zeroth order empirical entropy of the text of length N [15].
Salson et al. [26] also proposed a dynamic compressed index, called dynamic FM-
Index. Although their approach works well in practice, updates require O(N logN)
time in the worst case. To our knowledge, these are the only existing dynamic com-
pressed indexes to date.

In this paper, we propose a new dynamic compressed index, as follows:

Theorem 1. Let M be the maximum length of the dynamic text to index, N the
length of the current text T , w = O(min(z logN log∗ M,N)) the size of the signa-
ture encoding of T , and z the number of factors in the Lempel-Ziv 77 factoriza-
tion of T without self-references. Then, there exists a dynamic index of O(w) space
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which supports searching of a pattern P in O(|P |fA + logw log |P | log∗ M(logN +

log |P | log∗ M) + occ logN) time, where fA = O(min{ log logM log logw
log log logM

,
√

logw
log logw

}), and
insertion/deletion of a (sub)string Y into/from an arbitrary position of T in amor-
tized O((|Y | + logN log∗ M) logw logN log∗ M) time. Moreover, if Y is given as a
substring of T , we can support insertion in amortized O(logw(logN log∗ M)2) time.

Since z ≥ logN , logw = max{log z, log(log∗M)}. Hence, our index is able to find pat-
tern occurrences faster than the index of Hon et al. when the |P | term is dominating
in the pattern search times. Also, our index allows faster substring insertion/deletion

on the text when the
√
N term is dominating.

Related work. To achieve the above result, technically speaking, we use the signa-
ture encoding G of T , which is based on the locally consistent parsing technique. The
signature encoding was proposed by Mehlhorn et al. for equality testing on a dynamic
set of strings [17]. Since then, the signature encoding and the related ideas have been
used in many applications. In particular, Alstrup et al.’s proposed dynamic index (not
compressed) which is based on the signature encoding of strings, while improving the
update time of signature encodings [3] and the locally consistent parsing algorithm
(details can be found in the technical report [2]).

Our data structure uses Alstrup et al.’s fast string concatenation/split algorithms
(update algorithm) and linear-time computation of locally consistent parsing, but has
little else in common than those. Especially, Alstrup et al.’s dynamic pattern matching
algorithm [3,2] requires to maintain specific locations called anchors over the parse
trees of the signature encodings, but our index does not use anchors. Our index has
close relationship to the ESP-indices [27,28], but there are two significant differences
between ours and ESP-indices: The first difference is that the ESP-index [27] is static
and its online variant [28] allows only for appending new characters to the end of the
text, while our index is fully dynamic allowing for insertion and deletion of arbitrary
substrings at arbitrary positions. The second difference is that the pattern search
time of the ESP-index is proportional to the number occc of occurrences of the so-
called “core” of a query pattern P , which corresponds to a maximal subtree of the
ESP derivation tree of a query pattern P . If occ is the number of occurrences of
P in the text, then it always holds that occc ≥ occ, and in general occc cannot be
upper bounded by any function of occ. In contrast, as can be seen in Theorem 1, the
pattern search time of our index is proportional to the number occ of occurrences of
a query pattern P . This became possible due to our discovery of a new property of
the signature encoding [2] (stated in Lemma 16).

As another application of signature encodings, Nishimoto et al. showed that signa-
ture encodings for a dynamic string T can support Longest Common Extension (LCE)
queries on T efficiently in compressed space [20] (Lemma 10). They also showed sig-
nature encodings can be updated in compressed space (Lemma 12). Our algorithm
uses properties of signature encodings shown in [20], more precisely, Lemmas 5-10
and 12, but Lemma 16 is a new property of signature encodings not described in [20].

In relation to our problem, there exists the library management problem of main-
taining a text collection (a set of text strings) allowing for insertion/deletion of texts
(see [18] for recent work). While in our problem a single text is edited by inser-
tion/deletion of substrings, in the library management problem a text can be inserted
to or deleted from the collection. Hence, algorithms for the library management prob-
lem cannot be directly applied to our problem.
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1.2 Computing LZ77 factorization in compressed space.

As an application of our dynamic compressed index, we present a new LZ77 factor-
ization algorithm working in compressed space.

The Lempel-Ziv77 (LZ77) factorization is defined as follows.

Definition 2 (Lempel-Ziv77 factorization [29]). The Lempel-Ziv77 (LZ77) fac-
torization of a string s without self-references is a sequence f1, . . . , fz of non-empty
substrings of s such that s = f1 · · · fz, f1 = s[1], and for 1 < i ≤ z, if the character
s[|f1..fi−1| + 1] does not occur in s[|f1..fi−1|], then fi = s[|f1..fi−1| + 1], otherwise
fi is the longest prefix of fi · · · fz which occurs in f1 · · · fi−1. The size of the LZ77
factorization f1, . . . , fz of string s is the number z of factors in the factorization.

Although the primary use of LZ77 factorization is data compression, it has been
shown that it is a powerful tool for many string processing problems [13,12]. Hence
the importance of algorithms to compute LZ77 factorization is growing. Particularly,
in order to apply algorithms to large scale data, reducing the working space is an
important matter. In this paper, we focus on LZ77 factorization algorithms working
in compressed space.

The following is our main result.

Theorem 3. Given the signature encoding G of size w for a string T of length N ,
we can compute the LZ77 factorization of T in O(z logw log3 N(log∗M)2) time and
O(w) working space where z is the size of the LZ77 factorization of T .

In [20], it was shown that the signature encoding G can be constructed efficiently
from various types of inputs, in particular, in O(NfA) time and O(w) working space
from uncompressed string T . Therefore we can compute LZ77 factorization of a given
T of length N in O(NfA + z logw log3 N(log∗ M)2) time and O(w) working space.

Related work. Goto et al. [14] showed how, given the grammar-like representa-
tion for string T generated by the LCA algorithm [25], to compute the LZ77 fac-
torization of T in O(z log2 m log3 N + m logm log3 N) time and O(m log2 m) space,
where m is the size of the given representation. Sakamoto et al. [25] claimed that
m = O(z logN log∗ N), however, it seems that in this bound they do not consider the
production rules to represent maximal runs of non-terminals in the derivation tree.
The bound we were able to obtain with the best of our knowledge and understanding
is m = O(z log2 N log∗ N), and hence our algorithm seems to use less space than the
algorithm of Goto et al. [14]. Recently, Fischer et al. [10] showed a Monte-Carlo ran-
domized algorithms to compute an approximation of the LZ77 factorization with at
most 2z factors in O(N logN) time, and another approximation with at most (i+ ǫ)z
factors in O(N log2 N) time for any constant ǫ > 0, using O(z) space each.

Another line of research is LZ77 factorization working in compressed space in
terms of Burrows-Wheeler transform (BWT) based methods. Policriti and Prezza
recently proposed algorithms running in NH0 + o(N log |Σ|) + O(|Σ| logN) bits of
space and O(N logN) time [21], or O(R logN) bits of space and O(N logR) time [22],
where R is the number of runs in the BWT of the reversed string of T . Because their
and our algorithms are established on different measures of compression, they cannot
be easily compared. For example, our algorithm is more space efficient than the
algorithm in [22] when w = o(R), but it is not clear when it happens.

Examples and figures omitted due to lack of space are in a full version of this
paper [19].
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2 Preliminaries

2.1 Strings

Let Σ be an ordered alphabet. An element of Σ∗ is called a string. For string w = xyz,
x, y and z are called a prefix, substring, and suffix of w, respectively. The length of
string w is denoted by |w|. The empty string ε is a string of length 0. Let Σ+ = Σ∗−
{ε}. For any 1 ≤ i ≤ |w|, w[i] denotes the i-th character of w. For any 1 ≤ i ≤ j ≤ |w|,
w[i..j] denotes the substring of w that begins at position i and ends at position j.
Let w[i..] = w[i..|w|] and w[..i] = w[1..i] for any 1 ≤ i ≤ |w|. For any string w, let
wR denote the reversed string of w, that is, wR = w[|w|] · · ·w[2]w[1]. For any strings
w and u, let LCP(w, u) (resp. LCS(w, u)) denote the length of the longest common
prefix (resp. suffix) of w and u. Given two strings s1, s2 and two integers i, j, let
LCE(s1, s2, i, j) denote a query which returns LCP(s1[i..|s1|], s2[j..|s2|]). For any strings
p and s, let Occ(p, s) denote all occurrence positions of p in s, namely, Occ(p, s) =
{i | p = s[i..i + |p| − 1], 1 ≤ i ≤ |s| − |p|+ 1}. Our model of computation is the unit-
cost word RAM with machine word size of Ω(log2 M) bits, and space complexities
will be evaluated by the number of machine words. Bit-oriented evaluation of space
complexities can be obtained with a log2 M multiplicative factor.

2.2 Context free grammars as compressed representation of strings

Straight-line programs. A straight-line program (SLP) is a context free grammar
in the Chomsky normal form that generates a single string. Formally, an SLP that
generates T is a quadruple G = (Σ,V ,D, S), such that Σ is an ordered alphabet of
terminal characters; V = {X1, . . . , Xn} is a set of positive integers, called variables ;
D = {Xi → expr i}ni=1 is a set of deterministic productions (or assignments) with
each expr i being either of form XℓXr (1 ≤ ℓ, r < i), or a single character a ∈ Σ; and
S := Xn ∈ V is the start symbol which derives the string T . We also assume that the
grammar neither contains redundant variables (i.e., there is at most one assignment
whose righthand side is expr) nor useless variables (i.e., every variable appears at
least once in the derivation tree of G). The size of the SLP G is the number n of
productions in D. In the extreme cases the length N of the string T can be as large
as 2n−1, however, it is always the case that n ≥ log2 N .

Let val : V → Σ+ be the function which returns the string derived by an input
variable. If s = val(X) for X ∈ V , then we say that the variable X represents string
s. For any variable sequence y ∈ V+, let val+(y) = val(y[1]) · · · val(y[|y|]). For any
variable Xi with Xi → XℓXr ∈ D, let Xi.left = val(Xℓ) and Xi.right = val(Xr), which
are called the left string and the right string of Xi, respectively. For two variables
Xi, Xj ∈ V , we say that Xi occurs at position c in Xj if there is a node labeled with
Xi in the derivation tree of Xj and the leftmost leaf of the subtree rooted at that node
labeled with Xi is the c-th leaf in the derivation tree of Xj. We define the function
vOcc(Xi, Xj) which returns all positions of Xi in the derivation tree of Xj .

Run-length straight-line programs. We define run-length SLPs, (RLSLPs) as
an extension to SLPs, which allow run-length encodings in the righthand sides of
productions, i.e., D might contain a production X → X̂k ∈ V × N . The size of the
RLSLP is still the number of productions in D as each production can be encoded
in constant space. Let AssgnG be the function such that AssgnG(Xi) = expri iff
Xi → expri ∈ D. Also, let Assgn−1

G denote the reverse function of AssgnG . When clear

from the context, we write AssgnG and Assgn−1
G as Assgn and Assgn−1, respectively.
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We define the left and right strings for any variable Xi → XℓXr ∈ D in a similar
way to SLPs. Furthermore, for any X → X̂k ∈ D, let X.left = val(X̂) and X.right =

val(X̂)k−1.

Representation of RLSLPs. For an RLSLP G of size w, we can consider a DAG of
size w as a compact representation of the derivation trees of variables in G. Each node
represents a variable X in V and stores |val(X)| and out-going edges represent the
assignments in D: For an assignment Xi → XℓXr ∈ D, there exist two out-going edges
from Xi to its ordered children Xℓ and Xr; and for X → X̂k ∈ D, there is a single edge
from X to X̂ with the multiplicative factor k. For X ∈ V , let parents(X) be the set of
variables which have out-going edge to X in the DAG of G. To compute parents(X)
for X ∈ V in linear time, we let X have a doubly-linked list of length |parents(X)|
to represent parents(X): Each element is a pointer to a node for X ′ ∈ parents(X)
(the order of elements is arbitrary). Conversely, we let every parent X ′ of X have the
pointer to the corresponding element in the list.

3 Signature encoding

Here, we recall the signature encoding first proposed by Mehlhorn et al. [17]. Its core
technique is locally consistent parsing defined as follows:

Lemma 4 (Locally consistent parsing [17,2]). Let W be a positive integer. There
exists a function f : [0..W ]log

∗ W+11 → {0, 1} such that, for any p ∈ [1..W ]n with
n ≥ 2 and p[i] 6= p[i + 1] for any 1 ≤ i < n, the bit sequence d defined by d[i] =
f(p̃[i−∆L], . . . , p̃[i+∆R]) for 1 ≤ i ≤ n, satisfies: d[1] = 1; d[n] = 0; d[i]+d[i+1] ≤ 1
for 1 ≤ i < n; and d[i] + d[i + 1] + d[i + 2] + d[i + 3] ≥ 1 for any 1 ≤ i < n − 3;
where ∆L = log∗ W + 6, ∆R = 4, and p̃[j] = p[j] for all 1 ≤ j ≤ n, p̃[j] = 0
otherwise. Furthermore, we can compute d in O(n) time using a precomputed table of
size o(logW ), which can be computed in o(logW ) time.

For the bit sequence d of Lemma 4, we define the function Eblockd(p) that decom-
poses an integer sequence p according to d: Eblockd(p) decomposes p into a sequence
q1, . . . , qj of substrings called blocks of p, such that p = q1 · · · qj and qi is in the de-
composition iff d[|q1 · · · qi−1| + 1] = 1 for any 1 ≤ i ≤ j. Note that each block is of
length from two to four by the property of d, i.e., 2 ≤ |qi| ≤ 4 for any 1 ≤ i ≤ j. Let
|Eblockd(p)| = j and let Eblockd(s)[i] = qi. We omit d and write Eblock(p) when it is
clear from the context, and we use implicitly the bit sequence created by Lemma 4
as d.

We complementarily use run-length encoding to get a sequence to which Eblock
can be applied. Formally, for a string s, let Epow(s) be the function which groups each
maximal run of same characters a as ak, where k is the length of the run. Epow(s)
can be computed in O(|s|) time. Let |Epow(s)| denote the number of maximal runs
of same characters in s and let Epow(s)[i] denote i-th maximal run in s.

The signature encoding is the RLSLP G = (Σ,V ,D, S), where the assignments in
D are determined by recursively applying Eblock and Epow to T until a single integer
S is obtained. We call each variable of the signature encoding a signature, and use e
(for example, ei → eℓer ∈ D) instead of X to distinguish from general RLSLPs.

For a formal description, let E := Σ∪V2∪V3∪V4∪ (V ×N ) and let Sig : E → V
be the function such that: Sig(x ) = e if (e → x ) ∈ D; Sig(x ) = Sig(Sig(x [1..|x | −
1])x [|x |]) if x ∈ V3 ∪ V4; or otherwise undefined. Namely, the function Sig returns,
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if any, the lefthand side of the corresponding production of x by recursively ap-
plying the Assgn−1 function from left to right. For any p ∈ E∗, let Sig+(p) =
Sig(p[1]) · · · Sig(p[|p|]).

The signature encoding of string T is defined by the following Shrink and Pow
functions: ShrinkT

t = Sig+(T ) for t = 0, and ShrinkT
t = Sig+(Eblock(PowT

t−1)) for

0 < t ≤ h; and PowT
t = Sig+(Epow(ShrinkT

t )) for 0 ≤ t ≤ h; where h is the minimum
integer satisfying |PowT

h | = 1. Then, the start symbol of the signature encoding is
S = PowT

h . We say that a node is in level t in the derivation tree of S if the node
is produced by ShrinkT

t or PowT
t . The height of the derivation tree of the signature

encoding of T is O(h) = O(log |T |). For any T ∈ Σ+, let id(T ) = PowT
h = S, i.e.,

the integer S is the signature of T . We let N ≤M/4. More specifically, M = 4N if T
is static, and M/4 is the upper bound of the length of T if we consider updating T
dynamically. Since all signatures are in [1..M − 1], we set W = M in Lemma 4 used
by the signature encoding. In this paper, we implement signature encodings by the
DAG of RLSLP introduced in Section 2.

3.1 Commmon sequences

Here, we recall the most important property of the signature encoding, which ensures
the existence of common signatures to all occurrences of same substrings by the
following lemma.

Lemma 5 (common sequences [23,20]). Let G = (Σ,V ,D, S) be a signature en-
coding for a string T . Every substring P in T is represented by a signature sequence
Uniq(P ) in G for a string P , where |Epow(Uniq(P ))| = O(log |P | log∗ M).

Uniq(P ), which we call the common sequence of P , is defined by the following.

Definition 6. For a string P , let

XShrinkP
t =

{

Sig+(P ) for t = 0,

Sig+(Eblockd(XPow
P
t−1)[|LP

t |..|XPowP
t−1| − |RP

t |]) for 0 < t ≤ hP ,

XPowP
t = Sig+(Epow(XShrinkP

t [|L̂P
t |+ 1..|XShrinkP

t | − |R̂P
t ])|) for 0 ≤ t < hP ,

– LP
t is the shortest prefix of XPowP

t−1 of length at least ∆L such that d[|LP
t |+1] = 1,

– RP
t is the shortest suffix of XPowP

t−1 of length at least ∆R + 1 such that d[|d| −
|RP

t |+ 1] = 1,

– L̂P
t is the longest prefix of XShrinkP

t such that |Epow(L̂P
t )| = 1,

– R̂P
t is the longest suffix of XShrinkP

t such that |Epow(R̂P
t )| = 1, and

– hP is the minimum integer such that |Epow(XShrinkP
hP )| ≤ ∆L + ∆R + 9.

Note that ∆L ≤ |LP
t | ≤ ∆L + 3 and ∆R + 1 ≤ |RP

t | ≤ ∆R + 4 hold by the definition.
Hence |XShrinkP

t+1| > 0 holds if |Epow(XShrinkP
t )| > ∆L + ∆R + 9. Then,

Uniq(P ) = L̂P
0 L

P
0 · · · L̂P

hP−1L
P
hP−1XShrink

P
hPRP

hP−1R̂
P
hP−1 · · ·RP

0 R̂
P
0 .

We give an intuitive description of Lemma 5. Recall that the locally consistent
parsing of Lemma 4. Each i-th bit of bit sequence d of Lemma 4 for a given string
s is determined by s[i − ∆L..i + ∆R]. Hence, for two positions i, j such that P =
s[i..i+k−1] = s[j..j+k−1] for some k, d[i+∆L..i+k−1−∆R] = d[j+∆L..j+k−1−∆R]
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holds, namely, “internal” bit sequences of the same substring of s are equal. Since
each level of the signature encoding uses the bit sequence, all occurrences of same
substrings in a string share same internal signature sequences, and this goes up
level by level. XShrinkP

t and XPowP
t represent signature sequences which are ob-

tained from only internal signature sequences of XPowT
t−1 and XShrinkT

t , respectively.

This means that XShrinkP
t and XPowP

t are always created over P . From such com-
mon signatures we take as short signature sequence as possible for Uniq(P ): Since

val+(PowP
t−1) = val+(LP

t−1XShrink
P
t R

P
t−1) and val+(ShrinkP

t ) = val+(L̂P
t XPow

P
t R̂

P
t )

hold, |Epow(Uniq(P ))| = O(log |P | log∗ M) and val+(Uniq(P )) = P hold. Hence
Lemma 5 holds 1.

From the common sequences we can derive many useful properties of signature
encodings like listed below (see the references for proofs).

The number of ancestors of nodes corresponding to Uniq(P ) is upper bounded
by:

Lemma 7 ([20]). Let G be a signature encoding for a string T , P be a string, and
let T be the derivation tree of a signature e ∈ V. Consider an occurrence of P in
s, and the induced subtree X of T whose root is the root of T and whose leaves are
the parents of the nodes representing Uniq(P ), where s = val(e). Then X contains
O(log∗ M) nodes for every level and O(log |s|+ log |P | log∗ M) nodes in total.

We can efficiently compute Uniq(P ) for a substring P of T .

Lemma 8 ([20]). Using a signature encoding G of size w, given a signature e ∈ V
(and its corresponding node in the DAG) and two integers j and y, we can compute
Epow(Uniq(s[j..j + y − 1])) in O(log |s|+ log y log∗ M) time, where s = val(e).

The next lemma shows that G requires only compressed space:

Lemma 9 ([23,20]). The size w of the signature encoding of T of length N is
O(min(z logN log∗ M,N)), where z is the number of factors in the LZ77 factorization
without self-reference of T .

The next lemma shows that the signature encoding supports (both forward and
backward) LCE queries on a given arbitrary pair of signatures.

Lemma 10 ([20]). Using a signature encoding G for a string T , we can support
queries LCE(s1, s2, i, j) and LCE(sR1 , s

R
2 , i, j) in O(log |s1|+log |s2|+log ℓ log∗ M) time

for given two signatures e1, e2 ∈ V and two integers 1 ≤ i ≤ |s1|, 1 ≤ j ≤ |s2|, where
s1 = val(e1), s2 = val(e2) and ℓ is the answer to the LCE query.

3.2 Dynamic signature encoding

We consider a dynamic signature encoding G of T , which allows for efficient updates
of G in compressed space according to the following operations: INSERT (Y, i) inserts
a string Y into T at position i, i.e., T ← T [..i − 1]Y T [i..]; INSERT ′(j, y, i) inserts
T [j..j + y − 1] into T at position i, i.e., T ← T [..i − 1]T [j..j + y − 1]T [i..]; and
DELETE (j, y) deletes a substring of length y starting at j, i.e., T ← T [..j−1]T [j+y..].

During updates we recompute ShrinkT
t and PowT

t for some part of new T (note
that the most part is unchanged thanks to the virtue of signature encodings, Lemma 7).

1 The common sequences are conceptually equivalent to the cores [16] which are defined for the
edit sensitive parsing of a text, a kind of locally consistent parsing of the text.
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When we need a signature for expr , we look up the signature assigned to expr (i.e.,
compute Assign−1(expr)) and use it if such exists. If Assign−1(expr) is undefined we
create a new signature enew , which is an integer that is currently not used as sig-
natures, and add enew → expr to D. Also, updates may produce a useless signature
whose parents in the DAG are all removed. We remove such useless signatures from
G during updates.

We can upper bound the number of signatures added to or removed from G after
a single update operation by the following lemma. 2

Lemma 11. After INSERT (Y, i) or DELETE (j, y) operation, O(y + logN log∗M)
signatures are added to or removed from G, where |Y | = y. After INSERT ′(j, y, i)
operation, O(logN log∗ M) signatures are added to or removed from G.
Proof. Consider INSERT ′(j, y, i) operation. Let T ′ = T [..i − 1]T [j..j + y − 1]T [i..]
be the new text. Note that by Lemma 5 the signature encoding of T ′ is created
over Uniq(T [..i − 1])Uniq(T [j..j + y − 1])Uniq(T [i..]), and hence, O(logN log∗M)
signatures can be added by Lemma 7. Also, O(logN log∗ M) signatures, which were
created over Uniq(T [..i− 1])Uniq(T [i..]), may be removed.

For INSERT (Y, i) operation, we additionally think about the possibility that O(y)
signatures are added to create Uniq(Y ). Similarly, for DELETE (j, y) operation, O(y)
signatures, which are used in and under Uniq(T [j..j + y − 1]), can be removed. ⊓⊔

In [20], it was shown how to augment the DAG representation of G to add/remove

an assignment to/from G in O(fA) time, where fA = O
(

min
{

log logM log logw
log log logM

,
√

logw
log logw

})

is the time complexity of Beame and Fich’s data structure [4] to support predeces-
sor/successor queries on a set of w integers from an M -element universe.3 Note that
there is a small difference in our DAG representation from the one in [20]; our DAG
has a doubly-linked list representing the parents of a node. We can check if a sig-
nature is useless or not by checking if the list is empty or not, and the lists can be
maintained in constant time after adding/removing an assignment. Hence, the next
lemma still holds for our DAG representation.

Lemma 12 (Dynamic signature encoding [20]). After processing G in O(wfA)
time, we can insert/delete any (sub)string Y of length y into/from an arbitrary posi-
tion of T in O((y + logN log∗ M)fA) time. Moreover, if Y is given as a substring of
T , we can support insertion in O(fA logN log∗ M) time.

4 Dynamic Compressed Index

In this section, we present our dynamic compressed index based on signature en-
coding. As already mentioned in the introduction, our strategy for pattern matching
is different from that of Alstrup et al. [2]. It is rather similar to the one taken in
the static index for SLPs of Claude and Navarro [6]. Besides applying their idea to
RLSLPs, we show how to speed up pattern matching by utilizing the properties of
signature encodings.

Index for SLPs. Here we review how the index in [6] for SLP S generating a string T
computes Occ(P, T ) for a given string P . The key observation is that, any occurrence

2 The property is used in [20], but there is no corresponding lemma to state it clearly.
3 The data structure is, for example, used to compute Assgn−1(·). Alstrup et al. [2] used hashing
for this purpose. However, since we are interested in the worst case time complexities, we use the
data structure [4] in place of hashing.
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of P in T can be uniquely associated with the lowest node that covers the occurrence
of P in the derivation tree. As the derivation tree is binary, if |P | > 1, then the
node is labeled with some variable X ∈ V such that P1 is a suffix of X.left and P2

is a prefix of X.right, where P = P1P2 with 1 ≤ |P1| < |P |. Here we call the pair
(X, |X.left| − |P1| + 1) a primary occurrence of P , and let pOccS(P, j) denote the
set of such primary occurrences with |P1| = j. The set of all primary occurrences is
denoted by pOccS(P ) =

⋃

1≤j<|P | pOccS(P, j). Then, we can compute Occ(P, T ) by
first computing primary occurrences and enumerating the occurrences of X in the
derivation tree.

The set Occ(P, T ) of occurrences of P in T is represented by pOccS(P ) as follows:
Occ(P, T ) = {j + k− 1 | (X, j) ∈ pOccS(P ), k ∈ vOcc(X,S)} if |P | > 1; Occ(P, T ) =
vOcc(X,S)((X → P ) ∈ D) if |P | = 1.

Hence the task is to compute pOccS(P ) and vOcc(X,S) efficiently. Note that
vOcc(X,S) can be computed in O(|vOcc(X,S)|h) time by traversing the DAG in a
reversed direction from X to the source, where h is the height of the derivation tree
of S. Hence, in what follows, we explain how to compute pOccS(P ) for a string P
with |P | > 1. We consider the following problem:

Problem 13 (Two-Dimensional Orthogonal Range Reporting Problem). Let X and Y
denote subsets of two ordered sets, and let R ⊆ X × Y be a set of points on the
two-dimensional plane, where |X |, |Y| ∈ O(|R|). A data structure for this problem
supports a query reportR(x1, x2, y1, y2); given a rectangle (x1, x2, y1, y2) with x1, x2 ∈
X and y1, y2 ∈ Y , returns {(x, y) ∈ R | x1 ≤ x ≤ x2, y1 ≤ y ≤ y2}.

Data structures for Problem 13 are widely studied in computational geometry.
There is even a dynamic variant, which we finally use for our dynamic index. Until
then, we just use any data structure that occupies O(|R|) space and supports queries
in O(q̂|R| + q|R|qocc) time with q̂|R| = O(log |R|), where qocc is the number of points
to report.

Now, given an SLP S, we consider a two-dimensional plane defined by X =
{X.leftR | X ∈ V} and Y = {X.right | X ∈ V}, where elements in X and Y are
sorted by lexicographic order. Then consider a set of points R = {(X.leftR, X.right) |
X ∈ V}. For a string P and an integer 1 ≤ j < |P |, let y

(P,j)
1 (resp. y

(P,j)
2 ) denote

the lexicographically smallest (resp. largest) element in Y that has P [j + 1..] as a
prefix. If there is no such element, it just returns NIL and we can immediately know

that pOccS(P, j) = ∅. We define x
(P,j)
1 and x

(P,j)
2 in a similar way over X . Then,

pOccS(P, j) can be computed by a query reportR(x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1 , y

(P,j)
2 ).

Using this idea, we can get the next result:

Lemma 14. For an SLP S of size n, there exists a data structure of size O(n) that
computes, given a string P , pOccS(P ) in O(|P |(h + |P |) log n + qn|pOccS(P )|) time.

Proof. For every 1 ≤ j < |P |, we compute pOccS(P, j) by reportR(x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1 ,

y
(P,j)
2 ). We can compute y

(P,j)
1 and y

(P,j)
2 in O((h + |P |) log n) time by binary search

on Y , where each comparison takes O(h + |P |) time for expanding the first O(|P |)
characters of variables subjected to comparison. In a similar way, x

(P,j)
1 and x

(P,j)
2 can

be computed in O((h+ |P |) log n) time. Thus, the total time complexity is O(|P |((h+
|P |) log n + q̂n) + qn|pOccS(P )|) = O(|P |(h + |P |) log n + qn|pOccS(P )|). ⊓⊔

Index for RLSLPs. We extend the idea for the SLP index described above to
RLSLPs. The difference from SLPs is that we have to deal with occurrences of P
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that are covered by a node labeled with X → X̂k but not covered by any single child
of the node in the derivation tree. In such a case, there must exist P = P1P2 with
1 ≤ |P1| < |P | such that P1 is a suffix of X.left = val+(X̂) and P2 is a prefix of

X.right = val+(X̂k−1). Let j = |val(X̂)| − |P1| + 1 be a position in val+(X̂d) where

P occurs, then P also occurs at j + c|val(X̂)| in val+(X̂k) for every positive integer c

with j + c|val(X̂)|+ |P | − 1 ≤ |val+(X̂k)|. Using this observation, the index for SLPs
can be modified for RLSLPs to achieve the same bounds as in Lemma 14.

Index for signature encodings. Since signature encodings are RLSLPs, we can

compute Occ(P, T ) by querying reportR(x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1 , y

(P,j)
2 ) for “every” 1 ≤ j <

|P |. However, the properties of signature encodings allow us to speed up pattern
matching as summarized in the following two ideas: (1) We can efficiently compute

x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1 and y

(P,j)
2 using LCE queries in compressed space (Lemma 15). (2)

We can reduce the number of reportR queries from O(|P |) to O(log |P | log∗ M) by
using the property of the common sequence of P (Lemma 16).

Lemma 15. Assume that we have the signature encoding G of size w for a string T of
length N , X and Y of G. Given a signature id(P ) ∈ V for a string P and an integer

j, we can compute x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1 and y

(P,j)
2 in O(logw(logN + log |P | log∗ M))

time.

Proof. By Lemma 10 we can compute x
(P,j)
1 and x

(P,j)
2 on X by binary search in

O(logw(logN + log |P | log∗ M)) time. Similarly, we can compute y
(P,j)
1 and y

(P,j)
2 in

the same time. ⊓⊔

Lemma 16. Let P be a string with |P | > 1. If |PowP
0 | = 1, then pOccG(P ) =

pOccG(P, 1). If |PowP
0 | > 1, then pOccG(P ) =

⋃

j∈P pOccG(P, j), where P =

{|val+(u[1..i])| | 1 ≤ i < |u|, u[i] 6= u[i + 1]} with u = Uniq(P ).

Proof. If |PowP
0 | = 1, then P = a|P | for some character a ∈ Σ. In this case, P must

be contained in a node labeled with a signature e→ êd such that ê→ a and d ≥ |P |.
Hence, all primary occurrences of P can be found by pOccG(P, 1).

If |PowP
0 | > 1, we consider the common sequence u of P . Recall that substring P

occurring at j in val(e) is represented by u for any (e, j) ∈ pOcc(P ) by Lemma 5 Hence
at least pOccG(P ) =

⋃

i∈P ′ pOccG(P, i) holds, where P ′ = {|val+(u[1])|, . . . , |val+(
u[..|u| − 1])|}. Moreover, we show that pOccG(P, i) = ∅ for any i ∈ P ′ with u[i] =
u[i+1]. Note that u[i] and u[i+1] are encoded into the same signature in the derivation
tree of e, and that the parent of two nodes corresponding to u[i] and u[i + 1] has a
signature e′ in the form e′ → u[i]d. Now assume for the sake of contradiction that
e = e′. By the definition of the primary occurrences, i = 1 must hold, and hence,
ShrinkP

0 [1] = u[1] ∈ Σ. This means that P = u[1]|P |, which contradicts |PowP
0 | > 1.

Therefore the statement holds. ⊓⊔

Using Lemmas 5, 15 and 16, we get a static index for signature encodings:

Lemma 17. For a signature encoding G of size w which generates a text T of length
N , there exists a data structure of size O(w) that computes, given a string P , pOccG(P )
in O(|P |fA + logw log |P | log∗ M(logN + log |P | log∗ M) + qw|pOccS(P )|) time.

Proof. We focus on the case |PowP
0 | > 1 as the other case is easier to be solved. We

first compute the common sequence of P in O(|P |fA) time. Taking P in Lemma 16,
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we recall that |P| = O(log |P | log∗M) by Lemma 5. Then, in light of Lemma 16,
pOccG(P ) can be obtained by |P| = O(log |P | log∗ M) range reporting queries. For

each query, we spend O(logw(logN+log |P | log∗ M)) time to compute x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1

and y
(P,j)
2 by Lemma 15. Hence, the total time complexity is

O(|P |fA + log |P | log∗ M(logw(logN + log |P | log∗ M) + q̂w) + qw|pOccS(P )|)
= O(|P |fA + logw log |P | log∗ M(logN + log |P | log∗ M) + qw|pOccS(P )|).

⊓⊔
In order to dynamize our index of Lemma 17, we consider a data structure for

“dynamic” two-dimensional orthogonal range reporting that can support the following
update operations:

– insertR(p, xpred , ypred): given a point p = (x, y), xpred = max{x′ ∈ X | x′ ≤ x} and
ypred = max{y′ ∈ Y | y′ ≤ y}, insert p to R and update X and Y accordingly.

– deleteR(p): given a point p = (x, y) ∈ R, delete p from R and update X and Y
accordingly.

We use the following data structure for the dynamic two-dimensional orthogonal
range reporting.

Lemma 18 ([5]). There exists a data structure that supports reportR(x1, x2, y1, y2) in
O(log |R|+occ(log |R|/ log log |R|)) time, and insertR(p, i, j), deleteR(p) in amortized
O(log |R|) time, where occ is the number of the elements to output. This structure
uses O(|R|) space. 4

Proof (Proof of Theorem 1). Our index consists of a dynamic signature encoding G
and a dynamic range reporting data structure of Lemma 18 whose R is maintained as
they are defined in the static version. We maintain X and Y in two ways; self-balancing
binary search trees for binary search, and Dietz and Sleator’s data structures for
order maintenance. Then, primary occurrences of P can be computed as described
in Lemma 17. Adding the O(occ logN) term for computing all pattern occurrences
from primary occurrences, we get the time complexity for pattern matching in the
statement.

Concerning the update of our index, we described how to update G after INSERT ,
INSERT ′ and DELETE in Lemma 12. What remains is to show how to update the
dynamic range reporting data structure when a signature is added to or deleted from
V . When a signature e is deleted from V , we first locate e.leftR on X and e.right
on Y , and then execute deleteR(e.leftR, e.right). When a signature e is added to V ,
we first locate xpred = max{x′ ∈ X | x′ ≤ e.leftR} on X and ypred = max{y′ ∈
Y | y′ ≤ e.right} on Y , and then execute insertR((e.leftR, e.right), xpred , ypred). The
locating can be done by binary search on X and Y in O(logw logN log∗ M) time as
Lemma 15.

Since the number of signatures added to or removed from G during a single update
operation is upper bounded by Lemma 11, we can get the desired time bounds of
Theorem 1. ⊓⊔
4 The original problem considers a real plane in the paper [5], however, his solution only need
to compare any two elements in R in constant time. Hence his solution can apply to our range
reporting problem by maintains X and Y using the data structure of order maintenance problem
proposed by Dietz and Sleator [8], which enables us to compare any two elements in a list L and
insert/delete an element to/from L in constant time.
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5 LZ77 factorization in compressed space

In this section, we show Theorem 3. Note that since each fi can be represented by
the pair (xi, |fi|), we compute incrementally (xi, |fi|) in our algorithm, where xi is an
occurrence position of fi in f1 · · · fi−1.

For integers j, k with 1 ≤ j ≤ j + k − 1 ≤ N , let Fst(j, k) be the function which
returns the minimum integer i such that i < j and T [i..i+ k− 1] = T [j..j + k− 1], if
it exists. Our algorithm is based on the following fact:

Fact 1 Let f1, . . . , fz be the LZ77-factorization of a string T . Given f1, . . . , fi−1, we
can compute fi with O(log |fi|) calls of Fst(j, k) (by doubling the value of k, followed
by a binary search), where j = |f1 · · · fi−1|+ 1.

We explain how to support queries Fst(j, k) using the signature encoding. We
define e.min = min vOcc(e, S)+ |e.left| for a signature e ∈ V with e→ eℓer or e→ êk.
We also define FstOcc(P, i) for a string P and an integer i as follows:

FstOcc(P, i) = min{e.min | (e, i) ∈ pOccG(P, i)}

Then Fst(j, k) can be represented by FstOcc(P, i) as follows:

Fst(j, k) = min{FstOcc(T [j..j + k − 1], i)− i | i ∈ {1, . . . , k − 1}
= min{FstOcc(T [j..j + k − 1], i)− i | i ∈ P},

where P is the set of integers in Lemma 16 with P = T [j..j + k − 1].
Recall that in Section 4 we considered the two-dimensional orthogonal range re-

porting problem to enumerate pOccG(P, i). Note that FstOcc(P, i) can be obtained
by taking (e, i) ∈ pOccG(P, i) with e.min minimum. In order to compute FstOcc(P, i)
efficiently instead of enumerating all elements in pOccG(P, i), we give every point
corresponding to e the weight e.min and use the next data structure to compute a
point with the minimum weight in a given rectangle.

Lemma 19 ([1]). Consider n weighted points on a two-dimensional plane. There
exists a data structure which supports the query to return a point with the mini-
mum weight in a given rectangle in O(log2 n) time, occupies O(n) space, and requires
O(n log n) time to construct.

Using Lemma 19, we get the following lemma.

Lemma 20. Given a signature encoding G of size w which generates T , we can con-
struct a data structure of O(w) space in O(w logw logN log∗ M) time to support
queries Fst(j, k) in O(logw log k log∗ M(logN + log k log∗ M)) time.

Proof. For construction, we first compute e.min in O(w) time using the DAG of G.
Next, we prepare the plane defined by the two ordered sets X and Y in Section 4.
This can be done in O(w logw logN log∗ M) time by sorting elements in X (and Y)
by LCE algorithm (Lemma 10) and a standard comparison-based sorting. Finally we
build the data structure of Lemma 19 in O(w logw) time.

To support a query Fst(j, k), we first compute Epow(Uniq(P )) with P = T [j..j +
k − 1] in O(logN + log k log∗ M) time by Lemma 8, and then get P in Lemma 16.
Since |P| = O(log k log∗ M) by Lemma 5, Fst(j, k) = min{FstOcc(P, i) − i | i ∈
P} can be computed by answering FstOcc O(log k log∗ M) times. For each com-
putation of FstOcc(P, i), we spend O(logw(logN + log k log∗ M)) time to compute
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x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1 and y

(P,j)
2 by Lemma 15, and O(log2 w) time to compute a point

with the minimum weight in the rectangle (x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1 , y

(P,j)
2 ). Hence it takes

O(log k log∗ M(logw(logN + log k log∗ M) + log2 w)) = O(logw log k log∗ M(logN +
log k log∗ M)) time in total. ⊓⊔

We are ready to prove Theorem 3 holds.

Proof (Proof of Theorem 3). We compute the z factors of the LZ77-factorization of
T incrementally by using Fact 1 and Lemma 20 in O(z logw log3 N(log∗ M)2) time.
Therefore the statement holds. ⊓⊔
We remark that we can similarly compute the Lempel-Ziv77 factorization with self-
reference of a text (defined below) in the same time and same working space.

Definition 21 (Lempel-Ziv77 factorization with self-reference [29]). The Lempel-
Ziv77 (LZ77) factorization of a string s with self-references is a sequence f1, . . . , fk
of non-empty substrings of s such that s = f1 · · · fk, f1 = s[1], and for 1 < i ≤ k, if
the character s[|f1..fi−1|+ 1] does not occur in s[|f1..fi−1|], then fi = s[|f1..fi−1|+ 1],
otherwise fi is the longest prefix of fi · · · fk which occurs at some position p, where
1 ≤ p ≤ |f1 · · · fi−1|.
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