Dynamic Index and LZ Factorization in Compressed Space

Takaaki Nishimoto ${ }^{1}$, Tomohiro I^{2}, Shunsuke Inenaga ${ }^{1}$, Hideo Bannai ${ }^{1}$, and Masayuki Takeda ${ }^{1}$
${ }^{1}$ Department of Informatics, Kyushu University, Japan
\{takaaki.nishimoto, inenaga, bannai, takeda\}@inf.kyushu-u.ac.jp
${ }^{2}$ Kyushu Institute of Technology, Japan
tomohiro@ai.kyutech.ac.jp

Abstract

In this paper, we propose a new dynamic compressed index of $O(w)$ space for a dynamic text T, where $w=O\left(\min \left(z \log N \log ^{*} M, N\right)\right)$ is the size of the signature encoding of T, z is the size of the Lempel-Ziv77 (LZ77) factorization of T, N is the length of T, and $M \geq 4 N$ is an integer that can be handled in constant time under word RAM model. Our index supports searching for a pattern P in T in $O\left(|P| f_{\mathcal{A}}+\log w \log |P| \log ^{*} M\left(\log N+\log |P| \log ^{*} M\right)+o c c \log N\right)$ time and insertion/deletion of a substring of length y in $O\left(\left(y+\log N \log ^{*} M\right) \log w \log N \log ^{*} M\right)$ time, where $f_{\mathcal{A}}=O\left(\min \left\{\frac{\log \log M \log \log w}{\log \log \log M}, \sqrt{\frac{\log w}{\log \log w}}\right\}\right)$. Also, we propose a new spaceefficient LZ77 factorization algorithm for a given text of length N, which runs in $O\left(N f_{\mathcal{A}}+z \log w \log ^{3} N\left(\log ^{*} N\right)^{2}\right)$ time with $O(w)$ working space.

1 Introduction

1.1 Dynamic compressed index

Given a text T, the string indexing problem is to cons index, so that querying occurrences of a given pattern As the size of data is growing rapidly in the last de focused on indexes working in compressed text space most of them are static, i.e., they have to text is modified, which makes difficult to a this paper, we consider the dynamic compr ing a compressed index for a text string tha several dynamic non-compressed text indexe has been little work for the compressed val

H_{0}
Sal
Ind
tim
roth order empirical ent
osed a dynamic compressed index, called oach works well in practice, updates requi pur knowledge, these are the only existing
pre e a new dynamic compressed index, as follows:
Theorem 1. Let M be the maximum length of the dynamic text to index, N the length of the current text $T, w=O\left(\min \left(z \log N \log ^{*} M, N\right)\right)$ the size of the signature encoding of T, and z the number of factors in the Lempel-Ziv 77 factorization of T without self-references. Then, there exists a dynamic index of $O(w)$ space

[^0]which supports searching of a pattern P in $O\left(|P| f_{\mathcal{A}}+\log w \log |P| \log ^{*} M(\log N+\right.$ $\left.\log |P| \log ^{*} M\right)+$ occ $\left.\log N\right)$ time, where $f_{\mathcal{A}}=O\left(\min \left\{\frac{\log \log M \log \log w}{\log \log \log M}, \sqrt{\frac{\log w}{\log \log w}}\right\}\right)$, and insertion/deletion of a (sub)string Y into/from an arbitrary position of T in amortized $O\left(\left(|Y|+\log N \log ^{*} M\right) \log w \log N \log ^{*} M\right)$ time. Moreover, if Y is given as a substring of T, we can support insertion in amortized $O\left(\log w\left(\log N \log ^{*} M\right)^{2}\right)$ time.
Since $z \geq \log N, \log w=\max \left\{\log z, \log \left(\log ^{*} M\right)\right\}$. Hence, our index is able to find pattern occurrences faster than the index of Hon et al. when the $|P|$ term is dominating in the pattern search times. Also, our index allows faster substring insertion/deletion on the text when the \sqrt{N} term is dominating.

> he collection. Hence, algorithms for the library management prob- ctly applied to our problem.

1.2 Computing LZ77 factorization in compressed space.

As an application of our dynamic co ization algorithm working in compres

The Lempel-Ziv77 (LZ77) factoris
Definition 2 (Lempel-Ziv77 facts torization of a string s without self-r substrings of s such that $s=f_{1} \cdots f_{2}$ $s\left[\left|f_{1} . . f_{i-1}\right|+1\right]$ does not occur in $s[\mid$ f_{i} is the longest prefix of $f_{i} \cdots f_{z}$ wh factorization f_{1}, \ldots, f_{z} of string s is the number z of factor:
Although the primary use of LZ77 factorization is data c shown that it is a powerful tool for many string processing the importance of algorithms to compute LZ77 factorization in order to apply algorithms to large scale data, reducing important matter. In this paper, we focus on LZ77 factorize in compressed space.

The following is our main result.

mitted due to lack of space are in a full version of this

2 Preliminaries

2.1 Strings

Let Σ be an ordered alphabet. An element of Σ^{*} is called a string. For string $w=x y z$, x, y and z are called a prefix, substring, and suffix of w, respectively. The length of string w is denoted by $|w|$. The empty string ε is a string of length 0 . Let $\Sigma^{+}=\Sigma^{*}-$ $\{\varepsilon\}$. For any $1 \leq i \leq|w|, w[i]$ denotes the i-th character of w. For any $1 \leq i \leq j \leq|w|$, $w[i . . j]$ denotes the substring of w that begins at position i and ends at position j. Let $w[i .]=.w[i . .|w|]$ and $w[. . i]=w[1 . . i]$ for any $1 \leq i \leq|w|$. For any string w, let w^{R} denote the reversed string of w, that is, $w^{R}=w[|w|] \cdots w[2] w[1]$. For any strings w and u, let $\operatorname{LCP}(w, u)$ (resp. $\operatorname{LCS}(w, u))$ denote the length of the longest common prefix (resp. suffix) of w and u. Given two strings s_{1}, s_{2} and two integers i, j, let $\operatorname{LCE}\left(s_{1}, s_{2}, i, j\right)$ denote a query which returns $\operatorname{LCP}\left(s_{1}\left[i . .\left|s_{1}\right|\right], s_{2}\left[j .\left|s_{2}\right|\right]\right)$. For any strings p and s, let $\operatorname{Occ}(p, s)$ denote all occurrence positions of p in s, namely, $\operatorname{Occ}(p, s)=$ $\{i|p=s[i . . i+|p|-1], 1 \leq i \leq|s|-|p|+1\}$. Our model of computation is the unitcost word RAM with machine word size of $\Omega\left(\log _{2} M\right)$ bits, and space complexities will be evaluated by the number of machine words. Bit-oriented evaluation of space complexities can be obtained with a $\log _{2} M$ multiplicative factor.

2.2 Context free grammars as compressed representation of strings

Straight-line programs. A straight-line program (SLP) is a context free grammar in the Chomsky normal form that generates a single string. Formally, an SLP that generates T is a quadruple $\mathcal{G}=(\Sigma, \mathcal{V}, \mathcal{D}, S)$, such that Σ is an ordered alphabet of terminal characters; $\mathcal{V}=\left\{X_{1}, \ldots, X_{n}\right\}$ is a set of positive integers, called variables; $\mathcal{D}=\left\{X_{i} \rightarrow \operatorname{expr}_{i}\right\}_{i=1}^{n}$ is a set of deterministic productions (or assignments) with each expr_{i} being either of form $X_{\ell} X_{r}(1 \leq \ell, r<i)$, or a single character $a \in \Sigma$; and $S:=X_{n} \in \mathcal{V}$ is the start symbol which derives the string T. We also assume that the grammar neither contains redundant variables (i.e., there is at most one assignment whose righthand side is expr) nor useless variables (i.e., every variable appears at least once in the derivation tree of \mathcal{G}). The size of the SLP \mathcal{G} is the number n of productions in \mathcal{D}. In the extreme cases the length N of the string T can be as large as 2^{n-1}, however, it is always the case that $n \geq \log _{2} N$.

Let val : $\mathcal{V} \rightarrow \Sigma^{+}$be the function which returns the string derived by an input variable. If $s=\operatorname{val}(X)$ for $X \in \mathcal{V}$, then we say that the variable X represents string s. For any variable sequence $y \in \mathcal{V}^{+}$, let $\operatorname{val}^{+}(y)=\operatorname{val}(y[1]) \cdots \operatorname{val}(y[|y|])$. For any variable X_{i} with $X_{i} \rightarrow X_{\ell} X_{r} \in \mathcal{D}$, let X_{i}. left $=\operatorname{val}\left(X_{\ell}\right)$ and X_{i}. right $=\operatorname{val}\left(X_{r}\right)$, which are called the left string and the right string of X_{i}, respectively. For two variables $X_{i}, X_{j} \in \mathcal{V}$, we say that X_{i} occurs at position c in X_{j} if there is a node labeled with X_{i} in the derivation tree of X_{j} and the leftmost leaf of the subtree rooted at that node labeled with X_{i} is the c-th leaf in the derivation tree of X_{j}. We define the function $v O c c\left(X_{i}, X_{j}\right)$ which returns all positions of X_{i} in the derivation tree of X_{j}.

Run-length straight-line programs. We define run-length SLPs, (RLSLPs) as an extension to SLPs, which allow run-length encodings in the righthand sides of productions, i.e., \mathcal{D} might contain a production $X \rightarrow \hat{X}^{k} \in \mathcal{V} \times \mathcal{N}$. The size of the RLSLP is still the number of productions in \mathcal{D} as each production can be encoded in constant space. Let $A_{\operatorname{ssgn}}^{\mathcal{G}}$ be the function such that $\operatorname{Assgn}_{\mathcal{G}}\left(X_{i}\right)=\operatorname{expr}_{i}$ iff $X_{i} \rightarrow \operatorname{expr}_{i} \in \mathcal{D}$. Also, let $A \operatorname{ssgn} \overline{\mathcal{G}}^{-1}$ denote the reverse function of $A \operatorname{ssg} n_{\mathcal{G}}$. When clear from the context, we write $A s s g n_{\mathcal{G}}$ and $A_{s s g n}^{\mathcal{G}}-1$ as $A s s g n$ and $A s s g n{ }^{-1}$, respectively.

We define the left and right strings for any variable $X_{i} \rightarrow X_{\ell} X_{r} \in \mathcal{D}$ in a similar way to SLPs. Furthermore, for any $X \rightarrow \hat{X}^{k} \in \mathcal{D}$, let X.left $=\operatorname{val}(\hat{X})$ and X.right $=$ $\operatorname{val}(\hat{X})^{k-1}$.
Representation of RLSLPs. For an RLSLP \mathcal{G} of size w, we can consider a DAG of size w as a compact representation of the derivation trees of variables in \mathcal{G}. Each node represents a variable X in \mathcal{V} and stores $|\operatorname{val}(X)|$ and out-going edges represent the assignments in \mathcal{D} : For an assignment $X_{i} \rightarrow X_{\ell} X_{r} \in \mathcal{D}$, there exist two out-going edges from X_{i} to its ordered children X_{ℓ} and X_{r}; and for $X \rightarrow \hat{X}^{k} \in \mathcal{D}$, there is a single edge from X to \hat{X} with the multiplicative factor k. For $X \in \mathcal{V}$, let parents (X) be the set of variables which have out-going edge to X in the DAG of \mathcal{G}. To compute parents (X) for $X \in \mathcal{V}$ in linear time, we let X have a doubly-linked list of length \mid parents $(X) \mid$ to represent parents (X) : Each element is a pointer to a node for $X^{\prime} \in \operatorname{parents}(X)$ (the order of elements is arbitrary). Conversely, we let every parent X^{\prime} of X have the pointer to the corresponding element in the list.

3 Signature encoding

Here, we recall the signature enc technique is locally consistent pa

Lemma 4 (Locally consisten exists a function $f:[0 . . W]^{\log ^{*} \mid}$ $n \geq 2$ and $p[i] \neq p[i+1]$ for a $f\left(\tilde{p}\left[i-\Delta_{L}\right], \ldots, \tilde{p}\left[i+\Delta_{R}\right]\right)$ for $1 \leq$ for $1 \leq i<n$; and $d[i]+d[i+$ where $\Delta_{L}=\log ^{*} W+6 \quad p[j]$ for all $1 \leq j \leq n, \tilde{p}[j]=0$ otherwise. Furthermore, size $o(\log W)$, which can

For the bit sequence d poses an integer sequence q_{1}, \ldots, q_{j} of substrings ca composition iff $d\left[\mid q_{1} \cdots q_{i}\right.$ length from two to four b
 $\left|E b l o c k+{ }_{d}(p)\right|=j$ and let $E_{b l o c k}^{d}(s)[i]=q_{i}$. We omit d and write Eblock $($ clear from the context, and we use implicitly the bit sequence created as d.

We complementarily use run-length encoding to get a sequence to w can be applied. Formally, for a string s, let $\operatorname{Epow}(s)$ be the function which maximal run of same characters a as a^{k}, where k is the length of the r can be computed in $O(|s|)$ time. Let $|\operatorname{Epow}(s)|$ denote the number of maximal runs of same characters in s and let $\operatorname{Epow}(s)[i]$ denote i-th maximal run in s.

The signature encoding is the $\operatorname{RLSLP} \mathcal{G}=(\Sigma, \mathcal{V}, \mathcal{D}, S)$, where the assignments in \mathcal{D} are determined by recursively applying Eblock and Epow to T until a single integer S is obtained. We call each variable of the signature encoding a signature, and use e (for example, $e_{i} \rightarrow e_{\ell} e_{r} \in \mathcal{D}$) instead of X to distinguish from general RLSLPs.

For a formal description, let $E:=\Sigma \cup \mathcal{V}^{2} \cup \mathcal{V}^{3} \cup \mathcal{V}^{4} \cup(\mathcal{V} \times \mathcal{N})$ and let Sig : $E \rightarrow \mathcal{V}$ be the function such that: $\operatorname{Sig}(x)=e$ if $(e \rightarrow x) \in \mathcal{D} ; \operatorname{Sig}(x)=\operatorname{Sig}(\operatorname{Sig}(x[1 .|x|-$ 1]) $x[|x|])$ if $x \in \mathcal{V}^{3} \cup \mathcal{V}^{4}$; or otherwise undefined. Namely, the function Sig returns,
if any, the lefthand side of the corresponding production of x by recursively applying the $\operatorname{Assgn}^{-1}$ function from left to right. For any $p \in E^{*}$, let $\operatorname{Sig}^{+}(p)=$ $\operatorname{Sig}(p[1]) \cdots \operatorname{Sig}(p[|p|])$.

The signature encoding of string T is defined by the following Shrink and Pow functions: $\operatorname{Shrink}_{t}^{T}=\operatorname{Sig}^{+}(T)$ for $t=0$, and $\operatorname{Shrink}_{t}^{T}=\operatorname{Sig}^{+}\left(\operatorname{Eblock}\left(\operatorname{Pow}_{t-1}^{T}\right)\right)$ for $0<t \leq h$; and $\operatorname{Pow}_{t}^{T}=\operatorname{Sig}^{+}\left(\operatorname{Epow}\left(\operatorname{Shrink} k_{t}^{T}\right)\right)$ for $0 \leq t \leq h$; where h is the minimum integer satisfying $\left|P o w_{h}^{T}\right|=1$. Then, the start symbol of the signature encoding is $S=\operatorname{Pow}_{h}^{T}$. We say that a node is in level t in the derivation tree of S if the node is produced by Shrink t_{t}^{T} or $\operatorname{Pow}_{t}^{T}$. The height of the derivation tre encoding of T is $O(h)=O(\log |T|)$. For any $T \in \Sigma^{+}$, let $i d(T)=$ the integer S is the signatur is static, and $M / 4$ is the up dynamically. Since all signa by the signature encoding.
DAG of RLSLP introduced

3.1 Commmon sequen

Here, we recall the most the existence of commor following lemma.

Lemma 5 (common se coding for a string T. Ev $\operatorname{Uniq}(P)$ in \mathcal{G} for a strin $\operatorname{Uniq}(P)$, which we call t

4. More specifica h of T if we con we set $W=M$ ment signature nature encoding, which ensures ices of same substrings by the $(\Sigma, \mathcal{V}, \mathcal{D}, S)$ be a signature enesented by a signature sequence $=O\left(\log |P| \log ^{*} M\right)$. s defined by the following.

Definition 6. For a string P, let

$$
\begin{aligned}
& \text { XShrink }_{t}^{P}= \begin{cases}\operatorname{Sig}^{+}(P) & \text { for } t=0, \\
\operatorname{Sig}^{+}\left(\text {Eblock }_{d}\left(\text { XPow }_{t-1}^{P}\right)\left[\left|L_{t}^{P}\right| . . \mid \text { XPow }_{t-1}^{P}\left|-\left|R_{t}^{P}\right|\right]\right)\right. & \text { for } 0<t \leq h^{P},\end{cases} \\
& \text { XPow }_{t}^{P}=\operatorname{Sig}^{+}\left(E \operatorname{Epow}\left(\text { Xhrink }_{t}^{P}\left[\left|\hat{L}_{t}^{P}\right|+1 . . \mid \text { Xhrink }_{t}^{P}|-| \hat{R}_{t}^{P}\right]\right) \mid\right) \\
& \text { for } 0 \leq t<h^{P},
\end{aligned}
$$

$-L_{t}^{P}$ is the shortest prefix of XPow ${ }_{t-1}^{P}$ of length at least Δ_{L} such that $d\left[\left|L_{t}^{P}\right|+1\right]=1$,
$-R_{t}^{P}$ is the shortest suffix of XPow ${ }_{t-1}^{P}$ of length at least $\Delta_{R}+1$ such that $d[|d|-$ $\left.\left|R_{t}^{P}\right|+1\right]=1$,

- \hat{L}_{t}^{P} is the longest prefix of XShrink ${ }_{t}^{P}$ such that $\left|\operatorname{Epow}\left(\hat{L}_{t}^{P}\right)\right|=1$,
- \hat{R}_{t}^{P} is the longest suffix of XShrink t_{t}^{P} such that $\left|E \operatorname{Epow}\left(\hat{R}_{t}^{P}\right)\right|=1$, and
$-h^{P}$ is the minimum integer such that \mid Epow (XShrink $\left.h_{h^{P}}^{P}\right) \mid \leq \Delta_{L}+\Delta_{R}+9$.

holds, namely, "internal" bit sequences of the same substring of s are equal. Since each level of the signature encoding uses the bit sequence, all occurrences of same substrings in a string share same internal signature sequences, and this goes up level by level. $X \operatorname{Shrink}_{t}^{P}$ and $X P o w_{t}^{P}$ represent signature sequences which are obtained from only internal signature sequences of $X P o w_{t-1}^{T}$ and $X S h r i n k k_{t}^{T}$, respectively.

3.2 Dynamic signature encoding

We consider a dynamic signature encoding \mathcal{G} of T, which allows for efficient updates of \mathcal{G} in compressed space according to the following operations: $\operatorname{INSERT}(Y, i)$ inserts a string Y into T at position i, i.e., $T \leftarrow T[. . i-1] Y T[i ..] ; I N S E R T^{\prime}($. $T[j . . j+y-1]$ into T at position i, i.e., $T \leftarrow T[. . i-1] T[j . . j+y-$ $\operatorname{DELETE}(j, y)$ deletes a substring of length y star

During updates we recompute $\operatorname{Shrink}_{t}^{T}$ and that the most part is unchanged thanks to the virt

[^1]When we need a signature for expr, we look up the signature assigned to expr (i.e., compute Assign $^{-1}($ expr $)$) and use it if such exists. If Assign $^{-1}($ expr $)$ is undefined we create a new signature $e_{\text {new }}$, which is an integer that is currently not used as signatures, and add $e_{\text {new }} \rightarrow$ expr to \mathcal{D}. Al \quad ce a useless signature whose parents in the DAG are all remo seless signatures from \mathcal{G} during updates.

We can upper bound the number of a single update operation by the followi
Lemma 11. After INSERT (Y, signatures are added to or rer operation, $O\left(\log N \log ^{*} M\right)$ removed from \mathcal{G} after

Proof. Consider INSERT be the new text. Note t over $\operatorname{Uniq}(T[. . i-1]) \operatorname{Uni}$ signatures can be added

$O\left(y+\log N \log ^{*} M\right)$ After $\operatorname{INSERT}^{\prime}(j, y, i)$ from \mathcal{G}.
there is a small ditterence in our DAG representat has a doubly-linked list representing nature is useless or not by checking i maintained in constant time after ad lemma still holds for our DAG repres

Lemma 12 (Dynamic signature e

rocessing \mathcal{G} in $O\left(w f_{\mathcal{A}}\right)$ time, we can insert/delete any (sub)s tion of T in $O\left(\left(y+\log N \log ^{*} M\right) f_{\mathcal{A}}\right)$ from an arbitrary posigiven as a substring of T, we can support insertion in $O\left(f_{\mathcal{A}}\right.$

4 Dynamic Compres

In this section, we present or coding. As already mentioned is different from that of Alst, the static index for SLPs of C RLSLPs, we show how to spe signature en
Index for S
com
$\frac{2}{2 \mathrm{Th}}$
${ }_{3} \mathrm{~T}$

ised on signature enfor pattern matching - to the one taken in pplying their idea to sing the properties of
of P in T can be uniquely associated with the lowest node that covers the occurrence of P in the derivation tree. As the derivation tree is binary, if $|P|>1$, then the node is labeled with some variable $X \in \mathcal{V}$ such that P_{1} is a suffix of X.left and P_{2} is a prefix of X.right, where $P=P_{1} P_{2}$ with $1 \leq\left|P_{1}\right|<|P|$. Here we call the pair $\left(X, \mid X\right.$.left $\left|-\left|P_{1}\right|+1\right)$ a primary occurrence of P, and let $p O c c_{\mathcal{S}}(P, j)$ denote the set of such primary occurrences with $\left|P_{1}\right|=j$. The set of all primary occurrences is denoted by $p O c c_{\mathcal{S}}(P)=\bigcup_{1 \leq j<|P|} p O c c_{\mathcal{S}}(P, j)$. Then, we can compute $O c c(P, T)$ by first computing primary occurrences and enumerating the occurrences of X in the derivation tree.

The set $O c c(P, T)$ of occurrences of P in T is represented by $p O c c_{\mathcal{S}}(P)$ as follows: $\operatorname{Occ}(P, T)=\left\{j+k-1 \mid(X, j) \in p O c c_{\mathcal{S}}(P), k \in v O c c(X, S)\right\}$ if $|P|>1 ; \operatorname{Occ}(P, T)=$ $v O c c(X, S)((X \rightarrow P) \in \mathcal{D})$ if $|P|=1$.

Hence the task is to compute $p O c_{\mathcal{S}}(P)$ and $v O c c(X, S)$ efficiently. Note that $v O c c(X, S)$ can be computed in $O(|v O c c(X, S)| h)$ time by traversing the DAG in a reversed direction from X to the source, where h is the height of the derivation tree of S. Hence, in what follows, we explain how to compute $p O c c_{\mathcal{S}}(P)$ for a string P with $|P|>1$. We consider the following problem:
Problem 13 (Two-Dimensional Orthogonal Range Reporting Problem). Let \mathcal{X} and \mathcal{Y} denote subsets of two two-dimensional plane supports a query repor \mathcal{X} and $y_{1}, y_{2} \in \mathcal{Y}$, retu

Data structures fo There is even a dynan then, we just use any c in $O\left(\hat{q}_{|\mathcal{R}|}+q_{|\mathcal{R}|} \mid q_{0 c c}\right)$ ti to report.

Now, given an $\operatorname{SLP} \mathcal{S}$, we consider a two-dimensional plane defined by $\mathcal{X}=$ $\left\{X . \operatorname{left}^{R} \mid X \in \mathcal{V}\right\}$ and $\mathcal{Y}=\{X$.right $\mid X \in \mathcal{V}\}$, where elements in \mathcal{X} and \mathcal{Y} are sorted by lexicographic order. Then consider a set of points $\mathcal{R}=\left\{\left(X\right.\right.$. left ${ }^{R}, X$. .right $) \mid$ $X \in \mathcal{V}\}$. For a string P and an integer $1 \leq j<|P|$, let $y_{1}^{(P, j)}$ (resp. $y_{2}^{(P, j)}$) denote the lexicographically smallest (resp. largest) element in \mathcal{Y} that has $P[j+1 .$.$] as a$ prefix. If there is no such element, it just returns NIL and we can immediately know that $p O c c_{\mathcal{S}}(P, j)=\emptyset$. We define $x_{1}^{(P, j)}$ and $x_{2}^{(P, j)}$ in a similar way over \mathcal{X}. Then, $p O c c_{\mathcal{S}}(P, j)$ can be computed by a query $\operatorname{report}_{\mathcal{R}}\left(x_{1}^{(P, j)}, x_{2}^{(P, j)}, y_{1}^{(P, j)}, y_{2}^{(P, j)}\right)$.

Using this idea, we can get the next result:
Lemma 14. For an SLP \mathcal{S} of size n, there exists a data structure of size $O(n)$ that computes, given a string $P, p O c c_{\mathcal{S}}(P)$ in $O\left(|P|(h+|P|) \log n+q_{n}\left|p O c c_{\mathcal{S}}(P)\right|\right)$ time.
Proof. For every $1 \leq j<|P|$, we compute $p O c c_{\mathcal{S}}(P, j)$ by report $\mathcal{R}_{\mathcal{R}}\left(x_{1}^{(P, j)}, x_{2}^{(P, j)}, y_{1}^{(P, j)}\right.$, $\left.y_{2}^{(P, j)}\right)$. We can compute $y_{1}^{(P, j)}$ and $y_{2}^{(P, j)}$ in $O((h+|P|) \log n)$ time by binary search on \mathcal{Y}, where each comparison takes $O(h+|P|)$ time for expanding the first $O(|P|)$ characters of variables subjected to comparison. In a similar way, $x_{1}^{(P, j)}$ and $x_{2}^{(P, j)}$ can be computed in $O((h+|P|) \log n)$ time. Thus, the total time complexity is $O(|P|((h+$ $\left.\left.|P|) \log n+\hat{q}_{n}\right)+q_{n}\left|p O c c_{\mathcal{S}}(P)\right|\right)=O\left(|P|(h+|P|) \log n+q_{n}\left|p O c c_{\mathcal{S}}(P)\right|\right)$.

Index for RLSLPs. We extend the idea for the SLP index described above to RLSLPs. The difference from SLPs is that we have to deal with occurrences of P
that are covered by a node labeled with $X \rightarrow \hat{X}^{k}$ but not covered by any single child of the node in the derivation tree. In such a case, there must exist $P=P_{1} P_{2}$ with $1 \leq\left|P_{1}\right|<|P|$ such that P_{1} is a suffix of X.left $=\operatorname{val}^{+}(\hat{X}$ X.right $=\operatorname{val}^{+}\left(\hat{X}^{k-1}\right)$. Let $j=|\operatorname{val}(\hat{X})|-\left|P_{1}\right|+1$ be a pos P occurs, then P also occurs at $j+c|v a l(\hat{X})|$ in $\operatorname{val}^{+}\left(\hat{X}^{k}\right)$ fo with $j+c|\operatorname{val}(\hat{X})|+|P|-1 \leq \mid$ val $^{+}\left(\hat{X}^{k}\right) \mid$. Using this observa can be modified for RLSLPs to achieve the same bounds as

Index for signature encodings. Since signature encodir compute $\operatorname{Occ}(P, T)$ by querying report $_{\mathcal{R}}\left(x_{1}^{(P, j)}, x_{2}^{(P, j)}, y_{1}^{(P, j)}, y_{2}\right.$ $|P|$. However, the properties of signature ence matching as summarized in the following two i $x_{1}^{(P, j)}, x_{2}^{(P, j)}, y_{1}^{(P, j)}$ and $y_{2}^{(P, j)}$ using LCE queries i We can reduce the number of report $_{\mathcal{R}}$ queries using the property of the common sequence of

Lemma 15. Assume that we have the signature

time.
Proof.
$O(\log w$
mpute $x_{1}^{(P, j)}$ and $x_{2}^{(P, j)}$ on \mathcal{X} by binary search in
the sam
Lemma with $|P|>1$. If $\left|P o w_{0}^{P}\right|=1$, then $p O c c_{\mathcal{G}}(P)=$ $p O c c_{\mathcal{G}}(P, 1)$. If \mid Pow $_{0}^{P} \mid>1$, then $p O c c_{\mathcal{G}}(P)=\bigcup_{j \in \mathcal{P}} p O c c_{\mathcal{G}}(P, j)$, where $\mathcal{P}=$ $\left\{\left|\operatorname{val}^{+}(u[1 . . i])\right||1 \leq i<|u|, u[i] \neq u[i+1]\}\right.$ with $u=\operatorname{Uniq}(P)$.

Proof. If $\left|P o w_{0}^{P}\right|=1$, then $P=a^{|P|}$ for some character $a \in \Sigma$. In be contained in a node labeled with a signature $e \rightarrow \hat{e}^{d}$ such that Hence, all primary occurrences of P can be found by $p O c c_{\mathcal{G}}(P, 1)$

If \mid Pow $_{0}^{P} \mid>1$, we consider the common sequence u of P. Reca occurring at j in $\operatorname{val}(e)$ is represented by u for any $(e, j) \in p O c c(P)$ at least $p O c c_{\mathcal{G}}(P)=\bigcup_{i \in \mathcal{P}^{\prime}} p O c c_{\mathcal{G}}(P, i)$ holds, where $\mathcal{P}^{\prime}=\left\{\mid\right.$ val ${ }^{+}(\imath$ $u[. .|u|-1]) \mid\}$. Moreover, we show that $p O c c_{\mathcal{G}}(P, i)=\emptyset$ for any $u[i+1]$. Note that $u[i]$ and $u[i+1]$ are encoded into the same signatu tree of e, and that the parent of two nodes corresponding to $u[i]$ signature e^{\prime} in the form $e^{\prime} \rightarrow u[i]^{d}$. Now assume for the sake of contradiction that

In order to dynamize our index "dynamic" two-dimensional orthogor er a data structure for update operations:
$-\operatorname{insert}_{\mathcal{R}}\left(p, x_{\text {pred }}, y_{\text {pred }}\right):$ given a po
$\mathrm{x}\left\{x^{\prime} \in \mathcal{X} \mid x^{\prime} \leq x\right\}$ and $y_{\text {pred }}=\max \left\{y^{\prime} \in \mathcal{Y} \mid y^{\prime} \leq y\right\}$, insert p to \mathcal{K} and update \mathcal{X} and \mathcal{Y} accordingly.

- delete $_{\mathcal{R}}(p)$: given a point $p=(x, y) \in \mathcal{R}$, delete p from \mathcal{R} and update \mathcal{X} and \mathcal{Y}
 re encoding \mathcal{G} maintained as ; self-balancing structures for d as described rn occurrences lexity for pattern matching in the
ed how to update \mathcal{G} after INSERT, rains is to show how to update the gnature is added to or deleted from st locate e.left ${ }^{R}$ on \mathcal{X} and e.right When a signature e is added to \mathcal{V}, $\left.\mathrm{ft}^{R}\right\}$ on \mathcal{X} and $y_{\text {pred }}=\max \left\{y^{\prime} \in\right.$
dynamic range reporting \mathcal{V}. When a signature e

eft ${ }^{R}$,e.right), $\left.x_{\text {pred }}, y_{\text {pred }}\right)$. The $O\left(\log w \log N \log ^{*} M\right)$ time as
ing a single update ed time bounds of
is solution only need in apply to our range maintenance problem ments in a list L and

5 LZ77 factorize

In this section, we show the pair $\left(x_{i},\left|f_{i}\right|\right)$, we cor occurrence position of f

For integers j, k with returns the minimum in

ed space

since each f_{i} can be represented by $\left.\left|f_{i}\right|\right)$ in our algorithm, where x_{i} is an it exists. Our algorithm is based on the following fact:

Fact 1 Let f_{1}, \ldots, f_{z} be the LZY7-factorization of a string T. Given f_{1}, \ldots, f_{i-1}, we can compute f_{i} with $O\left(\log \left|f_{i}\right|\right)$ calls of $F s t(j, k)$ (by doubling the value of k, followed by a binary search), where $j=\left|f_{1} \cdots f_{i-1}\right|+1$.

We explain how to support queries $F s t(j, k)$ using the signature encoding. We define $e . \min =\min v O c c(e, S)+|e . l e f t|$ for a signature $e \in \mathcal{V}$ with $e \rightarrow e_{\ell} e_{r}$ or $e \rightarrow \hat{e}^{k}$. We also define $\operatorname{FstOcc}(P, i)$ for a string P and an integer i as follows:

$$
\operatorname{Fst} O c c(P, i)=\min \left\{e . \min \mid(e, i) \in p O c c_{\mathcal{G}}(P, i)\right\}
$$

Then $F s t(j, k)$ can be represented by $\operatorname{Fst} O c c(P, i)$ as follows:

$x_{1}^{(P, j)}, x_{2}^{(P, j)}, y_{1}^{(P, j)}$ and $y_{2}^{(P, j)}$ with the minimum weigh $O\left(\log k \log ^{*} M\right.$ $\left.\left.\log k \log ^{*} M\right)\right)$

We are rea

Proof (Proof o T incrementall
Therefore the
We remark tha reference of a text (c

Definition 21 (Lempel-Ziv77 factorization with self-1
the LZ77-factorization of $\left.w \log ^{3} N\left(\log ^{*} M\right)^{2}\right)$ time.

Ziv77 (LZ77) factorization of a string s with self-reference of non-empty substrings of s such that $s=f_{1} \cdots f_{k}, f_{1}=s$ the character $s\left[\left|f_{1} . . f_{i-1}\right|+1\right]$ does not occur in $s\left[\left|f_{1} . . f_{i-1}\right|\right]$, otherwise f_{i} is the longest prefix of $f_{i} \cdots f_{k}$ which occurs
 $1 \leq p \leq\left|f_{1} \cdots f_{i-1}\right|$.

Acknowledgments. We wo attention to the work by Alst

Gawrychowski for drawing our uitful discussions.

References

1. P. K. Agarwal, L. Arge, D. Guvindarajan, J. yang, and K. Yi: Efficient external memory structures for range-aggregate queries. Comput. Geom., 46(3) 2013, pp. 358-370.
2. S. Alstrup, G. S. Brodal, and T. Rauhe: Dynamic pattern matching, tech. rep., Department of Computer Science, University of Copenhagen, 1998.
3. S. Alstrup, G. S. Brodal, and T. Rauhe: Pattern matching in dynamic texts, in Proc. SODA 2000, 2000, pp. 819-828.
4. P. Beame and F. E. Fich: Optimal bounds for the predecessor problem and related problems. J. Comput. Syst. Sci., 65(1) 2002, pp. 38-72.
5. G. E. Blelloch: Space-efficient dynamic orthogonal point location, segment intersection, and range reporting, in SODA, S.-H. Teng, ed., SIAM, 2008, pp. 894-903.
6. F. Claude and G. Navarro: Self-indexed grammar-based compression. Fundamenta Informaticae, 111(3) 2011, pp. 313-337.
7. F. Claude and G. Navarro: Improved grammar-based compressed indexes, in SPIRE'12, 2012, pp. 180-192.
8. P. F. Dietz and D. D. Sleator: Two algorithms for maintaining order in a list, in Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA, A. V. Aho, ed., ACM, 1987, pp. 365-372.
9. A. Ehrenfeucht, R. M. McConnell, N. Osheim, and S. Woo: Position heaps: A simple and dynamic text indexing data structure. J. Discrete Algorithms, 9(1) 2011, pp. 100-121.
10. J. Fischer, T. Gagie, P. Gawrychowski, and T. Kociumaka: Approximating LZ77 via small-space multiple-pattern matching, in ESA 2015, 2015, pp. 533-544.
11. T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi: A faster grammar-based self-index, in LATA'12, 2012, pp. 240-251.
12. T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi: LZ7rbased self-indexing with faster pattern matching, in Proc. LATIN 2014, 2014, pp. 731-742.
13. T. Gagie, P. Gawrychowski, and S. J. Puglisi: Approximate pattern matching in lz77compressed texts. J. Discrete Algorithms, 32 2015, pp. 64-68.
14. K. Goto, S. Maruyama, S. Inenaga, H. Bannai, H. Sakamoto, and M. Takeda: Restructuring compressed texts without explicit decompression. CoRR, abs/1107.2729 2011.
15. W. Hon, T. W. Lam, K. Sadakane, W. Sung, and S. Yiu: Compressed index for dynamic text, in DCC 2004, 2004, pp. 102-111.
16. S. Maruyama, M. Nakahara, N. Kishiue, and H. Sakamoto: ESP-index: A compressed index based on edit-sensitive parsing. J. Discrete Algorithms, 18 2013, pp. 100-112.
17. K. Mehlhorn, R. Sundar, and C. Uhrig: Maintaining dynamic sequences under equality tests in polylogarithmic time. Algorithmica, 17(2) 1997, pp. 183-198.
18. J. I. Munro, Y. Nekrich, and J. S. Vitter: Dynamic data structures for document collections and graphs. CoRR, abs/1503.05977 2015.
19. T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda: Dynamic index and LZ factorization in compressed space. CoRR, abs/1605.09558 2016.
20. T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda: Fully dynamic data structure for LCE queries in compressed space. CoRR, abs/1605.01488 2016.
21. A. Policriti and N. Prezza: Fast online lempel-ziv factorization in compressed space, in String Processing and Information Retrieval - 22nd International Symposium, SPIRE 2015, London, UK, September 1-4, 2015, Proceedings, C. S. Iliopoulos, S. J. Puglisi, and E. Yilmaz, eds., vol. 9309 of Lecture Notes in Computer Science, Springer, 2015, pp. 13-20.
22. A. Policriti and N. Prezza: Computing LZ77 in run-compressed space, in 2016 Data Compression Conference (DCC 2016), 2016, pp. 23-32, to appear.
23. S. C. Sahinalp and U. Vishkin: Data compression using locally consistent parsing. TechnicM report, University of Maryland Department of Computer Science, 1995.
24. S. C. Sahinalp and U. Vishkin: Efficient approximate and dynamic matching of patterns using a labeling paradigm (extended abstract), in FOCS, IEEE Computer Society, 1996, pp. 320328.
25. H. Sakamoto, S. Maruyama, T. Kida, and S. Shimozono: A space-saving approximation algorithm for grammar-based compression. IEICE Transactions, 92-D(2) 2009, pp. 158-165.
26. M. Salson, T. Lecroq, M. Léonard, and L. Mouchard: Dynamic extended suffix arrays. J. Discrete Algorithms, 8(2) 2010, pp. 241-257.
27. Y. Takabatake, Y. Tabei, and H. Sakamoto: Improved esp-index: A practical self-index for highly repetitive texts, in Proc. SEA 2014, 2014, pp. 338-350.
28. Y. Takabatake, Y. Tabei, and H. Sakamoto: Online self-indexed grammar compression, in SPIRE 2015, 2015, pp. 258-269.
29. J. Ziv and A. Lempel: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory, IT-23(3) 1977, pp. 337-349.

[^0]: Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda: Dynamic Index and LZ Factorization in Compressed Space, pp. 158-171.
 Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 © Czech Technical University in Prague, Czech Republic

[^1]: 1 The common sequences are conceptually equivalent edit sensitive parsing of a text, a kind of locally consis

