
Translating Between

Wavelet Tree and Wavelet Matrix Construction

Patrick Dinklage

TU Dortmund University
Chair of Algorithm Engineering (LS11)

Otto-Hahn-Straße 14
44227 Dortmund

Germany
patrick.dinklage@tu-dortmund.de

Abstract. The wavelet tree (Grossi et al. [SODA, 2003]) and wavelet matrix (Claude
et al. [Inf. Syst., 2015]) are compact data structures with many applications such as text
indexing or computational geometry. By continuing the recent research of Fischer et
al. [ALENEX, 2018], we explore the similarities and differences of these heavily related
data structures with focus on their construction. We develop a data structure to modify
construction algorithms for either the wavelet tree or matrix to construct instead the
other. This modification is efficient, in that it does not worsen the asymptotic time and
space requirements of any known wavelet tree or wavelet matrix construction algorithm.

Keywords: text indexing, wavelet tree, wavelet matrix

1 Introduction

The wavelet tree [5] is a data structure with numerous applications in text indexing,
data compression, computational geometry (as an alternative to fractional cascading)
and other areas [3, 8, 10]. Common queries that the wavelet tree can answer efficiently
are rank and select for any symbol that occurs in the underlying text, as well as access

queries to restore said text. The wavelet matrix [2] is a related data structure with the
same asymptotic running times for these queries However, they are faster in practice,
because they require less subqueries on bit vectors to be answered.

Both data structures are based on storing n⌈log σ⌉ bits for the text of length n

over an alphabet of size σ and answer access, rank and select queries in asymptotic
time O(log σ). Since they can also be used for accessing individual characters in time
O(log σ), they can both be seen as different encodings of the text. They differ (a) in
the order these bits are stored, and (b) in the auxiliary data required to answer
the queries. However, there are many similarities between these two data structures
and it is natural to ask how far these similarities go. In this work, we focus on the
construction process of the data structures.

Related work. Fischer et al. [4, Sect. 5.2] recently showed that there is a data
structure to efficiently transform any construction algorithm for the wavelet tree to
construct instead the wavelet matrix without worsening the asymptotic construction
times. This makes it possible to apply techniques used by (parallel) wavelet tree
construction algorithms, which make use of the tree structure, to the wavelet matrix,
which discards the tree structure. Their data structure occupies O(n + σ log n) bits
of space and can be constructed in time O(n + σ) using o(n + σ) bits of memory.

Patrick Dinklage: Translating Between Wavelet Tree and Wavelet Matrix Construction, pp. 126–135.

Proceedings of PSC 2019, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06618-8 c© Czech Technical University in Prague, Czech Republic

P. Dinklage: Translating Between Wavelet Tree and Wavelet Matrix Construction 127

Our contributions. Fischer et al. left open whether there is a data structure for
the inverse direction, i.e., whether there is an efficient way to construct the wavelet
tree using a construction algorithm for the wavelet matrix. In order to learn more
about the similarities and differences between the two, we propose a first solution
to this problem and give the corresponding data structure of the same asymptotic
space requirements as that in [4]. It can be constructed easily in time O(σ) from the
text’s histogram and its principle works for both directions. However, there is a slight
limitation that gives us some insight on the different information contained in the
wavelet tree and matrix.

2 Preliminaries

Let T ∈ Σn be a text over an alphabet Σ. For some integer i < n, let T [i] be the i-th
symbol of T . We use zero-based indexing, so that T [0] is the first symbol of T and
T [n − 1] is the last.

Computational model. We use the word RAM model, where we assume that we
can perform arithmetic operations on words of bit width O(log n) in constant time.

Histogram. The histogram H : c 7→ occT (c) of T maps each symbol c ∈ Σ to its
number occT (c) of occurrences in T . The set of those σ symbols with occT (c) > 0
are the effective alphabet of T . We represent it as the interval Σ ′ = [0, σ), so that
the lexicographically smallest symbol is represented by 0 and the largest symbol by
σ − 1. Let effT (c) ∈ Σ ′ be the rank of c in the effective alphabet. In the effective

transformation T ′ of T , we set T ′[i] := effT (T [i]) for each i < n. As an example,
consider the text and alphabet in Figure 1. The effective transformation of the text
is T ′ = 6 0 5 1 2 1 4 4 3 1 1.

C array. For every x ∈ Σ ′, the C array contains the accumulated number of oc-
currences of symbols in T ′ that are lexicographically smaller than x. Formally, it is
C[x] :=

∑x−1
k=0 occT ′(k). We furthermore define C[σ] := n.

Bit vectors. A bit vector is a text over the binary alphabet B = {0, 1}. Let B = B
n

be a bit vector of length n. For every position i < n, the function rank1(B, i) returns
the number of 1-bits in B from its beginning up to (including) position i. For a k > 0,
the function select1(B, k) returns the position of the k-th 1-bit in B. The functions
rank0 and select0 are defined analogously for 0-bits. There is a data structure that
can answer rank and select queries for a fixed B and any i or k, respectively, in time
O(1), requires o(n) bits of memory and can be constructed in time O(n) [6].

Bit reversal. Let B ∈ B
∗ be a bit vector and let (B)N ∈ N denote the integer that

B is the binary representation of. For k > 0 and an integer i < 2k, we call (i)B,k ∈ B
k

the k-bit binary representation of i. Let BR denote the reversal of B. We define the
k-bit reversal bitrevk(i) := (((i)B,k)R)N as the integer represented by the reversal of
i’s k-bit binary representation. For a fixed k, the bit-reversal permutation maps each
integer i < 2k to its k-bit reversal. To give examples, Table 1 shows the bit-reversal
permutations for k = 2 and k = 3.

128 Proceedings of the Prague Stringology Conference 2019

i (i)B,2 ((i)B,2)R bitrev2(i)

0 00 00 0
1 01 10 2
2 10 01 1
3 11 11 3

(a) Bit-reversal permutation for k = 2.

i (i)B,3 ((i)B,3)R bitrev3(i)

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

(b) Bit-reversal permutation for k = 3.

Table 1: Breakdowns of the bit-reversal permutations for k = 2 (left) and k = 3
(right). The first column contains the integers i < 2k, the second shows their k-bit
binary representations, the third shows the reversals and the final column contains
the k-bit reversal of i.

wavelettree

10100011000

aeleree

0010100

aeeee

01111

lr

01

wvtt

1000

vtt

100

w

0

Σ = {a, e, l, r, t, v, w}
Σ′ = [0, 7)

c effT (c)

a 0 = 000b

e 1 = 001b

l 2 = 010b

r 3 = 011b

t 4 = 100b

v 5 = 101b

w 6 = 110b

Figure 1: The wavelet tree (left), alphabet, effective alphabet and binary representa-
tions of symbols (right) for T = wavelettree. The texts above the node bit vectors
are shown only for comprehensibility; they are not a part of the node labels and are
not stored.

2.1 The Wavelet Tree

The wavelet tree [5] is a binary tree of height ⌈log σ⌉ where each node v represents an
interval [a, b] ⊆ Σ ′ of the effective alphabet and is labeled by a bit vector Bv ∈ B

+.
Bv contains one bit for each text position i, in text order, where T ′[i] ∈ [a, b]: a 0-bit
if T ′[i] ≤ ⌊a+b

2
⌋, i.e., if the symbol T ′[i] lies in the left half of the represented interval,

or a 1-bit otherwise.

The root node represents the entire effective alphabet Σ ′ and thus its bit vector
has length n. A node v has two children iff a < b. We apply the described structure
recursively for the left child to represent the interval [a, ⌊a+b

2
⌋] (the left half) and the

right child to represent [⌊a+b
2

⌋ + 1, b] (the right half). Following that, the tree’s leaves
are those nodes that represent an interval of size one, i.e., precisely one symbol from
the input alphabet (a = b). Since the bit vector of a leaf contains only zero-bits, we
need not store level ⌈log σ⌉ + 1 of the wavelet tree, because it would consist of leaves
only. Figure 1 shows an example of a wavelet tree.

The size of any node in the wavelet tree, i.e., the length of its bit vector label, can
be precomputed using the C array:

Observation 1 Let [a, b] ⊆ Σ ′ be the alphabet interval represented by a wavelet tree

node v. The length of the bit vector Bv that labels v is |Bv| = C[b + 1] − C[a].

P. Dinklage: Translating Between Wavelet Tree and Wavelet Matrix Construction 129

1 0 1 0 0 0 1 1 0 0 0

0 0 1 0 1 0 0

0 1 1 1 1 0 1

1 0 0 0

1 0 0 0

1 0 1 0 0 0 1 1 0 0 0

0 0 1 0 1 0 0 1 0 0 0

0 1 1 1 1 1 0 0 0 1 0
0 1 2 3 0 2 1 3

Figure 2: Comparison of the node ordering in the wavelet tree (left) and the wavelet
matrix (right). Due to the nature of the bit reversal permutation, the ordering on the
first two levels remains the same in the wavelet matrix. On the third level, we observe
how nodes 0 and 2 (left children of their respective parents) go to the left part of the
corresponding wavelet matrix bit vector and nodes 1 and 3 (right children of their
respective parents) go to the right.

For storing the wavelet tree, we consider the pointerless representation (also known
as the levelwise representation), where we concatenate the bit vectors on each level
and enhance them by constant-time rank/select support. This is is enough information
to be able to navigate in the tree [10]. The concatenation of bit vectors on any level
has a length of at most n bits, so that the wavelet tree’s bit vectors consume at most
n⌈log σ⌉ bits in total.

2.2 The Wavelet Matrix

The wavelet matrix [2] can be thought of as an alternative representation of the
pointerless wavelet tree. In the wavelet tree, in order to retrieve the bit vector BT

ℓ

for level ℓ, we concatenate the bit vectors of the single nodes on that level from left

to right. In the wavelet matrix, the nodes are concatenated in a different order to
obtain bit vector BM

ℓ : all left children of their respective parents are moved to the
left and all right children are moved to the right. Like in the pointerless wavelet
tree, we concatenate the bit vectors of all nodes on every level. Figure 2 shows an
example. The re-ordering of nodes corresponds to the bit-reversal permutation of the
node ranks on the respective level [4].

A practical consequence of the different ordering is that navigation in the wavelet
matrix becomes easier than in the pointerless wavelet tree. In the tree, we need to
keep track of the current node’s interval — its left and right boundary — within
the respective level’s bit vector while navigating. This can be done using two rank
queries on the respective bit vector when navigating from a node to either child. In
the matrix, the simpler structure makes it feasible to precompute the left boundary
for the right children on each level, all of which have been concatenated in the right
part of the level’s bit vector. This boundary is often referred to as value z in literature,
as it corresponds to the number of zero bits in the bit vector. We can store z for all
levels using negligible O(log σ log n) bits and use it to save one rank query on each
level while navigating.

One could precompute the same information for the wavelet tree. However, this
would require us to store the left boundary of every node, resulting in O(σ log n) bits
as there are O(σ) nodes. For this reason, the wavelet matrix can be considered more
relevant for practical applications where the alphabet is large.

130 Proceedings of the Prague Stringology Conference 2019

3 Wavelet Tree and Wavelet Matrix Construction

We continue the research of Fischer et al. [4] and are interested in how a construction
algorithm for the wavelet tree or matrix can be modified efficiently to construct the
other. We consider such a modification efficient if the asymptotic time and space
boundaries of the modified construction algorithm are not worsened. Fischer et al.
show that there is a data structure that can be used to efficiently transform any
construction algorithm for the wavelet tree to construct instead the wavelet matrix.
We propose a data structure for the inverse direction, transforming a wavelet matrix
construction algorithm to one for the wavelet tree, with the same asymptotic space
requirements.

Formally, let us consider the situation where, during the construction of the
wavelet tree, the i-th bit is set in bit vector BT

ℓ of level ℓ of (assuming, without
loss of generality, the pointerless representation). Fischer et al. [4] present a data
structure to efficiently compute a function f : (ℓ, i) 7→ (ℓ, j) so that j is the cor-
responding position for the bit to be set in bit vector BM

ℓ of the wavelet matrix.
That is, by modifying the wavelet tree constructor to set the bit at position f(ℓ, i)
instead of i on level ℓ, it instead constructs the wavelet matrix. Because f can be
computed in constant time, there is no asymptotic overhead. For input length n and
alphabet size σ, their data structure occupies n + σ + (σ + 2)⌈log n⌉ bits of space and
can be constructed in time O(n + σ) using o(n + σ) bits of memory, not worsening
the asymptotic construction time and space requirements for any known wavelet tree
constructor.

In the following, we first observe various properties of the wavelet tree that lead
to a similar result for f as that of [4]. Based on these observations, we develop a
novel data structure for the inverse f−1, which maps (ℓ, j) back to (ℓ, i) with the
same asymptotic time and space boundaries as for f .

3.1 Locating Nodes and Bit Offsets

As previously noted, the wavelet matrix can also be represented as a tree by re-
ordering the nodes of the wavelet tree on each level according to the bit-reversal
permutation. Even though there are no practical advantages of storing the wavelet
matrix as a tree, the notion will help us develop our data structures.

The simple nature of the re-ordering makes it easy to translate a node ID (the
node’s rank in a breadth-first traversal of the tree) between the two data structures.
Based on this, we employ the following strategy to find data structures for functions
f and f−1: given the level and position of the bit to be written, we attempt to find

(1) the ID of the node that the bit belongs to, and
(2) the position of the node’s first bit in its level’s bit vector.

Once this information is available, f and f−1 are easy to compute in constant time.

P. Dinklage: Translating Between Wavelet Tree and Wavelet Matrix Construction 131

a e l r t v w ⊤
c 0 1 2 3 4 5 6 7

occT (c) 1 4 1 1 2 1 1 0
C[c] 0 1 5 6 7 9 10 11 11

Figure 3: The histogram and the C array for T = wavelettree. We added the artifi-
cial symbol ⊤ so σ = 8 is a power of two. The new symbol never occurs in T and is
lexicographically larger than the other symbols.

Bottom level node sizes. Observation 1 shows the relation between the C array
and the sizes of the wavelet tree’s nodes. This relation is especially interesting re-
garding the virtual bottom-most level h = ⌈log σ⌉ of a full binary wavelet tree. We
call this level virtual, because all bits on it would be zero and there is no need to
actually store it. On this level, each node corresponds to a single symbol from the
effective alphabet. Let node vc on level h correspond to symbol c ∈ Σ ′. We have
|Bvc

| = C[c + 1] − C[c] = occTeff
(c), i.e., the size of vc matches the number of occur-

rences of c.
This property is only valid if the wavelet tree is a full binary tree: if it was not,

there would be leaves on level h−1 and not all nodes on level h would exist. Without
loss of generality, let us assume from now on that σ = 2h for some integral h > 0,
i.e., that the alphabet size is a power of two. Then, the wavelet tree is a full binary
tree. In case σ is not a power of two, we introduce artificial symbols that never occur
in the input and are lexicographically larger than all symbols of Σ ′. This way, the
empty nodes for these symbols are moved to the far right of the wavelet tree and can
be ignored in the following.

Locating in the wavelet tree. We consider the situation where a wavelet tree
constructor sets the i-th of bit vector BT

ℓ . Let v(ℓ, i) be the rank of the wavelet tree
node on level ℓ to which the i-th bit belongs. We represent v(ℓ, i) relative to the
number of the first node on level ℓ, i.e., v(ℓ, 0) = 0 and v(ℓ, n − 1) = 2ℓ − 1. This
representation requires ℓ bits, because there are precisely 2ℓ − 1 nodes on level ℓ.
Furthermore, let p(ℓ, v) be the position of the first bit in BT

ℓ that belongs to node v

and let δv(ℓ, i) := i − p(ℓ, v(ℓ, i)) be the distance of i from that position.
We take a closer look at v and p on the virtual level h and observe that

v(h, i) = min{x | C[x] > i} − 1.

This is because each node on this level corresponds to precisely one symbol from the
input alphabet and the C array encodes, for every c, the number of symbols in the
input that are lexicographically smaller than c. This corresponds to the accumulated
sizes of the node’s left siblings. An example of this relation can be seen comparing
Figure 3 and Figure 4b (in row ℓ = 3). The node that i belongs to on level h is left
of the first node whose accumulated size — its entry in the C array — exceeds i.
We can immediately conclude that the first bit that belongs to node v is located at
position

p(h, v) = C[v].

How do v and p on level h relate to those on the other levels ℓ < h that we are
actually interested in? To answer this, we make use of the fact that our wavelet tree

132 Proceedings of the Prague Stringology Conference 2019

is a full binary tree: the size of a node equals the sum of its children’s sizes, because
the children partition the alphabet interval of their parent. As a consequence, the
accumulated size of any node is retained in its right child, as can be seen in Figure 4b.
Since the C array encodes the accumulated sizes of the nodes on level h, it also
implicitly encodes the accumulated sizes of all nodes on levels ℓ < h. Following this
notion, we can conclude the following relations:

v(ℓ, i) =

⌊

min{x | C[x] > i} − 1

2h−ℓ

⌋

and

p(ℓ, v) = C[v · 2h−ℓ]. (1)

If the C array is stored in ascending order, the minimum query required to find v

can be answered in time O(log σ) using binary search. However, we seek a computation
in constant time. We construct a bit vector BC of length n and set BC [k] := 1 if
C[c] = k − 1 for some c and BC [k] := 0 otherwise and prepare it for constant-time
rank queries. This can be done in time O(n) and requires n + o(n) bits of additional
space. BC marks the node boundaries on level h of the wavelet tree, see Figure 4a for
an example. We can now compute

v(ℓ, i) =

⌊

rank1(BC , i) − 1

2h−ℓ

⌋

(2)

in constant time.
We now know that the i-th bit in BT

ℓ corresponds to the (δv)-th bit in the v-th node
on level ℓ in the wavelet tree. We can compute v, p and δv in constant time using the C

array and rank-enhanced bit vector BC , which together occupy σ⌈log n⌉+n(1+o(1))
bits of space. Asymptotically, this space boundary matches that of the data structure
presented by Fischer et al. [4].

Example 1. Figure 4, in combination with Figure 3, shows an example of the data
structure for T = wavelettree. Assume that we are interested in locating the node for

bit i = 9 on level ℓ = 2. With Equation 2, we get v(2, 9) =
⌊

rank1(BC ,9)−1
23−2

⌋

=
⌊

5
2

⌋

= 2.

0 1 2 3 4 5 6 7 8 9 10

w a v e l e t t r e e

a e l e r e e w v t t

a e e e e l r v t t w

a e e e e l r t t v w

1 1 0 0 0 1 1 1 0 1 1

ℓ = 0:

ℓ = 1:

ℓ = 2:

ℓ = 3:

BC :

(a) The text re-ordering on each level and
the bit vector BC . The vertical lines mark
the boundaries of the wavelet tree’s nodes.

11

7

5

1 5

7

6 7

11

10

9 10

11

11 11 ℓ = 0

ℓ = 1

ℓ = 2

ℓ = 3

(b) The accumulated sizes of each of the
wavelet tree’s nodes. Note that the rightmost
node on the bottom level corresponds to our
artificial symbol ⊤ from Figure 3.

Figure 4: Display of the wavelet tree’s text re-ordering on each level, including the
virtual level h = 3, the bit vector BC and the accumulated node sizes for our running
example text T = wavelettree.

P. Dinklage: Translating Between Wavelet Tree and Wavelet Matrix Construction 133

0 1 2 3 4 5 6 7 8 9 10

w a v e l e t t r e e

a e l e r e e w v t t

a e e e e v t t l r w

a t t l w e e e e v r

ℓ = 0:

ℓ = 1:

ℓ = 2:

ℓ = 3:

(a) The text re-ordering on each level of the
wavelet matrix. The vertical lines mark the
boundaries of the nodes of the wavelet ma-
trix.

11

7

5

1 3

8

4 5

11

10

9 10

11

11C
′

3 =

C
′

2 =

C
′

1 =

C
′

0 =

(b) The accumulated sizes of each of the
nodes of the wavelet matrix. Note that C ′

3
,

the bottom level, is not actually needed and
depicted only for the sake of completeness.

Figure 5: Display of the wavelet matrix’s text re-ordering on each level for running
example text T = wavelettree.

This means that the bit belongs to the third node on level 2 (because we start counting
at zero). Furthermore, with Equation 1, we get p(2, 2) = C[2 · 23−2] = C[4] = 7. This
means that the third node on level 2 starts at position 7. Finally, it is δv(2, 9) =
9 − p(2, 2) = 9 − 7 = 2, so bit 9 on level 2 ultimately corresponds to the third bit of
the third node on that level.

Locating in the wavelet matrix. The question is how a similar locating can be
done for the wavelet matrix. As previously mentioned, the bit vector BM

ℓ of the
wavelet matrix is the concatenation of the wavelet tree’s node bit vectors on level ℓ

in bit-reverse order.
We consider the situation where a wavelet matrix constructor sets the j-th bit of

bit vector BM
ℓ and are interested in the node to which this bit belongs. Analogously

to v, p and δv, we define u(ℓ, j), q(ℓ, u) and δu(ℓ, j) := j − q(ℓ, u(ℓ, i)) as the node
into which the written bit belongs, the position of the node’s first bit in BM

ℓ and the
distance of j from the node’s first bit, respectively.

Due to the re-ordering of the nodes, the correspondences between their accumu-
lated sizes and the C array, which we observed for the wavelet tree, are no longer
valid for the wavelet matrix. As a consequence, we need to find a different way to
compute u and q.

The following observation is useful to find u: in both the wavelet tree and the
wavelet matrix [2, Prop. 1], all occurrences of a symbol c ∈ Σ ′ belong to the same
node on any level. Therefore, in order to find the node to which any occurrence of c

belongs on virtual level h, it suffices to know to which node the first occurrence of
c belongs. This first occurrence of c on level h is always located at position C[c]. As
seen previously, once the node for level h is known, it is easy to narrow it down to any
level ℓ < h. Of course, we then have the node in the wavelet tree, but in the wavelet
matrix, the nodes are simply permuted in bit-reverse order. Let c be the symbol from
which we computed the bit that we are setting in BM

ℓ . If c is known, we can express

u(ℓ, j, c) = bitrevℓ(v(ℓ, C[c])). (3)

The consequences of having to know c are discussed later.
It remains to compute q. As stated above, the C array cannot be used directly to

compute the accumulated node sizes for the wavelet matrix, because nodes are per-
muted. However, the node sizes themselves remain the same and thus, with awareness

134 Proceedings of the Prague Stringology Conference 2019

of the bit-reversal ordering of nodes on every level, it is easy to precompute the ac-
cumulated node sizes for all nodes of the wavelet matrix using the C array in time
O(σ). Since we are dealing with a full binary tree of height h = log σ, the accumu-
lated wavelet matrix node sizes can be stored in an array C ′ of length 2h − 1 = σ − 1
(since σ is a power of two), occupying (σ − 1)⌈log n⌉ bits of space. Figure 5b shows
an example. We imagine C ′ to be a set of arrays C ′

ℓ for each level ℓ, so that the first
entry of C ′

ℓ contains the size of the first node on level ℓ. Then, q can be found as
follows:

q(ℓ, u) =

0 if u = 0.

C ′
ℓ[u − 1] if u > 0.

(4)

We then know that the j-th bit in BM
ℓ of the wavelet matrix corresponds to the

δu-th bit in the u-th node’s bit vector on level ℓ. We can compute u, q and δu in
constant time using the arrays C and C ′ and rank-enhanced bit vector BC , which, in
total, occupy (2σ − 1)⌈log n⌉ + n(1 + o(1)) bits of space.

Example 2. Figure 5, in combination with Figure 4 and Figure 3, shows an exam-
ple for the data structure for T = wavelettree. Assume that we are interested in
locating the node for bit j = 9 on level ℓ = 2 of the wavelet matrix. The sym-
bol for which the bit is written is c = r (see Figure 5a). With Equation 3, we get
u(2, 9, r) = bitrev3(v(2, C[r])) = bitrev3(v(2, 6)) = bitrev2(1) = 2. This means that
the bit belongs to the third node on level 2. Furthermore, with Equation 4, we get
q(2, 2) = C ′

2[2 − 1] = 8. This means that the third node on level 2 starts at position
8. Finally, it is δu(2, 9) = 9 − 8 = 1, so bit 9 on level 2 ultimately corresponds to the
second bit of the third node on that level.

3.2 Translating Between Wavelet Tree and Wavelet Matrix Construction

Using the locating data structures described above, we can express functions f and
f−1 as follows:

f(ℓ, i) = q(ℓ, bitrevℓ(v(ℓ, i))) + δv(ℓ, i),

f−1(ℓ, j, c) = p(ℓ, bitrevℓ(u(ℓ, j, c))) + δu(ℓ, j, c).

Both f and f−1 can be computed in constant time using the arrays C, C ′ and
rank-enhanced bit vector BC . These occupy σ⌈log n⌉ + (2σ − 1)⌈log n⌉ + n(1 + o(1))
bits of space can be constructed in time O(σ + n).

Limitations. We impose the restriction that for f−1, the symbol c, for which a
bit is being set in BM

ℓ , has to be known when setting the bit. Even though this bit
must ultimately have been computed from c, there are construction algorithms for
the wavelet tree that redistribute the bits of c before constructing the bit vectors
[1, 7, 9, 11]. Due to the existence of our function f alone, such techniques may as
well be used for the construction of the wavelet matrix. In this case, c is not known
when setting the bit in question and f−1 cannot be used.

More generally, in the wavelet tree, c is always implicitly given by the tree structure
itself and implicitly used by f by jumping to the virtual bottom level to the leaf that
would represent c via the C array. The wavelet matrix discards the tree structure and
the information is lost, so that we need to receive it from the constructor in order to
compute f−1.

P. Dinklage: Translating Between Wavelet Tree and Wavelet Matrix Construction 135

4 Conclusions

We solved an open theoretical problem concerning the construction of wavelet trees
and wavelet matrices. We described a data structure that can be used to extend a
construction algorithm for the wavelet matrix to construct instead the wavelet tree
with constant time overhead. This data structure can be constructed in time O(σ+n)
time and it requires O(σ log n+n) bits of memory, matching the asymptotic time and
space requirements of the data structure described by Fischer et al. [4] for the inverse
direction, transforming wavelet tree construction into wavelet matrix construction.

However, because the wavelet matrix discards the wavelet tree’s binary tree struc-
ture, we require some additional information from the constructor for our computa-
tions. This limitation makes our data structure unsuitable for the class of wavelet
matrix constructors that do not keep the entire binary representation of the input
symbols when computing the bit vectors. To that end, it is still open whether there
is a data structure for our translation function with the same (or lower) asymptotic
time and space requirements that does not require any information other than the
position of the written bit in the wavelet matrix.

Acknowledgements

We would like to thank Johannes Fischer and Florian Kurpicz from the TU Dortmund
University’s Chair of Algorithm Engineering for the motivation of this work and the
supportive discussions related to the topic.

References

1. M. A. Babenko, P. Gawrychowski, T. Kociumaka, and T. A. Starikovskaya: Wavelet

trees meet suffix trees, in 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
SIAM, 2015, pp. 572–591.

2. F. Claude, G. Navarro, and A. O. Pereira: The wavelet matrix: An efficient wavelet tree

for large alphabets. Inf. Syst., 47 2015, pp. 15–32.
3. P. Ferragina, R. Giancarlo, and G. Manzini: The myriad virtues of wavelet trees. Inform.

and Comput., 207(8) 2009, pp. 849–866.
4. J. Fischer, F. Kurpicz, and M. Löbel: Simple, fast and lightweight parallel wavelet tree

construction, in 20th Workshop on Algorithm Engineering and Experiments (ALENEX), SIAM,
2018, pp. 9–20.

5. R. Grossi, A. Gupta, and J. S. Vitter: High-order entropy-compressed text indexes, in 14th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2003, pp. 841–850.

6. G. Jacobson: Space-efficient static trees and graphs, in 30th Symposium on Foundations of
Computer Science (FOCS), IEEE, 1989, pp. 549–554.

7. Y. Kaneta: Fast wavelet tree construction in practice, in 25th International Symposium on
String Processing and Information Retrieval (SPIRE), Springer, 2018, pp. 218–232.

8. V. Mäkinen and G. Navarro: Position-restricted substring searching, in 7th Latin American
Theoretical Informatics Symposium (LATIN), vol. 3887 of Lecture Notes in Computer Science,
Springer, 2006, pp. 703–714.

9. J. I. Munro, Y. Nekrich, and J. S. Vitter: Fast construction of wavelet trees. Theor.
Comput. Sci., 638 2016, pp. 91–97.

10. G. Navarro: Wavelet trees for all. J. Discrete Algorithms, 25 2014, pp. 2–20.
11. G. Tischler: On wavelet tree construction, in 22nd Annual Symposium on Combinatorial

Pattern Matching (CPM), Springer, 2011, pp. 208–218.

