
Simple KMP Pattern-Matching

on Indeterminate Strings⋆

Neerja Mhaskar1 and W. F. Smyth1,2

1 Algorithms Research Group, Department of Computing & Software
McMaster University, Canada

pophlin@mcmaster.ca, smyth@mcmaster.ca
2 School of Engineering & Information Technology

Murdoch University, Western Australia

Abstract. In this paper we describe a simple, fast, space-efficient approach to finding
all matches of an indeterminate pattern p = p[1..m] in an indeterminate string x =
x[1..n], where both p and x are defined on a “small” ordered alphabet Σ — say,
σ = |Σ| ≤ 9. A preprocessing phase replaces Σ by an integer alphabet ΣI of size
σI = σ that (reversibly, in time linear in string length) maps both x and p into
equivalent regular strings y and q, respectively, onΣI , whose maximum (indeterminate)
letter can be expressed in a 32-bit word (for σ ≤ 4, thus for DNA sequences, an 8-
bit representation suffices). We then describe an efficient version KMP Indet of the
venerable Knuth-Morris-Pratt algorithm to find all occurrences of q in y (that is,
of p in x), but, whenever necessary, using the prefix array, rather than the border
array, to control shifts of the transformed pattern q along the transformed string y.
Although requiring O(m2n) time in the theoretical worst case, in cases of practical
interest KMP Indet executes in O(n) time. A noteworthy feature is the very small
additional space requirement: Θ(m) words in all cases. We conjecture that a similar
approach may yield practical and efficient indeterminate equivalents to other well-
known pattern-matching algorithms, especially Boyer-Moore and its variants.

Keywords: indeterminate, degenerate, conservative degenerate, pattern-matching, KMP,
indeterminate encoding

1 Introduction

Given a fixed finite alphabet Σ = {λ1, λ2, . . . , λσ}, a regular letter, also called a
character, is any single element of Σ, while an indeterminate letter is any subset
of Σ of cardinality greater than one. A regular string x = x[1..n] on Σ is an array
of regular letters drawn from Σ. An indeterminate string x[1..n] on Σ is an array
of letters drawn from Σ, of which at least one is indeterminate. Whenever entries x[i]
and x[j], 1 ≤ i, j ≤ n, both contain the same character (possibly other characters as
well), we say that x[i] matches x[j] and write x[i] ≈ x[j].

In this paper we describe a simple transformation of Σ that permits all subsets of
Σ to be replaced by single integer values, while maintaining matches and non-matches
between all transformed entries x[i1] and x[i2], 1 ≤ i1, i2 ≤ n, in x. The method is
effective on small alphabets (say |Σ| = σ ≤ 9), including in particular the important
case of DNA sequences (ΣDNA = {a, c, g, t}). Thus, in many cases, cumbersome
and time-consuming matches of indeterminate letters can be efficiently handled. For
background on pattern-matching in indeterminate strings, see [6,1,8,11,9,2,16,17,4,5].

⋆ Supported by Grant No. 105–36797 from the Natural Sciences & Engineering Research Council of
Canada (NSERC). Also the authors thank anonymous reviewers for several valuable suggestions.

Neerja Mhaskar, W. F. Smyth: Simple KMP Pattern-Matching on Indeterminate Strings, pp. 125–133.

Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

126 Proceedings of the Prague Stringology Conference 2020

We will make use of a mapping µj ← λ(j), j = 1, 2, . . . , σ, of the letters λ(j) of Σ

chosen in some order, where µj is the jth prime number (µ1 = 2, µ2 = 3, and so on).
Then, given x = x[1..n] on Σ (the source string), we can apply the mapping to
compute y = y[1..n] (the mapped string) according to the following rule:

(R) For every x[i] = {λ1, λ2, . . . , λk}, 1 ≤ k ≤ σ, 1 ≤ i ≤ n, where λh ∈ Σ, 1 ≤
h ≤ k, set

y[i]←
k∏

h=1

µλh
.

When k = σ, y achieves the maximum value, which we denote by Pσ =
∏σ

j=1 µj (often

called a hole [2]). More generally, since the mapping π yields all possible products of
the first σ prime numbers, it imposes an order on indeterminate letters drawn from
Σ: x[i1] < x[i2]⇔ y[i1] < y[i2].

For example, consider a DNA source string x = a{a, c}g{a, t}t{c, g}, over ΣDNA.
Then σ = 4, and applying (R) for 1 ≤ k ≤ 4 (based on the mapping µ : 2 ← a, 3 ←
c, g ← 5, 7← t), we compute a mapped string y = 2/6/5/14/7/15, so that

a < g < {a, c} < t < {a, t} < {c, g}.

On the other hand, a different mapping (say, µ : 2 ← t, 3 ← c, 5 ← a, 7 ← g) would
yield y = 5/15/7/10/2/21 and a quite different ordering

t < a < g < {a, t} < {a.c} < {c, g}.

Lemma 1 Let ki denote the number of letters in x[i]. Then Rule (R) computes y in
time Θ(Kx), where Kx =

∑n

i=1 ki.

Note that when the letters in x are strongly indeterminate — that is,Kx ∈ Θ(σn)
—, then the approach proposed here (replacing x by y) has the advantage that
subsequent processing of y requires access only to a single integer at each position.

Lemma 2 If y is computed from x by Rule (R), then for every i1, i2 ∈ 1..n, x[i1] ≈
x[i2] if and only if gcd(y[i1],y[i2]) > 1.

Proof.

(⇒) By contradiction. Suppose x[i1] ≈ x[i2], 1 ≤ i1, i2 ≤ n, but gcd(y[i1],y[i2]) = 1;
that is, y[i1] and y[i2] have no common divisor. Since for every i, the letter y[i]
is a product of the prime numbers assigned to the characters in x[i], we see that
therefore x[i1] and x[i2] can have no character in common; that is, x[i1] 6≈ x[i2], a
contradiction.
(⇐) By the reverse argument.

Two strings x1 and x2 of equal length n are said to be isomorphic if and only
if for every i, j ∈ {1, . . . , n},

x1[i] ≈ x1[j]⇐⇒ x2[i] ≈ x2[j]. (1)

We thus have:

Observation 3 If x is an indeterminate string on Σ, and y is the numerical string
constructed by applying Rule (R) to x, then x and y are isomorphic.

N.Mhaskar, W.F. Smyth: Simple KMP Pattern-Matching on Indeterminate Strings 127

Observation 4 By virtue of Lemma 2 and (1), y can overwrite the space required
for x (and vice versa) with no loss of information.

Observation 5 Suppose ℓ1 and ℓ2 are integers representable in at most B bits. Then
gcd(ℓ1, ℓ2) can be computed in time bounded by O(MB logB)1, where MB denotes the
maximum time required to compute ℓ1ℓ2 over all such integers.

Observation 6 For σ = 9 corresponding to the first nine prime numbers

2, 3, 5, 7, 11, 13, 17, 19, 23

Pσ = 223, 092, 870, a number representable in less than B = 32 bits, a single computer
word. Thus by Observation 5, the time required to match any two indeterminate letters
is bounded by O(5M32). When σ = 4, corresponding to ΣDNA, 2× 3× 5× 7 = 210 <
256, and so B = 8 and the matching time reduces to O(3M8).

Observation 7 We assume therefore that, for σ ≤ 9, computing a match between
x[i1] and x[i2] on Σ (that is, between y[i1] and y[i2] computed using Rule (R)) requires
time bounded above by a (small) constant.

Other models to represent indeterminate strings have been proposed [14,10]. For
example, the model proposed in [14] maps all the non-empty letters (both regular and
indeterminate) over the DNA alphabet ΣDNA = {A,C,G, T} to the IUPAC symbols
ΣIUPAC = {A,C,G, T,R, Y, S,W,K,M,B,D,H, V,N}. Then given an indeterminate
string over ΣDNA, it constructs an isomorphic regular string over ΣIUPAC . In [10], the
model proposed maps each symbol in the DNA alphabet to a 4-bit integer power of
2; that is, {A,C,G, T} is mapped to {20, 21, 22, 23}. Then a non-empty indeterminate
letter over ΣDNA is represented as Σ{s∈P(Σ)}s of maximum size 15 = 11112. Also,
instead of using the natural order on integers, [10] uses a Gray code [7] to order
indeterminate letters over ΣDNA. Note that with the Gray code two successive values
differ by only one bit, such as 1100 and 1101, which enables minimizing the number
of separate intervals associated with each of the four symbols of ΣDNA.

2 Pattern Matching Algorithm for Indeterminate Strings

In this section we describe a simple, fast, space-efficient algorithm KMP Indet that,
in order to compute all occurrences of a source pattern p = p[1..m] in a source string
x = x[1..n], computes all the positions at which the corresponding mapped pattern
q = q[1..m] occurs in the mapped string y = y[1..n]. We begin with the following
result:

Lemma 8 For alphabet Σ of size σ ≤ 9, the positions of occurrence of p in x can be
computed in O(mn) time.

Proof. By Lemma 2 and Observation 5, the positions of occurrence of q in y can be
trivially computed in O(mnMB logB) = O(mn) time, with constant of proportional-
ity MB logB.

1 https://en.wikipedia.org/wiki/Greatest common divisor#Complexity

128 Proceedings of the Prague Stringology Conference 2020

As noted earlier, many pattern matching algorithms have been proposed for in-
determinate strings. In [12] Iliopoulos and Radoszewski propose an O(n logm) algo-
rithm for a constant alphabet. This is the best theoretical bound known so far for
pattern matching algorithms on indeterminate strings over a constant alphabet. Re-
cently, pattern matching algorithms for conservative indeterminate strings, where
the number of indeterminate letters in text x and pattern p is bounded above by
a constant k, have been proposed [4,5]. In [4], Crochemore et. al present an O(nk)
algorithm which uses suffix trees and other auxiliary data structures to search for p
in x. In [5], Daykin et. al propose a pattern matching algorithm by first constructing
the Burrows Wheeler Transform (BWT) of x in O(mn) time, and use it to find all
occurrences of p in x in O(km2 + q) time, where q is the number of occurrences of
the pattern in x, and O(km2) is the time required to compute it.

2.1 Definitions

We give here a few essential definitions.
Given x[1..n], then for 1 ≤ i ≤ n and 1 ≤ j ≤ n, u = x[i..j] is called a substring

of x, an empty substring ε if j < i. If i = 1, u is a prefix of x, a suffix if j = n.
A string x has a border u if |u| < |x| and x has both prefix and suffix equal to u.
Note that a border of x may be empty.

A border array βx = βx[1..n] of x is an integer array where for every i ∈ [1..n],
βx[i] is the length of the longest border of x[1..i]. A prefix array πx = πx[1..n]
of x is an integer array where for every i ∈ [1..n], πx[i] is the length of the longest
substring starting at position i that matches a prefix of x. See Figure 1 for an example.

1 2 3 4 5 6 7 8 9 10 11 12 13

x a a b a a b a a {a, b} b a a {a, c}
βx 0 1 0 1 2 3 4 5 6 3 4 5 2

πx 13 1 0 6 1 0 3 5 1 0 2 2 1

Figure 1. Border array βx, and Prefix array πx computed for the string x =
aabaabaa{a, b}baa{a, c}.

In Lemmas 9 and 10, we rephrase earlier results on running times for computing
the border array and prefix array of a string of length n.

Lemma 9 ([15,16]) The border array and prefix array of a regular string of length
m can be computed in O(m) time.

Lemma 10 ([15,16]) The border array and prefix array of an indeterminate string
of length m can be computed in O(m2) time in the worst-case, O(m) in the average
case.

For completeness we give in Figure 2 the KMP algorithm for regular strings
x = x[1..n]. In case of a mismatch or after a full match, KMP computes the shift
of the pattern p = p[1..m] along x by using the border array of p, which as we have
seen is computable in O(m) time. Thus KMP runs in O(n) time.

N.Mhaskar, W.F. Smyth: Simple KMP Pattern-Matching on Indeterminate Strings 129

function KMP(x, n,p,m) : Integer List
i← 0; j ← 0
indexlist← ∅ ⊲ List of indices where p occurs in x

βp ← Border array of pattern p

while i < n do
if p[j + 1] = x[i+ 1] then

j ← j + 1; i← i+ 1
if j = m then

indexlist← indexlist ∪ {i−j+1}
j ← βp[j]

else
if j = 0 then i← i+1
else

j ← βp[j]
return indexlist

Figure 2. KMP checks whether the regular pattern p occurs in the regular text x. If it does, then
it outputs the set of indices at which p occurs in x; otherwise returns an empty set.

2.2 KMP Algorithm for Indeterminate Strings

We now describe KMP Indet (see Figure 3), which searches for pattern q = q[1..m]
in text y = y[1..n], outputting the indices at which q occurs in y (thus, at which
p occurs in x). Thus our algorithm implements the KMP algorithm [13] on inde-
terminate strings that have been transformed using Rule (R). However, note that
this transformation is not necessary for the algorithm to work: we use it to improve
space and time efficiency. The algorithm also works with other indeterminate string
encoding/transformations mentioned in the previous section. While scanning y from
left to right and performing letter comparisons, KMP Indet checks whether the
prefix of q and the substring of y currently being matched are both regular. If so,
then it uses the border array βq

ℓ
of the longest regular prefix qℓ of q of length ℓ, to

compute the shift; if not, it constructs a new string q
′, which is a concatenation of

the longest proper prefix of the matched prefix of q and the longest proper suffix of
the matched substring of y, using the prefix array π

q
′ of q′ to compute the shift. The

Compute Shift function given in Figure 4 implements this computation.
In order to determine whether or not indeterminate letters are included in any

segment q′ = q[1..j−1]y[i−j+2..i], two variables are employed: indety and the length
ℓ of the longest regular prefix qℓ of q. indety is a Boolean variable that is true if
and only if the current segment y[i−j+2..i] contains an indeterminate letter; ℓ is
pre-computed in O(m) time as a byproduct of the one-time calculation of qℓ.

If y and q are both regular, then KMP Indet reduces to the KMP algorithm
[13]. Otherwise, it checks whether indeterminate letters exist in the matched prefix of
q = q[1..j−1], or the matched substring of y = y[i−j+2..i]. If they do, then the shift
in q is equal to the maximum length of the prefix of q[1..j−1] that matches with a
suffix of y[i−j+2..i]. To compute this length, the algorithm first builds a new string
q
′ = q[1..j−1]y[i−j+2..i] and, based on an insight given in [16], computes its prefix

array π
q
′ rather than its border array. To compute the shift only the last j entries of

π
q
′ are examined; that is, entries k = j+1 to 2(j− 1). Note that we need to consider

only those entries k in π
q
′ [j+1..2(j − 1)], where a prefix of q′ matches the suffix at

130 Proceedings of the Prague Stringology Conference 2020

function KMP Indet(y, n, q,m) : Integer List
i← 0; j ← 0; indety ← false

indexlist← ∅ ⊲ List of indices where q occurs in y

qℓ ← longest regular prefix of q of length ℓ
βq ← Compute β(qℓ) ⊲ Border Array of qℓ

while i < n do
if q[j + 1] ≈ y[i+ 1] then

if INDET(y[i + 1]) then indety ← true

j ← j + 1; i← i+ 1
if j = m then

indexlist← indexlist ∪ {i−j+1}
j ← Compute Shift(indety,y, q, i, j, βq, ℓ)
indety ← false

else
if j = 0 then i← i+1
else

j ← Compute Shift(indety,y, q, i, j, βq, ℓ)
indety ← false

return indexlist

Figure 3. KMP Indet checks whether the pattern q occurs in the text y (both possibly indeter-
minate). If it does, then it outputs the set of indices at which q occurs in y; otherwise returns an
empty set.

k (q′[k..2(j − 1)]); that is, the entries where π
q
′ [k] = 2j−k−1. The shift is simply

the maximum over such entries in π
q
′ . (Recall that computing the border array for

an indeterminate string is not useful as the matching relation ≈ is not transitive [8].)

function Compute Shift(indety,y, q, i, j, βq, ℓ) : Integer
⊲ ℓ is length of longest regular prefix of q.

if indety or j > ℓ then
q
′ = q[1..j−1]y[i−j+2..i]

π
q
′ ← Compute π(q′) ⊲ Prefix Array of pattern q

′

max← 0
for k = j to 2(j − 1)

if max < π
q
′ [k] and π

q
′ [k] = 2j−k−1 then

max← π
q
′ [k]

j ← max
else ⊲ prefix of q & substring of y are regular

j ← βq[j]
return j

Figure 4. Compute Shift computes the shift in the pattern when a mismatch occurs or the end
of pattern is reached.

Figure 5 represents the processing of the text x = aabaabaa{a, b}baa{a, c} and
pattern p = aabaa corresponding to the processing of y and q by KMP Indet.
KMP Indet first computes βp = (0, 1, 0, 1, 2) and ℓ = 5. Initially the pattern is
aligned with x at position 1. Since it matches with the text (j = 5), and indetx =
false and 5 ≤ (ℓ = 5), we compute the shift from βp[5] = 2. Therefore, the pattern

N.Mhaskar, W.F. Smyth: Simple KMP Pattern-Matching on Indeterminate Strings 131

is then aligned with x at position i = 4. Analogously, the pattern is next aligned
with x at position i = 7. Since a mismatch occurs at i + 1 = 10, j + 1 = 4, and
because indetx = true, we construct p

′ = p[1..2]x[8..9] = aba{a, b} and compute
π
p
′ = (4, 0, 2, 1). Then shift is equal to 2. Therefore the pattern is aligned with x at

8. Since it matches (and because it is the last match), KMP Indet returns the list
{1, 4, 8}.

KMP Indet contains a function INDET that determines whether or not the cur-
rent position y[i+1] is indeterminate. To enable this query to be answered efficiently,
we suppose that an array P = P [1..9] has been created with P [t] equal to the tth

prime number in the range 2..23 (for σ = 9). Then y[i+1] is indeterminate if and
only if it exceeds 23 or else does not occur in P . The worst case time requirement for
INDET is therefore log2 9 times a few microseconds, the time for a binary search.

1 2 3 4 5 6 7 8 9 10 11 12 13

x a a b a a b a a {a, b} b a a {a, c}
a a b a a

a a b a a

a a b x

a a b a a

Figure 5. The figure simulates the execution of KMP Indet on the text x =
aabaabaa{a, b}baa{a, c} and pattern p = aabaa. After execution, KMP Indet returns the list of
positions {1, 4, 8} at which p occurs in x. ‘x’ in the third alignment identifies a mismatch.

Now we discuss the running time of algorithm KMP Indet. It is clear that the
running time of KMP Indet for a regular pattern and regular text is linear. Other-
wise, when a matched prefix of q or a matched substring of y contains an indetermi-
nate letter, then the algorithm constructs the prefix array of a new string q

′ which is
a concatenation of the matched strings. In the worst case we might need to construct
the prefix array of q′ for each iteration of the while loop. By Lemma 10 and because
q
′ can be of length at most 2(m−1), in the worst case the total time required for the

execution of KMP Indet is O(m2n). Theorem 11 states these conclusions:

Theorem 11 Given text y = y[1..n] and pattern q = q[1..m] on an alphabet of
constant size σ, KMP Indet executes in O(n) time when y and q are both regular;
otherwise, when both are indeterminate, the worst-case upper bound is O(m2n). The
algorithm’s additional space requirement is O(m), for the pattern q

′ and corresponding
arrays β

q
′ and π

q
′.

An improved theoretical bound to compute the prefix array for a string over a con-
stant alphabet is given in [12], and is summarized in Lemma 12. Using Lemma 12 we
restate Theorem 11 resulting in an improved run time complexity for KMP Indet.

Lemma 12 ([12]) The prefix array of an indeterminate string of length n over a
constant-sized alphabet can be computed in O(n√n) time and O(n) space.

Theorem 13 Given text y = y[1..n] and pattern q = q[1..m] on an alphabet of con-
stant size σ, KMP Indet executes in O(n) time when y and q are both regular;
otherwise, when both are indeterminate, the worst-case upper bound is O(nm√m).

132 Proceedings of the Prague Stringology Conference 2020

The algorithm’s additional space requirement is O(m), for the pattern q
′ and corre-

sponding arrays β
q
′ and π

q
′.

We provide context for the result given in Theorems 11 and 13 by the following:

Remark 14 One of the features that makes this algorithm truly practical is that,
apart from the O(n) time in-place mapping of x into y and p into q, there is no
preprocessing and no auxiliary data structure requirement. As a result, processing is
direct and immediate, requiring negligible additional storage.

Remark 15 The worst case time requirement is predicated on a requirement for O(n)
(short) shifts of q along y, each requiring a worst-case O(m2) prefix array calculation.
For example, this circumstance could occur with p = {a, b}cm−1 and x = an or with
p = ab and x = {a, c}n.

Remark 16 Indeed, given a regular pattern and a string x containing Q indeter-
minate letters (a case considered in both [4] and [5]), KMP Indet may make as
many as mQ shifts, each requiring O(m2) processing, thus O(m3Q) overall. There-
fore, if m3Q is small with respect to m2n — Q small with respect to n/m — then
KMP Indet will execute in O(n) time.

3 Conclusion

We have described a simple procedure, based on the KMP algorithm, to do pattern-
matching on indeterminate strings that is very time-efficient in cases that arise in
practice and moreover uses negligible Θ(m) space in all cases. We conjecture that
a similar approach is feasible for the Boyer-Moore algorithm [3], together with its
numerous variants (BM-Horspool, BM-Sunday, BM-Galil, Turbo-BM): see [15, Ch.
8] and

https://www-igm.univ-mlv.fr/~lecroq/string/

It would also be of interest to optimize KMP Indet for the conservative in-
determinate strings mentioned in Section 2. And we look forward to experimental
comparison of the running times of existing indeterminate pattern-matching algo-
rithms with those of KMP Indet, assuming various frequencies of indeterminate
letters.

References

1. K. Abrahamson: Generalized string matching. SIAM Journal of Computing, 16(6) 1987,
pp. 1039–1051.

2. F. Blanchet-Sadri: Algorithmic Combinatorics on Partial Words, Chapman & Hall CRC,
2008.

3. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Communications of the
ACM, 20(10) 1977, pp. 762–772.

4. M. Crochemore, C. S. Iliopoulis, R. Kundu, M. Mohamed, and F. Vayani: Linear

algorithm for conservative degenerate pattern matching. Eng. Appls. of Artificial Intelligence,
51 2016, pp. 109–114.

5. J. W. Daykin, R. Groult, Y. Guesnet, T. Lecroq, A. Lefebvre, M. Léonard, L. Mou-

chard, E. Prieur-Gaston, and B. Watson: Efficient pattern matching in degenerate strings

with the Burrows-Wheeler transform. Information Processing Letters, 147 2019, pp. 82–87.

N.Mhaskar, W.F. Smyth: Simple KMP Pattern-Matching on Indeterminate Strings 133

6. M. Fischer and M. Paterson: String matching and other products, in Complexity of Com-
putation,, R. Karp, ed., American Mathematical Society, 1974, pp. 113–125.

7. F. Gray: Pulse code communication. Hughes Aircraft Company, U.S. Patent no. 2632058, 1953.
8. J. Holub and W. F. Smyth: Algorithms on indeterminate strings. Proc. 14th Australasian

Workshop on Combinatorial Algs. (AWOCA), 2003, pp. 36–45.
9. J. Holub, W. F. Smyth, and S. Wang: Hybrid pattern-matching algorithms on indeterminate

strings, in London Algorithmics and Stringology, J. W. Daykin, M. Mohamed, and K. Steinhofel,
eds., King’s College Texts in Algorithmics, 2006, pp. 115–133.

10. L. Huang, V. Popic, and S. Batzoglou: Short read alignment with populations of genomes.
Bioinformatics, 29(13) 06 2013, pp. i361–i370.

11. C. S. Iliopoulos, M. Mohamed, L. Mouchard, W. F. Smyth, K. G. Perdikuri, and

A. K. Tsakalidis: String regularities with don’t cares. Nordic J. Computing, 10(1) 2003,
pp. 40–51.

12. C. S. Iliopoulos and J. Radoszewski: Truly subquadratic-time extension queries and peri-

odicity detection in strings with uncertainties, in CPM, 2016.
13. D. E. Knuth, J. H. Morris, and V. R. Pratt: Fast pattern matching in strings. SIAM

Journal of Computing, 6(2) 1977, pp. 323–350.
14. P. Procházka and J. Holub: On-line searching in IUPAC nucleotide sequences, in Proceed-

ings of the 12th International Joint Conference on Biomedical Engineering Systems and Tech-
nologies (BIOSTEC 2019) - Volume 3: BIOINFORMATICS, Prague, Czech Republic, February
22-24, 2019, E. D. Maria, A. L. N. Fred, and H. Gamboa, eds., SciTePress, 2019, pp. 66–77.

15. B. Smyth: Computing Patterns in Strings, Pearson/Addison–Wesley, 2003.
16. W. F. Smyth and S. Wang: New perspectives on the prefix array. Proc. 15th String Processing

& Inform. Retrieval Symp. (SPIRE), 5280 2008, pp. 133–143.
17. W. F. Smyth and S. Wang: An adaptive hybrid pattern-matching algorithm on indeterminate

strings. Internat. J. Foundations of Computer Science, 20(6) 2009, pp. 985–1004.

