Forced Repetitions over Alphabet Lists

Keywords: strings, square-free, repetition, Thue morphisms

2 Background

An alphabet is a set of symbols, and Σ is usually used to represent a finite alphabet. The elements of an alphabet are referred to as symbols (or letters). In this paper, we assume $|\Sigma| \neq 0$. A string (or a word) over Σ, is an ordered sequence of symbols from it. Formally, $\boldsymbol{w}=\boldsymbol{w}_{1} \boldsymbol{w}_{2} \cdots \boldsymbol{w}_{n}$, where for each $i, \boldsymbol{w}_{i} \in \Sigma$, is a string. In order to emphasize the array structure of \boldsymbol{w}, we sometimes represent it as $\boldsymbol{w}[1 . . n]$. The length of a string \boldsymbol{w} is denoted by $|\boldsymbol{w}|$. The set of all finite length strings over Σ is denoted by Σ^{*}. The empty string is denoted by ε, and it is the string of length zero. The set of all finite strings over Σ not containing ε is denoted by Σ^{+}. We denote Σ_{k} to be a fixed generic alphabet of k symbols, and $\Sigma^{\geq j}$ to be the set of all strings over Σ of size at least j.

A string \boldsymbol{v} is a subword (also known as a substring or a factor) of \boldsymbol{w}, if $\boldsymbol{v}=$ $\boldsymbol{w}_{i} \boldsymbol{w}_{i+1} \cdots \boldsymbol{w}_{j}$, where $i \leq j$. If $i=1$, then \boldsymbol{v} is a prefix of \boldsymbol{w} and if $j<n$, \boldsymbol{v} is a proper prefix of \boldsymbol{w}. If $j=n$, then \boldsymbol{v} is a suffix of \boldsymbol{w} and if $i>1$, then \boldsymbol{v} is a proper suffix of \boldsymbol{w}. We can express that \boldsymbol{v} is a subword more succinctly using array representation as $\boldsymbol{v}=\boldsymbol{w}[i . . j]$. A word \boldsymbol{v} is a subsequence of a string \boldsymbol{w} if the symbols of \boldsymbol{v} appear in the same order in \boldsymbol{w}. Note that the symbols of \boldsymbol{v} do not necessarily appear contiguously in \boldsymbol{w}. Hence, any subword is a subsequence, but the reverse is not true.

A string \boldsymbol{w} is said to have a repetition if there exists a subword of \boldsymbol{w} consisting of consecutive repeating factors. The most basic type of repetition is a square and we define it as follows: a string \boldsymbol{w} is said to have a square if there exists a string \boldsymbol{v} such that $\boldsymbol{v} \boldsymbol{v}$ is a subword of \boldsymbol{w} and it is square-free if no such subword exists. A map $h: \Sigma^{*} \rightarrow \Delta^{*}$, where Σ and Δ are finite alphabets, is called a morphism if for all $x, y \in \Sigma^{*}, h(\boldsymbol{x y})=h(\boldsymbol{x}) h(\boldsymbol{y})$. A morphism is said to be non-erasing if for all $\boldsymbol{w} \in \Sigma^{*}$, $h(\boldsymbol{w}) \geq \boldsymbol{w}$. It is called square-free if $h(\boldsymbol{w})$ is square-free for every square-free word \boldsymbol{w} over Σ.

An alphabet list is an ordered list of finite subsets (alphabets), and in our case all the alphabets have the same cardinality. However for the general case we do not need to impose this condition on alphabet lists. Let $L=L_{1}, L_{2}, \ldots, L_{n}$, be an ordered list of alphabets. A string \boldsymbol{w} is said to be a word over the list L, if $\boldsymbol{w}=\boldsymbol{w}_{1} \boldsymbol{w}_{2} \cdots \boldsymbol{w}_{n}$ where for all $i, \boldsymbol{w}_{i} \in L_{i}$. Note that there are no conditions imposed on the alphabets L_{i} 's: they may be equal, disjoint, or have elements in common. The only condition on \boldsymbol{w} is that the i-th symbol of \boldsymbol{w} must be selected from the i-th alphabet of L, i.e., $\boldsymbol{w}_{i} \in L_{i}$. The alphabet set for the list $L=L_{1}, L_{2}, \ldots, L_{n}$ is denoted by $\Sigma_{L}=L_{1} \cup L_{2} \cup \cdots \cup L_{n}$. Given a list L of finite alphabets, we can define the set of strings \boldsymbol{w} over L with a regular expression as follows: $R_{L}:=L_{1} \cdot L_{2} \cdots L_{n}$. Let $L^{+}:=L\left(R_{L}\right)$ be the language
of all the strings over the list L. For example, if $L_{0}=\{\{a, b, c\},\{c, d, e\},\{a, 1,2\}\}$, then

$$
R_{L_{0}}:=\{a, b, c\} \cdot\{c, d, e\} \cdot\{a, 1,2\},
$$

and $a c 1 \in L_{0}^{+}$, but $2 c a \notin L_{0}^{+}$. Also, in this case $\left|L_{0}^{+}\right|=3^{3}=27$.
Given a square-free string \boldsymbol{w} over a list $L=L_{1}, L_{2}, \ldots, L_{n}$, we say that the alphabet L_{n+1} forces a square on \boldsymbol{w} if for all $a \in L_{n+1}, \boldsymbol{w} a$ has a square. Note that, this is not to be confused with forcing a square in \boldsymbol{w}. For example, if $L=\{a, b, c\}^{7}$, and $\boldsymbol{w}=a b a c a b a$, then the alphabet $\{a, b, c\}$ forces a square on \boldsymbol{w}, as the strings $\boldsymbol{w} a$, $\boldsymbol{w} b$ and $\boldsymbol{w} c$ all have squares.

We introduce the concept of admissibility of lists. We say that an alphabet list L is admissible if L^{+}contains a square-free string. For example, the alphabet list $L=\{\{a, b, c\},\{1,2,3\},\{a, c, 2\},\{b, 3, c\}\}$, is admissible as the string 'a $a c 3$ ' over L is square-free.

Let \mathcal{L} represent a class of lists; the intention is for \mathcal{L} to denote lists with a given property. For example, we are going to use $\mathcal{L}_{\Sigma_{k}}$ to denote the class of lists $L=L_{1}, L_{2}, \ldots L_{n}$, where for each $i, L_{i}=\Sigma_{k}$, and \mathcal{L}_{k} will denote the class of all lists $L=L_{1}, L_{2}, \ldots, L_{n}$, where for each $i,\left|L_{i}\right|=k$, that is, those lists consisting of alphabets of size k. Note that $\mathcal{L}_{\Sigma_{k}} \subseteq \mathcal{L}_{k}$. We say that a class of lists \mathcal{L} is admissible if every list $L \in \mathcal{L}$ is admissible. An example of admissible class of lists is the class $\mathcal{L}_{\Sigma_{3}}$ (Thue's result), and \mathcal{L}_{3} is a class of lists whose admissibility status is unknown, and the subject of investigation in this paper.

A border β of a string \boldsymbol{w}, is a subword that is both a proper suffix of \boldsymbol{w}. Note that the proper prefix and proper suffix may ove: have many borders. The empty string ε is a border of every string. string $\boldsymbol{w}=121324121$ has three borders 1, 121 and the empty str many properties of borders.

Given an alphabet Σ, let $\Delta=\left\{\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \boldsymbol{X}_{3}, \ldots, a_{1}, a_{2}, a_{3}, \ldots\right\}$ b
the \boldsymbol{X}_{i} 's range over Σ^{*}, and the a_{i} 's range over Σ. A pattern is a Δ^{*}; for example, $\mathcal{P}=\boldsymbol{X}_{1} a_{1} \boldsymbol{X}_{1}$ is a pattern representing all strir equals the second half, and the two halves are separated by a sins patterns are "templates" for strings. Note that some authors de words over variables with no restriction on the size of the vari find the definition given here as more amenable to our purpose

We say that a word \boldsymbol{w} over some alphabet Σ conforms to a morphism $h: \Delta^{*} \longrightarrow \Sigma^{*}$, such that $h(\mathcal{P})=\boldsymbol{w}$.

We say that a pattern is avoidable, if strings of arbitrary ler subword of the string conforms to the pattern, otherwise it is For example, the pattern $\boldsymbol{X} \boldsymbol{X}$ is unavoidable for all strings i strings in Σ_{3} of arbitrary length for which it is avoidable (Th

The idea of unavoidable patterns was developed indepen Zimin words (also known as sesquipowers) constitute a certa patterns. The n-th Zimin word, z_{n}, is defined recursively o variables of type string as follows:

$$
\begin{align*}
& z_{1}=\boldsymbol{X}_{1}, \text { and for } n>1, \\
& z_{n}=z_{n-1} \boldsymbol{X}_{n} z_{n-1} . \tag{1}
\end{align*}
$$

tat Zimin words are unavoidable for large classes of words. More prery n, there exists an N, so that for every word $\boldsymbol{w} \in \Sigma_{n}^{\geq N}$ there
exists a morphism h so $\mathcal{Z}_{3}=\boldsymbol{X}_{1} \boldsymbol{X}_{2} \boldsymbol{X}_{1} \boldsymbol{X}_{3} \boldsymbol{X}_{1} \boldsymbol{X}_{2} \boldsymbol{X}$ can be checked with an ex For details on Zimin pat

For instance, the pattern ds of length at least 29, as ; on Zimin word avoidance.

luce a pattern that we call an "offending suffix", and we show uffixes characterize in a meaningful way strings over alphabet (n), an offending suffix, be a pattern defined recursively:

$$
\begin{align*}
& \mathfrak{C}(1)=\boldsymbol{X}_{1} a_{1} \boldsymbol{X}_{1}, \text { and for } n>1, \\
& \mathfrak{C}(n)=\boldsymbol{X}_{n} \mathcal{C}(n-1) a_{n} \boldsymbol{X}_{n} \mathcal{C}(n-1) . \tag{2}
\end{align*}
$$

To be more precise, given a morphism, $h: \Delta^{*} \rightarrow \Sigma^{*}$, we call $h\left(\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right) \subseteq \Sigma$ the pivots of h. When all the variables in the set $\left\{\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{n}\right\}$ map to ε, we get the pattern for the shortest possible offending suffix for a list $L \in \mathcal{L}_{n}$. We call this pattern the shortest offending suffix, and employ the notation:

$$
\begin{equation*}
\mathfrak{C}_{s}(n)=a_{1} a_{2} a_{1} \cdots a_{n} \cdots a_{1} a_{2} a_{1} . \tag{3}
\end{equation*}
$$

Note that $\left|\mathcal{C}_{s}(n)\right|=2\left|\mathcal{C}_{s}(n-1)\right|+1$, where $\left|\mathcal{C}_{s}(1)\right|=1$, and so, $\left|\mathcal{C}_{s}(n)\right|=2^{n}-1$.
As we are interested in offending suffixes for \mathcal{L}_{3}, we consider mainly:
and ob
Pa
of the
yields
suffix
the sin
that it allows for the suc
al offending s
Given a list L, let $h: \Delta^{*} \rightarrow L_{L}$ say that h respects a list $L=L_{1}, L_{2}, \ldots, L_{n}$, if h yields a string over L. So, for example, an h that maps each $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \boldsymbol{X}_{3}$ to ε, and also maps $a_{1} \mapsto a, a_{2} \mapsto b, a_{3} \mapsto c$, yields $h(\mathcal{C}(3))=a b a c a b a$. Such an h respects, for example, a list $L=\{a, e\},\{a, b\},\{a, d\},\{c\},\{a, e\},\{b, c, d\},\{a\}$. In general, papers in the field of string algorithms mix variables over symbols with the symbols themselves, that is, a may stand for both the symbol $a \in \Sigma$, and a variable that takes on values in Σ. In our case, we need to specify exactly what is a variable and what is a symbol.

The main result of the paper, a characterization of squares in strings over lists in terms of offending suffixes, follows.

Theorem 1. Suppose that $\boldsymbol{w}=\boldsymbol{w}_{1} \boldsymbol{w}_{2} \cdots \boldsymbol{w}_{i-1}$ is a square-free string over a list $L=$ $L_{1}, L_{2}, \ldots, L_{i-1}$, where $L \in \mathcal{L}_{3}$. Then, the pivots $L_{i}=\{a, b, c\}$ force a square on \boldsymbol{w} iff \boldsymbol{w} has a suffix conforming to the offending suffix $\mathcal{C}(3)$.

Proof. The proof is by contradiction. We assume throughout that our lists are from the class \mathcal{L}_{3}.
(\Leftarrow) Suppose $\boldsymbol{w}=\boldsymbol{w}_{1} \boldsymbol{w}_{2} \cdots \boldsymbol{w}_{i-1}$ has a suffix conforming to the offending suffix $\mathcal{C}(3)$, where a, b, c are the pivots. Clearly, if we let $L_{i}=\{a, b, c\}$, then each $\boldsymbol{w} a, \boldsymbol{w} b, \boldsymbol{w} c$ has a square, and hence by definition L_{i} forces a square on \boldsymbol{w}.
(\Rightarrow) Suppose, on the other hand, that $L_{i}=\{a, b, c\}$ forces a square on the word \boldsymbol{w} over $L=L_{1}, L_{2}, \ldots, L_{i-1}$. We need to show that \boldsymbol{w} must have a suffix that conforms to the pattern $\mathcal{C}(3)$, with the symbols a, b, c as the pivots. Since L_{i} forces a square, we know that $\boldsymbol{w} a, \boldsymbol{w} b, \boldsymbol{w} c$ has a square for a suffix (as \boldsymbol{w} itself was square-free). Let $\boldsymbol{t} a \boldsymbol{t} a, \boldsymbol{u} b \boldsymbol{u} b, \boldsymbol{v} c \boldsymbol{v} c$ be the squares created by appending a, b and c to \boldsymbol{w}, respectively. Here $\boldsymbol{t}, \boldsymbol{u}, \boldsymbol{v}$ are treated as subwords of \boldsymbol{w}.

As all three squares $\boldsymbol{t} a \boldsymbol{t} a, \boldsymbol{u} b \boldsymbol{u} b, \boldsymbol{v} c \boldsymbol{v} c$ are suffixes of the string \boldsymbol{w}, it follows that $\boldsymbol{t}, \boldsymbol{u}, \boldsymbol{v}$ must be of different sizes, and so we can order them without loss of generality as follows: $|\boldsymbol{t} t \boldsymbol{t}|<|\boldsymbol{u} b \boldsymbol{u}|<|\boldsymbol{v} c \boldsymbol{v}|$. It also follows from the fact that all three are suffixes of \boldsymbol{w}, the squares from left-to-right are suffixes of each other. Hence, while \boldsymbol{t} may be empty, we know that \boldsymbol{u} and \boldsymbol{v} are not. We now consider different cases of the overlap of $\boldsymbol{t} a \boldsymbol{t}, \boldsymbol{u} b \boldsymbol{u}, \boldsymbol{v} c \boldsymbol{v}$, showing in each case that the resulting string has a suffix conforming to the pattern $\mathcal{C}(3)$. Note that it is enough to consider the interplay of $\boldsymbol{u} b \boldsymbol{u}, \boldsymbol{v} c \boldsymbol{v}$, as then the interplay of $t \quad$ d follows by analogy. Also keep in mind that the assumption is as can be seen below.

1. $\boldsymbol{v}=\boldsymbol{p u b u}$ as showr \boldsymbol{w} is square-free, w $\boldsymbol{p} \neq b$. From this,

this eliminates some of the possibilities
a proper non-empty prefix of \boldsymbol{v}. Since is no square, and therefore $\boldsymbol{p} \neq \boldsymbol{u}$ and u. Therefore, this case is possible.

Figure 3. $c v=u b u$

4. $\boldsymbol{v} c \boldsymbol{v}=\boldsymbol{q} \boldsymbol{u} b \boldsymbol{u}$ and $|c \boldsymbol{v}|<|\boldsymbol{u} b \boldsymbol{u}|$ as shown $\boldsymbol{v} c \boldsymbol{v}$. Let $\boldsymbol{u}=\boldsymbol{p} c \boldsymbol{s}$, where $\boldsymbol{p}, \boldsymbol{s}$ are proper Since \boldsymbol{p} is also a proper suffix of \boldsymbol{v}, on

Figure 4. $\boldsymbol{v c v}=n g b u$ and $|c v|<|u b u|$
(a) $|\boldsymbol{s}|=|\boldsymbol{p}|$ and so $\boldsymbol{s}=\boldsymbol{p}$. Since $\boldsymbol{s}=\boldsymbol{p}, \boldsymbol{v}=\boldsymbol{s b} \boldsymbol{s c s}$ and $\boldsymbol{v} c \boldsymbol{v}=s b s c s c s b s c s$. The subword 'scsc', indicates a square in \boldsymbol{w}. This is a contradiction and therefore this case is not possible.
(b) $|\boldsymbol{s}|>|\boldsymbol{p}|$ and so $\boldsymbol{s}=\boldsymbol{r} \boldsymbol{p}$, where \boldsymbol{r} is a proper non-empty prefix of \boldsymbol{s}. Substituting $\boldsymbol{r} \boldsymbol{p}$ for \boldsymbol{s}, we have $\boldsymbol{v}=\boldsymbol{s b} \boldsymbol{p} c \boldsymbol{s}=\boldsymbol{r p b} \boldsymbol{p} \boldsymbol{c} \boldsymbol{r} \boldsymbol{p}$ and $\boldsymbol{v} \boldsymbol{v} \boldsymbol{v}=\boldsymbol{r} \boldsymbol{p} b \boldsymbol{p} c \boldsymbol{r} \boldsymbol{p} \boldsymbol{r} \boldsymbol{p} b \boldsymbol{p} c \boldsymbol{r} \boldsymbol{p}$. The subword ' $\boldsymbol{r p p} \boldsymbol{c r p}$ ' indicates a square in \boldsymbol{w}. This is a contradiction and therefore this case is not possible.
(c) $|\boldsymbol{s}|<|\boldsymbol{p}|$ and so $\boldsymbol{p}=\boldsymbol{r s}$, where \boldsymbol{r} is a proper non-empty prefix of \boldsymbol{p}. Substituting $\boldsymbol{r} \boldsymbol{s}$ for \boldsymbol{p}, we have $\boldsymbol{v}=\boldsymbol{s b} \boldsymbol{p} c \boldsymbol{s}=\boldsymbol{s b r s c s}$ and $\boldsymbol{v} c \boldsymbol{v}=\boldsymbol{s b r s c s c s b r s c s}$. The subword ' $s c s c$ ' indicates a square in \boldsymbol{w}. This is a contradiction and therefore this case is not possible.

From the above analysis, we can conclude that for L_{i} to force a square on a squarefree string \boldsymbol{w}, it must be the case that $\boldsymbol{v}=\boldsymbol{z u b} \boldsymbol{u}$, where \boldsymbol{z} is a prefix (possibly empty) of \boldsymbol{v} and $\boldsymbol{z} \neq \boldsymbol{u}$ and $\boldsymbol{z} \neq b$.

Similarly, we get $\boldsymbol{u}=\boldsymbol{y} \boldsymbol{t} a \boldsymbol{t}$, where \boldsymbol{y} is a prefix (possibly empty) of \boldsymbol{u} and $\boldsymbol{y} \neq$ \boldsymbol{t} and $\boldsymbol{z} \neq \boldsymbol{y}$. Substituting values of \boldsymbol{u} in \boldsymbol{v}, we get $\boldsymbol{v}=\boldsymbol{z y t a t b y t a t}$ and $\boldsymbol{v} \boldsymbol{c} \boldsymbol{v}=$ zytatbytatczytatbytat. But $\boldsymbol{v} c \boldsymbol{v}$, is a suffix of the square-free string \boldsymbol{w}, and it conforms to the offending suffix $\mathcal{C}(3)$ where the elements a, b, c are the pivots.

Therefore, we have shown that if an alphabet L_{i} forces a square in a square-free string \boldsymbol{w}, then \boldsymbol{w} has a suffix conforming to the offending suffix $\mathcal{C}(3)$.

The following Corollary exploits the fact that an alphabet L_{i+1} forces a square on a square-free string \boldsymbol{v} of length i iff \boldsymbol{v} has an offending suffix. But, the size of an offending suffix grows exponentially in the size of the alphabets in the list.

Corollary 2. If L is a list in \mathcal{L}_{n} of length at most $2^{n}-1$, then L is admissible.

 If \boldsymbol{w} has suffixes $\boldsymbol{s}, s^{\prime}$ conforming to $\mathcal{C}(3)$ with pivots L_{n} (where $\left|L_{n}\right|=3$), then $\boldsymbol{s}=s^{\prime}$.

Proof. The proof is by contradiction. Suppose that the square-free string \boldsymbol{w} over $L \in \mathcal{L}_{3}$ has two distinct suffixes s and s^{\prime} conforming to the offending suffix $\mathcal{C}(3)$ with pivots $L_{n}=\{a, b, c\}$. That is $\exists h, h(\mathcal{C}(3))=s$ and $\exists h^{\prime}, h^{\prime}(\mathcal{C}(3))=s^{\prime}$, and $s \neq s^{\prime}$, and both have pivots in $\{a, b, c\}$. Without loss of generality, we assume that $|s|<\left|s^{\prime}\right|$, and since they are suffixes of \boldsymbol{w}, s is a suffix of s^{\prime}. We now examine all possible cases of overlap. Note that $s^{\prime}=h^{\prime}(\mathcal{C}(3))=h^{\prime}\left(\boldsymbol{X}_{2} \mathcal{C}(2) a_{3} \boldsymbol{X}_{2} \mathcal{C}(2)\right)$ for some morphism h^{\prime}. To examine the cases of overlap, let $\boldsymbol{v}=h^{\prime}\left(\boldsymbol{X}_{2} \mathrm{C}(2)\right)$, then $\boldsymbol{s}^{\prime}=\boldsymbol{v} h^{\prime}\left(a_{3}\right) \boldsymbol{v}$, where $h^{\prime}\left(a_{3}\right)$ represents the middle symbol of s^{\prime}. Similarly, the middle symbol of s is represented by $h\left(a_{3}\right)$ for some morphism h. $\quad a_{3}$) in s^{\prime} (and $h\left(a_{3}\right)$ in s) as we want to cover all the six differe to pivots a, b, c.

1. If $|s| \leq\left\lfloor\left|s^{\prime}\right| / 2\right\rfloor$, then $\boldsymbol{v}=\boldsymbol{p} s$ is a prefix of s^{\prime}. Observe that suffix, we know that $s h^{\prime}\left(a_{3}\right) \mathrm{h}$ that \boldsymbol{w} has a square - contra
riables a_{1}, a_{2}, a_{3} are mapped

p	s

Figure 5. $v=p s$
2. If $|\boldsymbol{s}|=\left\lfloor\left|\boldsymbol{s}^{\prime}\right| / 2\right\rfloor+1$, then $\boldsymbol{s}=h^{\prime}\left(a_{3}\right) \boldsymbol{u} h\left(a_{3}\right) h^{\prime}\left(a_{3}\right) \boldsymbol{u}$ non-empty subword of \boldsymbol{s}, and $\boldsymbol{v}=\boldsymbol{u} h\left(a_{3}\right) h^{\prime}\left(a_{3}\right) \boldsymbol{u}$. If th a_{3} to the same element in $\{a, b, c\}$, that is $h^{\prime}\left(a_{3}\right)=$ ' $h\left(a_{3}\right) h\left(a_{3}\right)$ ' and therefore \boldsymbol{w} has a square - contradi without loss of generality, we assume $h^{\prime}\left(a_{3}\right)=c$ and is a
map map uare $\left(a_{3}\right)$, иаси and $s^{\prime}=\boldsymbol{v} c \boldsymbol{v}=\boldsymbol{u} a c \boldsymbol{u} \boldsymbol{u} \boldsymbol{u} c \boldsymbol{u}$ has a square ' $c \boldsymbol{u c \boldsymbol { u }}$ ' and it follows that \boldsymbol{w} has a square - contradiction.
3. If $|\boldsymbol{s}|>\left\lfloor\left|\boldsymbol{s}^{\prime}\right| / 2\right\rfloor+1$, then $\boldsymbol{s}=\boldsymbol{p} h^{\prime}\left(a_{3}\right) \boldsymbol{u} h\left(a_{3}\right) \boldsymbol{p} h^{\prime}\left(a_{3}\right) \boldsymbol{u}$, where \boldsymbol{p} is a non-empty prefix of s and \boldsymbol{u} is a subword (possibly empty) of \boldsymbol{s}. Also, $\boldsymbol{v}=\boldsymbol{u} h\left(a_{3}\right) \boldsymbol{p} h^{\prime}\left(a_{3}\right) \boldsymbol{u}$ and $\boldsymbol{s}^{\prime}=\boldsymbol{v} h^{\prime}\left(a_{3}\right) \boldsymbol{v}=\boldsymbol{u} h\left(a_{3}\right) \boldsymbol{p} h^{\prime}\left(a_{3}\right) \boldsymbol{u} h^{\prime}\left(a_{3}\right) \boldsymbol{u} h\left(a_{3}\right) \boldsymbol{p} h^{\prime}\left(a_{3}\right) \boldsymbol{u}$. We can see that \boldsymbol{s}^{\prime} has a square ' h ' $\left(a_{3}\right) \boldsymbol{u} h^{\prime}\left(a_{3}\right) \boldsymbol{u}$ ', and it follows that \boldsymbol{w} has a square - contradiction.

This ends the proof.

Figure 6. $\boldsymbol{v}=\boldsymbol{u} h\left(a_{3}\right) h^{\prime}\left(a_{3}\right) \boldsymbol{u}$

Suppose the class list that is inadmissible eight. Let $L=L_{1}, L_{2}$, $L=L^{\prime}, L_{n+1}$. Then by conforms to the offend the alphabet L_{n+1}. Th empty suffix \boldsymbol{s} of \boldsymbol{w} an

If we are able to respective alphabet, such that the new string \boldsymbol{w}^{\prime} remains square-free and has no suffix conforming to $\mathcal{C}(3)$, then we can show that L is admissible. Simply, use this \boldsymbol{w}^{\prime} over L^{\prime}, and append to it a symbol from the alphabet L_{n+1}, such that the resulting string is square-free. We know that such a symbol exists as \boldsymbol{w}^{\prime} was square-free with no offending suffix.

4 Borders a

In this section we on borders; see fo

reworu of \boldsymbol{w} and it has a border β such that $|\beta| \geq$ that β must have a prefix \boldsymbol{p} which yields a square is not square-free - contradiction.
$\boldsymbol{u} \boldsymbol{u}$. But \boldsymbol{s} is a subword of \boldsymbol{w} and it has a border radiction.

Figure 8. " \Rightarrow " direction of the proo

5 Repetitions and compression

Suppose that we want to encode the \boldsymbol{w} 's, as $\langle\boldsymbol{w}\rangle$, in a

age of the repetitions in \boldsymbol{w}. The intuition, of course, is that strings with long repetitions can be compressed considerably, and so encoded with fewer bits. We can then use the basic Kolmogorov observation about the existence of incompressible strings to deduce that not all strings can have long repetitions. On the other hand, short repetitions are in some sense local, and so they are easier to avoid. Perhaps we can use this approach to prove the existence of square-free strings in \mathcal{L}_{3}.

Assume that the L_{i} 's are ordered, and since each L_{i} has three symbols, we can encode the contents of each L_{i} with 2 bits:

Encoding Symbol
00 1st symbol
01 2nd symbol
10 3rd symbol
11 separator
Suppose now that $\boldsymbol{w}=\boldsymbol{w}_{1} \boldsymbol{v} \boldsymbol{v} \boldsymbol{w}_{2}$, where $|\boldsymbol{w}|=n,|\boldsymbol{v}|=\ell$, that is, \boldsymbol{w} is a string over L of length n containing a square of length ℓ. Then, we propose the following scheme for encoding \boldsymbol{w} 's: $\langle\boldsymbol{w}\rangle:=\left\langle\boldsymbol{w}_{1}\right\rangle 11\langle\boldsymbol{v}\rangle 11\left\langle\boldsymbol{w}_{2}\right\rangle$. A given \boldsymbol{w} does not necessarily have a unique encoding, as it may have several squares; but we insist that the encoding always picks a maximal square (in length). Note also that $\langle\boldsymbol{w}\rangle$ encodes \boldsymbol{w} over L as a string over $\Sigma=\{0,1\}$.

Note that $|\langle\boldsymbol{w}\rangle|=2(n-2 \ell)+2 \ell+4$, where the term $2(n-2 \ell)$ arises from the fact that $\left|\boldsymbol{w}_{1}\right|+\left|\boldsymbol{w}_{2}\right|$ have $n-2 \ell$ symbols (as strings over L), and each such symbol is encoded with two bits, hence $2(n-2 \ell)$. The two separators 11,11 take 4 bits, and the length of \boldsymbol{v} is ℓ (as a string over L), and so it takes 2ℓ bits.

It is clear that we can extract \boldsymbol{w} out of $\langle\boldsymbol{w}\rangle$ (uniquely), and so $\langle\cdot\rangle$ is a valid encoding; for completeness, let f decode strings: $f: \Sigma^{*} \longrightarrow L^{+}$work as follows:

$$
f(\langle\boldsymbol{w}\rangle)=f\left(\left\langle\boldsymbol{w}_{1}\right\rangle 11\langle\boldsymbol{v}\rangle 11\left\langle\boldsymbol{w}_{2}\right\rangle\right)=\boldsymbol{w}_{1} \boldsymbol{v} \boldsymbol{v} \boldsymbol{w}_{2},
$$

and if the input is not a well-formed encoding, say it is 111111 , then we let f output, for instance, the lexicographically first string over L^{+}.

On the other hand, $\langle\cdot\rangle: L^{+} \longrightarrow \Sigma^{*}$ encodes strings by finding the longest square \boldsymbol{v} in a given \boldsymbol{w} (if there are several maximal squares, it picks the first one, i.e., the one where the index of first symbol of $\boldsymbol{v} \boldsymbol{v}$ is smallest), yielding $\boldsymbol{w}_{1} \boldsymbol{v} \boldsymbol{v} \boldsymbol{w}_{2}$, and outputting $\left\langle\boldsymbol{w}_{1}\right\rangle 11\langle\boldsymbol{v}\rangle 11\left\langle\boldsymbol{w}_{2}\right\rangle$.

Suppose now that for a given $L=L_{1}, L_{2}, \ldots, L_{n}$ every string has a maximal square of size at least ℓ_{0}. We want to bound how big can ℓ_{0} be; to this end, we want to find ℓ_{0} such that:

$$
\begin{equation*}
2^{2\left(n-2 \ell_{0}\right)+2 \ell_{0}+4}<3^{n} \tag{5}
\end{equation*}
$$

term on the left counts the maximal number of possible enmption that every string over L has a square of size at least he right is the size of $\left|L^{+}\right|$. The inequality expresses that if ℓ_{0} ig, then we won't be able to encode all the 3^{n} strings in L^{+}. mplified to $2^{2 n-2 \ell_{0}+4}<3^{n}$, and using $\log _{2}$ on both sides we $<\log _{2} 3 n<1.6 n$, which gives us $n-\ell_{0}+2<0.8 n$, and so $0.2 n$. Thus, given any $L=L_{1}, L_{2}, \ldots, L_{n}$, there always is a no longer than $\frac{1}{5} n$. Can we strengthen this technique to give a f to prove that \mathcal{L}_{3} is admissible?

References

1. S. Arson: Proof of the existence of asymmetric infinite sequences (russian). Mat. Sbornik, 2 1937, pp. 769-779.
2. D. R. Bean, A. Ehrenfeucht, and G. F. McNulty: Avoidable patters in strings of symbols. Pacific Journal of Mathematics, 85(2) 1979, pp. 261-294.
3. J. Berstel, A. Lauve, C. Reutenauer, and F. V. Saliola: Combinatorics on Words: Christoffel Words and Repetitions in Words, American Mathematical Society, 2008.
4. J. Berstel and D. Perrin: The origins of combinatorics of words. Electronic Journal of Combinatorics, 28 2007, pp. 996-1022.
5. J. Cooper and D. Rorabaugh: Bounds on zimin word avoidance. Electronic Journal of Combinatorics, 21(1) 2014.
6. J. D. Currie: Which graphs allow infinite non-repetitive walks? Discrete Mathematics, 87 1991, pp. 249-260.
7. J. Grytczuk, J. Kozik, and P. Micek: A new approach to nonrepetitive sequences. arXiv:1103.3809, December 2010.
8. J. Leech: A problem on strings of beads. Mathematical Gazette, December 1957, p. 277.
9. N. Mhaskar and M. Soltys: Non-repetitive string over alphabet list, in WALCOM: Algorithms and Computation, vol. 8973 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2015, pp. 270-281.
10. M. Morse and G. A. Hedlund: Unending chess, symbolic dynamics and a problem in semigroups. Duke Math. J, 11 1944, pp. 1-7.
11. N. Rampersad and J. Shallit: Repetitions in words. May 2012.
12. J. Shallit: A second course in formal languages and automata theory, Cambridge Univeristy Press, 2009.
13. B. Smyth: Computing Patterns in Strings, Pearson Education, 2003.
14. A. Thue: Über unendliche Zeichenreichen. Norsek Vid. Selsk. Srk., I Mat. Nat. Kl., 7 1906, pp. 1-22.
15. A. Thue: Über die gegenseitige lage gleicher teile gewisser Zeichenreihen. Kra. Vidensk. Selsk. Skrifter., I. Mat. Nat. Kl., 1 1912, pp. 1-67.
16. A. I. Zimin: Blocking sets of terms. Mat. Sbornik, 119 1982, pp. 363-375.
