
Context-dependent Stopper en
oding

Jussi Rautio

Laboratory of Information Pro
essing S
ien
e

Helsinki University of Te
hnology

Espoo, Finland

e-mail: Jussi.Rautio�hut.fi

Abstra
t. A
hara
ter-based en
oding method is presented for natural-

language texts and geneti
 data. Exa
t string mat
hing from the en
oded text

is faster than from the original text, with medium and longer patterns. A
om-

pression ratio of about 50% is a
hieved as a by-produ
t. The method en
odes

hara
ters with variable-length
odewords of 2-bit base symbols. An advan
ed

variant is
ontext-dependent, using information from the previous
hara
ter.

The method supersedes the previous
omparable methods in
ompression ratio,

and is
omparable to the best su
h methods in sear
h speed.

Keywords:
ompressed mat
hing, a

elerator en
oding, Stopper en
oding

1 Introdu
tion

As the amount of available information is
onstantly growing, fast information re-

trieval is be
oming more and more important; it is a key
on
ept in many appli
a-

tions, espe
ially on-line ones. The string mat
hing problem is about lo
ating all the

o

urren
es of a spe
i�
 pattern from the full text. Within this paper, I will
on
en-

trate on exa
t string mat
hing, requiring an exa
t mat
h with the pattern and the

o

urren
e in the full text.

A
ommon solution to the string mat
hing problem is to build an external index

with pointers to the full text [15℄. With an index, string mat
hing
an be done in

logarithmi
 time. The disadvantage of these methods is an in
rease in spa
e
onsump-

tion. For stati
 �les, it is possible to
ompress the index only [15℄, or to
ompress the

index separately from the full text [15℄. The FM index [5℄ applies Burrows-Wheeler

transformation [4℄ to the text before
ompression, drasti
ally redu
ing the amount of

ne
essary index data. These methods allow both an ex
ellent
ompression ratio and

fast string mat
hing. However, they do not support on-line updates or approximate

mat
hing.

An alternative to indexing, it is possible to en
ode the full text with a lo
al

s
heme spe
i�
ly designed to improve sear
h speed. A Boyer-Moore [2, 9℄ type string

mat
hing algorithm
an be used with the en
oded text, improving sear
h speed by a

onstant fa
tor. Some of these s
hemes even o�er a signi�
ant
ompression ratio as

a by-produ
t. In the absen
e of a
ommon term for this
lass of s
hemes, I will use

the term a

elerator en
oding for all su
h s
hemes.

143

Pro
eedings of the Prague Stringology Conferen
e '05

Although a

elerator en
oding falls behind
ompressed indexing in both
ompres-

sion ratio and sear
h speed, it allows on-line updates and on-line de
oding. It is

suited for do
uments whi
h are queried, retrieved or updated often, for example text

databases or log �les.

There are two types of a

elerator en
oding s
hemes: word-based and
hara
ter-

based. Word-based s
hemes [3, 12℄ work with whole words at a time, allowing a

better
ompression ratio for large �les but requiring a large di
tionary. Their use

is limited to natural-language texts where words are separated by delimiters (unlike

Japanese, for example), and string mat
hing is possible only with whole words and

ombinations of subsequent words. Chara
ter-based s
hemes [6, 13, 14℄ work with a

�xed number of
hara
ters at a time. String mat
hing is possible with a more free

range of patterns, possibly in
luding errors and
lasses of
hara
ters.

I will present a novel
hara
ter-based a

elerator en
oding s
heme and an exa
t

string mat
hing algorithm whi
h works with it. Variants of the new s
heme,
exible

stopper en
oding,
an be used either with geneti
 data or with natural-language texts.

The s
heme is based on en
oding ea
h
hara
ter of the text with a
odeword of

one or more 2-bit base symbols. With pure DNA
ode (with the alphabet a
gt),

exa
tly one base symbol is used for ea
h base pair, leading to a trivial en
oding.

With natural-language texts, the
ompression ratio of the s
heme is optimized with

methods in
luding
ontext dependen
e of the �rst order. String mat
hing from the

en
oded text is done with an algorithm resembling Tuned Boyer-Moore.

Compared with existing
hara
ter-based s
hemes, the new s
heme
an be useful.

For previous
hara
ter-based s
hemes, the
ompression ratio (size of
ompressed �le

divided by size of original �le) of natural-language texts was about 50% for the slowest

methods and 60% for the faster ones. For my example texts,
ompression ratio of the

new s
heme is 0:3 � 2 per
entage units better than the best previous s
hemes, and

the sear
h speed is
omparable to the fastest previous methods.

2 Ba
kground

Let T [0; n� 1℄ denote a text over the alphabet �. An en
oding is a transformation

from the text T [0; n� 1℄ to the en
oded text T

0

[0; n

0

� 1℄, in the alphabet �

0

. String

mat
hing in an en
oded text means lo
ating all o

urren
es L(P) of a given pattern

P [0; m� 1℄ from the original text, with only the en
oded text available. Throughout

this paper, I assume that it is suÆ
ient to lo
ate all o

urren
es of the en
oded

pattern L

0

(P

0

) in the en
oded text.

A

elerator en
oding methods use either stati
 or semi-stati
 en
oding. In the

latter
ase, a small di
tionary
ontaining all ne
essary information for mat
hing and

de
oding is saved along with the en
oded text. Dynami
 di
tionary methods
annot

be used, be
ause the di
tionary
annot be kept up to date without reading every

hara
ter of the text, whi
h would be disastrous to the performan
e of the algorithm.

An important property of any
ompression algorithm is
ompression ratio, here

denoted as the size of the en
oded text divided by the size of the original text, the

smaller the better. For the sake of uniformity, a
hara
ter of the original text is

always
al
ulated as one 8-bit byte, even with geneti
 data.

Byte-pair en
oding (BPE) exploited the variable frequen
ies of
onse
utive

hara
ter pairs. For BPE, �

0

= �. T

0

is a
opy of T , ex
ept that the most
ommon

144

Context-dependent Stopper en
oding

pairs of
onse
utive
hara
ters are repla
ed with
hara
ters of � with no o

urren
es

in T . The Manber variant [11℄ limits possible pairs, sa
ri�
ing
ompression ratio

for sear
h speed. The original variant [6℄ does not have this limitation, allowing a

better
ompression ratio. Both variants have an eÆ
ient Boyer-Moore type string

mat
hing algorithm. A partially re
ursive version of the
ompression algorithm was

re
ommended for the original variant [14℄, where one
hara
ter in �

0

an represent

one to three
hara
ters in �. Another variant of Byte-pair en
oding
alled Repair [10℄

is even more optimized to
ompression ratio, but la
ks an eÆ
ient sear
h algorithm.

Our earlier
omparison of these two variants [13℄ suggested that the Manber vari-

ant supported faster exa
t string mat
hing, however its
ompression ratio was only

70-75% with natural-language texts. For the original variant, and espe
ially its re-

ursive version, the
ompression ratio
ould be as good as 45% with the same texts.

However, the better the
ompression ratio, the slower the string mat
hing. The

s
heme with the best
ompression ratio only allowed a slower string mat
hing than

with the original text.

Stopper en
oding [13℄ is related to an earlier word-based method by de Moura

et al. [12℄. I will des
ribe here only the 4-bit variant SE

4

; 0. The basi
 unit of the

en
oded text was the base symbol. It
onsisted of four bits, �

0

= [0; 15℄. When en-

oding, every
hara
ter of T was repla
ed with a
orresponding
odeword, a sequen
e

of one or more base symbols. No
odeword
ould be a pre�x of another. More
om-

mon
hara
ters were given shorter
odewords than less
ommon ones. This resembled

Hu�man
oding. [8℄

To allow faster string mat
hing, base symbols were divided into two
lasses
alled

stoppers and
ontinuers. Let s denote the number of stoppers, su
h as all
 in �

0

less

than s are stoppers. A legal
odeword C

0

[0; r � 1℄
onsisted of zero or more symbols

of the
ontinuer
lass, followed by exa
tly one symbol of the stopper
lass, that is:

C

0

[i℄ � s holds for all i < r� 1, and C

0

[r� 1℄ < s. This made it possible to re
ognize

odewords when starting at an arbitary lo
ation in the text, in
luding after jumps

made by a Boyer-Moore type algorithm.

The 4-bit en
oded text T

0

was stored into the 8-bit form, two base symbols per

a 8-bit
omputer byte, so that it
ould be used eÆ
iently. String mat
hing in the

en
oded text was done with a Boyer-Moore type algorithm
alled BM-SE, whi
h

handles whole bytes instead of individual base symbols. The algorithm operates by

en
oding pattern P and then lo
ating the o

urren
es of the en
oded pattern P

0

from

T

0

. Naturally, the possible o

urren
es were not restri
ted to byte boundaries, but

ould start or end at either the �rst or the se
ond base symbol in the byte. Be
ause

of this, two possible alignments of the en
oded pattern must be produ
ed by using

a shift operation. The a
tual sear
h algorithm was a multi-pattern version of Tuned

Boyer-Moore [2, 9℄. It only made one pass of the en
oded text, trying to lo
ate both of

the alignments at the same time. When a presumed mat
h was found, the pre
eding

base symbol was
he
ked. If it is a stopper, the mat
h was
on�rmed, otherwise it

was dis
arded.

Word-based methods resembling Stopper en
oding have been used to en
ode

whole words at a time. In s
hemes by de Moura et al. [12℄ and Brisaboa et al.

[3℄, whole words were en
oded at a time. Ea
h was given a representation of one to

three base symbols, in this
ase 8-bit bytes. These base symbols were divided into

the
ontinuer and stopper
lasses. This algorithm produ
ed an ex
ellent
ompression

145

Pro
eedings of the Prague Stringology Conferen
e '05

ratio with natural language (
urrently the best one seen in a

elerator en
oding). De

Moura's s
heme used a �xed number of stoppers (128), while Brisaboa allowed free

determination of the number. Sear
h speed was only dis
ussed by de Moura. Both

s
hemes had the same disadvantages. They allowed mat
hing with whole words only

and
ould not support approximate mat
hing. In addition, the size of the required

di
tionary was large
ompared to other methods in the �eld.

Our earlier
omparison between Byte-pair en
oding and Stopper en
oding [13℄

suggests that Stopper en
oding is superior in sear
h speed (probably partially be
ause

of implementation issues) and that some variants of Byte-pair en
oding provide a

better
ompression ratio.

3 New solution

The new solution,
exible stopper en
oding, is an extension to stopper en
oding [13℄.

Stopper en
oding used 4- or 6-bit base symbols depending on the variant, whi
h had

theoreti
al limits for the
ompression ratio at 50%, and 75%, respe
tively. Flexible

stopper en
oding uses 2-bit base symbols, and its theoreti
al limit for
ompression

ratio is 25%. Some limitations of stopper en
oding are relaxed to a
hieve an eÆ
ient

ompression ratio for this s
heme. I will start by des
ribing the basi
 method, and

ontinue by dis
ussing improvements one at a time.

Pure DNA data (of the symbols a
gt only)
an be en
oded with a trivial

en
oding. The alphabet has only four di�erent
hara
ters, so let us denote �

0

=

f0; 1; 2; 3g. This means 2-bit base symbols, four of whi
h
an be stored in a 8-bit

byte. This en
oding gives an exa
t
ompression ratio of 25%.

Stopper en
oding from the previous se
tion
an also be introdu
ed to 2-bit

base symbols. A
onstant s, 0 < s < 4 is determined, dividing the en
oded alphabet

into two
lasses: stoppers and
ontinuers. A

ording to the de�nition in the previous

se
tion, for a valid
odeword of length r, denoted by C

0

[0; r � 1℄, for all i < r � 1

holds C

0

[i℄ � s, and C

0

[r � 1℄ < s. The more
ommon
hara
ters are represented by

shorter
odewords than the less
ommon ones.

Note that only three legal values exist for s. 0 is impossible sin
e no stoppers

means that
odewords would never end, and 4 is only valid when there are four or

fewer
hara
ters in the alphabet. The best
ompression ratio is usually a
hieved with

s = 2, but generally this s
heme is too stri
t and must be relaxed.

Flexibility introdu
ed to the previous s
heme produ
es Flexible stopper en
oding

(FSE). The base symbols are divided into two
lasses as before, but the de�nition of

the
lasses is
hanged. Stoppers fun
tion as before, but
ontinuers are repla
ed with

exers, base symbols that may a
t either as stoppers or
ontinuers, depending on

their position in the
odeword. Usually
exers a
t as
ontinuers near the beginning

of a
odeword, and as stoppers after that.

More formally, assign values to s

i

, 0 < s

i

< 4, for all reasonable i. Now, a valid

odeword has exa
tly su
h base symbols that C

0

[i℄ � s

i

holds for all i < r � 1, and

C

0

[r � 1℄ < s

r�1

. Consequently, s = min s

i

.

Presumed mat
hes pre
eded by
exer
an be
on�rmed by lo
ating the �rst stop-

per symbol pre
eding the presumed o

urren
e, and de
oding after that until the

identity of the
exer
an be
on�rmed.

Context dependen
e allows a better
ompression ratio than possible if all

146

Context-dependent Stopper en
oding

hara
ters are en
oded separately. The
ontext-dependent variant is
alled Context-

dependent FSE, or CFSE. The meanings of
odewords
hange a

ording to the mean-

ings of their pre
eding
hara
ters. This only applies to
odeword allo
ation, not their

stru
ture. Context dependen
e may be implemented in
onjun
tion with
exibility,

or independently from it.

To allow on-line lo
ating and de
oding, delimiters (spa
es) are �xed always to

have the same en
oding. It
ould be possible to
hoose any
hara
ter, but the spa
e

is
hosen be
ause it appears regularly and the most often.

A separate su

essor table S

is
onstru
ted for ea
h di�erent
hara
ter
 o

urring

in the text. S

[0℄ is �xed to the spa
e
hara
ter, and S

[i℄ is the i:th
ommon non-

spa
e su

essor of
. In addition, a
odeword table is
onstru
ted,
ontaining the j�j

shortest valid
odewords sorted by in
reasing length. When en
oding a
hara
ter

T [s℄, its index i is lo
ated from the su

essor table su
h as S

T [s�1℄

[i℄ = T [s℄, and the

i:th
odeword from the
odeword table is put in the output stream.

En
oding and de
oding algorithms are straight-forward to implement. To

en
ode, the entire text is �rst s
anned to
ount relative frequen
ies of
hara
ters.

Then, the base symbol
on�guration (number of stoppers s

n

) is de
ided, and the

odeword table built. Another pass of the text is required to en
ode the
hara
ters

one by one. Finally, the save �le is built, in
luding the base symbol
on�guration,

the su

essor table, and the en
oded text.

The optimal number of stoppers s

i

an be
al
ulated with an exhaustive sear
h

for small values of i. After preliminary tests, I de
ided to test all value
ombinations

for all i < 4, and to set s

i

= s

4

for all i � 4. The best general values for s

i

for

natural-language texts seem to be 1; 3; 3; : : :. With the
ontext-dependent variant, all

preliminary tests with natural-language texts seemed to work almost optimally with

the values s

i

= 2; 3; 3; : : :, so this value set is automati
ally used with this variant.

The su

essor table takes O(n

2

) spa
e. The list of all
hara
ters in the text is

saved �rst. Then, for ea
h
hara
ter, its su

essors are saved in des
ending order

of frequen
y. This takes about 4k spa
e with 64 di�erent
hara
ters in the text.

Improvements are possible. The data stru
ture used by the non-
ontext-dependent

variant is the list of
hara
ters ordered by frequen
y.

De
oding is done by building either a single de
oding tree (non-
ontext-dependent

variant) or a separate de
oding tree for ea
h pre
eding
hara
ter. This works exa
tly

the same way as Hu�man [8℄ de
oding.

String mat
hing means lo
ating an o

urren
e of the pattern in the text. With

FSE, it is suÆ
ient to lo
ate an o

urren
e of the en
oded pattern in the en
oded text,

pre
eded by a stopper symbol. In the
ontext-dependent variant, the �rst
hara
ter

varies a

ording to the pre
eding one, but its su

essors do not vary and are used for

the sear
h.

The exa
t string mat
hing algorithm BM-CFSE is developed from the 2-bit exa
t

string mat
hing algorithm used with stopper en
oding, BM-SE

6;2

, whi
h was in turn

in
uen
ed by Tuned Boyer-Moore [9℄. The algorithm is basi
ally a multi-pattern

version of Tuned Boyer-Moore, lo
ating all four possible alignments of the en
oded

pattern P

0

in a single pass through the text. It
onsists of a prepro
essing phase and

a sear
h phase. The sear
h phase alternates between a fast loop, whi
h qui
kly weeds

out most lo
ations, and a more pre
ise slow loop, whi
h is used to
on�rm presumed

mat
hes found by the fast loop.

147

Pro
eedings of the Prague Stringology Conferen
e '05

The sear
h algorithm needs two data stru
tures to work. The slow loop uses a

multi-mask table S, resembling the mask table of the shift-or algorithm [1℄. The

fast loop uses a jump table D
onstru
ted from the multi-mask table, resembling the

o

urren
e heuristi
 jump table from Boyer-Moore type algorithms.

To
onstru
t the multi-mask table, some de�nitions are required. Let P

0

be the

en
oded pattern, and P

0

0

, P

0

1

, P

0

2

, and P

0

3

its alignments (in any order). The align-

ments are �lled with wild
ard symbols where no base symbol is available (before the

beginning or after the end of the en
oded pattern). Ea
h
hara
ter in the en
oded

text

0

onsists of four base symbols

0

0

,

0

1

,

0

2

, and

0

3

. The en
oded
hara
ters

0

and

d

0

are said to unify if and only if for all a, either

0

a

and d

0

a

are equal, or one of them

is a wild
ard symbol �.

The multi-mask table is
onstru
ted with a simple rule. Let l

0

be su
h that for

all i, P

0

i

[l℄ is the last full
hara
ter (one not
ontaining any wild
ard symbols) of P

0

i

.

Now, S[
; i℄

a

= 1 if and only if P

0

a

[i℄ uni�es with
, and 0 otherwise. The value of the

multi-mask is now S[
; i℄ = S[
; i℄

0

+ 2S[
; i℄

1

+ 4S[
; i℄

2

+ 8S[
; i℄

3

.

Algorithm 1 Constru
ting the multi-mask table S

�ll S with 0

q f1,2,4,8g

for
 0 to 256, i 0 to m, a 0 to 4 do

if P'

a

[i℄ uni�es with
 then

S[
; i℄ S[
; i℄ + q[a℄

When the multi-mask table has been
onstru
ted, making the jump table is a

trivial matter. The l'th en
oded
hara
ter of the pattern is always the last full

en
oded
hara
ter of ea
h alignment. For other en
oded
hara
ters in the pattern at

the lo
ation i, the possible jump length is l� i. The jump table
onstru
tion and the

fast loop are dire
t adaptations from Tuned Boyer-Moore. After preliminary tests, I

de
ided to use triple loop unrolling as re
ommended by Hume and Sunday. A md

2

step-after-mat
h heuristi

an also be used instead of dire
t in
rementation.

Algorithm 2 Constru
ting the jump table D

�ll D with l

for i 0 to l,
 0 to 256 do

if S[
; i℄ 6= 0 then

D[S[
; i℄℄ l � i

The slow loop of the a
tual sear
h algorithm works as a mask automaton, re
og-

nizing all 4 patterns at a time. Starting from the suspe
tedly �rst en
oded
hara
ter

of the pattern and a state variable q positive for all masks, a bitwise-or operation is

repeatedly applied to the state for ea
h
hara
ter. When the state variable rea
hes

zero, all
han
es of an o

urren
e are lost and the fast loop
an be resumed. If having

gone through all the
hara
ters in the suspe
ted pattern the state variable still has

one or more positive bits, the mat
h
an be
on�rmed by lo
ating a stopper symbol

immediately pre
eding the suspe
ted pattern.

148

Context-dependent Stopper en
oding

Algorithm 3 Sear
h algorithm: text s
an phase

opy pattern P

0

to end of text T [n℄; T [n+ 1℄; : : :

s l

for ever do

k D[T [s℄℄

while k 6= 0 do

s s + k

k D[T [s℄℄

i 0; q 15

while i < l and q 6= 0 do

q q bitwise-or S[T [s� l + 1 + i℄; i℄

i i+ 1

if q 6= 0 then

if s = n then

end

else

on�rm and report o

urren
e(s)

s s+ 1

4 Experiments

The most important properties of a

elerator en
oding algorithms are sear
h speed

and
ompression ratio, in that order. Compression and de
ompression times are

reported in the �nal version.

In the experiments, FSE and CFSE are pitted against the leading un
ompressed

and
ompressed mat
hing algorithms. As referen
e algorithms, I have my earlier

implementations of SE

4

; 0 and the 6-bit Stopper en
oding SE

6

; 2, Tuned Boyer-Moore

by
ourtesy of Hume and Sunday, and BM-BPE by
ourtesy of Takeda. BM-BPE

omes in three versions, fast limitingmaximum
ompression to two original
hara
ters

per en
oded
hara
ter, re
 (re
ommended) limiting it to three, andmax being without

limitation.

I use the Canterbury Corpus version of the King James Bible for test data. I run

two separate tests with separate sets of patterns. In the �rst test, all patterns are

whole words or beginnings of words, in
luding the spa
e before the beginning. Using

them is a
ommon s
enario, and CFSE
an sear
h them faster than other patterns.

In the se
ond test, the patterns are unrestri
ted. Experiments with geneti
 data will

be in
luded in the �nal version.

All experiments are run on a 650 MHz AMD Athlon ma
hine with 384 megabytes

of main memory, running Debian Linux in single-user mode. All the programs are

ompiled using g

 with maximum optimization (
ag -O6).

In the experiment,
ommand-line versions of all test programs, all of them perform-

ing exa
tly one sear
h per exe
ution of program, are run several times. The programs

measure their own exe
ution time by inserting
alls to the C fun
tion
lo
k() into

the
ode. This
lo
ked time in
ludes everything ex
ept program argument parsing

and reading the �le from disk.

The
ompression ratios are shown in Table 1. CFSE provides a better
ompression

ratio than any of the other algorithms in all these examples. Di�eren
es between it

149

Pro
eedings of the Prague Stringology Conferen
e '05

KJV Bible

(3.86M)

BPE

max

47.8%

BPE

re

51.0%

BPE

fast

56.2%

SE

4;0

58.9%

FSE 55.6%

CFSE 47.5%

Table 1: Compression ratios.

and the maximal-
ompression version of BPE are 0:3�2:1 per
entage units. However,

it provides an over 10 per
entage units better
ompression ratio than the generally

fastest of the other algorithms, the 4-bit Stopper En
oding.

Table 2 des
ribes the sear
h speed from the Bible with whole words or word

beginnings, and Table 3 repeats the same test with freely
hosen patterns. The

performan
e of BM-CFSE is about the same as that of BM-SE

4;0

, being somewhat

faster with longer patterns and somewhat slower with shorter patterns. However, it

is about twi
e faster than the algorithms whi
h o�er a similar
ompression ratio, BM-

BPE

re

and BM-BPE

fast

. With pattern length 5 in Table 3, the poor performan
e

of BM-CFSE is probably be
ause of an implementation anomaly. CFSE is minimally

better with whole-word patterns than with free ones.

5 Con
lusions

I have presented new a

elerator en
oding s
hemes
alled Flexible stopper en
oding

FSE and the
ontext-dependent version CFSE, and an exa
t string mat
hing algo-

rithm for them,
alled BM-FSE. The new s
hemes produ
e a better
ompression ratio

than any of the the existing a

elerator en
oding methods for the example natural-

language text. The string mat
hing algorithm is
omparable to the fastest existing

methods with both un
ompressed and
ompressed texts.

With pure geneti
 data, FSE redu
es to a trivial en
oding with a
ompression ratio

of exa
tly 25%. Compression and de
ompression are straight-forward operations, and

mapping from the en
oded text to the original is trivial. FSE
an be used to store

pattern length 3 4 5 6 8 12 20

TBM 99 116 131 142 159 173 193

BM-BPE

max

61 63 66 68 73 81 122

BM-BPE

re

56 90 95 97 128 155 212

BM-BPE

fast

80 84 110 113 138 177 226

BM-SE

4;0

112 152 177 203 241 301 330

BM-SE

6;2

95 160 166 219 281 398 566

BM-FSE 83 123 159 184 228 289 352

BM-CFSE 100 136 165 190 246 322 399

Table 2: Sear
h speed for KJV Bible (word beginnings only) in kB/ms.

150

Context-dependent Stopper en
oding

pattern length 5 6 8 12 20

TBM 143 148 165 189 213

BM-BPE

max

67 69 73 81 120

BM-BPE

re

136 138 165 214 293

BM-BPE

fast

111 115 138 169 214

BM-SE

4;0

186 220 247 358 361

BM-SE

6;2

184 213 273 435 794

BM-FSE 161 196 227 309 385

BM-CFSE 67

�

139 223 307 355

Table 3: Sear
h speed for KJV Bible (free patterns) in kB/ms.

large �les of pure geneti
 data for eÆ
ient retrieval.

With natural-language texts, CFSE is eÆ
ient be
ause of its good
ompression

ratio. Its worst limit is that it relies on frequent o

urren
es of delimiters in the text.

Unlike word-based a

elerator
ompression s
hemes, CFSE still allows exa
t string

mat
hing with any pattern, and requires a smaller di
tionary.

CFSE's advantage over BPE in
ompression ratio
omes from the fa
t that BPE

divides text into units en
oded separately from one another. CFSE, however, always

en
odes a

ording to the previous
hara
ter.

In sear
h speed, BM-CFSE is similar to BM-SE. There seems to be no fundamental

di�eren
e between 4-bit base symbols and 2-bit ones. BM-CFSE bene�ts from its

ompression ratio and su�ers from the omission of the �rst
hara
ter from the fast

loop.

The earlier a

elerator en
oding s
hemes had trade-o�s, being either good in
om-

pression ratio and bad in speed, (BPE

max

), or the other way round (SE

4;0

). It
an

be noted that CFSE has no su
h trade-o�, having both a superior
ompression ratio

and an ex
ellent sear
h speed. The in
lusion of disk read times favors it even more.

The only ex
eption is sear
hing with short patterns (less than 5
hara
ters), where

SE

4;0

is better.

A better
ompression ratio
ould be obtained by introdu
ing a higher order
ontext

dependen
e. However, there would be problems with di
tionary size, and for ea
h

pattern, two �rst
hara
ters would be
ome unstable instead of one, further redu
ing

sear
h speed. Another interesting question is how well approximate string mat
hing

ould be performed with stopper en
oding or CFSE.

Referen
es

[1℄ Baeza-Yates, R., Gonnet, G., A new approa
h to text sear
hing, Communi
ations of

the ACM, 35(10):74{82, 1992.

[2℄ Boyer, R. and Moore, J. A fast string sear
hing algorithm. Communi
ations of the

ACM, 20(10):762{772, 1977.

[3℄ Brisaboa, N., Fari~na A., Navarro, G., and Esteller, M. (S,C)-Dense Coding: An Op-

timized Compression Code for Natural Language Text Databases. Pro
eedings of the

SPIRE
onferen
e, pages 122-136, 2003.

151

Pro
eedings of the Prague Stringology Conferen
e '05

[4℄ Burrows, M. and Wheeler, D. A blo
k-sorting lossless data
ompression algorithm.

DEC SRC Resear
h Report 124, 1994.

[5℄ Ferragina, P. and Manzini, G. An experimental study of an opportunisti
 index. Pro-

eedings of the 12th ACM-SIAM Symposium of Dis
rete Algorithms (SODA), 2001.

[6℄ Gage. P. A new algorithm for data
ompression. C/C++ Users Journal, 12(2), 1994.

[7℄ Golomb, S. Run-length en
oding. IEEE Transa
tions on Information Theory, 12(3),

1966.

[8℄ Hu�man, D. A method for the
onstru
tion of minimum-redundan
y
odes. Pro
eedings

of the IRE 40, 1098-1101. David Applegate et al, 1952.

[9℄ Hume, A. and Sunday, S. Fast string sear
hing. Software Pra
ti
e and Experien
e,

21:1221{1248, 1991.

[10℄ Larsson, N., Mo�at, A. O�ine di
tionary-based
ompression. Pro
. IEEE, 88(11),

1722{1732, 2000.

[11℄ Manber, U. A text
ompression s
heme that allows fast sear
hing dire
tly in the
om-

pressed �le. In Pro
. Combinatorial Pattern Mat
hing, Le
ture Notes in Computer

S
ien
e, 807:113{124. Springer-Verlag, 1994.

[12℄ de Moura, E., Navarro, G., Ziviani, N. and Baeza-Yeates, R. Fast and
exible word

sear
hing on
ompressed text. ACM Transa
tions on Information Systems, 18(2):113{

139, 2000.

[13℄ Rautio, J., Tanninen, J., and Tarhio, J. String mat
hing with stopper en
oding and

ode splitting. Pro
. CPM '02, Combinatorial Pattern Mat
hing (ed. A. Apostoli
o, M.

Takeda), Le
ture Notes in Computer S
ien
e 2373, Springer, 2002, 42-52.

[14℄ Shibata, Y., Matsumoto, T., Takeda, M., Shinohara, A. and Arikawa, S. A Boyer-

Moore type algorithm for
ompressed pattern mat
hing. Pro
eedings of the 11th An-

nual Symposium on Combinatorial Pattern Mat
hing (LNCS 1848), pages 181{194.

Springer-Verlag, 2000.

[15℄ Witten, I., Mo�at, A., Bell, T. Managing gigabytes. Morgan Kaufmann Publishers,

A
ademi
 Press, 1999.

[16℄ Ziv, J. and Lempel, A. A universal algorithm for sequential data
ompression. IEEE

Transa
tions on Information Theory, 23:337{343, 1977.

152

