Context-dependent Stopper encoding

Jussi Rautio

Laboratory of Information Processing Science
Helsinki University of Technology
Espoo, Finland

e-mail: Jussi.Rautio®@hut.fi

Abstract. A character-based encoding method is presented for natural-
language texts and genetic data. Exact string matching from the encoded text
is faster than from the original text, with medium and longer patterns. A com-
pression ratio of about 50% is achieved as a by-product. The method encodes
characters with variable-length codewords of 2-bit base symbols. An advanced
variant is context-dependent, using information from the previous character.
The method supersedes the previous comparable methods in compression ratio,
and is comparable to the best such methods in search speed.

Keywords: compressed matching, accelerator encoding, Stopper encoding

1 Introduction

As the amount of available information is constantly growing, fast information re-
trieval is becoming more and more important; it is a key concept in many applica-
tions, especially on-line ones. The string matching problem is about locating all the
occurrences of a specific pattern from the full text. Within this paper, I will concen-
trate on exact string matching, requiring an exact match with the pattern and the
occurrence in the full text.

A common solution to the string matching problem is to build an external index
with pointers to the full text [15]. With an index, string matching can be done in
logarithmic time. The disadvantage of these methods is an increase in space consump-
tion. For static files, it is possible to compress the index only [15], or to compress the
index separately from the full text [15]. The FM index [5] applies Burrows-Wheeler
transformation [4] to the text before compression, drastically reducing the amount of
necessary index data. These methods allow both an excellent compression ratio and
fast string matching. However, they do not support on-line updates or approximate
matching.

An alternative to indexing, it is possible to encode the full text with a local
scheme specificly designed to improve search speed. A Boyer-Moore [2, 9] type string
matching algorithm can be used with the encoded text, improving search speed by a
constant factor. Some of these schemes even offer a significant compression ratio as
a by-product. In the absence of a common term for this class of schemes, I will use
the term accelerator encoding for all such schemes.

143

Proceedings of the Prague Stringology Conference 05

Although accelerator encoding falls behind compressed indexing in both compres-
sion ratio and search speed, it allows on-line updates and on-line decoding. It is
suited for documents which are queried, retrieved or updated often, for example text
databases or log files.

There are two types of accelerator encoding schemes: word-based and character-
based. Word-based schemes [3, 12] work with whole words at a time, allowing a
better compression ratio for large files but requiring a large dictionary. Their use
is limited to natural-language texts where words are separated by delimiters (unlike
Japanese, for example), and string matching is possible only with whole words and
combinations of subsequent words. Character-based schemes [6, 13, 14] work with a
fixed number of characters at a time. String matching is possible with a more free
range of patterns, possibly including errors and classes of characters.

I will present a novel character-based accelerator encoding scheme and an exact
string matching algorithm which works with it. Variants of the new scheme, flexible
stopper encoding, can be used either with genetic data or with natural-language texts.
The scheme is based on encoding each character of the text with a codeword of
one or more 2-bit base symbols. With pure DNA code (with the alphabet acgt),
exactly one base symbol is used for each base pair, leading to a trivial encoding.
With natural-language texts, the compression ratio of the scheme is optimized with
methods including context dependence of the first order. String matching from the
encoded text is done with an algorithm resembling Tuned Boyer-Moore.

Compared with existing character-based schemes, the new scheme can be useful.
For previous character-based schemes, the compression ratio (size of compressed file
divided by size of original file) of natural-language texts was about 50% for the slowest
methods and 60% for the faster ones. For my example texts, compression ratio of the
new scheme is 0.3 — 2 percentage units better than the best previous schemes, and
the search speed is comparable to the fastest previous methods.

2 Background

Let T[0,n — 1] denote a text over the alphabet . An encoding is a transformation
from the text T'[0,n — 1] to the encoded text T'[0,n' — 1], in the alphabet ¥'. String
matching in an encoded text means locating all occurrences L(P) of a given pattern
P[0, m — 1] from the original text, with only the encoded text available. Throughout
this paper, I assume that it is sufficient to locate all occurrences of the encoded
pattern L'(P’) in the encoded text.

Accelerator encoding methods use either static or semi-static encoding. In the
latter case, a small dictionary containing all necessary information for matching and
decoding is saved along with the encoded text. Dynamic dictionary methods cannot
be used, because the dictionary cannot be kept up to date without reading every
character of the text, which would be disastrous to the performance of the algorithm.

An important property of any compression algorithm is compression ratio, here
denoted as the size of the encoded text divided by the size of the original text, the
smaller the better. For the sake of uniformity, a character of the original text is
always calculated as one 8-bit byte, even with genetic data.

Byte-pair encoding (BPE) exploited the variable frequencies of consecutive
character pairs. For BPE, ¥/ = ¥. T is a copy of T, except that the most common

144

Context-dependent Stopper encoding

pairs of consecutive characters are replaced with characters of ¥ with no occurrences
in T. The Manber variant [11] limits possible pairs, sacrificing compression ratio
for search speed. The original variant [6] does not have this limitation, allowing a
better compression ratio. Both variants have an efficient Boyer-Moore type string
matching algorithm. A partially recursive version of the compression algorithm was
recommended for the original variant [14], where one character in X' can represent
one to three characters in . Another variant of Byte-pair encoding called Repair [10]
is even more optimized to compression ratio, but lacks an efficient search algorithm.

Our earlier comparison of these two variants [13] suggested that the Manber vari-
ant supported faster exact string matching, however its compression ratio was only
70-75% with natural-language texts. For the original variant, and especially its re-
cursive version, the compression ratio could be as good as 45% with the same texts.
However, the better the compression ratio, the slower the string matching. The
scheme with the best compression ratio only allowed a slower string matching than
with the original text.

Stopper encoding [13] is related to an earlier word-based method by de Moura
et al. [12]. T will describe here only the 4-bit variant SE4, 0. The basic unit of the
encoded text was the base symbol. It consisted of four bits, ¥’ = [0,15]. When en-
coding, every character of T" was replaced with a corresponding codeword, a sequence
of one or more base symbols. No codeword could be a prefix of another. More com-
mon characters were given shorter codewords than less common ones. This resembled
Huffman coding. [8]

To allow faster string matching, base symbols were divided into two classes called
stoppers and continuers. Let s denote the number of stoppers, such as all ¢ in ¥’ less
than s are stoppers. A legal codeword C'[0,r — 1] consisted of zero or more symbols
of the continuer class, followed by exactly one symbol of the stopper class, that is:
C'[i] > s holds for all i < r —1, and C'[r — 1] < s. This made it possible to recognize
codewords when starting at an arbitary location in the text, including after jumps
made by a Boyer-Moore type algorithm.

The 4-bit encoded text T was stored into the 8-bit form, two base symbols per
a 8-bit computer byte, so that it could be used efficiently. String matching in the
encoded text was done with a Boyer-Moore type algorithm called BM-SE, which
handles whole bytes instead of individual base symbols. The algorithm operates by
encoding pattern P and then locating the occurrences of the encoded pattern P’ from
T'. Naturally, the possible occurrences were not restricted to byte boundaries, but
could start or end at either the first or the second base symbol in the byte. Because
of this, two possible alignments of the encoded pattern must be produced by using
a shift operation. The actual search algorithm was a multi-pattern version of Tuned
Boyer-Moore [2, 9]. It only made one pass of the encoded text, trying to locate both of
the alignments at the same time. When a presumed match was found, the preceding
base symbol was checked. If it is a stopper, the match was confirmed, otherwise it
was discarded.

Word-based methods resembling Stopper encoding have been used to encode
whole words at a time. In schemes by de Moura et al. [12] and Brisaboa et al.
[3], whole words were encoded at a time. Each was given a representation of one to
three base symbols, in this case 8-bit bytes. These base symbols were divided into
the continuer and stopper classes. This algorithm produced an excellent compression

145

Proceedings of the Prague Stringology Conference '05

ratio with natural language (currently the best one seen in accelerator encoding). De
Moura’s scheme used a fixed number of stoppers (128), while Brisaboa allowed free
determination of the number. Search speed was only discussed by de Moura. Both
schemes had the same disadvantages. They allowed matching with whole words only
and could not support approximate matching. In addition, the size of the required
dictionary was large compared to other methods in the field.

Our earlier comparison between Byte-pair encoding and Stopper encoding [13]
suggests that Stopper encoding is superior in search speed (probably partially because
of implementation issues) and that some variants of Byte-pair encoding provide a
better compression ratio.

3 New solution

The new solution, flexible stopper encoding, is an extension to stopper encoding [13].
Stopper encoding used 4- or 6-bit base symbols depending on the variant, which had
theoretical limits for the compression ratio at 50%, and 75%, respectively. Flexible
stopper encoding uses 2-bit base symbols, and its theoretical limit for compression
ratio is 25%. Some limitations of stopper encoding are relaxed to achieve an efficient
compression ratio for this scheme. T will start by describing the basic method, and
continue by discussing improvements one at a time.

Pure DNA data (of the symbols acgt only) can be encoded with a trivial
encoding. The alphabet has only four different characters, so let us denote ' =
{0,1,2,3}. This means 2-bit base symbols, four of which can be stored in a 8-bit
byte. This encoding gives an exact compression ratio of 25%.

Stopper encoding from the previous section can also be introduced to 2-bit
base symbols. A constant s, 0 < s < 4 is determined, dividing the encoded alphabet
into two classes: stoppers and continuers. According to the definition in the previous
section, for a valid codeword of length r, denoted by C'[0,r — 1], for all i < r — 1
holds C'[i] > s, and C'[r — 1] < s. The more common characters are represented by
shorter codewords than the less common ones.

Note that only three legal values exist for s. 0 is impossible since no stoppers
means that codewords would never end, and 4 is only valid when there are four or
fewer characters in the alphabet. The best compression ratio is usually achieved with
s = 2, but generally this scheme is too strict and must be relaxed.

Flexibility introduced to the previous scheme produces Flexible stopper encoding
(FSE). The base symbols are divided into two classes as before, but the definition of
the classes is changed. Stoppers function as before, but continuers are replaced with
flexers, base symbols that may act either as stoppers or continuers, depending on
their position in the codeword. Usually flexers act as continuers near the beginning
of a codeword, and as stoppers after that.

More formally, assign values to s;, 0 < s; < 4, for all reasonable 7. Now, a valid
codeword has exactly such base symbols that C'[i] > s; holds for all ¢ < r — 1, and
C'[r — 1] < s,_1. Consequently, s = min s;.

Presumed matches preceded by flexer can be confirmed by locating the first stop-
per symbol preceding the presumed occurrence, and decoding after that until the
identity of the flexer can be confirmed.

Context dependence allows a better compression ratio than possible if all

146

Context-dependent Stopper encoding

characters are encoded separately. The context-dependent variant is called Context-
dependent FSE, or CFSE. The meanings of codewords change according to the mean-
ings of their preceding characters. This only applies to codeword allocation, not their
structure. Context dependence may be implemented in conjunction with flexibility,
or independently from it.

To allow on-line locating and decoding, delimiters (spaces) are fixed always to
have the same encoding. It could be possible to choose any character, but the space
is chosen because it appears regularly and the most often.

A separate successor table S, is constructed for each different character ¢ occurring
in the text. S.[0] is fixed to the space character, and S.[7] is the i:th common non-
space successor of ¢. In addition, a codeword table is constructed, containing the |X|
shortest valid codewords sorted by increasing length. When encoding a character
T'[s], its index i is located from the successor table such as Spi,_1)[i] = T'[s], and the
i:th codeword from the codeword table is put in the output stream.

Encoding and decoding algorithms are straight-forward to implement. To
encode, the entire text is first scanned to count relative frequencies of characters.
Then, the base symbol configuration (number of stoppers s,) is decided, and the
codeword table built. Another pass of the text is required to encode the characters
one by one. Finally, the save file is built, including the base symbol configuration,
the successor table, and the encoded text.

The optimal number of stoppers s; can be calculated with an exhaustive search
for small values of 7. After preliminary tests, I decided to test all value combinations
for all « < 4, and to set s; = s4 for all # > 4. The best general values for s; for
natural-language texts seem to be 1,3, 3,.... With the context-dependent variant, all
preliminary tests with natural-language texts seemed to work almost optimally with
the values s; = 2,3, 3, ..., so this value set is automatically used with this variant.

The successor table takes O(n?) space. The list of all characters in the text is
saved first. Then, for each character, its successors are saved in descending order
of frequency. This takes about 4k space with 64 different characters in the text.
Improvements are possible. The data structure used by the non-context-dependent
variant is the list of characters ordered by frequency.

Decoding is done by building either a single decoding tree (non-context-dependent
variant) or a separate decoding tree for each preceding character. This works exactly
the same way as Huffman [8] decoding.

String matching means locating an occurrence of the pattern in the text. With
FSE, it is sufficient to locate an occurrence of the encoded pattern in the encoded text,
preceded by a stopper symbol. In the context-dependent variant, the first character
varies according to the preceding one, but its successors do not vary and are used for
the search.

The exact string matching algorithm BM-CFSE is developed from the 2-bit exact
string matching algorithm used with stopper encoding, BM-SEg 5, which was in turn
influenced by Tuned Boyer-Moore [9]. The algorithm is basically a multi-pattern
version of Tuned Boyer-Moore, locating all four possible alignments of the encoded
pattern P’ in a single pass through the text. It consists of a preprocessing phase and
a search phase. The search phase alternates between a fast loop, which quickly weeds
out most locations, and a more precise slow loop, which is used to confirm presumed
matches found by the fast loop.

147

Proceedings of the Prague Stringology Conference '05

The search algorithm needs two data structures to work. The slow loop uses a
multi-mask table S, resembling the mask table of the shift-or algorithm [1]. The
fast loop uses a jump table D constructed from the multi-mask table, resembling the
occurrence heuristic jump table from Boyer-Moore type algorithms.

To construct the multi-mask table, some definitions are required. Let P’ be the
encoded pattern, and P}, P{, P, and Pj its alignments (in any order). The align-
ments are filled with wild card symbols where no base symbol is available (before the
beginning or after the end of the encoded pattern). Each character in the encoded
text ¢’ consists of four base symbols ¢, ¢}, ¢, and ¢;. The encoded characters ¢’ and
d" are said to unify if and only if for all a, either ¢, and d!, are equal, or one of them
is a wild card symbol x.

The multi-mask table is constructed with a simple rule. Let [’ be such that for
all 7, P/[l] is the last full character (one not containing any wild card symbols) of P;.
Now, Slc,], =1 if and only if P][i] unifies with ¢, and 0 otherwise. The value of the
multi-mask is now S[e,i] = Slc, i]o + 2S5[e, i|1 + 4S]c, i]2 + 8S]c, i]5.

Algorithm 1 Constructing the multi-mask table S
fill S with 0
q <+ {1,2,4,8}
for ¢ < 0 to 256,47 < 0 to m, a < 0 to 4 do
if P’,[i] unifies with ¢ then
Sle,i] «+ Sle,i] + qla]

When the multi-mask table has been constructed, making the jump table is a
trivial matter. The ['th encoded character of the pattern is always the last full
encoded character of each alignment. For other encoded characters in the pattern at
the location 7, the possible jump length is [— . The jump table construction and the
fast loop are direct adaptations from Tuned Boyer-Moore. After preliminary tests, I
decided to use triple loop unrolling as recommended by Hume and Sunday. A md,
step-after-match heuristic can also be used instead of direct incrementation.

Algorithm 2 Constructing the jump table D
fill D with [
for 1 < 0 to [, c + 0 to 256 do
if Se,i] # 0 then
D|[S[e,i]] «+ 1 —i

The slow loop of the actual search algorithm works as a mask automaton, recog-
nizing all 4 patterns at a time. Starting from the suspectedly first encoded character
of the pattern and a state variable ¢ positive for all masks, a bitwise-or operation is
repeatedly applied to the state for each character. When the state variable reaches
zero, all chances of an occurrence are lost and the fast loop can be resumed. If having
gone through all the characters in the suspected pattern the state variable still has
one or more positive bits, the match can be confirmed by locating a stopper symbol
immediately preceding the suspected pattern.

148

Context-dependent Stopper encoding

Algorithm 3 Search algorithm: text scan phase
copy pattern P’ to end of text T'[n], T[n +1],...
s 1
for ever do

k < DI[T|[s]]
while £ # 0 do
s<s+k
k < DI[T|[s]]
1405915
while i < [and ¢ # 0 do
q < q bitwise-or S[T[s — [+ 1+ i],1]
11 +1
if ¢ #0 then
if s =n then
end
else
confirm and report occurrence(s)
s s5+1

4 Experiments

The most important properties of accelerator encoding algorithms are search speed
and compression ratio, in that order. Compression and decompression times are
reported in the final version.

In the experiments, FSE and CFSE are pitted against the leading uncompressed
and compressed matching algorithms. As reference algorithms, I have my earlier
implementations of SE,, 0 and the 6-bit Stopper encoding SEg, 2, Tuned Boyer-Moore
by courtesy of Hume and Sunday, and BM-BPE by courtesy of Takeda. BM-BPE
comes in three versions, fast limiting maximum compression to two original characters
per encoded character, rec (recommended) limiting it to three, and maz being without
limitation.

I use the Canterbury Corpus version of the King James Bible for test data. I run
two separate tests with separate sets of patterns. In the first test, all patterns are
whole words or beginnings of words, including the space before the beginning. Using
them is a common scenario, and CFSE can search them faster than other patterns.
In the second test, the patterns are unrestricted. Experiments with genetic data will
be included in the final version.

All experiments are run on a 650 MHz AMD Athlon machine with 384 megabytes
of main memory, running Debian Linux in single-user mode. All the programs are
compiled using gcc with maximum optimization (flag -06).

In the experiment, command-line versions of all test programs, all of them perform-
ing exactly one search per execution of program, are run several times. The programs
measure their own execution time by inserting calls to the C function clock() into
the code. This clocked time includes everything except program argument parsing
and reading the file from disk.

The compression ratios are shown in Table 1. CFSE provides a better compression
ratio than any of the other algorithms in all these examples. Differences between it

149

Proceedings of the Prague Stringology Conference '05

KJV Bible

(3.86M)

BPEmax 47.8%
BPErec 51.0%
BPE¢, 56.2%
SE.4 58.9%
FSE 55.6%
CFSE 47.5%

Table 1: Compression ratios.

and the maximal-compression version of BPE are 0.3—2.1 percentage units. However,
it provides an over 10 percentage units better compression ratio than the generally
fastest of the other algorithms, the 4-bit Stopper Encoding.

Table 2 describes the search speed from the Bible with whole words or word
beginnings, and Table 3 repeats the same test with freely chosen patterns. The
performance of BM-CFSE is about the same as that of BM-SE,, being somewhat
faster with longer patterns and somewhat slower with shorter patterns. However, it
is about twice faster than the algorithms which offer a similar compression ratio, BM-
BPEyec and BM-BPEg, ;. With pattern length 5 in Table 3, the poor performance
of BM-CFSE is probably because of an implementation anomaly. CFSE is minimally
better with whole-word patterns than with free ones.

5 Conclusions

I have presented new accelerator encoding schemes called Flexible stopper encoding
FSE and the context-dependent version CFSE, and an exact string matching algo-
rithm for them, called BM-FSE. The new schemes produce a better compression ratio
than any of the the existing accelerator encoding methods for the example natural-
language text. The string matching algorithm is comparable to the fastest existing
methods with both uncompressed and compressed texts.

With pure genetic data, FSE reduces to a trivial encoding with a compression ratio
of exactly 25%. Compression and decompression are straight-forward operations, and
mapping from the encoded text to the original is trivial. FSE can be used to store

pattern length 3 4 5 6 8§ 12 20
TBM 99 116 131 142 159 173 193
BM-BPEmax 61 63 66 68 73 81 122
BM-BPEyec 56 90 95 97 128 155 212
BM-BPE¢, ot 80 84 110 113 138 177 226

BM-SE4 112 152 177 203 241 301 330
BM-SEg 2 95 160 166 219 281 398 566
BM-FSE 83 123 159 184 228 289 352
BM-CFSE 100 136 165 190 246 322 399

Table 2: Search speed for KJV Bible (word beginnings only) in kB/ms.

150

Context-dependent Stopper encoding

pattern length 5 6 8§ 12 20
TBM 143 148 165 189 213
BM-BPEmax 67 69 73 81 120
BM-BPEyec 136 138 165 214 293
BM-BPEg, .t 111 115 138 169 214

BM-SE4 o 186 220 247 358 361
BM-SEg 2 184 213 273 435 794
BM-FSE 161 196 227 309 385
BM-CFSE 67 139 223 307 355

Table 3: Search speed for KJV Bible (free patterns) in kB/ms.

large files of pure genetic data for efficient retrieval.

With natural-language texts, CFSE is efficient because of its good compression
ratio. Its worst limit is that it relies on frequent occurrences of delimiters in the text.
Unlike word-based accelerator compression schemes, CFSE still allows exact string
matching with any pattern, and requires a smaller dictionary.

CFSE’s advantage over BPE in compression ratio comes from the fact that BPE
divides text into units encoded separately from one another. CFSE, however, always
encodes according to the previous character.

In search speed, BM-CFSE is similar to BM-SE. There seems to be no fundamental
difference between 4-bit base symbols and 2-bit ones. BM-CFSE benefits from its
compression ratio and suffers from the omission of the first character from the fast
loop.

The earlier accelerator encoding schemes had trade-offs, being either good in com-
pression ratio and bad in speed, (BPEpax), or the other way round (SE4j). It can
be noted that CFSE has no such trade-off, having both a superior compression ratio
and an excellent search speed. The inclusion of disk read times favors it even more.
The only exception is searching with short patterns (less than 5 characters), where
SE4 is better.

A better compression ratio could be obtained by introducing a higher order context
dependence. However, there would be problems with dictionary size, and for each
pattern, two first characters would become unstable instead of one, further reducing
search speed. Another interesting question is how well approximate string matching
could be performed with stopper encoding or CFSE.

References

[1] Baeza-Yates, R., Gonnet, G., A new approach to text searching, Communications of
the ACM, 35(10):74-82, 1992.

[2] Boyer, R. and Moore, J. A fast string searching algorithm. Communications of the
ACM, 20(10):762-772, 1977.

[3] Brisaboa, N., Farina A., Navarro, G., and Esteller, M. (S,C)-Dense Coding: An Op-

timized Compression Code for Natural Language Text Databases. Proceedings of the
SPIRE conference, pages 122-136, 2003.

151

Proceedings of the Prague Stringology Conference '05

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Burrows, M. and Wheeler, D. A block-sorting lossless data compression algorithm.
DEC SRC Research Report 124, 1994.

Ferragina, P. and Manzini, G. An experimental study of an opportunistic index. Pro-
ceedings of the 12th ACM-SIAM Symposium of Discrete Algorithms (SODA), 2001.

Gage. P. A new algorithm for data compression. C/C++ Users Journal, 12(2), 1994.

Golomb, S. Run-length encoding. TEEE Transactions on Information Theory, 12(3),
1966.

Huffman, D. A method for the construction of minimum-redundancy codes. Proceedings
of the TRE 40, 1098-1101. David Applegate et al, 1952.

Hume, A. and Sunday, S. Fust string searching. Software Practice and Experience,
21:1221-1248, 1991.

Larsson, N., Moffat, A. Offline dictionary-based compression. Proc. IEEE, 88(11),
1722-1732, 2000.

Manber, U. A text compression scheme that allows fast searching directly in the com-
pressed file. In Proc. Combinatorial Pattern Matching, Lecture Notes in Computer
Science, 807:113-124. Springer-Verlag, 1994.

de Moura, E., Navarro, G., Ziviani, N. and Baeza-Yeates, R. Fast and flexible word
searching on compressed text. ACM Transactions on Information Systems, 18(2):113—
139, 2000.

Rautio, J., Tanninen, J., and Tarhio, J. String matching with stopper encoding and
code splitting. Proc. CPM ’02, Combinatorial Pattern Matching (ed. A. Apostolico, M.
Takeda), Lecture Notes in Computer Science 2373, Springer, 2002, 42-52.

Shibata, Y., Matsumoto, T., Takeda, M., Shinohara, A. and Arikawa, S. A Boyer-
Moore type algorithm for compressed pattern matching. Proceedings of the 11th An-
nual Symposium on Combinatorial Pattern Matching (LNCS 1848), pages 181-194.
Springer-Verlag, 2000.

Witten, 1., Moffat, A., Bell, T. Managing gigabytes. Morgan Kaufmann Publishers,
Academic Press, 1999.

Ziv, J. and Lempel, A. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23:337-343, 1977.

152

