
Parameterized Dictionary Matching with One Gap

B. Riva Shalom

Department of Software Engineering, Shenkar College, Ramat-Gan 52526, Israel.
rivash@shenkar.ac.il

Abstract. Dictionary Matching is a variant of the Pattern Matching problem where
multiple patterns are simultaneously matched to a single text. In case the patterns
contain sequences of don’t care symbols, the problem is called Dictionary Matching
with Gaps. Another famous variant of Pattern matching is the Parameterized Matching,
where two equal-length strings are a parameterized match if there exists a bijection on
the alphabets such that one string matches the other under the bijection. In this paper
we suggest the problem of Parameterized Dictionary Matching with one Gap, stemming
from cyber security, where the patterns are the malware sequences we want to detect
in the text, and the necessity of a parameterized match is due to their encryption. We
present two algorithms solving the Prameterized Dictionary Matching with one Gap.
The first solves the problem for dictionaries with variable length gaps and has query
time of O(n(βmax−αmin) log

2 d+ occ), where n is the size of the text, d is the number
of gapped patterns in the dictionary, βmax−αmin is the maximal size of gap and occ is
the number of the gapped patterns reported as output. The second solution considers
dictionaries with a single set of gap boundaries and has query time of O(n(β−α)+occ),
where n is the size of the text, β−α is the size of the gap and occ is the number of the
gapped patterns reported as output.

1 Introduction

Cyber security is a critical modern concern. It derives from cyber terroristic attacks, as
well as economic dangers. Due to the importance of the problem, computer scientists
develop various algorithms, dedicated to this struggle. Network intrusion detection
systems perform protocol analysis, content searching and content matching, in order
to detect harmful software. Such malware may appear on several packets, hence the
need for gapped matching [24]. Having a list of gapped malware patterns yields the
challenge of a dictionary matching with gaps.

In this paper we suggest an extension to the dictionary matching with one gap
problem,(where every pattern in the dictionary has a single gap), where the gapped
malware is encrypted, in order to evade virus scanners. We consider the case in which
the encryption used is substitution cipher, by which units of plain text are replaced
with ciphertext, according to a fixed system, and consider a parameterized mapping
as a strategy of encryption, thus define the Parameterized Dictionary Matching with
One Gap (pDMOG) problem. We suggest an algorithm for dictionary with variable
length gaps and another lower time complexity for dictionaries where all patterns
have gaps with identical boundaries.

Since the pDMOG problem is a combination of the Dictionary Matching with one
gap problem and Parameterized Matching problem, we define hereafter each of the
problems separately then form the combined definition.

Dictionary Matching with Gaps (DMOG) Let a gapped pattern be of the
form P = lp{α, β}rp, where both the left subpattern lp and the right subpattern rp

B. Riva Shalom: Parameterized Dictionary Matching with One Gap, pp. 103–116.

Proceedings of PSC 2018, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06484-9 c© Czech Technical University in Prague, Czech Republic

104 Proceedings of the Prague Stringology Conference 2018

are strings over alphabet Σ, and {α, β} denotes a sequence of at least α and at most
β don’t cares symbols between the subpatterns, where a don’t care symbol can be
matched to any text character from Σ. The formal definition follows.

Definition 1. The Dictionary Matching with One gap (DMOG) Problem:
Preprocess: A dictionary D of total size |D| over alphabet Σ consisting of d gapped

patterns each containing a single gap.
Query: A text T of length n over alphabet Σ.
Output: All locations ℓ in T , where any gapped pattern ends.

For example, let D be the set of patterns {P1 = a b a {2, 4} d d, P2 = a b {2, 4} c d,
P3 = b a {2, 4} c}. Then, the text T = c d a b a b e b c d a c has occurrences
of P2 ending at location 10 with gap length of 4 and also with gap of length 2, and
of P3 ending at locations 9, with gap length of 3.

Parameterized Matching The Parameterized Matching problem is a well known
problem in computer science, where two equal-length strings are a parameterized
match if there exists a bijection on the alphabets such that one string matches the
other under the bijection. Throughout the paper we denote a parameterized match
by p−match. A formal definition follows.

Definition 2. Parameterized Matching Problem(PM):
Input: A Text T of length n and a pattern P of length m, both over alphabet

Σ
⋃

Π, where Σ
⋂

Π = ∅.
Output: All locations ℓ in T , where there exists a bijection f : Π → Π and the

following hold:
(1) ∀P [i] ∈ Σ, P [i] = T [ℓ+ i− 1].
(2) ∀P [i] ∈ Π, f(P [i]) = T [ℓ+ i− 1].

For example, let Σ = {a, b}, Π = {x, y, z} for text T = x x y b z y y x b z x

and pattern P = z z x b there are two p-matches ending at locations {4, 10}. The
former implies mapping function f(z) = x, f(x) = y while the latter implies mapping
function f(z) = y, f(x) = x.

Parameterized Dictionary Matching with One Gap (pDMOG) The pDMOG
problem is a combination of the above problems. Note, that according the motiva-
tion of the problem, we consider malicious code to appear on two packets, thus each
part of the gapped pattern lpi, rpi, does not relate to the other part of the pattern,
hence, they can be matched using different matching functions. The formal definition
follows.

Definition 3. The Parametrized Dictionary Matching with One gap (pDMOG) Prob-
lem:
Preprocess: A dictionary D consisting of d gapped patterns {Pi} over alphabet

Σ
⋃

Π, where Σ
⋂

Π = ∅ where every Pi is of the form
lpi{αi, βi}rpi and αi, βi are Pi’s gap boundaries.

Query: A text T of length n over alphabet Σ
⋃

Π, Σ
⋂

Π = ∅
Output: All locations ℓ in T , where there exists a bijection f : Π → Π and

all the following hold for any Pi and a gap length g ∈ [αi, βi]:
(1) ∀lpi[j] ∈ Σ, lpi[j] = T [ℓ− |lpi| − j].
(2) ∀lpi[j] ∈ Π, f(lpi[j]) = T [ℓ− |lpi| − j].
(3) ∀rpi[j] ∈ Σ, rpi[j] = T [ℓ+ g + j].
(4) ∀rpi[j] ∈ Π, f(rpi[j]) = T [ℓ+ g + j].

B. Riva Shalom: Parameterized Dictionary Matching with One Gap 105

For example, let Σ = {a, b}, Π = {q, u, v, w, z} for text T = a u v b u b a z w w z and
D = {P1 = z x b z{2, 4}u u q, P2 = u b q{1, 4}a u v} we have two p-matches ending at
locations {11, 9}. The former implies p-matching P1 using mapping function f(z) =
u, f(x) = u for lp1, a gap of length 3 and a mapping function f(u) = w, f(q) = z for
rp1. The latter implies p-matching P2 using mapping function f(u) = v, f(q) = u for
lp2, a single character gap and a mapping function f(u) = z, f(v) = w for rp2.

We consider the alphabet to be of fixed size. If it is of variable size, a factor of
log σ is to be multiplied to n in the query time of both solutions.

The paper is organized as follows. Section 2 scans previous work. Section 3 suggests
the framework of the algorithm and some notations. The first part of the algorithm
appears on Section 4 and the second part of the algorithm appears on Section 5.
Section 6 concludes the paper and poses some open problems.

2 Previous Work

Dictionary matching has been amply researched (see e.g. [2,3,4,5,7,15]). When the
patterns are gapped, and we consider the problem of Dictionary Matching with Gaps,
there are several algorithms solving the problem, yet their definitions of the problem
are not identical.

Rahman et al. [28] suggest an algorithm using AC automaton, and suffix arrays
built over the text. Bille et al. [14], [13] improved time complexity, by using sorted
lists of disjoint intervals, yet both solutions includes a factor of socc which is the
total number of occurrences of the subpatterns in the text which can be very large.
Kucherov and Rusinowitch [25] and Zhang et al. [29] solved the problem of matching
a set of patterns with variable length of don’t cares. Yet, they report a leftmost
occurrence of a pattern if there exists one, while we are interested in all occurrences
of the patterns in the text. Haapasalo et al. [20] gave an on-line algorithm for the
general problem, yet, they report at most one occurrence for each pattern at each
text position.

Amir et al. [9] solved the DMOG problem for a single set of gap boundaries,
reporting all appearances of all gapped patterns. They suggest an algorithm using
range queries and an additional algorithm using a look-up table. The query time of
their second algorithm is O(|T |(β − α) + occ) and space of O(d2 + |D|), where d is
the number of gapped patterns in dictionary D and occ is the number of patterns
reported. Hon et al. [21] presented a similar solution, for dictionaries with variable
length gaps, improving the space complexity to a linear space and requiring query
time of O(|T |γ log λ log d+ occ), where γ denotes the number of distinct gap lengths
and λ denotes the number of distinct lower and upper bounds of gap lengths.

Amir et al. [8] also considered the online version of the DMOG problem, where
the text arrives online, a character at a time, and the requirement is to report all
gapped patterns that are suffixes of the text that has arrived so far, before the next
character arrives. In [10] Amir et al. considered the recognition version of the online
DMOG problem, where each gapped pattern is reported at most once, during the
entire online text scan.

Regarding Parameterized Matching, the problem was initially defined as a tool for
software maintenance, motivated by the observation that programmers introduce du-
plicate code into large software systems when they add new features or fix bugs, thus

106 Proceedings of the Prague Stringology Conference 2018

slightly modify the duplicated sections.[11] The problem has many application in var-
ious fields, as detailed in [27], such as Image processing, where parameterized match-
ing can help searching an icon on the screen, or improving ergonomy of databases
of URLS. As a consequence, extensive work has been done on the problem and its
various variants, some of which Lewenstein [26] and Mendivelso and Pinzon [27] scan.
Among the parameterized matching extensions are, the work of Amir et al. [6] sug-
gesting a parameterized version of KMP, Baker works [12], [11] regarding the maximal
p-matches over a threshold length and a p-suffix tree, the parameterized fixed and
dynamic dictionary problems presented by Idury and Schauffer [22], and improved
by Ganguly et al. [19], the efficient parameterized text indexing, shown by Ferragina
and Grossi [17], p-suffix arrays presented by Deguchi et al. [16], the Parameterized
version of the LCS problem by Keller et al. [23] and many more.

3 Parameterized Dictionary Matching with One Gap -
Framework

Throughout the paper we use the following notations. Let D = {P1, . . . , Pd} be the
dictionary, where every Pi is a gapped pattern of the form lpi{αi, βi}rpi. In case the
dictionary has a single set of gap boundaries {α, β}, then ∀1 ≤ i ≤ d, αi = α and
βi = β. We call lpi the left subpattern of Pi, and call rpi the right subpattern of
Pi. We divide all subpatterns of the dictionary into two sets Left =1≤i≤d {lpi} where
dLeft = |Left| ≤ d and Right =1≤i≤d {rpi} where dRight = |Right| ≤ d.

The solution for the DMOG problem, suggested in this paper, follows the frame-
works of [9] and their improvement in [21]. Their algorithms consist of two parts:
The first part is detecting separately all the left subpatterns and all the right sub-
patterns of the dictionary in the text. The second part is processing the subpattern
occurrences, in order to efficiently report all gapped patterns Pi where both their
subpatterns appear with a g sized gap between them, where αi ≤ g ≤ βi.

For the first step they practiced the observation that matching two parts of a
pattern Pi to a text, can be done by matching the reverse of the left subpatterns
in Left to the reverse of T [1, . . . , ℓ] for all ℓs and matching the right subpatterns in
Right to T [ℓ + g + 1 . . . n], where g is the size of the gap between the subpatterns
occurrences. To this aim they constructed a generalized suffix tree of all the reverse
of the Left subpatterns, and a generalized suffix tree of all the Right subpatterns.

For the second step, given a match of the reverse of some lpi to T [ℓ . . . 1] and
a match of some rpj to T [ℓ + g + 1 . . . n], it is necessary to conclude which gapped
patterns occurred, thus ought to be reported. Note, that several gapped patterns can
be reported, such that their left subpattern is a suffix of lpi and their right subpattern
is a prefix of rpj.

Hon et al. [21] suggested using range queries by rectangular stabbing for the sec-
ond step of the algorithm. [9] suggested an additional technique, when all patterns
share the same gap boundaries, in case query time is required to be O(1 + occ) time
per text location and gap length, where they use a look up table built in the prepro-
cess stage.

The parameterized matching does not require exact matches between the Π char-
acters, but rather to capture the characters order in the pattern. For this reason

B. Riva Shalom: Parameterized Dictionary Matching with One Gap 107

Baker [11] defined a p − string over a string S = s1, s2 · · · using the prev function,
where prev(si) = si in case si ∈ Σ, but for si ∈ Π, prev(si) = 0 if si is the leftmost
position in S of this character, and prev(si) = i − k if k is the previous position to
the left at which the character si occurs. For example, let Σ = {a, b}, Π = {u, v}
and S = a b u v a b u v u, then prev(S) = a b 0 0 a b 4 4 2. The string obtained by
prev(S) is called the p-string of S.

Lemma 4. [11] Strings S1, S2 have prev(S1) = prev(S2) iff they are p-matched.

A direct result of this lemma is that using p-strings enables applying parameterize
matching to various pattern matching techniques, with certain modifications required
due to the behaviour of the prev function, some of which were referred to in Section 2.

This paper follows the frameworks of [9], [21], yet adapts them to using param-
eterized matching while solving the DMOG problem. The algorithms suggested are
described in the following sections, according to the parts of the solution.

4 p-Matching of Subpatterns

As mentioned in the previous section, both [9] and [21] construct two generalized
suffix trees, one over the Right subpatterns and the other over the reverse of the the
Left subpatterns, which we call LeftR. They do not traverse the text query T using
these suffix trees but rather require to attain the longest match of every suffix of T
with the Right suffix tree and the longest match of every suffix of TR and the LeftR

suffix tree. They do it in O(n) time using Amir et. al. [5] technique of inserting all
suffixes of T or TR to the corresponding suffix trees. By inserting each suffix of T to
the subpatterns generalized suffix tree, the needed information is gathered in linear
time.

When considering the parameterized matching case, the parameterized suffix tree
is considered as the mechanism of locating the prev function of the subpatterns in
prev(T). Baker [11] showed the construction of a parameterized suffix tree. She used
dynamic trees and lowest common ancestor queries to achieve the following results.

Lemma 5. ([11]) Given finite disjoint alphabets Σ,Π , a p-suffix tree can be built for
a p-string S in time O(|S| log |S|) and linear space in the |S|. Given a p-string text
query T , all p-matches of S in T can be reported in time O(|T |) for fixed alphabets
and in time O(|T | log(min{|S|, σ})), where σ = |Σ|+ |Π| for variables alphabets.

Other works, such as [19] considered an efficient construction and space consumption
of a p-suffix tree, yet they did not reduce the construction time from O(|S| log |S|).
The scheme we follow requires construction of p-suffix trees both in the preprocess
and during query execution, where we insert suffixes of prev(T) to a generalized p-
suffix tree, thus, the first part of answering a query requires O(n log n) time. In order
to decrease the query time, we consider another technique for dictionary matching
for the first step of the algorithm, which is using the Aho-Corasick automaton [2].

Idury and Schaffer [22] constructed a modified Aho-Corasick automaton (AC) [2]
suitable for p-strings. Their construction algorithm is similar to that of the original
AC construction, yet important modifications were made to the goto and fail links of
the automaton, adapting it to work with p-strings. Their p-AC automaton occupies
O(m logm) = O(|D| log |D|) bits, where m is the number of states in the automaton.
They report all p-matches of patterns from dictionary D in text T in O(|T | log σ+occ)
time, where occ are the number of reported occurrences. Note that in case we report

108 Proceedings of the Prague Stringology Conference 2018

only the longest pattern located for each text location, the query is answered in
O(|T | log σ) as the occ element is added since we require reporting all appearances of
subpatterns that are suffixes of the longest subpattern recognized. Ganguly et. al. [18]
suggested a space efficient data structure for the parameterized dictionary matching,
improving the p-AC automaton of [22] by using sparsification technique. Their index
requires O(|D| log σ+d log |D|) bits and the report of all p-matches in text T requires
O(|T |(log σ + logσ |D|) + occ). Due to our motivation in cyber security we use the
data structure of Idury and Schaffer [22], guaranteeing a faster query time.

We calculate in linear time the p-string, prev(lpi) for every lpi ∈ Left and con-
struct a p-AC automaton upon them, named LpAC. In addition we calculate prev(T),
thus by scanning prev(T) using LpAC we can locate all left subpatterns p-matching
the text T [1..ℓ], where the p-match ends at location T [ℓ]. For the Right subpatterns,
we need to locate all occurrences of prev(rpi) starting at location ℓ in prev(T), hence,
we need to scan the reverse of T and look for occurrences of the prev(rpRi), therefore
for every rpi ∈ Right we calculate in linear time the p-string of the reversed sub-
pattern, prev(rpRi) and construct a p-AC automaton upon them, named RpAC. In
addition, the prev function of the reverse of the text prev(TR) is calculated.

Note, that even in case the alphabets are not fixed, calculating the prev function
of a string S requires O(|S|) time by using perfect hash tables for the position of the
latest occurrence of a character in S. Each automaton consists of states, representing
the p-strings of prefixes of the dictionary subpatterns. We consider the p− label of
a state to be the p-string of the sequence the state represents. A state p-labeled by a
p-string of a subpattern from the dictionary is called an accepting state. Every state
in the p-automata is numbered as will be described in the next section.

We scan prev(T) using the LpAC automaton and for every location ℓ in prev(T),
reached by the automaton, we save at array Locc[ℓ] the number of the current state in
LpAC. Similarly, we scan prev(TR) using the RpAC and save in Rocc[ℓ] the number
of the current state reached by the automaton at prev(TR[ℓ]).

Lemma 6. Performing the search with LpAC, RpAC yields for each text location
ℓ, a state representing the longest prefix of some prev(lpi), p-matching the suffix
of prev(T [1 . . . ℓ]) and a state representing the longest prefix of some prev(rpj) p-
matching the prefix of prev(T [ℓ . . . n]), in linear time in the length of the text, for
fixed alphabets, and with O(|D| log |D|+ n) space requirements, where |D| is the size
of the dictionary and n is the size of the text.

Proof. Scanning prev(T) of the query text T with both of the p-automata requires
O(n), as [22] proves that scanning a p-text with a p-automaton requires linear time
in the size of the text, for fixed alphabets. A single scan is sufficient using each p-
automaton as the parameterized fail links, pfail allow continuation of search from
the point of a mismatch between the prev(T) and the prev of the current matched
subpattern [22]. The p-automaton saves at every step of the scan the current state
p-matching the current prev(T) character, thus the longest prefix of a p-subpattern
ending at the current text location. Using the reverse of T and the reverse of rpj sub-
patterns we get that p-matching the longest prev(rpRj) at the suffix of prev(T [n . . . ℓ])
equals the p-matching of the longest rpj starting at prev(T [ℓ . . . n]).

Regarding space, the p-automaton is built over dictionary of size |D|, thus requires
O(|D| log |D|) space, as proved in [22]. In addition we save the Locc, Rocc arrays
maintaining a pointer to a single state, for every text location. ⊓⊔

B. Riva Shalom: Parameterized Dictionary Matching with One Gap 109

5 Results Calculation

Given the output of the p-automata scans at arrays Locc, Rocc, the second step of our
algorithm is to report all gapped patterns where both their subpatterns p-matched
the text, with a gap of size g between their occurrences. Hence, for a gap starting at
text location ℓ+1, we consider Locc[ℓ], Rocc[ℓ+ g+1] and want to report all gapped
patterns Pi, where prev(lpi) is a suffix of the sequence associated with the state saved
at Locc[ℓ], and prev(rpRi) is a suffix of the sequence associated with the state saved
at Rocc[ℓ + g + 1], where g ∈ [αi, βi]. In the following subsections, we suggest two
algorithms for results calculation, the first follows the range query described in [21],
enabling solving the pDMOG problem for dictionaries containing variable lengths
gaps while the second follows the second solution of [9], enabling result calculation
in O(1 + occ) time per a text location and a gap length, where occ is the number of
reported patterns, yet it solves the pDMOG for dictionaries with a single set of gap
boundaries.

5.1 Results Calculation by Rectangle Stabbing

Afshani et. al. [1] considered the problem of Rectangular Stabbing, where a set of
k axis-aligned hyper rectangles are preprocessed, then, given a query k dimensional
point, all t rectangles that contain the query point, can be easily reported. Note, that
by the problem definition, a point on he boundary of a rectangle is not assumed to
be contained in the rectangle. They proved the following lemma.

Lemma 7. ([1]) A set of d k-dimensional rectangles (where k ≥ 2 is a constant)
can be preprocessed into O(d logk−2 d) space data structure which can answer any
rectangular stabbing query in O(logk−1 d+ output)

Hon. et. al. [21] created a hyper rectangle region representing every gapped pattern
in the dictionary. When given occurrences of some lpi and rpj, and a certain gap
between the occurrences, they perform a rectangular stabbing query, and report all
gapped pattern found in the text according to the given subpatterns and the gap
between them. In order to have a single query of lpi, rpj and still retrieve all gapped
patterns included in the query, that is all gapped patterns Pf where lpf is a suffix
of lpi and rpf is a prefix of rpj, that appear with an appropriate gap between them,
they numbered the nodes in the suffix trees they built over the Left and Right

subpatterns, by their preorder rank. Such a numbering guarantees that a prefix of
some rpi has a smaller number than rpi itself. In addition, due to the structure of
suffix trees, they had that rpi was in the subtree of all its prefixes. Therefore, by
defining a dimension of the rectangle to be the number of a node in the suffix tree
and the rightmost node in its subtree, they obtained the sought after reports.

However, for parameterized patterns, the case is more delicate. We need the rect-
angle related to a state p-labeled by prev(lpi) to be included in the rectangle related
to the state p-labeled by prev(lpf), where prev(lpf) is a suffix of prev(lpi). Yet, the
prev function does not preserve the suffix relation of the strings it is applied to.
Consider x, y as two subpatterns, where x is a suffix of y. It is not guaranteed that
prev(x) is a suffix of prev(y), due to the changes of the prev function when deleting
characters from the beginning of the string. For example consider lpi = uuua and its
suffix uua, so prev(lpi) = 011a yet, prev(uua) = 01a, which is not a suffix of 011a.

Nevertheless, in the p-AC automaton, we can find the suffix of a p-subpattern
by its pfail link, as it points to a prefix of a p-subpattern that is a suffix of the

110 Proceedings of the Prague Stringology Conference 2018

p-subpattern p-labeling the current state. Therefore, we construct for LpAC the trie
Lpfail and for RpAC the trie Rpfail respectively, where the nodes of the trie are
the states of the p-automaton, the root of the trie correspond to the start state of the
automaton and the children of a node x are all the states having a pfail link to x in
the p-automaton. Obviously, the construction of these tries is done in linear time in
the size of the p-automata. Numbering the nodes of Lpfail, Rpfail by their preorder
rank, yields the possibility to use the rectangular stabbing procedure efficiently for
parameterized gapped dictionaries.

In the preprocess, we number each state x of LpAC according to its preorder num-
ber in Lpfail and denote it by lnum(x). Similarly rnum(y) is the preorder number of
state y of RpAC in the trie Rpfail. We name an LpAC state, p-labeled by prev(lpi)
by lstatelpi and the RpAC state p-labeled by prev(rpRi) is named rstaterpi . Then,
for every gapped pattern Pi = lpi{αi, βi}rpi ∈ D we construct a hyper rectangular
region Ri in 3D where Ri = [lnum(lstatelpi)− 1, lnum(x) + 1]× [rnum(rstaterpi)−
1, rnum(y) + 1]× [αi − 1, βi + 1] where x is the rightmost leaf node in the subtree of
lstatelpi in Lpfail, y is the rightmost leaf node in the subtree of rstaterpi in Rpfail

and αi, βi are the gap boundaries of Pi.

Lemma 8. Given the filled Locc, Rocc arrays, performing a Rectangular Stabbing
query of point (lnum(Locc[ℓ]), rnum(Rocc[ℓ + g + 1]), g) for αmin ≤ g ≤ βmax where
αmin = min1≤i≤d{αi}, βmax = max1≤i≤d{βi}, yields all gapped patterns Pi p-matching
text T , such that the occurrence of prev(lpi) ends at prev(T [ℓ]) and there is a beginning
of an occurrence of prev(rpi) after a gap of g characters.

Such a query requires O(log2 d+ occ) time and space of O(d log d), where d is the
number of gapped patterns and occ is the number of patterns reported as output.

Proof. Given the query point (lnum(Locc[ℓ]), rnum(Rocc[ℓ + g + 1]), g), according
to [1] all Ri = [a, a′] × [b, b′] × [c, c′] are retrieved, where a < lnum(Locc[ℓ]) < a′,
b < rnum(Rocc[ℓ + g + 1]) < b′ and c < g < c′ holds. Suppose some prev(lpi)
was located ending at location ℓ and prev(rpRi) was located ending at location ℓ +
g + 1 in TR, thus the query point is (lnum(lstatelpi), rnum(rstaterpi), g). Obviously
lnum(lstatelpi) − 1 < lnum(lstatelpi) < lnum(x) + 1, and rnum(rstaterpi) − 1 <

rnum(rstaterpi) < rnum(y) + 1, when x, y are the rightmost leaves in the subtrees
of rstatelpi , rstaterpi in Lpfail, Rpfail respectively, due to the preorder numbering.
Hence, Ri is stabbed and Pi is reported if the gap length g between the subpatterns,
is in accordance with boundaries αi and βi.

Another possible case is that Locc[ℓ] = f , Rocc[ℓ + g + 1] = h and prev(lpi)
is a suffix of the p-label of state f and prev(rpRi) is a suffix of the p-label of state
h, thus Pi needs to be reported in case the gap fits. Since prev(lpi) is a suffix of
the p-label of state f , it follows that the state p-labeled by prev(lpi) is an ancestor
of state f in the Lpfail trie, thus lnum(lstatelpi) < lnum(f) due to the preorder
numbering. Moreover, as f is included in the subtree rooted by lstatelpi , we have that
lnum(f) < lnum(the rightmost leaf in the subtree rooted by lstatelpi) + 1. Similarly
we have that rnum(rstaterpi) < rnum(h) and rnum(h) < rnum(the rightmost leaf
in the subtree rooted by rstaterpi) + 1. It follows that the hyper rectangle Ri is
stabbed by the query point, if the gap of length g between the located subpattern is
in accordance with boundaries αi and βi, thus Pi is reported.

The time and space complexity of a query follow Lemma 7, considering the case
of d hyper rectangles in 3D, constructed in the preprocess. ⊓⊔

B. Riva Shalom: Parameterized Dictionary Matching with One Gap 111

We perform such rectangular stabbing queries, for every text location 1 ≤ ℓ ≤ n

and for every possible gap size, αmin ≤ g ≤ βmax where αmin = min1≤i≤d{αi},
βmax = max1≤i≤d{βi}.

Lemma 6 and Lemma 8 yields Theorem 9.

Theorem 9. The pDMOG problem for dictionary D with variable length gaps and
text query T , can be solved in O(|D| log |D| + n) space, and with a query time of
O(n(βmax − αmin) log

2 d + occ), where n is the size of T , d is the number of gapped
patterns in the dictionary and occ is the number of reported patterns.

5.2 Results Calculation by Look-up Table

In case all gapped patterns share their gap boundaries and a query time is crucial,
we suggest solving the intersection between the appearances of p-subpatterns using
a lookup table named out, though it implies an increase in preprocessing time.

For an efficient filling of the lookup table, the subpatterns numbering has to
satisfy the rule that the longer a subpattern, the higher its numbering, that is,
lnum(lstatelpf) > lnum(lstatelpi), (where lstatelpi is the state p-labeled by prev(lpi)
in LpAC) iff |lpf | ≥ |lpi|. Similarly, rnum(rstaterph) > rnum(rstaterpj), (where
rstaterpj is the state p-labeled by prev(rpRj) in RpAC), iff |rph| ≥ |rpj|. The num-
bering system from the previous subsection can be used as well as a simple BFS
traversal over LpAC/RpAC.

The look up table consists of accepting states, yet, Locc[ℓ] and Rocc[ℓ + g + 1]
can include any state in each of the p-automata, thus for each state x in each of the
p-automata, that is not an accepting state, we save accept(x) that is the accepting
state with the longest p-label that is a suffix of the p-label of x. The accept(x) are
calculated, by a BFS traversal over the automaton. When reaching state x that is
not an accepting state, we consider its pfail link, where pfail(x) points to the longest
p-labeled state that its p-label is a suffix of the p-label of x. In case pfail(x) is an
accepting state, then accept(x) = pfail(x), otherwise accept(x) = accept(pfail(x)).

For every accepting state lstatelpi ∈ LpAC we save a link psuf(lpi) that leads to
the lnum of an accepting state p-labeled by the longest lpk such that prev(lpk) is a
real suffix of prev(lpi), if it exists. We define psuf(x) = lnum(pfail(x)) if pfail(x)
is an accepting state and psuf(x) = lnum(accept(pfail(x))) otherwise. Similarly, for
every accepting state rstaterpj ∈ Right, we save a link psuf(rpRi) that leads to the
rnum of an accepting state p-labeled by the longest rpk such that prev(rpRk) is a real
suffix of prev(rpRi), if it exists. This link is similarly calculated in the Rpfail trie.

The out table is of size dleft × dright. Entry out[f, h] refers to the set of all indices
of gapped patterns that are reported when prev(lpi) is the longest subpattern that
appears at the suffix of prev(T [1 . . . ℓ]) and lnum(lstatelpi) = f , and when prev(rpRj)
is the longest subpattern that appears at the suffix of prev(T [n . . . ℓ + g + 1]), and
rnum(lstaterpj) = h and α ≤ g ≤ β. The out table is recursively filled in increasing
order of indices, where filling out[f, h] entry implies filling four fields:

1. Index field, out[f, h].index = i iff i = j. (Note that at most one index can be saved
at out[f, h].index as two patterns are bound to differ by at least one subpattern,
having a single set of gap boundaries.)

2. up link, where out[f, h].up = [f ′, h] iff prev(lpk) is the longest suffix of prev(lpi)
where f ′ = lnum(lstatelpk) and k = j.

112 Proceedings of the Prague Stringology Conference 2018

3. left link, where out[f, h].left = [f, h′] iff prev(rpRk) is the longest sufix of prev(rp
R
j)

where h′ = rnum(rstaterpk) and k = i.
4. back link, where out[f, h].back = [psuf ∗(f), psuf ∗(h)), where psuf ∗(f) is the

longest real suffix of prev(lpi) and psuf ∗(h) is the longest real suffix of prev(rpRj)
such either psuf ∗(f) or psuf ∗(h) form a gapped pattern with a the suffix of the
other. (psuf ∗(f) can be obtained by recursively applying the psuf links.)

The lookup table is filled by the following formal recursive rule.
The Recursive Rule

out[f, h].up =

{

[psuf(f), h] if out[psuf(f), h].index 6= null

out[psuf(f), h].up otherwise

out[f, h].left =

{

[f, psuf(h)] if out[f, psuf(h)].index 6= null

out[f, psuf(h)].left otherwise

out[f, h].back =

[psuf(f), psuf(h)] if out[psuf(f), psuf(h)].index 6= null

or out[psuf(f), psuf(h)].up 6= null

or out[psuf(f), psuf(h)].left 6= null

out[psuf(f), psuf(h)].back otherwise

Considering Locc[ℓ] = f,Rocc[ℓ+ g + 1] = h, the results calculation is performed
by consulting entry out[f, h]. We report out[f, h].index if it exists, yet in order to
report all relevant patterns, that their p-subpatterns are numbered by f or by h or
that they are suffixes of the p-label of the states numbered by f, h, we follow the links
saved at out[f, h], as detailed in the procedure :
ResultsQuery(f, h):

1. If out[f, h].index 6= null, report out[f, h].index.
2. If out[f, h].back 6= null

ResultsQuery(f ′, h′) for [f ′, h′] = out[f, h].back.
3. Let f ′ ← f , h′ ← h.
4. While (out[f ′, h].up 6= null).
(a) Let [f ′, h] = out[f ′, h].up.
(b) Report out[f ′, h].index.

5. While (out[f, h′].left 6= null).
(a) Let [f, h′] = out[f, h′].left.
(b) Report out[f, h′].index.

Lemma 10. The procedure ResultsQuery, given the gapped dictionary D, Locc[ℓ] =
f,Rocc[ℓ+g+1] = h and the psuf function, reports all dictionary patterns appearing
with gap of size g starting at T [ℓ+ 1].

Proof. Due to the construction of the p-AC automata, we have that state numbered
by f represents prev(lpi) and all its suffixes and the state numbered h represents a
certain prev(rpRj) and all its prefixes. According to the AC algorithm the subpatterns
represented by these states are of maximal length [2].

In order to report all required patterns, entry out[f, h] for 1 ≤ f ≤ dleft,1 ≤
h ≤ dright, has to contain links to all entries containing indices of patterns whose
left subpattern is represented by the state numbered f and its right subpattern is
represented by the state numbered h. There are 4 possible cases:

B. Riva Shalom: Parameterized Dictionary Matching with One Gap 113

1. Case 1: lpi and rpj form a pattern Pi, (i=j) then out[f, h].index = i and this
pattern is reported.

2. Case 2: lpi and rpj form a pattern Pj, and prev(lpj) is a suffix of prev(lpi).
If psuf(lpi) = lnum(lstatelpj), then out[f, h].up = [psuf(f), h], so we have a
direct link to the entry containing pattern index j. If a shorter suffix of prev(lpi),
whose state is numbered by f ′, forms a pattern with prev(rpj), such a suffix is a
suffix of the p-label of the state numbered by psuf(lpi), where according to the
numbering system psuf(lstatelpi) < lnum(lstatelpi), thus entry out[psuf(f), h].up
was already computed, and includes a link to out[f ′, h]. Note, that in case several
left p-subpatterns which are all suffixes of prev(lpi) form a pattern with rpj, it
implies all these suffixes, include each other as suffixes, thus can be reached by
recursively following up links starting from out[psuf(f), h].

3. Case 3: lpi and rpi form a pattern Pi, and prev(rpRi) is a suffix of prev(rpRj).
If psuf(rpj) = rnum(rstaterpi), then out[f, h].left = [f, psuf(h)], so we have a
direct link to the entry containing pattern index i. If a shorter suffix of prev(rpRj),
whose state is numbered by h′ forms a pattern with prev(lpi), such a suffix is a suf-
fix of the p-label of the state numbered by psuf(rpRj), where according to the num-
bering system, psuf(rstaterpj) < rnum(rstaterpj), thus entry out[f, psuf(h)].left
was already computed, and includes a link to the out[f, h′]. Note, that in case sev-
eral right p-subpatterns which are all suffixes of prev(rpRj) form a pattern with
lpi, it implies all these subpatterns include each other as suffixes, thus can be
reached by recursively following left links starting from out[f, psuf(h)].

4. Case 4: Some suffix of the prev of the subpattern numbered by f and some suffix
of the prev of the reverse of subpattern numbered by h form gapped patterns.
Note that it must be a real suffixes of the current subpatterns, as previous cases
dealt with cases where lpi or rpj themselves where a part of reported patterns.

(a) In case out[psuf(f), psuf(h)].index 6= null the pattern index is reported.
(b) In case an out[psuf(f), psuf(h)] has a non null up link it implies that a suffix

(or some suffixes) of the p-label of the state numbered by psuf(f) forms a
pattern with the the p-label of the state numbered by psuf(h), recursively
going over these up links we report all these patterns.

(c) In case an out[psuf(f), psuf(h)] has a non null left link it implies that a
suffix (or some suffixes) of the p-label of the state numbered by psuf(h) forms
a pattern with the p-label of the state numbered by psuf(f), recursively going
over these left links we report all these patterns.

(d) In case no pattern is formed by the p-label of the states numbered by either
psuf(f) nor psuf(h), it must be that the patterns are formed by shorter suffixes
of the subpatterns represented by states numbered f, h. They may be formed by
state numbered psuf(psuf(f)) and state numbered psuf(psuf(h)) or by even
sorter suffixes, which is [psuf ∗(f), psuf ∗(h)]. Nevertheless, by the definition
of the back link, the indices of the longest possible suffix of the p-label of the
state numbered by psuf(f) and the longest suffix of p-label of the state num-
bered by psuf(h) which form a pattern, are saved in out[psuf(f), psuf(h)].back
, which was already computed, due to the numbering system, so we follow
out[psuf(f), psuf(h)].back, where we will have a pattern index or a link to an
up or a left entry containing a pattern index.

These observations, can be easily proved by induction. ⊓⊔

114 Proceedings of the Prague Stringology Conference 2018

Lemma 11. The construction of the out table requires O(|D| log |D|+ dleft × dright)
time and O(dleft × dright) space. Performing a query on the out table regarding p-
subpatterns appearing adjacently to a gap starting at T [ℓ + 1], requires O(1 + occ)
time, where occ is the number of patterns reported.

Proof. The preprocess requires numbering the accepting states of both p-AC auto-
mata and computing the accept and psuf links, all can be done by performing a BFS
traversal over p-automata and the Lpfail, Rpfail tries, in linear time in the size of
the p-automata and tries, O(|D| log |D|). Filling d out[f, h] entries with index i when
lnum(lstatelpi) = f and rnum(rstaterpi) = h, can be done in O(d) time. Filling each
of the entries of the table out[f, h] can be performed in O(1) by the recursive rule.

The table query procedure is based on following links and reporting indices found.
Every step of following an up or left link implies that the linked entry contains a
pattern index, needs to be reported. The back link either directs us to an entry
including a pattern index, needs to be reported or it directs us to an entry containing
an up or left links. Hence, by following at most two links we encounter an index
needs to be reported. Consequently, the time of following links is attributed to the
size of the output.

The lookup table has dleft×dright entries, each consists of 4 fields, yielding O(dleft×
dright) space requirement.

⊓⊔
For every text location 1 ≤ ℓ ≤ n and for every possible gap size, α ≤ g ≤ β we

perform a look up table query out[lnum(Locc[ℓ]), rnum(Rocc[ℓ+ g + 1])].
Lemma 6 and Lemma 11 yields Theorem 12.

Theorem 12. The pDMOG problem for dictionary D with a single set of gap bound-
aries and text query T , can be solved in O(|D| log |D|+d2) space and with query time
O(n(β − α) + occ), where n is the size of the text and occ is the number of reported
gapped patterns.

6 Conclusions and Open Problems

This paper suggests the problem of dictionary matching with one gap where the
matching technique is parameterized, a problem with tight relation to cyber security.
The paper presents efficient and simple to program algorithms.

There are several interesting open problems related to the pDMOG problem, such
as solving the DMOG problem for other methods of encrypted gapped patterns and
solving the pDMG for patterns containing multiple gaps. Since the DMOG problem
is a crucial bottleneck procedure in network intrusion detection system applications,
these open problems should be addressed in the future.

B. Riva Shalom: Parameterized Dictionary Matching with One Gap 115

References

1. P. Afshani, L. Arge, and K. G. Larsen: Higher-dimensional orthogonal range reporting

and rectangle stabbing in the pointer machine model, in Symposuim on Computational Geometry
2012, SoCG ’12, Chapel Hill, NC, USA, June 17-20, 2012, 2012, pp. 323–332.

2. A. V. Aho and M. J. Corasick: Efficient string matching: An aid to bibliographic search.
Commun. ACM, 18(6) 1975, pp. 333–340.

3. A. Amir and G. Călinescu: Alphabet-independent and scaled dictionary matching. J. Algo-
rithms, 36(1) 2000, pp. 34–62.

4. A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park: Dynamic dictionary match-

ing. J. Comput. Syst. Sci., 49(2) 1994, pp. 208–222.
5. A. Amir, M. Farach, R. M. Idury, J. A. L. Poutré, and A. A. Schäffer: Improved

dynamic dictionary matching. Inf. Comput., 119(2) 1995, pp. 258–282.
6. A. Amir, M. Farach, and S. Muthukrishnan: Alphabet dependence in parameterized match-

ing. Inf. Process. Lett., 49(3) 1994, pp. 111–115.
7. A. Amir, D. Keselman, G. M. Landau, M. Lewenstein, N. Lewenstein, and M. Rodeh:

Text indexing and dictionary matching with one error. J. Algorithms, 37(2) 2000, pp. 309–325.
8. A. Amir, T. Kopelowitz, A. Levy, S. Pettie, E. Porat, and B. R. Shalom: Mind

the gap: Essentially optimal algorithms for online dictionary matching with one gap, in 27th
International Symposium on Algorithms and Computation, ISAAC 2016, December 12-14, 2016,
Sydney, Australia, 2016, pp. 12:1–12:12.

9. A. Amir, A. Levy, E. Porat, and B. R. Shalom: Dictionary matching with a few gaps.
Theor. Comput. Sci., 589 2015, pp. 34–46.

10. A. Amir, A. Levy, E. Porat, and B. R. Shalom: Online recognition of dictionary with

one gap, in Proceedings of the Prague Stringology Conference 2017, Prague, Czech Republic,
August 28-30, 2017, 2017, pp. 3–17.

11. B. S. Baker: A theory of parameterized pattern matching: algorithms and applications, in
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-
18, 1993, San Diego, CA, USA, 1993, pp. 71–80.

12. B. S. Baker: Parameterized duplication in strings: Algorithms and an application to software

maintenance. SIAM J. Comput., 26(5) 1997, pp. 1343–1362.
13. P. Bille, I. L. Gørtz, H. W. Vildhøj, and D. K. Wind: String matching with variable

length gaps. Theor. Comput. Sci., 443 2012, pp. 25–34.
14. P. Bille and M. Thorup: Regular expression matching with multi-strings and intervals,

in Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, 2010, pp. 1297–1308.

15. G. S. Brodal and L. Gasieniec: Approximate dictionary queries, in Combinatorial Pattern
Matching, 7th Annual Symposium, CPM 96, Laguna Beach, California, USA, June 10-12, 1996,
Proceedings, 1996, pp. 65–74.

16. S. Deguchi, F. Higashijima, H. Bannai, S. Inenaga, and M. Takeda: Parameterized

suffix arrays for binary strings, in Proceedings of the Prague Stringology Conference 2008,
Prague, Czech Republic, September 1-3, 2008, 2008, pp. 84–94.

17. P. Ferragina and R. Grossi: The string b-tree: A new data structure for string search in

external memory and its applications. J. ACM, 46(2) 1999, pp. 236–280.
18. A. Ganguly, W. Hon, K. Sadakane, R. Shah, S. V. Thankachan, and Y. Yang: Space-

efficient dictionaries for parameterized and order-preserving pattern matching, in 27th Annual
Symposium on Combinatorial Pattern Matching, CPM 2016, June 27-29, 2016, Tel Aviv, Israel,
2016, pp. 2:1–2:12.

19. A. Ganguly, W. Hon, and R. Shah: A framework for dynamic parameterized dictionary

matching, in 15th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2016,
June 22-24, 2016, Reykjavik, Iceland, 2016, pp. 10:1–10:14.

20. T. Haapasalo, P. Silvasti, S. Sippu, and E. Soisalon-Soininen: Online dictionary match-

ing with variable-length gaps, in Experimental Algorithms - 10th International Symposium, SEA
2011, Kolimpari, Chania, Crete, Greece, May 5-7, 2011. Proceedings, 2011, pp. 76–87.

21. W. Hon, T. W. Lam, R. Shah, S. V. Thankachan, H. Ting, and Y. Yang: Dictionary

matching with a bounded gap in pattern or in text. Algorithmica, 80(2) 2018, pp. 698–713.
22. R. M. Idury and A. A. Schäffer: Multiple matching of parametrized patterns. Theor.

Comput. Sci., 154(2) 1996, pp. 203–224.

116 Proceedings of the Prague Stringology Conference 2018

23. O. Keller, T. Kopelowitz, and M. Lewenstein: On the longest common parameterized

subsequence. Theor. Comput. Sci., 410(51) 2009, pp. 5347–5353.
24. M. Krishnamurthy, E. S. Seagren, R. Alder, A. W. Bayles, J. Burke, S. Carter,

and E. Faskha: How to cheat at securing linux, in Syngress Publishing, Inc., Elsevier, Inc,
2008, pp. 1–432.

25. G. Kucherov and M. Rusinowitch: Matching a set of strings with variable length don’t

cares. Theor. Comput. Sci., 178(1-2) 1997, pp. 129–154.
26. M. Lewenstein: Parameterized pattern matching, in Encyclopedia of Algorithms, 2016,

pp. 1525–1530.
27. J. Mendivelso and Y. Pinzón: Parameterized matching: Solutions and extensions, in Pro-

ceedings of the Prague Stringology Conference 2015, Prague, Czech Republic, August 24-26,
2015, 2015, pp. 118–131.

28. M. S. Rahman, C. S. Iliopoulos, I. Lee, M. Mohamed, and W. F. Smyth: Finding

patterns with variable length gaps or don’t cares, in Computing and Combinatorics, 12th Annual
International Conference, COCOON 2006, Taipei, Taiwan, August 15-18, 2006, Proceedings,
2006, pp. 146–155.

29. M. Zhang, Y. Zhang, and L. Hu: A faster algorithm for matching a set of patterns with

variable length don’t cares. Inf. Process. Lett., 110(6) 2010, pp. 216–220.

