Parameterized Dictionary Matching with One Gap

B. Riva Shalom
Department of Software Engineering, Shenkar College, Ramat-Gan 52526, Israel.
rivash@shenkar.ac.il

Abstract

Dictionary Matching is a variant of the Pattern Matching problem where multiple patterns are simultaneously matched to a single text. In case the patterns contain sequences of don't care symbols, the problem is called Dictionary Matching with Gaps. Another famous variant of Pattern matching is the Parameterized Matching, where two equal-length strings are a parameterized match if there exists a bijection on the alphabets such that one string matches the other under the bijection. In this paper we suggest the problem of Parameterized Dictionary Matching with one Gap, stemming from cyber security, where the patterns are the malware sequences we want to detect in the text, and the necessity of a parameterized match is due to their encryption. We present two algorithms solving the Prameterized Dictionary Matching with one Gap. The first solves the problem for dictionaries with variable length gaps and has query time of $O\left(n\left(\beta_{\text {max }}-\alpha_{\text {min }}\right) \log ^{2} d+o c c\right)$, where n is the size of the text, d is the number of gapped patterns in the dictionary, $\beta_{\max }-\alpha_{\text {min }}$ is the maximal size of gap and occ is the number of the gapped patterns reported as output. The second solution considers dictionaries with a single set of gap boundaries and has query time of $O(n(\beta-\alpha)+o c c)$, where n is the size of the text, $\beta-\alpha$ is the size of the gap and occ is the number of the gapped patterns reported as output.

1 Introduction

Cyber security is a critical modern concern. It derives from cyber terroristic attacks, as well as economic ortance of the problem, computer scientists develop various systems perform to detect harmfu need for gapped challenge of a di

In this paper problem,(where malware is encry this struggle. Network intrusion detection at searching and content matching, in order e may appear on several packets, hence the list of gapped malware patterns yields the raps.
n to the dictionary matching with one gap ionary has a single gap), where the gapped irus scanners. We consider the case in which the encryption used is substitution cipher, by which units of plain text are replaced with ciphertext, according to a fixed system, and consider a parameterized mapping as a strategy of encryption, thus define the Parameterized Dictionary Matching with One Gap (pDMOG) problem. We suggest an algorithm for dictionary with variable length gaps and another lower time complexity for dictionaries where all patterns have gaps with identical boundaries.

Since the pDMOG problem is a combination of the Dictionary Matching with one gap problem and Parameterized Matching problem, we define hereafter each of the problems separately then form the combined definition.

Dictionary Matching with Gaps (DMOG) Let a gapped pattern be of the form $P=l p\{\alpha, \beta\} r p$, where both the left subpattern $l p$ and the right subpattern $r p$
are strings over alphabet Σ, and $\{\alpha, \beta\}$ denotes a sequence of at least α and at most β don't cares symbols between the subpatterns, where a don't care symbol can be matched to any text character from Σ. The formal definition follows.
Definition 1. The Dictionary Matching with One gap ($D M O G$) Problem:
Preprocess: A dictionary D of total size $|D|$ over alphabet Σ consisting of d gapped patterns each containing a single gap.
Query: \quad A text T of length n over alphabet Σ.
Output: All locations ℓ in T, where any gapped pattern ends.
For example, let D be the set of patterns $\left\{P_{1}=a b a\{2,4\} d d, P_{2}=a b\{2,4\} c d\right.$, $\left.P_{3}=b a\{2,4\} c\right\}$. Then, the text $T=\begin{array}{ccllllllll}c & d & a & b & a & b & e & b & c & d\end{array} a c h a s$ has occurrences of P_{2} ending at location 10 with gap length of 4 and also with gap of length 2, and of P_{3} ending at locations 9 , with gap length of 3 .

Parameterized Matching The Parameterized Matching problem is a well known problem in computer science, where two equal-length strings are a parameterized match if there exists a bijection on the alphabets such that one string matches the other under the bijection. Throughout the paper we denote a parameterized match by $p-$ match. A formal definition follows.

Definition 2. Parameterized Matching Problem (PM):
Input: A Text T of length n and a pattern P of length m, both over alphabet $\Sigma \bigcup \Pi$, where $\Sigma \bigcap \Pi=\emptyset$.
Output: All locations ℓ in T, where there exists a bijection $f: \Pi \rightarrow \Pi$ and the following hold:
(1) $\forall P[i] \in \Sigma, P[i]=T[\ell+i-1]$.
(2) $\forall P[i] \in \Pi, f(P[i])=T[\ell+i-1]$.

For example, let $\Sigma=\{a, b\}, \Pi=\{x, y, z\}$ for text $T=x x y b z y y x b z x$ and pattern $P=z z x b$ there are two p-matches ending at locations $\{4,10\}$. The former implies mapping function $f(z)=x, f(x)=y$ while the latter implies mapping function $f(z)=y, f(x)=x$.

Parameterized Dictionary Matching with One Gap (pDMOG) The pDMOG problem is a combination of the above problems. Note, that according the motivation of the problem, we consider malicious code to appear on two packets, thus each part of the gapped pattern $l p_{i}, r p_{i}$, does not relate to the other part of the pattern, hence, they can be matched using different matching functions. The formal definition follows.
Definition 3. The Parametrized Dictionary Matching with One gap ($p D M O G$) Problem:
Preprocess: A dictionary D consisting of d gapped patterns $\left\{P_{i}\right\}$ over alphabet $\Sigma \bigcup \Pi$, where $\Sigma \bigcap \Pi=\emptyset$ where every P_{i} is of the form ${ }_{l p_{i}}\left\{\alpha_{i}, \beta_{i}\right\} r p_{i}$ and α_{i}, β_{i} are P_{i} 's gap boundaries.
Query: $\quad A$ text T of length n over alphabet $\Sigma \bigcup \Pi, \Sigma \bigcap \Pi=\emptyset$
Output: All locations ℓ in T, where there exists a bijection $f: \Pi \rightarrow \Pi$ and all the following hold for any P_{i} and a gap length $g \in\left[\alpha_{i}, \beta_{i}\right]$:
(1) $\forall l p_{i}[j] \in \Sigma, l p_{i}[j]=T\left[\ell-\left|l p_{i}\right|-j\right]$.
(2) $\forall l p_{i}[j] \in \Pi, f\left(l p_{i}[j]\right)=T\left[\ell-\left|l p_{i}\right|-j\right]$.
(3) $\forall r p_{i}[j] \in \Sigma, r p_{i}[j]=T[\ell+g+j]$.
(4) $\forall r p_{i}[j] \in \Pi, f\left(r p_{i}[j]\right)=T[\ell+g+j]$.

For example, let $\Sigma=\{a, b\}, \Pi=\{q, u, v, w, z\}$ for text $T=a u v b u b a z w w z$ and $D=\left\{P_{1}=z x b z\{2,4\} u u q, P_{2}=u b q\{1,4\} a u v\right\}$ we have two p-matches ending at locations $\{11,9\}$. The former implies p-matching P_{1} using mapping function $f(z)=$ $u, f(x)=u$ for $l p_{1}$, a gap of length 3 and a mapping function $f(u)=w, f(q)=z$ for $r p_{1}$. The latter implies p-matching P_{2} using mapping function $f(u)=v, f(q)=u$ for $l p_{2}$, a single character gap and a

We consider the alphabet to $\log \sigma$ is tc

a set of patterns
occur
of the
gener:

exity, by using sorted of socc which is the ich can be very large. problem of matching ney report a leftmost ted in all occurrences ine algorithm for the each pattern at each text p

set of gap boundaries, gest an algorithm using sorithm using a look-up table. The query time of
range
their
the nt $-\alpha)+o c c$) and space of $O\left(d^{2}+|D|\right)$, where d is dictionary D and occ is the number of patterns a similar solution, for dictionaries with variable complexity to a linear space and requiring query nere γ denotes the number of distinct gap lengths ct lower and upper bounds of gap lengths.
the online version of the DMOG problem, where r at a time, and the requirement is to report all f the text that has arrived so far, before the next l. considered the recognition version of the online ,ed pattern is reported at most once, during the entire onliı

Regarding g , the problem was initially defined as a tool for software maintenance, motivated by the observation that programmers introduce duplicate code into large software systems when they add new features or fix bugs, thus
slightly modify
ious fields, as c
ing can help s of URLS. As various variant
Among

Framework

Throughout the paper we use the following notations. Let $D=\left\{P_{1}, \ldots, P_{d}\right\}$ be the dictionary, where every P_{i} is a gapped pattern of the form $l p_{i}\left\{\alpha_{i}, \beta_{i}\right\} r p_{i}$. In case the dictionary has a single set of gap boundaries $\{\alpha, \beta\}$, then $\forall 1 \leq i \leq d, \alpha_{i}=\alpha$ and $\beta_{i}=\beta$. We call $l p_{i}$ the left subpattern of P_{i}, and call $r p_{i}$ the right subpattern of

atterns Right	
e DMO	sets Left $=_{1 \leq i \leq d}\left\{l p_{i}\right\}$ where improv ting sef ary in 1 to effici
th a g sight $\mid \leq d$.	

For the second step, given a match of the reverse of some $l p_{i}$ to $T[\ell \ldots 1]$ and a m $+g+1 \ldots n]$, it is necessary to conclude which gapped patt rted. Note, that several gapped patterns can be r rn is a suffix of $l p_{i}$ and their right subpattern
is
ond
shar by rectangular stabbing for the sec an additional technique, when all patterns query time is required to be $O(1+o c c)$ time
per they use a look up table built in the prepro-

The parameterized matching does not require exact matches between the Π characters, but rather to capture the characters order in the pattern. For this reason
p - string over a string $S=s_{1}, s_{2} \cdots$ using the prev function, in case $s_{i} \in \Sigma$, but for $s_{i} \in \Pi$, $\operatorname{prev}\left(s_{i}\right)=0$ if s_{i} is the leftmost character, and $\operatorname{prev}\left(s_{i}\right)=i-k$ if k is the previous position to acter s_{i} occurs. For example, let $\Sigma=\{a, b\}, \Pi=\{u, v\}$ then $\operatorname{prev}(S)=a b 00 a b 442$. The string obtained by

4 p-Matching of Subpal

As mentioned in the previous sect suffix trees, one over the Right sub Left subpatterns, which we call $L e$ these suffix trees but rather require with the Right suffix tree and the l suffix tree. They do it in $O(n)$ time using Ar suffixes of T or T^{R} to the corresponding suffis the st
uffix tree, the n time.
is
pre
dy1
Le
$a p$
meterized matc
two generalized verse of the the t query T using very suffix of T and the Left t^{R} of inserting all ch suffix of T to thered in linear m of locating the prev function of the subpatterns in te construction of a parameterized suffix tree. She used mon ancestor queries to achieve the following results.

- dicioint alphabets Σ, Π, a p-suffix tree can be built for and linear space in the $|S|$. Given a p-string text :an be reported in time $O(|T|)$ for fixed alphabets , where $\sigma=|\Sigma|+|\Pi|$ for variables alphabets.
l an efficient construction and space consumption reduce the construction time from $O(|S| \log |S|)$.
struction of p-suffix trees both in ve insert suffixes of $\operatorname{prev}(T)$ to vering a query requires $O(n \log n$ ider another technique for dicti aich is using the Aho-Corasick a ed a modified Aho-Corasick auto tion algorithm is similar to tha ifications were made to the goto with p-strings. Their p-AC auto ere m is the number of states in th time, where occ are the number of reported occurrences. Note that in case we report
only the longest patteri $O(|T| \log \sigma)$ as the occ el subpatterns that are suff suggested a space efficier
location, the query i require reporting all a itern recognized. Gans improving the $\mathrm{p}-\mathrm{AC}$ aut requires $O(|D| \log \sigma+d l$ $O\left(|T|\left(\log \sigma+\log _{\sigma}|D|\right)-\right.$ data structure of Idury rameterized diction rrsification techniqu of all p-matches in t tion in cyber securi

We calculate in linea struct a p-AC automaton u thus by scanning $\operatorname{prev}(T)$ eing a faster query time.
p_{i}) for every $l p_{i} \in L e f t$ and conIn addition we calculate $\operatorname{prev}(T)$, te all left subpatterns p-matching $T[\ell]$. For the Right subpatterns, the text $T[1 . . \ell]$, where the we need to locate all occurrences of prev $\left(r p_{i}\right)$ starting at location ℓ in $\operatorname{prev}(T)$, hence, we need to scan the reverse of T and look for occurrences of the $\operatorname{prev}\left(r p_{i}^{R}\right)$, therefore for every $r p_{i} \in$ Right we calculate in linear time the p-string of the reversed subpattern, $\operatorname{prev}\left(r p_{i}^{R}\right)$ and construct a p-AC automaton upon them, named RpAC. In addition, the prev function of the reverse of the text $\operatorname{prev}\left(T^{R}\right)$ is calculated.

Note, that even in case the alphabets are not fixed, calculating the prev function of a string S requires $O(|S|)$ time by using perfect hash tables for the position of the latest occurrence of a character in S. Each automaton consists of states, representing the p-strings of prefixes of the dictionary subpatterns. We consider the p-label of a state to be the p-string of the sequence the state represents. A state p-labeled by a p-string of a subpattern from the dictionary is called an accepting state. Every state in the p-automata is numbered as will be described in the next section.

We scan $\operatorname{prev}(T)$ using the $L p A C$ automaton and for every location ℓ in $\operatorname{prev}(T)$, reached by the automaton, we save at array $\operatorname{Locc}[\ell]$ the number of the current state in LpAC. Similarly, we scan $\operatorname{prev}\left(T^{R}\right)$ using the RpAC and save in $\operatorname{Rocc}[\ell]$ the number of the current state reached by the automaton at $\operatorname{prev}\left(T^{R}[\ell]\right)$.

Lemma 6. Performing the search with LpAC, RpAC yields for each text location ℓ, a state representing the longest prefix of some prev $\left(l_{i}\right)$, p-matching the suffix of $\operatorname{prev}(T[1 \ldots \ell])$ and a state representing the longest prefix of some $\operatorname{prev}\left(r p_{j}\right) p$ matching the prefix of $\operatorname{prev}(T[\ell \ldots n])$, in linear time in the length of the text, for $h O(|D| \log |D|+n)$ space requirements, where $|D|$ is the size is the size of the text.
${ }^{\top}$) of the query text T with both of the p-automata requires scanning a p-text with a p-automaton requires linear time r fixed alphabets. A single scan is sufficient using each psterized fail links, pfail allow continuation of search from oetween the $\operatorname{prev}(T)$ and the prev of the current matched itomaton saves at every step of the scan the current state $\operatorname{ev}(T)$ character, thus the longest prefix of a p-subpattern rse of T and the reverse of $r p_{j}$ sub$\left.{ }^{\prime} p_{j}^{R}\right)$ at the suffix of $\operatorname{prev}(T[n \ldots \ell])$ at $\operatorname{prev}(T[\ell \ldots n])$.
Regarding space, the F $O(|D| \log |D|)$ space, as maintaining a pointer to
dictionary of size $|D|$, thus requires on we save the Locc, Rocc arrays ext location.

5 Results Calculation

Given the output of the p-automata scans at arrays Locc, Rocc, the second step of our algorithm is to report all gapped patterns where both their subpatterns p-matched the text, with a gap of size g between their occurrences. Hence, for a gap starting at text location $\ell+1$, we consider $\operatorname{Locc}[\ell], \operatorname{Rocc}[\ell+g+1]$ and want to re patterns P_{i}, where $\operatorname{prev}\left(l p_{i}\right)$ is a suffix of the sequence associated with at $\operatorname{Locc}[\ell]$, and $\operatorname{prev}\left(r p_{i}^{R}\right)$ is a suffix of the at $\operatorname{Rocc}[\ell+g+1]$, where $g \in\left[\alpha_{i}, \beta_{i}\right]$. In t algorithms for results calculation, the first enabling solving the pDMOG problem for gaps while the second follows the second s in $O(1+o c c)$ time per a text location and reported patterns, vet it solves the pDMO
 boun

5.1

Afshe
k avi
poi
by
be

by Rectangle Stabbing

d the problem of Rectangular Stabbing, where a set of les are preprocessed, then, given a query k dimensional ntain the query point, can be easily reported. Note, that point on he boundary of a rectangle is not assumed to e. They proved the following lemma.

k-dimensional rectangles (where $k \geq 2$ is a constant) $\left.d \log ^{k-2} d\right)$ space data structure which can answer any $O\left(\log ^{k-1} d+\right.$ output $)$
ayper rectangle region representing every gapped pattern en occurrences of some $l p_{i}$ and $r p_{j}$, and a certain gap y perform a rectangular stabbing query, and report all text according to the given subpatterns and the gap ive a single query of $l p_{i}, r p_{j}$ and still retrieve all gapped patterns included in the query, that is all gapped patterns P_{f} where $l p_{f}$ is a suffix of $l p_{i}$ and $r p_{f}$ is a prefix of $r p_{j}$, that appear with an appropriate gap between them, they numbered the nodes in the suffix trees they built over the Left and Right subpatterns, by their preorder rank. Such a numbering guarantees that a prefix of some $r p_{i}$ has a smaller number than $r p_{i}$ itself. In addition, due to the structure of suffix trees, they had that $r p_{i}$ was in the subtree of all its prefixes. Therefore, by defining a dimension of the rectangle to be the number of a node in the suffix tree and the rightmost node in its subtree, they obtained the sought after reports.

However, for parameterized patterns, the case is more delicate. We need the rectangle related to a state p-labeled by prev $\left(l p_{i}\right)$ to be included in the rectangle related to the state p-labeled by $\operatorname{prev}\left(l p_{f}\right)$, where $\operatorname{prev}\left(l p_{f}\right)$ is a suffix of $\operatorname{prev}\left(l p_{i}\right)$. Yet, the prev function does not preserve the suffix relation of the strings it is applied to. Consider x, y as two subpatterns, where x is a suffix of y. It is not guaranteed that $\operatorname{prev}(x)$ is a suffix of $\operatorname{prev}(y)$, due to the changes of the prev function when deleting characters from the beginning of the string. For example consider $l p_{i}=u u u a$ and its suffix uua, so prev $\left(l p_{i}\right)=011 a$ yet, $\operatorname{prev}(u u a)=01 a$, which is not a suffix of 011a.

Nevertheless, in the p-AC automaton, we can find the suffix of a p-subpattern by its pfail link, as it points to a prefix of a p-subpattern that is a suffix of the
p-subpattern p-labeling the current state. Therefore, we construct for LpAC the trie Lpfail and for RpAC the trie Rpfail respectively, where the nodes of the trie are the states of the p-automaton, the root of the trie correspond to the start state of the automaton and the children of a node x are all the states having a pfail link to x in the p-automaton. Obviously, the construction of these tries is done in linear time in the size of the p-automata. Numbering the nodes of Lpfail, Rpfail by their preorder rank, yields the possibility to use the rectangular stabbing procedure efficiently for parameterized gapped dictionaries.

In the preprocess, we number each state x of $L p A C$ according to its preorder number in Lpfail and denote it by $\operatorname{lnum}(x)$. Similarly $\operatorname{rnum}(y)$ is the preorder number of state y of $R p A C$ in the trie Rpfail. We name an $L p A C$ state, p-labeled by prev $\left(l_{i}\right)$ by lstate $l_{p_{i}}$ and the $R p A C$ state p-labeled by $\operatorname{prev}\left(r p_{i}^{R}\right)$ is named $r s t a t e e_{r p_{i}}$. Then, for every gapped pattern $P_{i}=l p_{i}\left\{\alpha_{i}, \beta_{i}\right\} r p_{i} \in D$ we construct a hyper rectangular region R_{i} in 3D where $R_{i}=\left[\operatorname{lnum}\left(\right.\right.$ lstate $\left.\left._{l p_{i}}\right)-1, \operatorname{lnum}(x)+1\right] \times\left[\operatorname{rnum}\left(\right.\right.$ rstate $\left._{r p_{i}}\right)-$ $1, \operatorname{rnum}(y)+1] \times\left[\alpha_{i}-1, \beta_{i}+1\right]$ where x is the rightmost leaf node in the subtree of lstate $_{l_{p_{i}}}$ in Lpfail, y is the rightmost leaf node in the subtree of rstate $_{r_{p i}}$ in Rpfail and α_{i}, β_{i} are the gap boundaries of P_{i}.

Lemma 8. Given the filled Locc, Rocc arrays, performing a Rectangular Stabbing query of point $(\operatorname{lnum}(\operatorname{Locc}[\ell])$, rnum $(\operatorname{Rocc}[\ell+g+1]), g)$ for $\alpha_{\min } \leq g \leq \beta_{\text {max }}$ where $\alpha_{\text {min }}=\min _{1 \leq i \leq d}\left\{\alpha_{i}\right\}, \beta_{\max }=\max _{1 \leq i \leq d}\left\{\beta_{i}\right\}$, yields all gapped patterns $P_{i} p$-matching text T, such that the occurrence of prev $\left(l p_{i}\right)$ ends at prev $(T[\ell])$ and there is a beginning of an occurrence of prev $\left(r p_{i}\right)$ after a gap of g characters.
, requires $O\left(\log ^{2} d+o c c\right)$ time and space of $O(d \log d)$, where d is the ed patterns and occ is the number of patterns reported as output.
e query point $(\operatorname{lnum}(\operatorname{Locc}[\ell])$, rnum $(\operatorname{Rocc}[\ell+g+1]), g)$, according $\left[a, a^{\prime}\right] \times\left[b, b^{\prime}\right] \times\left[c, c^{\prime}\right]$ are retrieved, where $a<\operatorname{lnum}(\operatorname{Locc}[\ell])<a^{\prime}$, $c[\ell+g+1])<b^{\prime}$ and $c<g<c^{\prime}$ holds. Suppose some $\operatorname{prev}\left(l p_{i}\right)$ ling at location ℓ and $\operatorname{prev}\left(r p_{i}^{R}\right)$ was located ending at location $\ell+$ is the query point is (lnum $\left(\right.$ lstate $\left._{l_{p_{i}}}\right)$, rnum $\left(\right.$ rstate $\left._{r_{p_{i}}}\right), g$). Obviously $-1<\operatorname{lnum}\left(\right.$ lstate $\left._{l p_{i}}\right)<\operatorname{lnum}(x)+1$, and rnum $\left(\right.$ rstate $\left._{r p_{i}}\right)-1<$ $\operatorname{rnum}\left(\right.$ rstate $\left._{r p_{i}}\right)<\operatorname{rnum}(y)+1$, when x, y are the rightmost leaves in the subtrees of rstate $_{l_{p_{i}}}$, rstate $_{r p_{i}}$ in Lpfail, Rpfail respectively, due to the preorder numbering. Hence, R_{i} is stabbed and P_{i} is reported if the gap length g between the subpatterns, is in accordance with boundaries α_{i} and β_{i}.

Another possible case is that $\operatorname{Locc}[\ell]=f, \operatorname{Rocc}[\ell+g+1]=h$ and $\operatorname{prev}\left(l p_{i}\right)$ is a suffix of the p-label of state f and $\operatorname{prev}\left(r p_{i}^{R}\right)$ is a suffix of the p-label of state h, thus P_{i} needs to be reported in case the gap fits. Since $\operatorname{prev}\left(l p_{i}\right)$ is a suffix of the p-label of state f, it follows that the state p-labeled by prev $\left(l p_{i}\right)$ is an ancestor of state f in the Lpfail trie, thus lnum $\left(\right.$ lstate $\left._{l_{p_{i}}}\right)<\operatorname{lnum}(f)$ due to the preorder numbering. Moreover, as f is included in the subtree rooted by lstate $_{l_{p_{i}}}$, we have that $\operatorname{lnum}(f)<\operatorname{lnum}\left(\right.$ the rightmost leaf in the subtree rooted by lstate $\left._{l p_{i}}\right)+1$. Similarly we have that $\operatorname{rnum}\left(\right.$ rstate $\left._{r_{p_{i}}}\right)<\operatorname{rnum}(h)$ and rnd tmost leaf in the subtree rooted by rstate $_{r_{i}}$) +1 . It follow ngle R_{i} is stabbed by the query point, if the gap of length g pattern is in accordance with boundaries α_{i} and β_{i}, thus P_{i} i

The time and space complexity of a query folld \quad g the case of d hyper rectangles in $3 D$, constructed in the pre

5.2 Results Calculation by Look-up Table

In case all gapped patterns share their gap boundaries and a query time is crucial, we suggest solving the intersection between the appearances of p-subpatterns using a lookup table named out, though it implies an increase in preprocessing time.

For an efficient filling of the lookup table, the subpatterns numbering has to satisfy the rule that the longer a subpattern, the higher its numbering, that is, $\operatorname{lnum}\left(\right.$ lstate $\left._{l_{p_{f}}}\right)>\operatorname{lnum}\left(\right.$ lstate $\left._{l_{p_{i}}}\right)$, (where lstate $e_{p_{i}}$ is the state p-labeled by prev $\left(l_{p_{i}}\right)$ in $L p A C)$ iff $\left|l p_{f}\right| \geq\left|l p_{i}\right|$. Similarly, rnum $\left(\right.$ rstate $\left._{r p_{h}}\right)>\operatorname{rnum}\left(\right.$ rstate $\left._{r p_{j}}\right)$, (where $r s t a t e_{r p_{j}}$ is the state p-labeled by $\operatorname{prev}\left(r p_{j}^{R}\right)$ in $\left.R p A C\right)$, iff $\left|r p_{h}\right| \geq\left|r p_{j}\right|$. The numbering system from the previous subsection can be used as well as a simple BFS traversal over $L p A C / R p A C$.

The look up table consists of accepting states, yet, Locc $[\ell]$ and $\operatorname{Rocc}[\ell+g+1]$ can include any state in each of the p-automata, thus for each state x in each of the p-automata, that is not an accepting state, we save accept (x) that is the accepting state with the longest p-label that is a suffix of the p-label of x. The accept (x) are calculated, by a BFS traversal over the automaton. When reaching state x that is not an accepting state, we consider its pfail link, where $\operatorname{pfail}(x)$ points to the longest p -labeled state that its p -label is a suffix of the p -label of x. In case $p f a i l(x)$ is an $\operatorname{accepting}$ state, then $\operatorname{accept}(x)=p f a i l(x)$, otherwise $\operatorname{accept}(x)=\operatorname{accept}(p f a i l(x))$.

For every accepting state lstate $_{l_{p_{i}}} \in L p A C$ we save a link psuf $\left(l_{i}\right)$ that leads to the lnum of an accepting state p-labeled by the longest $l p_{k}$ such that $\operatorname{prev}\left(l p_{k}\right)$ is a real suffix of $\operatorname{prev}\left(p_{i}\right)$, if it exists. We define $\operatorname{psuf}(x)=\operatorname{lnum}(\operatorname{pfail}(x))$ if $\operatorname{pfail}(x)$ is an accepting state and $\operatorname{psuf}(x)=\operatorname{lnum}(\operatorname{accept}(p f a i l(x)))$ otherwise. Similarly, for every accepting state rstate $_{r p_{j}} \in$ Right, we save a link $\operatorname{psuf}\left(r p_{i}^{R}\right)$ that leads to the rnum of an accepting state p-labeled by the longest $r p_{k}$ such that $\operatorname{prev}\left(r p_{k}^{R}\right)$ is a real suffix of $\operatorname{prev}\left(r p_{i}^{R}\right)$, if it exists. This link is similarly calculated in the Rpfail trie.

The out table is of size $d_{\text {left }} \times d_{\text {right }}$. Entry out $[f, h]$ refers to the set of all indices of gapped patterns that are reported when $\operatorname{prev}\left(l p_{i}\right)$ is the longest subpattern that appears at the suffix of $\operatorname{prev}(T[1 \ldots \ell])$ and $\operatorname{lnum}\left(\right.$ lstate $\left._{l_{p}}\right)=f$, and when $\operatorname{prev}\left(r p_{j}^{R}\right)$ is the longest subpattern that appears at the suffix of $\operatorname{prev}(T[n \ldots \ell+g+1])$, and rnum $\left(\right.$ lstate $\left._{r p_{j}}\right)=h$ and $\alpha \leq g \leq \beta$. The out table is recursively filled in increasing order of indices, where filling out $[f, h]$ entry implies filling four fields:

1. Index field, out $[f, h]$.index $=i$ iff $i=j$. (Note that at most one index can be saved at out $[f, h]$.index as two patterns are bound to differ by at least one subpattern, having a single set of gap boundaries.)
2. up link, where out $[f, h]$.up $=\left[f^{\prime}, h\right]$ iff $\operatorname{prev}\left(l p_{k}\right)$ is the longest suffix of $\operatorname{prev}\left(l p_{i}\right)$ where $f^{\prime}=\operatorname{lnum}\left(\right.$ lstate $\left._{l_{p_{k}}}\right)$ and $k=j$.
3. left link, where out $[f, h]$.left $=\left[f, h^{\prime}\right]$ iff $\operatorname{prev}\left(r p_{k}^{R}\right)$ is the longest sufix of $\operatorname{prev}\left(r p_{j}^{R}\right)$ where $h^{\prime}=\operatorname{rnum}\left(\right.$ rstate $\left._{r p_{k}}\right)$ and $k=i$.
4. back link, where out $[f, h]$. back $=\left[p s u f^{*}(f), p s u f^{*}(h)\right)$, where $p s u f^{*}(f)$ is the longest real suffix of $\operatorname{prev}\left(l p_{i}\right)$ and $p s u f^{*}(h)$ is the longest real suffix of $\operatorname{prev}\left(r p_{j}^{R}\right)$ such either $p s u f^{*}(f)$ or $p s u f^{*}(h)$ form a gapped pattern with a the suffix of the other. ($p s u f^{*}(f)$ can be obtained by recursively applying the psuf links.)
The lookup table is filled by the following formal recursive rule.

The Recursive Rule

$$
\begin{aligned}
& \text { out }[f, h] \cdot \text { up }= \begin{cases}{[p s u f(f), h]} & \text { if out }[p s u f(f), h] . \text { index } \neq \text { null } \\
\operatorname{out}[p s u f(f), h] \cdot \text { otherwise } & \text { other }\end{cases} \\
& \text { out }[f, h] \cdot \text { left }= \begin{cases}{[f, \operatorname{psuf}(h)]} & \text { if out }[f, p s u f(h)] . \text { index } \neq \text { null } \\
\text { out }[f, p s u f(h)] . l e f t & \text { otherwise }\end{cases} \\
& \text { out }[f, h] \cdot \text { back }=
\end{aligned}
$$

$$
\begin{cases}{[\operatorname{psuf}(f), \operatorname{psuf}(h)]} & \text { if } \text { out }[p s u f(f), p s u f(h)] \cdot \text { index } \neq \text { null } \\ & \text { or out }[p \operatorname{suf}(f), p s u f(h)] \cdot \text { up } \neq \text { null } \\ \text { out }[p s u f(f), p s u f(h)] \cdot b a c k \quad \text { or out }[p s u f(f), p s u f(h)] \cdot l e f t \neq \text { null }\end{cases}
$$

Considering $\operatorname{Locc}[\ell]=f, \operatorname{Rocc}[\ell+g+1]=h$, the results calculation is performed by consulting entry out $[f, h]$. We report out $[f, h]$.index if it exists, yet in order to report all relevant patterns, that their p-subpatterns are numbered by f or by h or that they are suffixes of the p-label of the states numbered by f, h, we follow the links saved at out $[f, h]$, as detailed in the procedure :
ResultsQuery (f, h):

1. If out $[f, h]$.index \neq null, report out $[f, h]$.index.
2. If out $[f, h]$.back \neq null

ResultsQuery (f^{\prime}, h^{\prime}) for $\left[f^{\prime}, h^{\prime}\right]=$ out $[f, h]$.back.
3. Let $f^{\prime} \leftarrow f, h^{\prime} \leftarrow h$.
4. While (out $\left[f^{\prime}, h\right] . u p \neq$ null).
(a) Let $\left[f^{\prime}, h\right]=$ out $\left[f^{\prime}, h\right] . u p$.
(b) Report out $\left[f^{\prime}, h\right]$.index.
5. While (out $\left[f, h^{\prime}\right] . l e f t \neq$ null $)$.
(a) Let $\left[f, h^{\prime}\right]=\operatorname{out}\left[f, h^{\prime}\right] . l e f t$.
(b) Report out $\left[f, h^{\prime}\right]$ index.

Lemma 10. The procedure ResultsQuery, given the gapped dictionary $D, \operatorname{Locc}[\ell]=$ $f, \operatorname{Rocc}[\ell+g+1]=h$ and the psuf function, reports all dictionary patterns appearing with gap of size g starting at $T[\ell+1]$.
Proof. Due to the construction of the pby f represents $\operatorname{prev}\left(l p_{i}\right)$ and all its suf certain $\operatorname{prev}\left(r p_{j}^{R}\right)$ and all its prefixes. Ac represented by these states are of maxin

In order to report all required patt $h \leq d_{\text {right }}$, has to contain links to all left subpattern is represented by the st represented by the state numbered h. T

1. Case 1: $l p_{i}$ and $r p_{j}$ form a pattern $P_{i},(\mathrm{i}=\mathrm{j})$ then out $[f, h] . i n d e x=i$ and this pattern is reported.
2. Case 2: $l p_{i}$ and $r p_{j}$ form a pattern P_{j}, and $\operatorname{prev}\left(l p_{j}\right)$ is a suffix of $\operatorname{prev}\left(l p_{i}\right)$. If $\operatorname{psuf}\left(l p_{i}\right)=\operatorname{lnum}\left(\right.$ lstate $\left._{l p_{j}}\right)$, then out $[f, h] \cdot u p=[p s u f(f), h]$, so we have a direct link to the entry containing pattern index j. If a shorter suffix of prev $\left(l p_{i}\right)$, whose state is numbered by f^{\prime}, forms a pattern with $\operatorname{prev}\left(r p_{j}\right)$, such a suffix is a suffix of the p-label of the state numbered by $p s u f\left(l p_{i}\right)$, where according to the numbering system psuf $\left(\right.$ lstate $\left._{l_{p_{i}}}\right)<\operatorname{lnum}\left(\right.$ lstate $\left._{l_{p_{i}}}\right)$, thus entry out $[p s u f(f), h]$.up was already computed, and includes a link to out $\left[f^{\prime}, h\right]$. Note, that in case several left p-subpatterns which are all suffixes of $\operatorname{prev}\left(l p_{i}\right)$ form a pattern with $r p_{j}$, it implies all these suffixes, include each other as suffixes, thus can be reached by recursively following up links starting from out $[p s u f(f), h]$.
3. Case 3: $l p_{i}$ and $r p_{i}$ form a pattern P_{i}, and $\operatorname{prev}\left(r p_{i}^{R}\right)$ is a suffix of $\operatorname{prev}\left(r p_{j}^{R}\right)$. If $\operatorname{psuf}\left(r p_{j}\right)=\operatorname{rnum}\left(\right.$ rstate $\left._{r p_{i}}\right)$, then out $[f, h]$.left $=[f, p s u f(h)]$, so we have a direct link to the entry containing pattern index i. If a shorter suffix of $\operatorname{prev}\left(r p_{j}^{R}\right)$, whose state is numbered by h^{\prime} forms a pattern with $\operatorname{prev}\left(l p_{i}\right)$, such a suffix is a suffix of the p-label of the state numbered by $p s u f\left(r p_{j}^{R}\right)$, where according to the numbering system, psuf(rstate $\left._{r p_{j}}\right)<\operatorname{rnum}\left(\right.$ rstate $\left._{r p_{j}}\right)$, thus entry out $[f, p s u f(h)]$.left was already computed, and includes a link to the out $\left[f, h^{\prime}\right]$. Note, that in case several right p-subpatterns which are all suffixes of $\operatorname{prev}\left(r p_{j}^{R}\right)$ form a pattern with $l p_{i}$, it implies all these subpatterns include each other as suffixes, thus can be reached by recursively following left links starting from out $[f, p s u f(h)]$.
4. Case 4: Some suffix of the prev of the subpattern numbered by f and some suffix of the prev of the reverse of subpattern numbered by h form gapped patterns. Note that it must be a real suffixes of the current subpatterns, as previous cases dealt with cases where $l p_{i}$ or $r p_{j}$ themselves where a part of reported patterns.
(a) In case $\operatorname{out}[p s u f(f), p s u f(h)]$.index \neq null the pattern index is reported.
(b) In case an out $[p s u f(f), p s u f(h)]$ has a non null $u p$ link it implies that a suffix (or some suffixes) of the p-label of the state numbered by $\operatorname{psuf}(f)$ forms a pattern with the the p-label of the state numbered by $p s u f(h)$, recursively going over these up links we report all these patterns.
(c) In case an out $[\operatorname{psuf}(f), \operatorname{psuf}(h)]$ has a non null left link it implies that a suffix (or some suffixes) of the p-label of the state numbered by $p s u f(h)$ forms a pattern with the p-label of the state numbered by $\operatorname{psuf}(f)$, recursively going over these left links we report all these patterns.
(d) In case no pattern is formed by the p-label of the states numbered by either $p s u f(f)$ nor $p s u f(h)$, it must be that the patterns are formed by shorter suffixes of the subpatterns represented by states numbered f, h. They may be formed by state numbered $\operatorname{psuf}(\operatorname{psuf}(f))$ and state numbered $\operatorname{psuf}(p s u f(h))$ or by even sorter suffixes, which is $\left[p s u f^{*}(f), p s u f^{*}(h)\right]$. Nevertheless, by the definition of the back link, the indices of the longest possible suffix of the p-label of the state numbered by $p s u f(f)$ and the longest suffix of p-label of the state numbered by $\operatorname{psuf}(h)$ which form a pattern, are saved in out $[\operatorname{psuf}(f), \operatorname{psuf}(h)]$.back , which was already computed, due to the numbering system, so we follow $\operatorname{out}[p s u f(f), p s u f(h)]$.back, where we will have a pattern index or a link to an up or a left entry containing a pattern index.

These observations, can be easily proved by induction.

Lemma 11. The construction of the out table requires $O\left(|D| \log |D|+d_{\text {left }} \times d_{\text {right }}\right)$ time and $O\left(d_{\text {left }} \times d_{\text {right }}\right)$ space. Performing a query on the out table regarding p subpatterns appearing adjacently to a gap starting at $T[\ell+1]$, requires $O(1+$ occ $)$ time, where occ is the number of patterns reported.

Proof. The preprocess requires numbering the accepting states of both p-AC automata and computing the accept and psuf links, all can be done by performing a BFS traversal over p-automata and the Lpfail, Rpfail tries, in linear time in the size of the p-automata and tries, $O(|D| \log |D|)$. Filling d out $[f, h]$ entries with index i when $\operatorname{lnum}\left(\right.$ lstate $\left._{l_{p_{i}}}\right)=f$ and $\operatorname{rnum}\left(\right.$ rstate $\left._{r p_{i}}\right)=h$, can be done in $O(d)$ time. Filling each of the entries of the table out $[f, h]$ can be performed in $O(1)$ by the recursive rule.

The table query procedure is based on following links and reporting indices found. Every step of following an up or left link implies that the linked entry contains a pattern index, needs to be reported. The back link either directs us to an entry including a pattern index, needs to be reported or it directs us to an entry containing an up or left links. Hence, by following at most two links we encounter an index needs to be reported. Consequently, the time of following links is attributed to the size of the output.

The lookup table has $d_{\text {left }} \times d_{\text {right }}$ entries, each consists of 4 fields, yielding $O\left(d_{l e f t} \times\right.$

6 Conclusions and Open Problems

This paper suggests the problem of dictionary matching with one gap where the matching technique is parameterized, a problem with tight relation to cyber security. The paper presents efficient and simple to program algorithms.

There are several interesting open problems related to the pDMOG problem, such as solving the DMOG problem for other methods of encrypted gapped patterns and solving the pDMG for patterns containing multiple gaps. Since the DMOG problem is a crucial bottleneck procedure in network intrusion detection system applications, these open problems should be addressed in the future.

References

1. P. Afshani, L. Arge, and K. G. Larsen: Higher-dimensional orthogonal range reporting and rectangle stabbing in the pointer machine model, in Symposuim on Computational Geometry 2012, SoCG '12, Chapel Hill, NC, USA, June 17-20, 2012, 2012, pp. 323-332.
2. A. V. Aho and M. J. Corasick: Efficient string matching: An aid to bibliographic search. Commun. ACM, 18(6) 1975, pp. 333-340.
3. A. Amir and G. Călinescu: Alphabet-independent and scaled dictionary matching. J. Algorithms, 36(1) 2000, pp. 34-62.
4. A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park: Dynamic dictionary matching. J. Comput. Syst. Sci., 49(2) 1994, pp. 208-222.
5. A. Amir, M. Farach, R. M. Idury, J. A. L. Poutré, and A. A. Schäffer: Improved dynamic dictionary matching. Inf. Comput., 119(2) 1995, pp. 258-282.
6. A. Amir, M. Farach, and S. Muthukrishnan: Alphabet dependence in parameterized matching. Inf. Process. Lett., 49(3) 1994, pp. 111-115.
7. A. Amir, D. Keselman, G. M. Landau, M. Lewenstein, N. Lewenstein, and M. Rodeh: Text indexing and dictionary matching with one error. J. Algorithms, 37(2) 2000, pp. 309-325.
8. A. Amir, T. Kopelowitz, A. Levy, S. Pettie, E. Porat, and B. R. Shalom: Mind the gap: Essentially optimal algorithms for online dictionary matching with one gap, in 27 th International Symposium on Algorithms and Computation, ISAAC 2016, December 12-14, 2016, Sydney, Australia, 2016, pp. 12:1-12:12.
9. A. Amir, A. Levy, E. Porat, and B. R. Shalom: Dictionary matching with a few gaps. Theor. Comput. Sci., 589 2015, pp. 34-46.
10. A. Amir, A. Levy, E. Porat, and B. R. Shalom: Online recognition of dictionary with one gap, in Proceedings of the Prague Stringology Conference 2017, Prague, Czech Republic, August 28-30, 2017, 2017, pp. 3-17.
11. B. S. BaKER: A theory of parameterized pattern matching: algorithms and applications, in Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 1618, 1993, San Diego, CA, USA, 1993, pp. 71-80.
12. B. S. Baker: Parameterized duplication in strings: Algorithms and an application to software maintenance. SIAM J. Comput., 26(5) 1997, pp. 1343-1362.
13. P. Bille, I. L. Gørtz, H. W. Vildhøj, and D. K. Wind: String matching with variable length gaps. Theor. Comput. Sci., 443 2012, pp. 25-34.
14. P. Bille and M. Thorup: Regular expression matching with multi-strings and intervals, in Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, 2010, pp. 1297-1308.
15. G. S. Brodal and L. Gasieniec: Approximate dictionary queries, in Combinatorial Pattern Matching, 7th Annual Symposium, CPM 96, Laguna Beach, California, USA, June 10-12, 1996, Proceedings, 1996, pp. 65-74.
16. S. Deguchi, F. Higashijima, H. Bannai, S. Inenaga, and M. Takeda: Parameterized suffix arrays for binary strings, in Proceedings of the Prague Stringology Conference 2008, Prague, Czech Republic, September 1-3, 2008, 2008, pp. 84-94.
17. P. Ferragina and R. Grossi: The string b-tree: A new data structure for string search in external memory and its applications. J. ACM, 46(2) 1999, pp. 236-280.
18. A. Ganguly, W. Hon, K. Sadakane, R. Shah, S. V. Thankachan, and Y. Yang: Spaceefficient dictionaries for parameterized and order-preserving pattern matching, in 27th Annual Symposium on Combinatorial Pattern Matching, CPM 2016, June 27-29, 2016, Tel Aviv, Israel, 2016, pp. 2:1-2:12.
19. A. Ganguly, W. Hon, and R. Shah: A framework for dynamic parameterized dictionary matching, in 15th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2016, June 22-24, 2016, Reykjavik, Iceland, 2016, pp. 10:1-10:14.
20. T. Haapasalo, P. Silvasti, S. Sippu, and E. Soisalon-Soininen: Online dictionary matching with variable-length gaps, in Experimental Algorithms - 10th International Symposium, SEA 2011, Kolimpari, Chania, Crete, Greece, May 5-7, 2011. Proceedings, 2011, pp. 76-87.
21. W. Hon, T. W. Lam, R. Shah, S. V. Thankachan, H. Ting, and Y. Yang: Dictionary matching with a bounded gap in pattern or in text. Algorithmica, 80(2) 2018, pp. 698-713.
22. R. M. Idury and A. A. Schäffer: Multiple matching of parametrized patterns. Theor. Comput. Sci., 154(2) 1996, pp. 203-224.
23. O. Keller, T. Kopelowitz, and M. Lewenstein: On the longest common parameterized subsequence. Theor. Comput. Sci., 410(51) 2009, pp. 5347-5353.
24. M. Krishnamurthy, E. S. Seagren, R. Alder, A. W. Bayles, J. Burke, S. Carter, and E. Faskha: How to cheat at securing linux, in Syngress Publishing, Inc., Elsevier, Inc, 2008, pp. 1-432.
25. G. Kucherov and M. Rusinowitch: Matching a set of strings with variable length don't cares. Theor. Comput. Sci., 178(1-2) 1997, pp. 129-154.
26. M. Lewenstein: Parameterized pattern matching, in Encyclopedia of Algorithms, 2016, pp. 1525-1530.
27. J. Mendivelso and Y. Pinzón: Parameterized matching: Solutions and extensions, in Proceedings of the Prague Stringology Conference 2015, Prague, Czech Republic, August 24-26, 2015, 2015, pp. 118-131.
28. M. S. Rahman, C. S. Iliopoulos, I. Lee, M. Mohamed, and W. F. Smyth: Finding patterns with variable length gaps or don't cares, in Computing and Combinatorics, 12 th Annual International Conference, COCOON 2006, Taipei, Taiwan, August 15-18, 2006, Proceedings, 2006, pp. 146-155.
29. M. Zhang, Y. Zhang, and L. Hu: A faster algorithm for matching a set of patterns with variable length don't cares. Inf. Process. Lett., 110(6) 2010, pp. 216-220.
