A Formal Framework for Stringology

Neerja Mhaskar ${ }^{1}$ and Michael Soltys ${ }^{2}$
${ }^{1}$ McMaster University
Dept. of Computing \& Software 1280 Main Street West
Hamilton, Ontario L8S 4K1, CANADA pophlin@mcmaster.ca
${ }^{2}$ California State University Channel Islands
Dept. of Computer Science One University Drive Camarillo, CA 93012, USA
michael.soltys@csuci.edu

Abstract

A new formal framework for Stringology is proposed, which consists of a three-sorted logical theory \mathcal{S} designed to capture the combinatorial reasoning about finite words. A witnessing theorem is proven which demonstrates how to extract algorithms for constructing strings from their proofs of existence. Various other applications of the theory are shown. The long term goal of this line of research is to introduce the tools of Proof Complexity to the analysis of strings.

Keywords: proof complexity, string algorithms

1 Introduction

Finite strings are an object of intense scientific interest. This is due partly to their intricate combinatorial properties, and partly to their eminent applicability to such diverse fields as genetics, language processing, and pattern matching. Many techniques have been developed over the years to prove properties of finite strings, such as suffix arrays, border arrays, and decomposition algorithms such as Lyndon factorization. However, there is no unifying theory or framework, and often the results consist in clever but ad hoc combinatorial arguments. In this paper we propose a unifying theory of strings based on a three sorted logical theory, which we call \mathcal{S}. By engaging in this line of research, we hope to bring the richness of the advanced field of Proof Complexity to Stringology, and eventually create a unifying theory of strings.

The great advantage of this approach is that proof theory integrates proofs and computations; this can be beneficial to Stringology as it allows us to extract efficient algorithms from proofs of assertions. More concretely, if we can prove in \mathcal{S} a property of strings of the form: "for all strings V, there exists a string U with property α," i.e., $\exists U \leq t \alpha(U, V)$, then we can n actual algorithm which computes U for any given V. For e every string has a certain decompo from the proof for computing such

For a background on Proof Com of the subject; we follow its metho We also use some rudimentary λ-ca language.
e show that \mathcal{S} proves that lally extract a procedure
ins a complete treatment or defining our theory \mathcal{S}. string constructors in our

2 Formalizing the theory of finite strings

We propose a three sorted theory that formalizes the reasoning about finite strings. We call our theory \mathcal{S}. The three sorts are indices, symbols, and strings. We start by defining a convenient and natural language for making assertions about strings.

2.1 The language of strings \mathcal{L}_{S}

Definition 1. $\mathcal{L}_{\mathcal{S}}$, the language of strings, is defined as follows:

$$
\begin{gathered}
\mathcal{L}_{\mathcal{S}}=\left[0_{\text {index }}, 1_{\text {index }},+_{\text {index }},-_{\text {index }}, \cdot \cdot_{\text {index }}, \operatorname{div}_{\text {index }}, \mathrm{rem}_{\text {index }},\right. \\
\left.0_{\text {symbol }}, \sigma_{\text {symbol }}, \text { cond }_{\text {symbol }}, \|_{\text {string }}, e_{\text {string }} ;<_{\text {index }},==_{\text {index }} \ll_{\text {symbol }},==_{\text {symbol }},==_{\text {string }}\right]
\end{gathered}
$$

The table below explains the intended meaning of each symbol.

Formal	:Infor	Intended Meaning	
Index			
$0_{\text {index }}$	¢	the integer zero	
$1_{\text {index }}$	1	the integer one	
$+_{\text {index }}$	+	integer addition	
$-_{\text {index }}$	-	bounded integer subtraction	
${ }^{\text {index }}$		integer multiplication (we also just use juxtaposition)	
$\operatorname{div}_{\text {index }}$	div	integer division	
$\mathrm{rem}_{\text {index }}$	rem	remainder of integer division	
$<$ index	<	less-than for integers	
$=_{\text {index }}$:=	equality for integers	
Alphabet symbol			
$0_{\text {symbol }}$	-0	default symbol in every alphabet	
$\sigma_{\text {symbol }}$	σ	unary function for generating more symbols	
$<_{\text {symbol }}$	<	ordering of alphabet symbols	
cond $_{\text {symbol }}$		a conditional function	
$=_{\text {symbol }}$: $=$	equality for alphabet symbols	
String			
$\\|_{\text {string }}$! 1	unary function for string length	
$e_{\text {string }}$	e	binary fn. for extracting the i-th symbol from a string	
$=_{\text {string }}$: $=$	istring equality	

Note that in practice we use the informal language symbols as otherwise it would be tedious to write terms, but the meaning will be clear from the context. When we write $i \leq j$ we abbreviate the formula $i<j \vee i=j$.

2.2 Syntax of \mathcal{L}_{S}

We use metavariables i, j, k, l, \ldots to denote indices, metavariables u, v, w, \ldots to denote alphabet symbols, and metavariables U, V, W, \ldots to denote strings. When a variable can be of any type, i.e., a meta-meta variable, we write it as $x, y, z \ldots$ We are going to use t to denote an index term, for example $i+j$, and we are going to use s to denote a symbol term, for example $\sigma \sigma \sigma \mathbf{0}$. We let T denote string terms. We are going to use Greek letters $\alpha, \beta, \gamma, \ldots$ to denote formulas.

Definition 2. $\mathcal{L}_{\mathcal{S}}$-Terms are defined by structural induction as follows:

1. Every index variable is a term of type index (index term).
2. Every symbol variable is a term of type symbol (symbol term).
3. Every string variable is a term of type string (string term).
4. If t_{1}, t_{2} are index terms, then so are $\left(t_{1} \circ t_{2}\right)$ where $\circ \in\{+,-, \cdot\}$, and $\operatorname{div}\left(t_{1}, t_{2}\right)$, $\operatorname{rem}\left(t_{1}, t_{2}\right)$.
5. If s is a symbol term then so is σs.
6. If T is a string term, then $|T|$ is an index term.
7. If t is an index term, and T is a string term, then $e(T, t)$ is a symbol term.
8. All constant functions ($0_{\text {index }}, 1_{\text {index }}, \mathbf{0}_{\text {symbol }}$) are terms.

We are going to employ the lambda operator λ for building terms of type string; we want our theory to be constructive, and we want to have a method for constructing bigger strings from smaller ones.

Definition 3. Given a term t of type index, and given a term s of type symbol, then the following is a term T of type string:

$$
\lambda i\langle t, s\rangle .
$$

$$
\neg \alpha,(\alpha \wedge \beta),(\alpha \vee \beta), \forall x \alpha, \exists x \alpha
$$

We are interested in a restricted mode of quantification. We say that an index quantifier is bounded if it is of the form $\exists i \leq t$ or $\forall i \leq t$, where t is a term of type index and i does not occur free in t. Similarly, we say that a string quantifier is bounded if it is of the form $\exists U \leq t$ or $\forall U \leq t$, where this means that $|U| \leq t$ and U does not occur in t.

Definition 5. Let Σ_{0}^{B} be the set of $\mathcal{L}_{\mathcal{S}}$-formulas without string or symbol quantifiers, where all index quantifiers (if any) are bounded. For $i>0$, let $\Sigma_{i}^{B}\left(\Pi_{i}^{B}\right)$ be the set of $\mathcal{L}_{\mathcal{S}}$ formulas of the form: once the formula is put in prenex form, there are i alternations of bounded string quantifiers, starting with an existential (universal) one, and followed by a Σ_{0}^{B} formula.

Given a formula α, and two terms s_{1}, s_{2} of type symbol, then $\operatorname{cond}\left(\alpha, s_{1}, s_{2}\right)$ is a term of type symbol. We want our theory to be strong enough to prove interesting theorems, but not too strong so that proofs yield feasible algorithms. For this reason we will restrict the α in the $\operatorname{cond}\left(\alpha, s_{1}, s_{2}\right)$ to be Σ_{0}^{B}. Thus, given such an α and
assignments of values to its free variables, output the appropriate s_{i}, in polytime -

The alphabet symbols are as follows, function σ allows us to generate as many a to abbreviate these symbols as $\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma$ an alphabet of size three would be given inducing a standard lexicographic ordering. We m of any size in the language, rather than a fixed cor us to formalize arguments of the type: given a part show that such strings require alphabets of a giver

2.3 Semantics of \mathcal{L}_{S}

We denote a structure for \mathcal{L}_{S} with \mathcal{M}. A structure terms, and truth values to the formulas. We base our preser start with a non-empty set M called the universe. The variab to range over M. Since our theory is three sorted, the unive I denotes the set of indices, Σ the set of alphabet symbols,

We start by defining the semantics for the three 0 -ary (co

$$
0_{\text {index }}^{\mathcal{M}} \in I, \quad 1_{\text {index }}^{\mathcal{M}} \in I, \quad 0_{\text {symbol }}^{\mathcal{M}} \in \Sigma
$$

for the two unary function symbol:

$$
\sigma_{\text {symbol }}^{\mathcal{M}}: \Sigma \longrightarrow \Sigma, \quad \|_{\text {string }}^{\mathcal{M}}: S \longrightarrow I,
$$

for the six binary function symbols:

$$
\begin{gathered}
+_{\text {index }}^{\mathcal{M}}: I^{2} \longrightarrow I, \quad \underset{\text { index }}{\mathcal{M}}: I^{2} \longrightarrow I, \quad \begin{array}{l}
\text { index } \\
\operatorname{div}_{\text {index }}^{\mathcal{M}}
\end{array}: I^{2} \longrightarrow I, \quad I^{2} \longrightarrow I \\
\operatorname{rem}_{\text {index }}^{\mathcal{M}}: I^{2} \longrightarrow I, \quad e_{\text {string }}^{\mathcal{M}}: S \times I \longrightarrow \Sigma .
\end{gathered}
$$

With the function symbols defined according to \mathcal{M}, we now associate relations with the predicate symbols, starting with the five binary predicates:

$$
<_{\text {index }}^{\mathcal{M}} \subseteq I^{2}, \quad=_{\mathrm{index}}^{\mathcal{M}} \subseteq I^{2}, \quad<_{\text {symbol }}^{\mathcal{M}} \subseteq \Sigma^{2}, \quad=_{\mathrm{symbol}}^{\mathcal{M}} \subseteq \Sigma^{2}, \quad=_{\mathrm{string}}^{\mathcal{M}} \subseteq S^{2}
$$

and finally we define the conditional function as follows: $\operatorname{cond}_{\text {symbol }}^{\mathcal{M}}\left(\alpha, s_{1}, s_{2}\right)$ evaluates to $s_{1}^{\mathcal{M}}$ if $\alpha^{\mathcal{M}}$ is true, and to $s_{2}^{\mathcal{M}}$ otherwise.

Note that $=^{\mathcal{M}}$ must always evaluate to true equality for all types; that is, equality is hardwired to always be equality. However, all other function symbols and predicates can be evaluated in an arbitrary way (that respects the given arities).

Definition 6. An object assignment τ for a structure \mathcal{N} is a mapping from variables to the universe $M=(I, \Sigma, S)$, that is, M consists of three sets that we call indices, alphabet symbols, and strings.

The three sorts are related to each other in that S can be seen as a function from I to Σ, i.e., a given $U \in S$ is just a function $U: I \longrightarrow \Sigma$. In Stringology we are interested in the case where a given U may be arbitrarily long but it maps I to a relatively small set of Σ : for example, binary strings map into $\{0,1\} \subset \Sigma$. Since the range of U is relatively small this leads to interesting structural questions about the mapping: repetitions and patterns.

We start by defining τ on tern then $\tau(m / x)$ denotes the object as $\in M$ and x is a variable, x must evaluate to m.

We define the evaluation of a te on the definition of terms given variable x. We must now define ol t, t_{1}, t_{2} are index terms, s is a sym specify that the variable
 -], by structural induction $[\tau]$ is just $\tau(x)$, for each the functions. Recall that g term.

$$
\left(t_{1} \circ_{\text {index }} t_{2}\right.
$$

where $\circ \in\{+,-, \cdot\}$ and

$$
\begin{aligned}
\left(\operatorname{div}\left(t_{1}, t_{2}\right)\right)^{\mathcal{M}}[\tau] & =\operatorname{div}^{\mathfrak{M}}\left(t_{1}^{\mathfrak{M}}[\tau], t_{2}^{\mathcal{M}}[\tau]\right) \\
\left(\operatorname{rem}\left(t_{1}, t_{2}\right)\right)^{\mathfrak{M}}[\tau] & =\operatorname{rem}^{\mathfrak{M}}\left(t_{1}^{\mathcal{M}}[\tau], t_{2}^{\mathcal{M}}[\tau]\right)
\end{aligned}
$$

and for symbol terms we have:

$$
(\sigma s)^{\mathfrak{M}}[\tau]=\sigma^{\mathfrak{M}}\left(s^{\mathfrak{M}}[\tau]\right)
$$

Finally, for string terms:

$$
\begin{gathered}
|\mathrm{T}|^{\mathfrak{M}}[\tau]=\left|\left(\mathrm{T}^{\mathfrak{M}}[\tau]\right)\right| \\
(\mathrm{e}(T, t))^{\mathfrak{M}}[\tau]=\mathrm{e}^{\mathfrak{M}}\left(T^{\mathfrak{M}}[\tau], t^{\mathfrak{M}}[\tau]\right) .
\end{gathered}
$$

Given a formula α, the notation $\mathcal{M} \vDash \alpha[\tau]$, which we read as " \mathcal{M} satisfies α under $\tau "$ is also defined by structural induction. We start with the basis case:

$$
\mathcal{M} \vDash\left(s_{1}<_{\text {symbol }} s_{2}\right)[\tau] \Longleftrightarrow\left(s_{1}^{\mathcal{M}}[\tau], s_{2}^{\mathcal{M}}[\tau]\right) \in<_{\text {symbol }}^{\mathcal{M}}
$$

We deal with the other atomic predicates in a similar way:

$$
\begin{gathered}
\mathcal{M} \vDash\left(t_{1}<_{\text {index }} t_{2}\right)[\tau] \Longleftrightarrow\left(t_{1}^{\mathcal{M}}[\tau], t_{2}^{\mathcal{M}}[\tau]\right) \in<_{\text {index }}^{\mathcal{M}}, \\
\mathcal{M} \vDash\left(t_{1}=_{\text {index }} t_{2}\right)[\tau] \Longleftrightarrow t_{1}^{\mathcal{M}}[\tau]=t_{2}^{\mathcal{M}}[\tau], \\
\mathcal{M} \vDash\left(s_{1}=_{\text {symbol }} s_{2}\right)[\tau] \Longleftrightarrow s_{1}^{\mathcal{M}}[\tau]=s_{2}^{\mathcal{M}}[\tau], \\
\mathcal{M} \vDash\left(T_{1}=_{\text {string }} T_{2}\right)[\tau] \Longleftrightarrow T_{1}^{\mathcal{M}}[\tau]=T_{2}^{\mathcal{M}}[\tau] .
\end{gathered}
$$

Now we deal with Boolean connectives:

$$
\begin{gathered}
\mathcal{M} \vdash(\alpha \wedge \beta)[\tau] \Longleftrightarrow \mathcal{M} \vDash \alpha[\tau] \text { and } \mathcal{M} \vDash \beta[\tau], \\
\mathcal{M} \vdash \neg \alpha[\tau] \Longleftrightarrow \mathcal{M} \nvdash \alpha[\tau], \\
\mathcal{M} \vdash(\alpha \vee \beta)[\tau] \Longleftrightarrow \mathcal{M} \vDash \alpha[\tau] \text { or } \mathcal{M} \vDash \beta[\tau] .
\end{gathered}
$$

Finally, we show how to deal with quantifiers, where the object assignment τ plays a crucial role:

$$
\begin{gathered}
\mathcal{M} \vDash(\exists x \alpha)[\tau] \Longleftrightarrow \mathcal{M} \vDash \alpha[\tau(m / x)] \text { for some } m \in M, \\
\mathcal{M} \vDash(\forall x \alpha)[\tau] \Longleftrightarrow \mathcal{M} \vDash \alpha[\tau(m / x)] \text { for all } m \in M .
\end{gathered}
$$

Definition 7. Let $\mathbb{S}=(\mathbb{N}, \Sigma, S)$ denote the standard model for strings, where \mathbb{N} are the standard natural numbers, including zero, $\Sigma=\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots\right\}$ where the alphabet symbols are the ordered sequence $\sigma_{0}<\sigma_{1}<\sigma_{2}, \ldots$, and where S is the set of functions $U: I \longrightarrow \Sigma$, and where all the function and predicate symbols get their standard interpretations.

Lemma 8. Given any formula $\alpha \in \Sigma_{0}^{B}$, and a particular object assignment τ, we can verify $\mathbb{\mathbb { S }} \vDash \alpha[\tau]$ in polytime in the lengths of the strings and values of the indices in α.

Proof. We first show that evaluating a term t, i.e., computing $t \underline{\mathbb{S}}[\tau]$, can be done in polytime. We do this by structural induction on t. If t is just a variable then there are three cases: $i, u, U, i^{\mathbb{S}}[\tau]=\tau(i) \in \mathbb{N}, u^{\mathbb{S}}[\tau]=\tau(u) \in \Sigma$, and $U^{\mathbb{S}}[\tau]=\tau(U) \in S$. Note that the assumption is that computing $\tau(x)$ is for free, as τ is given as a table which states which free variable gets replaced by what concrete value. Recall that all index values are assumed to be given in unary, and all the function operations we have are clearly polytime in the values of the arguments (index addition, subtraction, multiplication, etc.).

Now suppose that we have an atomic formula such as $\left(t_{1}<t_{2}\right)^{\mathbb{S}}[\tau]$. We already established that $t_{1}^{\mathbb{S}}[\tau]$ and $t_{2}^{\mathbb{S}}[\tau]$ can be computed in polytime, and comparing integers can also be done in polytime. Same for other atomic formulas, and the same holds for Boolean combinations of formulas. What remains is to consider quantification; but we are only allowed bounded index quantification: $(\exists i \leq t \alpha)^{\mathbb{S}}[\tau]$, and $(\exists i \leq t \alpha)^{\mathbb{S}}[\tau]$. This is equivalent to computing:

$$
\bigvee_{j=0}^{t^{\mathbb{S}}[\tau]} \alpha^{\mathbb{S}}[\tau(j / i)], \text { and } \bigwedge_{j=0}^{t^{\mathbb{S}}[\tau]} \alpha^{\mathbb{S}}[\tau(j / i)] .
$$

Clearly this can be done in polytime.

2.4 Examples of string constructors

The string 000 can be represented by:

$$
\lambda i\langle 1+1+1, \mathbf{0}\rangle .
$$

Given an integer n, let \hat{n} abbreviate the term $1+1+\cdots+1$ consisting of n many 1 s . Using this convenient notation, a string of length 8 of alternating 1 s and 0 s can be represented by:

$$
\lambda i\langle\hat{8}, \operatorname{cond}(\exists j \leq i(j+j=i), \mathbf{0}, \sigma \mathbf{0})\rangle .
$$

Note that this example illustrates that indices are going to be effective unary; this is fine as we are proposing a theory for strings, and so una an encoding that is linear in the length of the string. The same point i

> be encoded in unary, because the main and the complexity is measured in the es are proportional to those lengths. ous ways to represent the same string; e written thus:

$$
\begin{equation*}
\mathrm{l}(\exists j \leq i(j+j=i+1), \sigma \mathbf{0}, \mathbf{0})\rangle . \tag{3}
\end{equation*}
$$

For convenience, we define the empty string ε as follows:

$$
\varepsilon:=\lambda i\langle 0, \mathbf{0}\rangle .
$$

Let U be a binary string, and suppose that we want to define \bar{U}, which is U with every 0 (denoted $\mathbf{0}$) flipped to 1 (denote $\sigma \mathbf{0}$), and every 1 flipped to 0 . We can define \bar{U} as follows:

$$
\bar{U}:=\lambda i\langle | U \mid, \operatorname{cond}(e(U, i)=\mathbf{0}, \sigma \mathbf{0}, \mathbf{0}\rangle
$$

We can also define a string according to properties of positions of indices; suppose we wish to define a binary string of length n which has one in all positions which are multiples of 3 :

$$
U_{3}:=\lambda i\langle\hat{n}, \operatorname{cond}(\exists j \leq n(i=j+j+j), \sigma \mathbf{0}, \mathbf{0})\rangle
$$

Note that both \bar{U} and U_{3} are defined with the conditional function where the formula α conforms to the restriction: variables are either free (like U in \bar{U}), or, if quantified, all such variables are bounded and of type index (like j in U_{3}).

Note that given a string $W,|W|$ is its length. However, we number the positions of a string starting at zero, and hence the last position is $|W|-1$. For $j \geq|W|$ we are going to define a string to be just 0 s.

Suppose we want to define the reverse of a string, namely if $U=u_{0} u_{1} \cdots u_{n-1}$, then its reverse is $U^{R}=u_{n-1} u_{n-2} \cdots u_{0}$. Then,

$$
U^{R}:=\lambda i\langle | U|, e(U,(|U|-1)-i)\rangle,
$$

and the concatenation of two strings, which we denote as ".", can be represented as follows:

$$
\begin{equation*}
U \cdot V:=\lambda i\langle | U|+|V|, \operatorname{cond}(i<|U|, e(U, i), e(V, i-|U|))\rangle \tag{4}
\end{equation*}
$$

2.5 Axi

We assum true equal

Since
axioms as coma-sepe
ndard equality axioms which assert that equality is) we won't give those axioms explicitly.
e rules of Gentzen's calculus, LK, we present the at is, they are of the form $\Gamma \rightarrow \Delta$, where Γ, Δ are That is, a sequent is of the form:

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \rightarrow \beta_{1}, \beta_{2}, \ldots, \beta_{m}
$$

where n or m (or both) may be zero, that is, Γ or Δ (or both) may be empty. The semantics of sequents is as follows: a s ny structure \mathcal{M} that satisfies all the formulas in Γ, satisfies at Boolean connectives this can be state a and $1 \leq j \leq m$.

The index axioms are the same as 2axioms (B7 and B15, B8 and B16) to de and remainder functions. Keep in mind $\rightarrow \alpha$, and so, for readability we sometim
. Using the standard β_{j}, where $1 \leq i \leq n$ lus we add four more n, as well as division uivalent to a sequent

Index Axioms		
B1. $i+1 \neq 0$	B9. $i \leq j, j \leq i \rightarrow i=j$	
B2. $i+1=j+1 \rightarrow i=j$	B10. $i \leq i+j$	
B3. $i+0=i$	B11. $0 \leq i$	
B4. $i+(j+1)=(i+j)+1$ B12. $i \leq j \vee j \leq i$ B5. $i \cdot 0=0$ B13. $i \leq j \leftrightarrow i<j+1$ B6. $i \cdot(j+1)=(i \cdot j)+i$ B14. $i \neq 0 \rightarrow \exists j \leq i(j+1=i)$ B7. $i \leq j, i+k=j \rightarrow j-i=k$ B15. $i \not \leq j \rightarrow j-i=0$ B8. $j \neq 0 \rightarrow \operatorname{rem}(i, j)<j$ B16. $j \neq 0 \rightarrow i=j \cdot \operatorname{div}(i, j)+\operatorname{rem}(i, j)$		

The alphabet axioms express that the alphabet is totally ordered according to " $<$ " and define the function cond.

Alphabet Axioms
B17. $u \varsubsetneqq \sigma u$
B18. $u<v, v<w \rightarrow u<w$
B19. $\alpha \rightarrow \operatorname{cond}(\alpha, u, v)=u$
B20. $\neg \alpha \rightarrow \operatorname{cond}(\alpha, u, v)=v$

Note that α in cond is a formula with the following restrictions: it only allows bounded index quantifiers and hence evaluates to true or false once all free variables have been assigned values. Hence cond always yields the symbol term s_{1} or the symbol term s_{2}, according to the truth value of α.

Note that the alphabet symbol type is defined by four axioms, B17-B20, two of which define the cond function. These four axioms define symbols to be ordered "place holders" and nothing more. This is consistent with alphabet symbols in classical Stringology, where there are no operations defined on them (for example, we do not add or multiply alphabet symbols).

Finally, these are the axioms governing strings:

String Axioms
B21. $\|\lambda i\langle t, s\rangle\|=t$
B22. $j<t \rightarrow e(\lambda i\langle t, s\rangle, j)=s(j / i)$
B23. $\|U\| \leq j \rightarrow e(U, j)=\mathbf{0}$
B24. $\|U\|=\|V\|, \forall i<\|U\| e(U, i)=e(V, i) \rightarrow U=V$

Note that axioms B22-24 define the structure of a string. In our theory, a string can be given as a variable, or it can be constructed. Axiom B21 defines the length of the constructed strings, and axiom B22 shows that if j is less than the length of the string, then the symbol in position j is given by substituting j for all the free occurrences of i in s; this is the meaning of $s(j / i)$. On the other hand, B23 says that if j is greater or equal to the length of a string, then $e(U, j)$ defaults to $\mathbf{0}$. The last axioms, B24, says that if two strings U and V have the same length, and the corresponding symbols are equal, then the two strings are in fact equal.

In axiom B24 there are three types of equalities, from left to right: index, symbol, and string, and so B24 is the axiom that ties all three sorts together. Note that formally strings are infinite ordered sequences of alphabet symbols. But we conclude that they are equal based on comparing finitely many entries $(\forall i<|U| e(U, i)=$ $e(V, i))$. This works because by B23 we know that for $i \geq|U|, e(U, i)=e(V, i)=\mathbf{0}$ (since $|U|=|V|$ by the assumption in the antecedent). A standard string of length n is an object of the form:

$$
\sigma_{i_{0}}, \sigma_{i_{1}}, \ldots, \sigma_{i_{n-1}}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \ldots,
$$

i.e., an infinite string indexed by the natural numbers, where there is a position so that all the elements greater than that position are $\mathbf{0}$.

A rich source of insight is to consider non-standard models of a given theory. We have described $\underline{\mathbb{S}}$, the standard theory of strings, which is intended to capture the mental constructs that Stringologists have in mind when working on problems in this field. It would be very interesting to consider non-standard strings that satisfy all the axioms, and yet are not the "usual" object.

2.6 The rules of \mathcal{S}

We use the Gentzen's predicate calculus, LK, as pr

Weak structural rules

exchange-left: $\frac{\Gamma_{1}, \alpha, \beta, \Gamma_{2} \rightarrow \Delta}{\Gamma_{1}, \beta, \alpha, \Gamma_{2} \rightarrow \Delta}$

$$
\text { exchange-righu. } \Gamma \rightarrow \Delta_{1}, \beta, \alpha, \Delta_{2}
$$

contraction-left: $\frac{\alpha, \alpha, \Gamma \rightarrow \Delta}{\alpha, \Gamma \rightarrow \Delta}$
contraction-right: $\frac{\Gamma \rightarrow \Delta, \alpha, \alpha}{\Gamma \rightarrow \Delta, \alpha}$
weakening-left: $\frac{\Gamma \rightarrow \Delta}{\alpha, \Gamma \rightarrow \Delta}$
weakening-right: $\frac{\Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta, \alpha}$
Cut rule $\frac{\Gamma \rightarrow \Delta, \alpha \quad \alpha, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta}$

Rules for introducing connectives

$$
\begin{array}{ll}
\text { ᄀ-left: } \frac{\Gamma \rightarrow \Delta, \alpha}{\neg \alpha, \Gamma \rightarrow \Delta} & \text { ᄀ-right: } \frac{\alpha, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta, \neg \alpha} \\
\text { ^-left: } \frac{\alpha, \beta, \Gamma \rightarrow \Delta}{\alpha \wedge \beta, \Gamma \rightarrow \Delta} & \wedge \text {-right: } \frac{\Gamma \rightarrow \Delta, \alpha \Gamma \rightarrow \Delta, \beta}{\Gamma \rightarrow \Delta, \alpha \wedge \beta} \\
\text { V-left: } \frac{\alpha, \Gamma \rightarrow \Delta \quad \beta, \Gamma \rightarrow \Delta}{\alpha \vee \beta, \Gamma \rightarrow \Delta} & \text { }- \text {-right: } \frac{\Gamma \rightarrow \Delta, \alpha, \beta}{\Gamma \rightarrow \Delta, \alpha \vee \beta}
\end{array}
$$

Rules for introducing quantifiers

\forall-left: $\frac{\alpha(t), \Gamma \rightarrow \Delta}{\forall x \alpha(x), \Gamma \rightarrow \Delta}$
\forall-right: $\frac{\Gamma \rightarrow \Delta, \alpha(b)}{\Gamma \rightarrow \Delta, \forall x \alpha(x)}$
\exists-left: $\frac{\alpha(b), \Gamma \rightarrow \Delta}{\exists x \alpha(x), \Gamma \rightarrow \Delta}$
\exists-right: $\frac{\Gamma \rightarrow \Delta, \alpha(t)}{\Gamma \rightarrow \Delta, \exists x \alpha(x)}$

Note that b must be free in Γ, Δ.

Induction rule

$$
\text { Ind: } \frac{\Gamma, \alpha(i) \rightarrow \alpha(i+1), \Delta}{\Gamma, \alpha(0) \rightarrow \alpha(t), \Delta}
$$

where i does not occur free in Γ, Δ, and t is any term of type index. By restricting the quantifier structure of α, we control the strength of this induction. We call Σ_{i}^{B}-Ind to be the induction rule where α is restricted to be in Σ_{i}^{B}. We are mainly interested in Σ_{i}^{B}-Ind where $i=0$ or $i=1$.

Definition 9. Let S_{i} to be the set of formulas (sequents) derivable from the axioms B1-24 using the rules of LK, where the α formula in cond is restricted to be in Σ_{0}^{B} and where we use Σ_{i}^{B}-Ind.

and by axioms B1-16 we can prove that $\hat{8}=\hat{2} \cdot \hat{4}$ (the reader is encouraged to fill in the details), and so we can conclude by transitivity of equality (equality is always true equality) that:
$|\lambda i\langle\hat{8}, \operatorname{cond}(\exists j \leq i(j+j=i), \mathbf{0}, \sigma \mathbf{0})\rangle|=|\lambda i\langle\hat{2} \cdot \hat{4}, \operatorname{cond}(\exists j \leq i(j+j=i+1), \sigma \mathbf{0}, \mathbf{0})\rangle|$.
Now we have to show that:

3 Witnessing theorem for \mathcal{S}

Recall that \mathcal{S}_{1} is our string theory restricted to Σ_{1}^{B}-Ind. For convenience, we sometimes use the notation bold-face V, \boldsymbol{V}, to denote several string variables, i.e., $\boldsymbol{V}=$ $V_{1}, V_{2}, \ldots, V_{\ell}$.

We now prove the main theorem of the paper, showing that if we manage to prove in \mathcal{S}_{1} the existence of a string U with some given properties, then in fact we can construct such a string with a polytime algorithm.

we have:

$$
\exists \text {-right: } \frac{|T| \leq t, \Gamma \rightarrow \Delta, \alpha(T, \boldsymbol{V}, \boldsymbol{i})}{\Gamma \rightarrow \Delta, \exists U \leq t \alpha(U, \boldsymbol{V}, \boldsymbol{i})}
$$

which is the \exists-right rule adapted to the case of bounded string quantification. We use \boldsymbol{V} to denote all the free string variables, and \boldsymbol{i} to denote explicitly all the free index variables. Then U

Note that f is po done in polytime

The induction order to make all

$$
\begin{array}{ll}
& {[\tau(\boldsymbol{A} / \boldsymbol{V})(\boldsymbol{b} / \boldsymbol{i})] .} \\
& \text { under } \underline{\mathbb{S}} \text { and any object } \\
& \text { involved. We restate th } \\
& \text { explicit: } \\
& \exists U \leq t \alpha(U, \boldsymbol{V}, i+1, \boldsymbol{j}) \\
U \leq t, \alpha(U, \boldsymbol{V}, 0, \boldsymbol{j}) \rightarrow \exists U \leq t \alpha\left(U, \boldsymbol{V}, t^{\prime}, \boldsymbol{j}\right)
\end{array}
$$ under \mathbb{S} and any object assignment can by involved. We restate the rule as follows in

where we ignore Γ, Δ for clarity, and we ignore existential quantifiers on the left side, as it is quantifiers on the right side that we are interested in witnessing. The algorithm is clear: suppose we have a U such that $\alpha(U, \boldsymbol{V}, 0, \boldsymbol{V})$ is satisfied. Use top of rule to compute U 's for $i=1,2, \ldots, t \mathbb{S}[\tau]$.

4 Application of \mathcal{S} to Stringology

In this section we state various basic Stringology constructions as \mathcal{L}_{S} formulas.

4.1 Subwords

The prefix, suffix, and subword are basic constructs of a given string V. They can be given easily as $\mathcal{L}_{\mathcal{S}}$-terms as follows: $\lambda k\langle i, e(V, k)\rangle, \lambda k\langle i, e(V,|V|-i+1+k)\rangle$, and since any subword is the prefix of some suffix, it can also be given easily.

We can state that U is a prefix of V with the Σ_{0}^{B} predicate:

$$
\operatorname{pre}(U, V):=\exists i \leq|V|(U=\lambda k\langle i, e(V, k)\rangle),
$$

The predicates for $\operatorname{suffix} \operatorname{suf}(U, V)$ and $\operatorname{subword} \operatorname{sub}(U, V)$ predicates can be defined with Σ_{0}^{B} formulas in a similar way.

4.2 Counting symbols

Suppose that we want to count the number of occurrences of a particular symbol σ_{i} in a given string U; this can be defined with the notation $(U)_{\sigma_{i}}$, but we need to define this function with a new axiom (it seems that the language given thus far is not suitable for defining $(U)_{\sigma_{i}}$ with a term). First, define the projection of a string U according to σ_{i} as follows:

$$
\left.U\right|_{\sigma_{i}}:=\lambda k\langle | U\left|, \operatorname{cond}\left(e(U, k)=\sigma_{i}, \sigma_{1}, \sigma_{0}\right)\right\rangle
$$

That is, $\left.U\right|_{\sigma_{i}}$ is effectively a binary string with 1 s where U had σ_{i}, and 0 s everywhere else, and of the same length as U. Thus, counting σ_{i} 's in U is the same as counting 1's in $\left.U\right|_{\sigma_{i}}$. Given a binary string V, we define $(V)_{\sigma_{1}}$ as follows:

$$
\begin{array}{ll}
\mathrm{C} 1 . & |V|=0 \rightarrow(V)_{\sigma_{1}}=0 \\
\mathrm{C} 2 . & |V| \geq 1, e(V, 0)=\sigma_{0} \rightarrow(V)_{\sigma_{1}}=(\lambda i\langle | V|-1, e(V, i+1)\rangle)_{\sigma_{1}} \\
\mathrm{C} 3 . & |V| \geq 1, e(V, 0)=\sigma_{1} \rightarrow(V)_{\sigma_{1}}=1+(\lambda i\langle | V|-1, e(V, i+1)\rangle)_{\sigma_{1}}
\end{array}
$$

Having defined $(U)_{\sigma_{1}}$ with axioms C1-3, and $\left.U\right|_{\sigma_{i}}$ as a term in $\mathcal{L}_{\mathcal{S}}$, we can now define $(U)_{\sigma_{i}}$ as follows: $\left(\left.U\right|_{\sigma_{i}}\right)_{\sigma_{1}}$. Note that C1-3 are Σ_{0}^{B} sequents.

4.3 Borders and border arrays

Suppose that we want to define a border array. First define the border predicate which asserts that the string V has a border of size i; note that by definition a border is a (proper) prefix equal to a (proper) suffix. So let:

$$
\operatorname{Brd}(V, i):=\lambda k\langle i, e(V, k)\rangle=\lambda k\langle i, e(V,|V|-i+1+k)\rangle \wedge i<|V|,
$$

We now want to state that i is the largest possible border size:

$$
\operatorname{MaxBrd}(V, i):=\operatorname{Brd}(V, i) \wedge(\neg \operatorname{Brd}(V, i+1) \vee|U|=|V|-1)
$$

Thus, if we want to define the function $\operatorname{BA}(V, i)$, which is the border array for V indexed by i, we can define it by adding the following as an axiom:

$$
\operatorname{Max} \operatorname{Brd}(\lambda k\langle i, e(V, k)\rangle, \operatorname{BA}(V, i))
$$

```
y
r the definition of a period of a string, but for our purpose let us be a period of \(V\) if \(V=U^{r} U^{\prime}\) where \(U^{\prime}\) is some prefix, possibly Periodicity Lemma state the following: Suppose that \(p\) and \(q\) are \(|V|=n\), and \(d=\operatorname{gcd}(p, q)\). Then, if \(p+q \leq n+d\), then \(d\) is also a
```

Let $\operatorname{Prd}(V, p)$ be true if p is a period of the string V. Note that U is a border of a string V if and only if $p=|V|-|U|$ is a period of V. Using this observation we can define the predicate for a period as a Σ_{0}^{B} formula:

$$
\operatorname{Prd}(V, p):=\exists i<|V|(p=|V|-i \wedge \operatorname{Brd}(V, i))
$$

We can state with a Σ_{0}^{B} formula that $d=\operatorname{gcd}(i, j): \operatorname{rem}(d, i)=\operatorname{rem}(d, j)=0$, and $\operatorname{rem}\left(d^{\prime}, i\right)=\operatorname{rem}\left(d^{\prime}, j\right)=0 \supset d^{\prime} \leq d$. We can now state the Periodicity Lemma as the sequent $\mathrm{PL}(V, p, q)$ where all formulas are Σ_{0}^{B} :

$$
\operatorname{Prd}(V, p), \operatorname{Prd}(V, q), \exists d \leq p(d=\operatorname{gcd}(p, q) \wedge p+q \leq|V|+d) \rightarrow \operatorname{Prd}(V, d)
$$

Lemma 12. $\mathcal{S}_{0} \vdash \operatorname{PL}(V, p, q)$.
Proof. The proof relies on a formalization of the observation stated above linking periods and borders.

4.5 Regular and context-free strings

We are now going to show that regular languages can be defined with a Σ_{1}^{B} formula. This means that given any regular language, descril ision R, there exists a Σ_{1}^{B} formula Ψ_{R} such that $\Psi_{R}(U) \Longleftrightarrow$
Lemma 13. Regular languages can be defined with a

Proof. We have already defined concatenation of two
till need ated as:

$$
\begin{aligned}
& \Psi(U, V, W):=W=U \cdot V \\
& \Psi_{\cup}(U, V, W):=(W=U \vee W=V) \\
& \Psi_{*}(U, W):=\exists i \leq|W|(W=\lambda i\langle i \cdot| u|, e(U, \operatorname{rem}(i,|U|))\rangle)
\end{aligned}
$$ to define the operation of union and Kleene's star. Al

Now we show that R can be represented with a Σ_{1}^{B} formula by structural induction on the definition of R. The basis case is simple as the possibilities for R are as follows: a, ε, σ, and they can be represented with $W=a,|W|=0,0=1$, respectively.

For the induction step, consider R defined from $R_{1} \cdot R_{2}, R_{1} \cup R_{2}$ and $\left(R_{1}\right)^{*}$:

$$
\begin{aligned}
R=R_{1} \cdot R_{2} & \exists U_{1} \leq|W| \exists U_{2} \leq|W|\left(\Psi_{R_{1}}\left(U_{1}\right) \wedge \Psi_{R_{2}}\left(U_{2}\right) \wedge \Psi\left(U_{1}, U_{2}, W\right)\right) \\
R=R_{1} \cup R_{2} & \exists U_{1} \leq \\
R=\left(R_{1}\right)^{*} & \exists U_{1} \leq
\end{aligned}
$$

Thus, we obtain a Σ_{1}^{B} forml
Note that in the proof the string quantifiers are bo intermediate strings in the c
Lemma 14. Context-free ld
iff $W \in L(R)$.
put $\Psi_{R}(W)$ in prenex form all can be viewed as "witnessing"

Proof. Use Chomsky's normal form and the CYK algorithm.

beautiful interplay between Stringology and be strengthened to say that evaluating $\mathcal{L}_{\mathcal{S}^{-}}$ polytime. As was mentioned in the paper, rises from the fact that a string U is a map e, while Σ is small. This produces repetitions Stringology. On the other hand, Proof rsions of the Pigeonhole Principle that two may enrich each other. Finally, w can this be ref
at it usually requ
ion of the Witnes
composition of a
s precisely so the
Since $\sigma_{0}<\sigma_{1}$
predicate $U<$
$V \mid\left(V<_{\text {lex }} \lambda k\langle \right.$ could be carried out naturally in our theory. Since $\sigma_{0}<\sigma_{1}<$ define a lexicographic ord
Lyndon word with a $\Sigma_{0}^{B} \mathrm{f}$ a Lyndon decomposition if each V_{i} Elex $^{\text {l }} V_{1}$. The existence of a Lyndon 1.4.9], and we assert that the proof rclude that the actual decomposition iis approach provides a deep insight is a Lyndon word, and decomposition can be prc itself can be formalized in can be computed in polyt into the nature of strings

References

1. S. R. Buss: An introduction to proof theory, in Handbook of Proof Theory, S. R. Buss, ed., North Holland, 1998, pp. 1-78.
2. S. R. Buss and M. Soltys: Unshuffling a square is NP-hard. Journal of Computer and System Sciences, 80(4) 2013, pp. 766-776.
3. S. A. Cook and P. Nguyen: Logical Foundations of Proof Complexity, Cambridge Univeristy Press, 2010.
4. B. Smyth: Computing Patterns in Strings, Pearson Education, 2003.
5. M. Soltys: A model-theoretic proof of the completeness of LK proofs, Tech. Rep. CAS-06-05-MS, McMaster University, 1999.
6. M. Soltys and S. Cook: The proof complexity of linear algebra. Annals of Pure and Applied Logic, 130(1-3) December 2004, pp. 207-275.
