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Abstra
t. In 1990 Manber & Myers proposed suÆx arrays as a spa
e-saving

alternative to suÆx trees and des
ribed the �rst algorithms for suÆx array


onstru
tion and use. Sin
e that time, and espe
ially in the last few years, suf-

�x array 
onstru
tion algorithms have proliferated in bewildering abundan
e.

This survey paper attempts to provide simple high-level des
riptions of these

numerous algorithms that highlight both their distin
tive features and their


ommonalities, while avoiding as mu
h as possible the 
omplexities of imple-

mentation details. We also provide 
omparisons of the algorithms' worst-
ase

time 
omplexity and use of additional spa
e, together with results of re
ent

experimental test runs on many of their implementations.

1 Introdu
tion

SuÆx arrays were introdu
ed in 1990 by Manber & Myers [MM90, MM93℄, along

with algorithms for their 
onstru
tion and use as a spa
e-saving alternative to suÆx

trees. In the intervening �fteen years there have 
ertainly been hundreds of resear
h

arti
les published on the 
onstru
tion and use of suÆx trees and their variants. Over

that period, it has been shown that

� pra
ti
al spa
e-eÆ
ient suÆx array 
onstru
tion algorithms (SACAs) exist that

require worst-
ase time linear in string length [KA03, KS03℄;

� SACAs exist that are even faster in pra
ti
e, though with supralinear worst-
ase


onstru
tion time requirements [LS99, BK03, MF04, M05℄;

�
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� any problem whose solution 
an be 
omputed using suÆx trees is solvable with

the same asymptoti
 
omplexity using suÆx arrays [AKO04℄.

Thus suÆx arrays have be
ome the data stru
ture of 
hoi
e for many, if not all, of

the string pro
essing problems to whi
h suÆx tree methodology is appli
able.

In this survey paper we do not attempt to 
over the entire suÆx array literature.

Our more modest goal is to provide an overview of SACAs, in parti
ular those modeled

on the eÆ
ient use of main memory | we ex
lude the substantial literature (for

example, [CF02℄) that dis
usses strategies based on the use of se
ondary storage.

Further, we deal with the 
onstru
tion of 
ompressed (\su

in
t") suÆx arrays only

insofar as they relate to standard SACAs. For example, algorithms su
h as those of

Grossi et al. and referen
es therein [GGV04℄ are not 
overed.

Se
tion 2 provides an overview of the SACAs known to us, organized into a \tax-

onomy" based primarily on the methodology used. As with all 
lassi�
ation s
hemes,

there is room for argument: there are many 
ross-
onne
tions between algorithms

that o

ur in disjoint subtrees of the taxonomy, just as there may be between spe
ies

in a biologi
al taxonomy. Our aim is to provide as 
omprehensive and, at the same

time, as a

essible a des
ription of SACAs as we 
an.

Also in Se
tion 2 we present the vo
abulary to be used for the stru
tured des
rip-

tion of ea
h of the algorithms that will be given in Se
tion 3. Then in Se
tion 4, we

report on the results of experimental results on many of the algorithms des
ribed and

so draw 
on
lusions about their relative speed and spa
e-eÆ
ien
y.

2 Overview

We 
onsider throughout a �nite nonempty string x = x[1::n℄ of length n � 1,

de�ned on an indexed alphabet �; that is,

� the letters �

j

; j = 1; 2; : : : ; � of j�j are ordered: �

1

< �

2

< � � � < �

�

;

� an array A[�

1

::�

�

℄ 
an be de�ned in whi
h, for every j 2 1::�, A[�

j

℄ is a

essible

in 
onstant time;

� �

�

��

1

2 O(n).

Essentially, we assume that � 
an be treated as a sequen
e of integers whose range is

not too large. Typi
ally, the �

j

may be represented by ASCII 
odes 0::255 (English

alphabet) or binary integers 00::11 (DNA) or simply bits, as the 
ase may be. We

shall generally assume that a letter 
an be stored in a byte and that n 
an be stored

in one 
omputer word (four bytes).

The use of terminology not de�ned here follows [S03℄.

We are interested in 
omputing the suÆx array of x, whi
h we write SA

x

or

just SA; that is, an array SA[1::n℄ in whi
h SA[j℄ = i i� x[i::n℄ is the j

th

suÆx of

x in (as
ending) lexi
ographi
al order (lexorder). For simpli
ity we will frequently

refer to x[i::n℄ simply as \suÆx i"; also, it will often be 
onvenient for pro
essing to

in
orporate into x at position n an ending sentinel $ assumed to be less than any �

j

.

Then, for example, on alphabet � = f$; a; b; 
; d; eg:
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1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a 
 a d a b e a $

SA = 12 11 8 1 4 6 9 2 5 7 10 3

Thus SA tells us that x[12::12℄ = $ is the least suÆx, x[11::12℄ = a$ the se
ond least,

and so on (alphabeti
al ordering of the letters assumed). Note that SA is always a

permutation of 1::n.

Often used in 
onjun
tion with SA

x

is the l
p array l
p[1::n℄: for every j 2 2::n,

l
p[j℄ is just the longest 
ommon pre�x of suÆxes SA[j�1℄ and SA[j℄. In our

example:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a 
 a d a b e a $

SA = 12 11 8 1 4 6 9 2 5 7 10 3

l
p = � 0 1 4 1 1 0 3 0 0 0 2

Thus the longest 
ommon pre�x of suÆxes 11 and 8 is 1, that of suÆxes 8 and 1

is 4. Sin
e l
p 
an be 
omputed in linear time from SA

x

[KLAAP01, M04℄, also as a

byprodu
t of some of the SACAs dis
ussed below, we do not 
onsider its 
onstru
tion

further in this paper. However, the average l
p | that is, the average l
p of the

n�1 integers in the l
p array | is as we shall see a useful indi
ator of the relative

eÆ
ien
y of 
ertain SACAs, notably Algorithm S.

We remark that both SA and l
p 
an be 
omputed in linear time by a preorder

traversal of a suÆx tree.

Many of the SACAs also make use of the inverse suÆx array, written ISA

x

or ISA: an array ISA[1::n℄ in whi
h

ISA[i℄ = j () SA[j℄ = i:

ISA[i℄ = j therefore says that suÆx i has rank j in lexorder. Continuing our example:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a 
 a d a b e a $

ISA = 4 8 12 5 9 6 10 3 7 11 2 1

Thus ISA tells us that suÆx 1 has rank 4 in lexorder, suÆx 2 rank 8, and so on. Note

that ISA is also a permutation of 1::n, and so SA and ISA are 
omputable, one from

the other, in �(n) time:

for j  1 to n do

SA

�

ISA[j℄

�

 j

As shown in Figure 1, this 
omputation 
an if required also be done in pla
e.

Many of the algorithms we shall be des
ribing depend upon a partial sort of some

or all of the suÆxes of x, partial be
ause it is based on an ordering of the pre�xes

of these suÆxes that are of length h � 1. We refer to this partial ordering as an

h-ordering of suÆxes into h-order, and to the pro
ess itself as an h-sort. If two

or more suÆxes are equal under h-order, we say that they have the same h-rank

and therefore fall into the same h-group; they are a

ordingly said to be h-equal.

Usually an h-sort is stable, so that any previous ordering of the suÆxes is retained

within ea
h h-group.
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for j  1 to n do

i SA[j℄

| Negative entries already pro
essed

if i > 0 then

j

0

; j

0

 j

repeat

temp  SA[i℄; SA[i℄ �j

0

j

0

 i; i temp

until i = j

0

SA[i℄ �j

0

else

SA[j℄ �i

Figure 1: Algorithm for 
omputing ISA from SA in pla
e

The results of an h-sort are often stored in an approximate suÆx array, written

SA

h

, and/or an approximate inverse suÆx array, written ISA

h

. Here is the result of

a 1-sort on all the suÆxes of our example string:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a 
 a d a b e a $

SA

1

= 12 (1 4 6 8 11) (2 9) 5 7 (3 10)

ISA

1

= 2 7 11 2 9 2 10 2 7 11 2 1

or 6 8 12 6 9 6 10 6 8 12 6 1

or 2 3 6 2 4 2 5 2 3 6 2 1

The parentheses in SA

1

en
lose 1-groups not yet redu
ed to a single entry, thus not

yet in �nal sorted order. Note that SA

h

retains the property of being a permutation of

1::n, while ISA

h

may not. Depending on the requirements of the parti
ular algorithm,

ISA

h

may as shown express the h-rank of ea
h h-group in various ways:

� the leftmost position j in SA

h

of a member of the h-group, also 
alled the head

of the h-group;

� the rightmost position j in SA

h

of a member of the h-group, also 
alled the tail

of the h-group;

� the ordinal left-to-right 
ounter of the h-group in SA

h

.

Compare the result of a 3-sort:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a 
 a d a b e a $

SA

3

= 12 11 (1 8) 4 6 (2 9) 5 7 10 3

ISA

3

= 3 7 12 5 9 6 10 3 7 11 2 1

or 4 8 12 5 9 6 10 4 8 11 2 1

or 3 6 10 4 7 5 8 3 6 9 2 1

Observe that an (h+1)-sort is a re�nement of an h-sort: all members of an (h+1)-

group belong to a single h-group.
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We now have available a vo
abulary suÆ
ient to 
hara
terize the main spe
ies of

SACA as follows.

(1) Pre�x-Doubling

First a fast 1-sort is performed (sin
e � is indexed, bu
ket sort 
an be used);

this yields SA

1

/ISA

1

. Then for every h = 1; 2; : : :, SA

2h

/ISA

2h

are 
omputed

in �(n) time from SA

h

/ISA

h

until every 2h-group is a singleton. The time

required is therefore O(n logn). There are two algorithms in this 
lass: MM

[MM90, MM93℄ and LS [S98, LS99℄.

(2) Re
ursive

Form strings x

0

and y from x, then show that if SA

x

0

is 
omputed, therefore

SA

y

and �nally SA

x


an be 
omputed in O(n) time. Hen
e the problem of


omputing SA

x

0

re
ursively repla
es the 
omputation of SA

x

. Sin
e jx

0

j is

always 
hosen so as to be less than 2jxj=3, the overall time requirement of these

algorithms is �(n). There are three main algorithms in this 
lass: KA [KA03℄,

KS [KS03℄ and KJP [KJP04℄.

(3) Indu
ed Copying

The key insight here is the same as for the re
ursive algorithms | a 
omplete sort

of a sele
ted subset of suÆxes 
an be used to \indu
e" a 
omplete sort of other

subsets of suÆxes. The approa
h however is nonre
ursive: an eÆ
ient suÆx

sorting te
hnique (for example, [BM93, MBM93, M97, BS97, SZ04℄) is invoked

for the sele
ted subset of suÆxes. The general idea seems to have been �rst

proposed by Burrows & Wheeler [BW94℄, but it has been implemented in quite

di�erent ways [IT99, S00, MF04, SS05, BK03, M05℄. In general, these methods

are very eÆ
ient in pra
ti
e, but may have worst-
ase asymptoti
 
omplexity

as high as O(n

2

logn).

The goal is to design SACAs that

� have minimal asymptoti
 
omplexity �(n);

� are fast \in pra
ti
e" (that is, on 
olle
tions of large real-world data sets su
h

as [H04℄);

� are lightweight | that is, use a small amount of working storage in addition

to the 5n bytes required by x and SA

x

.

To date none of the SACAs that has been proposed a
hieves all of these obje
tives.

Figure 2 presents our taxonomy of the fourteen spe
ies of SACA that have been

re
ognized so far; Table 1 summarizes their time and spa
e requirements.
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Figure 2: Taxonomy of suÆx array 
onstru
tion algorithms

Table 1: Performan
e summary of the 
onstru
tion algorithms. Speed is relative to

MF, the fastest in our experiments, and Memory is given in the number of bytes

required in
luding spa
e required for the suÆx array and input.

Algorithm Worst Case Speed Memory

Pre�x-Doubling

MM [MM93℄ O(n logn) 16 8n

LS [LS99℄ O(n logn) 1.7 8n

Re
ursive

KA [KA03℄ O(n) 2.2 13-14n

KS [KS03℄ O(n) 2.8 10-13n

KSPP [KSPP03℄ O(n) � {

HSS [HSS03℄ O(n) � {

KJP [KJP04℄ O(n log logn) 2.1 13-16n

Indu
ed Copying

IT [IT99℄ O(n

2

logn) 4 5n

S [S00℄ O(n

2

logn) 2.1 5n

BK [BK03℄ O(n logn) 2.1 5-6n

MF [MF04℄ O(n

2

logn) 1 5n

SS [SS05℄ O(n

2

) 1 9-10n

M [M05℄ O(n

2

logn) 1 5-7n

SuÆx Tree

K [K99℄ O(n log�) 4 15-20n

6



A Taxonomy of SuÆx Array Constru
tion Algorithms

3 The Algorithms

3.1 Pre�x-Doubling Algorithms [KMR72℄

Here we 
onsider algorithms that, given an h-order SA

h

of the suÆxes of x, h � 1,


ompute a 2h-order in O(n) time. Thus pre�x-doubling algorithms require at most

log

2

n steps to 
omplete the suÆx sort and exe
ute in O(n logn) time in the worst


ase.

Normally pre�x-doubling algorithms initialize SA

1

for h = 1 using a linear-time

bu
ket sort. The main idea [KMR72℄ is as follows:

Observation 1. Suppose that SA

h

and ISA

h

have been 
omputed for some h > 0,

where i = SA

h

[j℄ is the j

th

suÆx in h-order and h-rank[i℄ = ISA

h

[i℄. Then a sort

using the integer pairs

�

ISA

h

[i℄; ISA

h

[i+h℄

�

as keys, i+h � n, 
omputes a 2h-order of the suÆxes i. (SuÆxes i > n�h are

ne
essarily already fully ordered.)

The two main pre�x-doubling algorithms di�er primarily in their appli
ation of

this observation:

� Algorithm MM does an impli
it 2h-sort by performing a left-to-right s
an of

SA

h

that indu
es the 2h-rank of SA

h

[j℄�h, j = 1; 2; : : : ; n;

� Algorithm LS expli
itly sorts ea
h h-group using the ternary-split qui
ksort

(TSQS) of Bentley & M
Ilroy [BM93℄.

Manber & Myers [MM90, MM93℄

Algorithm MM employs Observation 1 as follows:

If SA

h

is s
anned left to right (thus in h-order of the suÆxes), j =

1; 2; : : : ; n, then the suÆxes

i�h = SA

h

[j℄�h > 0

are ne
essarily s
anned in 2h-order within their respe
tive h-groups in SA

h

.

After the bu
ket sort that forms SA

1

, MM 
omputes ISA

1

by spe
ifying as the h-rank

of ea
h suÆx i in SA

1

the leftmost position in SA

1

(the head) of its group:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a 
 a d a b e a $

SA

1

= 12 (1 4 6 8 11) (2 9) 5 7 (3 10)

ISA

1

= 2 7 11 2 9 2 10 2 7 11 2 1

To form SA

2

, we 
onsider positive values of i�1 = SA

1

[j℄�h for j = 1; 2; : : : ; n:

� for j = 1; 7; 8; 9; 10, identify in 2-order the suÆxes 11; (1; 8); 4; 6 beginning

with a;
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� for j = 11; 12, identify in 2-order the 2-equal suÆxes (2; 9) beginning with b;

� for j = 3; 6, identify in 2-order the 2-equal suÆxes (3; 10) beginning with e.

Of 
ourse groups that are singletons in SA

1

remain singletons in SA

2

, and so, after

relabeling the groups, we get

1 2 3 4 5 6 7 8 9 10 11 12

SA

2

= 12 11 (1 8) 4 6 (2 9) 5 7 (3 10)

ISA

2

= 3 7 11 5 9 6 10 3 7 11 2 1

To form SA

4

, we 
onsider positive values of i�2 = SA

2

[j℄�h for j = 1; 2; : : : ; n:

� for j = 11; 12, we identify in 4-order the 4-equal suÆxes (1; 8) beginning with ab;

� for j = 2; 5, we identify in 4-order the 4-distin
t suÆxes 9; 2 beginning with be;

� for j = 1; 9, we identify in 4-order the 4-distin
t suÆxes 10; 3 beginning with ea.

Hen
e:

1 2 3 4 5 6 7 8 9 10 11 12

SA

4

= 12 11 (1 8) 4 6 9 2 5 7 10 3

ISA

4

= 3 8 12 5 9 6 10 3 7 11 2 1

The �nal SA = SA

8

and ISA = ISA

8

are a
hieved after one further doubling that

separates the abea's (1; 8) into 8; 1.

AlgorithmMM is 
ompli
ated by the requirement to keep tra
k of the head of ea
h

h-group, but 
an nevertheless be implemented using as few as 4n bytes of storage, in

addition to that required for x and SA. It 
an be represented 
on
eptually as shown

in Figure 3.

A time- and spa
e-eÆ
ient implementation of MM is available at [M97℄.

h 1

initialize SA

1

, ISA

1

while some h-group not a singleton

for j  1 to n do

i SA

h

[j℄�h

if i > 0 then

q  head

�

h-group[i℄

�

SA

2h

[q℄ i

head

�

h-group[i℄

�

 q+1


ompute ISA

2h

| update 2h-groups

h 2h

Figure 3: Algorithm MM
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Larsson & Sadakane [S98, LS99℄

After using TSQS to form SA

1

, Algorithm LS 
omputes ISA

1

using the rightmost

(rather than, as in Algorithm MM, the leftmost) position of ea
h group in SA

1

to

identify h-rank[i℄.

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a 
 a d a b e a $

SA

1

= 12 (1 4 6 8 11) (2 9) 5 7 (3 10)

ISA

1

= 6 8 12 6 9 6 10 6 8 12 6 1

In addition to identifying h-groups in SA

h

that are not singletons, LS also identi�es

runs of 
onse
utive positions that are singletons (fully sorted). For this purpose an

array L = L[1::n℄ is maintained, in whi
h L[j℄ = ` (respe
tively, �`) if and only if j

is the leftmost position in SA

h

of an h-group (respe
tively, run) of length `:

1 2 3 4 5 6 7 8 9 10 11 12

L = �1 5 2 �2 2

Left-to-right pro
essing of L thus allows runs to be skipped and non-singleton h-groups

to be identi�ed, in time proportional to the total number of runs and h-groups. TSQS

is again used to sort the suÆxes i in ea
h of the identi�ed h-groups a

ording to keys

ISA

h

[i+h℄, thus yielding, by Observation 1, a 
olle
tion of subgroups and subruns in

2h-order. A straightforward update of L and ISA then yields stage 2h:

1 2 3 4 5 6 7 8 9 10 11 12

SA

2

= 12 11 (1 8) 4 6 (2 9) 5 7 (3 10)

ISA

2

= 4 8 12 5 9 6 10 4 8 12 2 1

L = �2 2 �2 2 �2 2

A further doubling yields

1 2 3 4 5 6 7 8 9 10 11 12

SA

4

= 12 11 (1 8) 4 6 9 2 5 7 10 3

ISA

4

= 4 8 12 5 9 6 10 4 7 11 2 1

L = �2 2 �8

and then the �nal results SA

8

and ISA

8

are a
hieved as for Algorithm MM, with

L[1℄ = �12.

Observe that, like MM, LS maintains ISA

2h

[i℄ = ISA

h

[i℄ for every suÆx i that is

a singleton in its h-group. However, unlike MM, LS avoids having to pro
ess every

position in SA

h

(see the for loop in Figure 3) by virtue of its use of the array L |

in fa
t, on
e for some h, i is identi�ed as a singleton, SA

h

[i℄ is never a

essed again.

We now remark that in fa
t L 
an be eliminated! L is not required to determine

non-singleton h-groups be
ause for every suÆx i in su
h a group, ISA

h

[i℄ is by de�ni-

tion the rightmost position in the group. Thus, in parti
ular, at the leftmost position

j of the h-group, where i = SA

h

[j℄, we 
an 
ompute the length ` of the group from

` = ISA

h

[i℄�j+1. Of 
ourse L also keeps tra
k of runs of fully sorted suÆxes in SA

h

,

9
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but, as just remarked, positions in SA

h


orresponding to su
h runs are thereafter un-

used | it turns out that they 
an be re
y
led to perform the run-tra
king role. This

implementation requires that SA

h

be re
onstru
ted from ISA

h

in order to provide the

�nal output, a straightforward pro
edure (see Se
tion 2).

Algorithm LS thus requires 4n additional bytes of storage (the integer array ISA),

just like MM. As shown in [LS99℄, LS exe
utes in O(n logn) time, again the same as

MM; however, in pra
ti
e its running time is usually several times faster.

3.2 Re
ursive Algorithms [F97℄

In this se
tion we 
onsider a family of algorithms that were all dis
overed in 2003

or later, that are re
ursive in nature, and that generally exe
ute in worst-
ase time

linear in string length. All are based on an idea �rst put forward by Fara
h [F97℄ for

linear-time suÆx tree 
onstru
tion of strings on an indexed alphabet: they depend on

an initial assignment of type to ea
h suÆx (position) in x that separates the suÆxes

into two or more 
lasses. Thus the re
ursion in all 
ases is based on a split of the

given string x = x

(0)

into disjoint (or almost disjoint) 
omponents (subsequen
es)

that are transformed into strings we 
all x

(1)

and y

(1)

, 
hosen so that, if SA

x

(1)

is

(re
ursively) 
omputed, then in linear time

� SA

x

(1)


an be used to indu
e 
onstru
tion of SA

y

(1)

, and furthermore

� SA

x

(0)


an then also be 
omputed by a merge of SA

x

(1)

and SA

y

(1)

.

Thus the 
omputation of SA

x

(0)

(in general, SA

x

(i)

) is redu
ed to the 
omputation

of SA

x

(1)

(in general, SA

x

(i+1)

). To make this strategy eÆ
ient and e�e
tive, two

requirements need to be met.

1. At ea
h re
ursive step, ensure that

jx

(i+1)

j

Æ

jx

(i)

j � f < 1;

thus the sum of the lengths of the strings pro
essed by all re
ursive steps is

jxj(1+f+f

2

+: : :) < jxj=

�

1�f):

In fa
t, over all the algorithms proposed so far, f � 2=3, so that the sum of the

lengths is guaranteed to be less than 3jxj | for most of them � 2jxj.

2. Devise an approximate suÆx-sorting pro
edure, semisort say, that for some

suÆ
iently short string x

(i+1)

will yield a 
omplete sort of its suÆxes and thus

terminate the re
ursion, allowing the suÆxes of x

(i)

;x

(i�1)

; : : : ;x

(0)

all to be

sorted in turn. Ensure moreover that the time required for semisort is linear in

the length of the string being pro
essed.

Clearly suÆx-sorting algorithms satisfying the above des
ription will 
ompute SA

x

(or equivalently ISA

x

) of a string x = x[1::n℄ in �(n) time. The stru
ture of su
h

algorithms is shown in Figure 4.

All of the algorithms dis
ussed in this subse
tion 
ompute x

0

(that is, x

(1)

) and y

(that is, y

(1)

) from x (that is, x

(0)

) in similar ways: the alphabet of the split strings

10
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pro
edure 
onstru
t(x; SA)

split(x; x

0

;y)

semisort(x

0

; ISA

0

)

if ISA

0


ontains dupli
ate ranks then


onstru
t(ISA

0

; SA

x

= SA

0

)

else

invert(ISA

x

= ISA

0

; SA

x

0

)

indu
e(SA

x

0

; ISA

x

0

; SA

y

)

merge(SA

x

0

; SA

y

; SA

x

)

Figure 4: General algorithm for re
ursive SA 
onstru
tion

is in fa
t the set of suÆxes (positions) 1::n in x, so that x

0

and y together form a

permutation of 1::n.

Attention then fo
uses on 
omputing the ranks of the suÆxes (positions) i of x that

o

ur in x

0

: we 
all this sequen
e (string) of ranks ISA

x

0

, where for j = 1; 2; : : : ; jx

0

j,

ISA

x

0

[i℄ gives the rank of suÆx i = x

0

[j℄ of x.

Pro
edure semisort 
omputes an approximation ISA

0

of ISA

x

0

that ultimately, at

some level of re
ursion, be
omes exa
t | and so we may write ISA

x

0

= ISA

0

, then

invert ISA

x

0

to form SA

x

0

.

If however ISA

0

is not exa
t, then it is used as the input string for a re
ursive


all of the 
onstru
t pro
edure, thus yielding the suÆx array, SA

0

say, of ISA

0

| the

key observation made here, 
ommon to all the re
ursive algorithms, is that sin
e SA

0

is the suÆx array for the (approximate) ranks of the suÆxes identi�ed by x

0

, it is

therefore the suÆx array for those suÆxes themselves. We may a

ordingly write

SA

x

0

= SA

0

.

In our dis
ussion below of these algorithms, we fo
us on the nature of split and

semisort and their 
onsequen
es for the indu
e and merge pro
edures.

Ko & Aluru [KA03℄

Algorithm KA's split pro
edure assigns suÆxes i < n in left-to-right order to a se-

quen
e S (respe
tively, L) i� x[i::n℄ < (respe
tively, >) x[i + 1::n℄. SuÆx n ($) is

assigned to both S and L. Sin
e x[i℄ = x[i+1℄ implies that suÆxes i and i+1 belong

to the same sequen
e, it follows that the KA split requires time linear in x.

Then x

0

is formed from the sequen
e of suÆxes of smaller 
ardinality, y from the

sequen
e of larger 
ardinality. Hen
e for KA, jx

0

j � jxj=2.

For example,

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a 
 
 a $

type = L S L L S L L S L L L S=L

yields jSj = 4, jLj = 9, x

0

= 2 5 8 12, y = 1 3 4 6 7 9 10 11 12.

For every j 2 1::jx

0

j, KA's semisort pro
edure forms i = x

0

[j℄, i

1

= x

0

[j+1℄

(i

1

= x

0

[j℄ if j = jx

0

j), and then performs a radix sort on the resulting substrings

x[i::i

1

℄, a 
al
ulation that requires �(n) time. The result of this sort is a ranking ISA

0

11



Pro
eedings of the Prague Stringology Conferen
e '05

of the substrings x[i::i

1

℄, hen
e an approximate ranking of the suÆxes (positions)

i = x

0

[j℄. In our example, semisort yields

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a 
 
 a $

x

0

= 2 5 8 12

ISA

0

= 3 3 2 1

If after semisort the entries (ranks) in ISA

0

are distin
t, then a 
omplete ordering

of the suÆxes of x

0

has been 
omputed (ISA

0

= ISA

x

0

); if not, then as indi
ated in

Figure 4, the 
onstru
t pro
edure is re
ursively 
alled on ISA

0

. In our example, one

re
ursive 
all suÆ
es for a 
omplete ordering (12; 8; 5; 2) of the suÆxes of x

0

, yielding

ISA

x

0

= 4321.

At this point KA deviates from the pattern of Figure 4 in two ways: it 
ombines the

indu
e and merge pro
edures into a single KA-merge (see Figure 5), and it 
omputes

SA

x

dire
tly without referen
e to ISA

x

1

.

initialize SA SA

1

, head[1::�℄, tail[1::�℄

for i jx

0

j downto 1 do

� x

�

x

0

[i℄

�

SA

�

tail[�℄

�

 x

0

[i℄

tail[�℄ tail[�℄�1

for j  1 to n do

i SA[j℄

if type[i�1℄ = L then

� x[i�1℄

SA

�

head[�℄

�

 i�1

head[�℄ head[�℄+1

Figure 5: Algorithm KA-merge

First SA

1

is 
omputed, yielding 1-groups for whi
h the leftmost and rightmost

positions are spe
i�ed in arrays head[1::�℄ and tail[1::�℄, respe
tively. Sin
e in ea
h 1-

group all the S-suÆxes are lexi
ographi
ally greater than all the L-suÆxes, and sin
e

the S-suÆxes have been sorted, KA-merge 
an pla
e all the S-suÆxes in their �nal

positions in SA | ea
h time this is done, the tail for the 
urrent group is de
remented

by one. (In this des
ription, we assume that jSj � jLj; obvious adjustments yields a


orresponding approa
h for the 
ase jLj < jSj.)

The SA at this stage is shown below, with \�" denoting an empty position:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (� 8 5 2) (�) (� �) (� � � �)

type = S L S S S L L L L L L L

To sort the L-suÆxes, we s
an SA left to right. For ea
h suÆx position i = SA[j℄

that we en
ounter in the s
an, if i�1 is an L-suÆx still awaiting sorting (not yet

pla
ed in the SA), we pla
e i�1 at the head of its group in SA and in
rement the

1

In [KA03℄ it is 
laimed that the ISA must be built in unison with the SA for this pro
edure to

work, but we have found that this is a
tually unne
essary.

12
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head of the group by one. SuÆx i�1 is now sorted and will not be moved again. The


orre
tness of this pro
edure depends on the fa
t that when the s
an of SA rea
hes

position j, SA[j℄ is already in its �nal position. In our example, pla
ements begin

when j = 1, so that i = SA[1℄ = 12. Sin
e suÆx i�1 = 11 is type L, it is pla
ed at

the front of the a group (of whi
h it happens to be the only member):

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (11 8 5 2) (�) (� �) (� � � �)

type = S L S S S L L L L L L L

Next the s
an rea
hes j = 2, i = SA[2℄ = 11, and we pla
e i�1 = 10 at the front

of the 
 group at SA[7℄ and in
rement the group head.

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (11 8 5 2) (�) (10 �) (� � � �)

type = S L S S S L L L L L L L

The s
an 
ontinues until �nally

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 1 10 9 7 4 6 3

Algorithm KA 
an be implemented to use only 4n bytes plus 1:25n bits in addition

to the storage required for x and SA.

K�arkk�ainen & Sanders [KS03℄

The split pro
edure of AlgorithmKS �rst separates the suÆxes i of x into sequen
es S

1

(every third suÆx in x: i � 1 mod 3) and S

02

(the remaining suÆxes: i 6� 1 mod 3).

Thus in this algorithm three types 0; 1; 2 are identi�ed: x

0

is formed from S

02

by

x

0

= (i � 2 mod 3) (i � 0 mod 3);

while y is formed dire
tly from S

1

. For our example string

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a 
 
 a $

we �nd x

0

= (2 5 8 11)(3 6 9 12), y = 1 4 7 10. Note that jx

0

j � b2jxj=3
.

Constru
tion of ISA

0

using semisort begins with a linear-time 3-sort of suÆxes

i 2 S

02

based on triples t

i

= x[i::i+2℄. Thus a 3-order of these suÆxes is established

for whi
h a 3-rank r

i


an be 
omputed, as illustrated by our example:

i 2 3 5 6 8 9 11 12

t

i

add dda add dda a

 

a a$� $��

r

i

4 6 4 6 3 5 2 1

These ranks enable ISA

0

to be formed for x

0

:

1 2 3 4 5 6 7 8

ISA

0

= (4 4 3 2) (6 6 5 1)

13
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As with Algorithm KA, one re
ursive 
all on x

0

= 44326651 suÆ
es to 
omplete

the ordering, yielding ISA

x

0

= 54328761 | this gives the ordinal ranks in x of the

suÆxes x

0

= 2 5 8 11 3 6 9 12.

The indu
e pro
edure sorts the suÆxes spe
i�ed by y based on the ordering ISA

x

0

.

First SA

x

0

= 12 11 8 5 2 9 6 3 is formed by linear-time pro
essing of ISA

x

0

. Then a

left-to-right s
an of SA

x

0

allows us to identify suÆxes i � 2 mod 3 in in
reasing order

of rank and thus to sele
t letters x[i�1℄, i�1 � 1 mod 3, in the same order. A stable

bu
ket sort of these letters will then provide the suÆxes of y in in
reasing lexorder.

In our example SA

x

0

[2::5℄ = 11 8 5 2, and so we 
onsider x[10℄ = 
, x[7℄ = x[4℄ = d,

x[1℄ = b. A stable sort yields b
dd 
orresponding to SA

y

= 1 10 7 4.

Thus we may suppose that SA

x

0

and SA

y

are both in sorted order of suÆx. The

KS merge pro
edure may then be thought of as a straightforward merge of these two

strings into the output array SA

x

, where at ea
h step we need to de
ide in 
onstant

time whether suÆx i

02

of SA

x

0

is greater or less than suÆx i

1

of SA

y

. Observing

that i

1

+1 � 2 mod 3 and i

1

+2 � 0 mod 3, we identify two 
ases:

� if i

02

� 2 mod 3, i

02

+1 � 0 mod 3, and so it suÆ
es to 
ompare the pairs

�

x[i

02

℄; rank(i

02

+1)

�

and

�

x[i

1

℄; rank(i

1

+1)

�

;

� if i

02

� 0 mod 3, i

02

+2 � 2 mod 3, and so it suÆ
es to 
ompare the triples

�

x[i

02

::i

02

+1℄; rank(i

02

+2)

�

and

�

x[i

1

::i

1

+1℄; rank(i

1

+2)

�

.

We now observe that ea
h of the ranks required by these 
omparisons is available in


onstant time from ISA

x

0

! For if i � 2 mod 3, then

rank(i) = ISA

x

0

�

b(i+1)=3


�

;

while if i � 0 mod 3, then

rank(i) = ISA

x

0

�

b(n+1)=3
+bi=3


�

:

Thus the merge of the two lists requires �(n) time.

Ex
luding x and SA, Algorithm KS 
an be implemented in 6n bytes of working

storage. A re
ent variant of KS [N05℄ permits 
onstru
tion of a su

in
t suÆx array

in O(n) time using only O(n log� log

q

�

n) bits of working memory, where q = log

2

3.

Kim, Jo & Park [KSPP03, HSS03, KJP04℄

The KJP split pro
edure adopts the same approa
h as Fara
h's suÆx tree 
onstru
tion

algorithm [F97℄: it forms x

0

, the string of odd suÆxes (positions) i � 1 mod 2 in x,

and the 
orresponding string y of even positions. ISA

x

0

is then formed by a re
ursive

sort of the suÆxes identi�ed by x

0

. Algorithm KJP is not quite linear in its operation,

running in O(nloglogn) worst-
ase time.

For KJP we modify our example slightly to make it more illustrative:

1 2 3 4 5 6 7 8 9 10 11

x = b a d d d d a 
 
 a $

yielding x

0

= 1 3 5 7 9 11, y = 2 4 6 8 10.

The KJP semisort 2-sorts pre�xes p

i

= x[i::i+1℄ of ea
h odd suÆx i and assigns

to ea
h an ordinal rank r

i

:

14



A Taxonomy of SuÆx Array Constru
tion Algorithms

i 11 7 1 9 3 5

p

i

$� a
 ba 
a dd dd

r

i

1 2 3 4 5 5

As in the other re
ursive algorithms, a new string ISA

0

is formed from these ranks;

in our example,

1 2 3 4 5 6

ISA

0

= 3 5 5 2 4 1

As with the other re
ursive algorithms, one re
ursive 
all suÆ
es to �nd ISA

x

0

=

365241 
orresponding to x

0

= 1 3 5 7 9 11. At this point KJP 
omputes the inverse

array SA

x

0

= 11 7 1 9 5 3. The KJP indu
e pro
edure 
an now 
ompute SA

y

, the

sorted list of even suÆxes, in a straightforward manner: �rst set SA

y

[i℄ SA

x

0

[i℄�1,

and then sort SA

y

stably, using x

�

SA

y

[i℄

�

as the sort key for suÆx SA

y

[i℄:

1 2 3 4 5 6

SA

x

0

= 11 7 1 9 5 3

SA

y

= 10 2 8 6 4

The KJP merge is more 
omplex. In order to merge SA

x

0

and SA

y

eÆ
iently, we

need to 
ompute an array C

�

1::dn=2e

�

, in whi
h C[i℄ gives the number of suÆxes in

SA

x

0

that lie between SA

y

[i℄ and SA

y

[i�1℄ in the �nal SA (with spe
ial attention

to end 
onditions i = 1 and i = jyj+1). In [KJP04℄ it is explained how C 
an be


omputed in log jx

0

j time using a suÆx array sear
h (pattern-mat
hing) algorithm

des
ribed in [SKPP03℄. We omit the details, however, for our example we would �nd

1 2 3 4 5 6

C = 0 1 1 0 1 1

With C in hand, merging is just a matter of using ea
h C[i℄ to 
ount how many


onse
utive SA

x

0

entries to insert between 
onse
utive SA

y

entries.

There are two other algorithms whi
h, like KJP, perform an odd/even split of the

suÆxes. Algorithm KSPP [KSPP03℄ was the �rst of these, and although its worst-
ase

exe
ution time is �(n), it is generally 
onsidered to be of only theoreti
al interest,

mainly due to high memory requirements. On the other hand, AlgorithmHSS [HSS03℄

uses \su

in
t data stru
tures" [M99℄ e�e
tively to 
onstru
t a (su

in
t) suÆx array

in O(n log log�) time with only �(n log �) bits of working memory. (Compare the

variant [N05℄ of Algorithm KS mentioned above.) It is not 
lear how pra
ti
al these

lightweight approa
hes are, sin
e their su

in
tness may well adversely a�e
t speed.

3.3 Indu
ed Copying Algorithms [BW94℄

The algorithms in this 
lass are arguably the most diverse of the three main divi-

sions of SACAs dis
ussed in this paper. They are united by the idea that a (usually)


omplete sort of a sele
ted subset of suÆxes 
an be used to indu
e a fast sort of

the remaining suÆxes. This indu
ed sort is similar to the indu
e pro
edures em-

ployed in the re
ursive SACAs; the di�eren
e is that some sort of iteration is used in

pla
e of the re
ursion. This repla
ement (of re
ursion by iteration) probably largely

explains why several of the indu
ed 
opying algorithms are faster in pra
ti
e than
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any of the re
ursive algorithms (as we shall dis
over in Se
tion 4), eventhough none

of these algorithms is linear in the worst 
ase. In fa
t, their worst-
ase asymptoti



omplexity is generally O(n

2

logn). In terms of spa
e requirements, these algorithms

are lightweight: for many of them, use of additional working storage amounts to less

than n bytes.

We begin with brief outlines of the indu
ed 
opying algorithms:

� Itoh & Tanaka [IT99℄ sele
t suÆxes i of \type B" | those satisfying x[i℄ �

x[i+1℄ | for 
omplete sorting, thus indu
ing a sort of the remaining suÆxes.

� Seward [S00℄ on the other hand sorts 
ertain 1-groups, using the results to

indu
e sorts of 
orresponding 2-groups, an approa
h that also forms the basis

of Algorithms MF [MF04℄ and SS [SS05℄.

� A third approa
h, due to Burkhardt & K�arkk�ainen, uses a small integer h to

form a \sample" S of suÆxes that is then h-sorted; using a te
hnique reminis
ent

of the re
ursive algorithms, the resulting h-ranks are then used to indu
e a


omplete sort of all the suÆxes.

� Finally, the as-yet-unpublished algorithm of Manis
al
o [M05℄ 
omputes ISA

x

using an iterative te
hnique that, beginning with 1-groups, uses h-groups to

indu
e the formation of (h+1)-groups.

Itoh & Tanaka [IT99℄

Algorithm IT 
lassi�es ea
h suÆx i of x as being type A if x[i℄ > x[i + 1℄ or type B

if x[i℄ � x[i + 1℄ (
ompare types L and S of Algorithm KA). The key observation of

Itoh and Tanaka is that on
e all the groups of type B suÆxes are sorted, the order

of the type A suÆxes is easy to derive. For example:

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a 
 
 a $

type = A B B A B B A B B A A B

To form the full SA, we begin by 
omputing the 1-group boundaries, noting the

beginning and end of ea
h 1-group with arrays head[1::�℄ and tail[1::�℄ (re
all � =

j�j). Ea
h 1-group is further partitioned into two portions, so that in the �rst portion

there is room for the type A suÆxes, and in the se
ond for the type B suÆxes. For

ea
h group the position of the A=B partition is re
orded. Observe that within a

1-group, type A suÆxes should always 
ome before type B suÆxes. The SA at this

stage is shown below, with \�" denoting an empty position:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (� 2 5 8) (�) (� 9) (� � 3 6)

type = B A B B B A A B A A A A

Algorithm IT now sorts the B suÆxes using a fast string sorting algorithm. In

[IT99℄ multikey qui
ksort (MKQS) [BS97℄ is proposed, but any other fast sort, su
h as

burst sort [SZ04℄ or the elaborate approa
h introdu
ed in Algorithm MF (see below),


ould be used:
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1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (� 8 5 2) (�) (� 9) (� � 6 3)

type = B A B B B A A B A A A A

To sort the A-suÆxes, and 
omplete the SA, we s
an SA left to right, j =

1; 2; : : : ; n. For ea
h suÆx position i = SA[j℄ that we en
ounter in the s
an, if i�1 is

an A-suÆx still awaiting sorting (that is, it has not yet been pla
ed in the SA), then

we pla
e i�1 at the head of its group in SA and in
rement the head of the group by

one. SuÆx i�1 is now sorted and will not be moved again. Like Algorithm KA, the


orre
tness of this pro
edure depends on SA[j℄ already being in its �nal position when

the s
an of SA rea
hes position j. In our example, pla
ements begin when j = 1,

i = SA[1℄ = 12. SuÆx i�1 = 11 is type A, so we pla
e 11 at the front of the a group

(of whi
h it happens to be the only unsorted member), and it is now sorted:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 (�) (� 9) (� � 6 3)

type = B A B B B A A B A A A A

Next the s
an rea
hes j = 2, i = SA[2℄ = 11, and so we pla
e i�1 = 10 at the

front of its 
 group at SA[7℄ and in
rement the group head, 
ompleting that group:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 (�) 10 9 (� � 6 3)

type = B A B B B A A B A A A A

The s
an 
ontinues, eventually arriving at the �nal SA :

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 1 10 9 7 4 6 3

Figure 6 gives an algorithm 
apturing these ideas. The attentive reader will note

the similarity between it and Algorithm KA (Subse
tion 3.2). In fa
t, the set of B-

suÆxes used in Algorithm IT is a superset of the S-suÆxes treated in Algorithm KA.

initialize SA SA

1

| head[1::�℄ and tail[1::�℄ mark 1-group boundaries

| part[1::�℄ marks A=B partition of ea
h 1-group

for h 1 to � do

suÆxsort

�

SA

�

part[h℄

�

; SA

�

part[h℄+1

�

; : : : ; SA

�

tail[h℄

�

�

for j  1 to n do

i SA[j℄

if type[i�1℄ = A then

� x[i�1℄

SA

�

head[�℄

�

 i�1

head[�℄ head[�℄+1

Figure 6: Algorithm IT
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Clearly IT exe
utes in time linear in n ex
ept for the up to � suÆx sorts of the

possibly �(n) B-suÆxes in ea
h 1-group; these sorts may require O(n

2

logn) time

in pathologi
al 
ases. In pra
ti
e, however, IT is quite fast. It is also lightweight:

with 
areful implementation (for example, both head and tail arrays do not need to

be stored, and suÆxsort 
an be exe
uted in pla
e), IT requires less than n bytes of

additional working storage when n is large (megabytes or more) with respe
t to �.

Seward [S00℄

Algorithm S begins with a linear-time 2-sort of the suÆxes of x, thus forming SA

2

in

whi
h the boundaries of ea
h 2-group are identi�ed by the head array | also used to

mark boundaries between the 1-groups. Therefore in this 
ase head = head[1::�; 1::�℄,

allowing a

ess to every boundary head[�; �℄ for every �; � 2 �. For our example the

result of the 2-sort 
ould be represented as follows:

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a 
 
 a $

SA

2

= 12

�

11 8 [2 5℄

�

1 (10 9)

�

[4 7℄ [3 6℄

�

where () en
loses non-singleton 1-groups, [ ℄ en
loses non-singleton 2-groups.

Now 
onsider a 1-group G

�


orresponding to a 
ommon single-letter pre�x �.

Suppose that the suÆxes of G

�

are fully sorted, yielding a sequen
e G

�

�

in as
ending

lexorder. Imagine now that G

�

�

is traversed in lexorder: for every suÆx i > 1, the

suÆx i�1 
an be pla
ed in its �nal position in SA

x

at the head of the 2-group for

x[i�1℄� | provided head

�

x[i�1℄; �

�

is in
remented by one after the suÆx is pla
ed

there, thus allowing for 
orre
t pla
ement of any other suÆxes in the same 2-group.

The lexorder of G

�

�

ensures that the suÆxes i�1 also o

ur in lexorder within ea
h

2-group.

This is essentially the strategy of Algorithm S: it uses an eÆ
ient string sort

[BM93℄ to sort 
ompletely the unsorted suÆxes in a 1-group that 
urrently 
ontains

a minimum number of unsorted suÆxes, then uses the sorted suÆxes i to indu
e

a sort of suÆxes i�1. Thus all suÆxes 
an be 
ompletely sorted at the 
ost of a


omplete sort of only half of them.

The pro
ess 
an be made still more eÆ
ient by observing that when G

�

is sorted,

the suÆxes with pre�x �

2


an be omitted, provided the 2-group 
orresponding to

�

2

is traversed after the traversal of G

�

�

. To see this, suppose there exists a suÆx

�

k

�v in G

�

, k � 2; � 6= �. Then the suÆx ��v will have been sorted into G

�

�

and

already pro
essed to pla
e suÆx x[i::n℄ = �

2

�v at head[�; �℄. Thus when �

2

�v is

itself pro
essed, suÆx x[i�1℄�

2

�v will be pla
ed at head

�

x[i�1℄; �

�

| this will again

be (the now in
remented) head[�; �℄ if k � 3 (x[i�1℄ = �).

We 
an apply Algorithm S to our example string:

Iteration 1 The 1-group 
orresponding to � = $ 
ontains only the singleton unsorted

suÆx i = 12. Thus the sort is trivial: 12 is already in its �nal position in SA,

and suÆx i�1 = 11 is put in �nal position at head[a; $℄ = 2.

Iteration 2 The minimum 1-group 
orresponding to b 
ontains only suÆx i = 1,

whi
h is therefore in �nal position. Sin
e i�1 = 0, there is no further a
tion.
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Iteration 3 The minimum 1-group 
orresponds to � = 
; it again has only one entry

to be sorted, sin
e one of the 2-groups represented is 

. Thus suÆx i = 10

is in �nal position at head[
; a℄ = 7, and determines the �nal position of suÆx

i�1 = 9 at head[
; 
℄ = 8. Then �nally for i = 9, the �nal position of suÆx

i�1 = 8 is �xed at head[a; 
℄ = 3.

Iteration 4 The 1-group for � = a now 
ontains only the two unsorted suÆxes 2

and 5, sin
e 11 and 8 have been put in �nal position by previous iterations. The

sort yields SA[4℄ = 5, SA[5℄ = 2, so that the 
ompletely sorted 1-group be
omes

SA[2::5℄ = 11 852. For i = 11, suÆx i�1 = 10 is already in �nal position; for

i = 8, suÆx i�1 = 7 is pla
ed in �nal position at head[d; a℄ = 9; then, for

i = 5, after head[d; a℄ is in
remented, suÆx i�1 = 4 is pla
ed in �nal position

at head[d; a℄ = 10; for i = 2, i�1 = 1 is already in �nal position.

Iteration 5 The �nal group 
orresponds to � = d; by now its only unsorted suÆxes,

3 and 6, belong to the 2-group dd and so do not require sorting. As a result

of Iteration 4, SA[9::10℄ = 74. Thus, for i = 7, suÆx i� 1 = 6 is pla
ed

at head[d; d℄ = 11, while for i = 4, the �nal suÆx i� 1 = 3 is pla
ed at

head[d; d℄ = 12.

For this example, only one simple sort (of suÆxes 2 and 5 in Iteration 4) needs to be

performed in order to 
ompute SA

x

!

Algorithm S shares the O(n

2

logn) worst 
ase time of other indu
ed 
opying algo-

rithms, but is nevertheless very fast in pra
ti
e. However, its running time sometimes

seems to degrade signi�
antly when the average l
p, l
p, is large, for reasons that are

not quite 
lear. This problem is addressed by a variant, Algorithm MF, dis
ussed

next. Like IT, Algorithm S 
an run using less than n bytes of working storage.

Manzini & Ferragina [MF04℄

AlgorithmMF is a variant of Algorithm S that repla
es TSQS [BM93℄, used to sort the

2-groups within a sele
ted 1-group, by a more elaborate and sophisti
ated approa
h

to suÆx-sorting. This approa
h is two-tiered, depending initially on a user-spe
i�ed

integer l
p

�

, the longest l
p of a group of suÆxes that will be sorted using a standard

method. (Typi
ally, for large �les, l
p

�

will be 
hosen in the range 500::5000.) Thus,

if a 2-group of suÆxes is to be sorted, then MKQS [BS97℄ (rather than TSQS) will be

employed until the re
ursion of MKQS rea
hes depth l
p

�

: if the sort is not 
omplete,

this de�nes a set I

m

= fi

1

; i

2

; :::; i

m

g, m � 2, of suÆxes su
h that

l
p(i

1

; i

2

; : : : ; i

m

) � l
p

�

:

At this point, the methodology used to 
omplete the sort of these m suÆxes is 
hosen

depending on whether m is \large" or \small".

If m is small, then a sorting method 
alled blind sort [FG99℄ is invoked that

uses at most 36m bytes of working storage. Therefore, if blind sort is used only for

m � n=Q, its spa
e overhead will be at most (36=Q)n bytes; by 
hoosing Q � 1000,

say | and thus giving spe
ial treatment to 
ases where \not too many" suÆxes share
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a \long" l
p | it 
an be ensured that for small m, the spa
e used is a very small

fra
tion of the 5n bytes required for x and SA

x

.

Blind sort of I

m

depends on the 
onstru
tion of a blind trie data stru
ture

[FG99℄: essentially the strings

x[i

j

+l
p

�

::n℄; j = 1; 2; : : : ; m

are inserted one-by-one into an initially empty blind trie; then, as explained in [FG99℄,

a left-to-right traversal of the trie obtains the suÆxes in lexorder, as required.

If m is large (> n=Q), Algorithm MF reverts to the use of a slightly modi�ed

TSQS, as in Algorithm S; however, whenever at some re
ursive level of exe
ution of

TSQS a new set of suÆxes I

0

m

is identi�ed for whi
h m � n=Q, then blind sort is

again invoked to 
omplete the sort of I

0

m

.

Following the initialMKQS sort to depth l
p

�

, the dual strategy (blind sort/TSQS)

des
ribed so far to 
omplete the sort is a
tually only one of two strategies employed

by Algorithm MF. Before resorting to the dual strategy, MF tries to make use of

generalized indu
ed 
opying, as we now explain.

Suppose that for i

1

2 I

m

and for some least ` 2 1::l
p

�

�1,

x[i

1

+`::i

1

+`+1℄ = ��;

where [�; �℄ identi�es a 2-group that as a result of previous pro
essing has already

been fully sorted. Sin
e the m suÆxes in I

m

share a 
ommon pre�x, it follows that

every suÆx in I

m

o

urs in the same 2-group [�; �℄. Sin
e moreover the m suÆxes

in I

m

are identi
al up to position `, it follows that the order of the suÆxes in I

m

is

determined by their order in [�; �℄. Thus if su
h a 2-group exists, it 
an be used to

\indu
e" the 
orre
t ordering of the suÆxes in I

m

, as follows:

(1) Bu
ket-sort the entries i

j

2 I

m

in as
ending order of position (not suÆx), so

membership in I

m


an be determined using binary sear
h (step (3)).

(2) S
an the 2-group [�; �℄ to identify a mat
h for suÆx i

1

+`, say at some position q.

(3) S
an the suÆxes (positions) listed to the left and to the right of q in 2-group

[�; �℄; for ea
h suÆx i, use binary sear
h to determine whether or not i�` o

urs

in (the now-sorted) I

m

. If it does o

ur, then mark the suÆx i in [�; �℄.

(4) When m suÆxes have been marked, s
an the 2-group [�; �℄ from left to right:

for ea
h marked suÆx i, 
opy i�` left-to-right into I

m

.

Step (2) of this pro
edure 
an be time-
onsuming, sin
e it may involve a �(n)-time

mat
h of two suÆxes; in [MF04℄ an eÆ
ient implementation of step (2) is des
ribed

that uses only a very small amount of extra spa
e.

Of 
ourse if no su
h `, hen
e no su
h 2-group, exists, then this method 
annot be

used: the dual strategy des
ribed above must be used instead.

In pra
ti
e Algorithm MF runs faster than any of Algorithms KS, IT or S; in


ommon with other indu
ed 
opying algorithms, it uses less than n bytes of additional

working storage but 
an require as mu
h as O(n

2

logn) time in the worst 
ase.
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S
h�urmann & Stoye [SS05℄

Algorithm SS 
ould arguably be 
lassi�ed as a pre�x-doubling algorithm. Certainly

it is a hybrid: it �rst applies a pre�x-doubling te
hnique to sort individual h-groups,

then uses Seward's indu
ed 
opying approa
h to extend the sort to other groups of

suÆxes.

For SS, the integer h is a
tually a user-spe
i�ed parameter, 
hosen to satisfy

h < log

�

n. First a radix sort is performed to 
ompute SA

h

, then the 
orresponding

ISA

h

, in whi
h the h-rank of ea
h h-group is formed from the tail of the h-group

in SA

h

(the same system used in Algorithm LS). Thus, for example, using h = 2,

the result of the �rst phase of pro
essing would be just the same as after the se
ond

iteration of LS:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a 
 a d a b e a $

SA

2

= 12 11 (1 8) 4 6 (2 9) 5 7 (3 10)

ISA

2

= 4 8 12 5 9 6 10 4 8 12 2 1

In its se
ond phase, SS 
onsiders h-groups in SA

h

that are not singletons. Let H

be one su
h h-group. The observation is made that sin
e every suÆx i in H has the

same pre�x of length h, therefore the order of ea
h i in H is determined by the rank

of suÆx i+h; that is, by ISA

h

[i+h℄. A sort of all the non-singleton h-groups in SA

h

thus leads to the 
onstru
tion of SA

2h

and ISA

2h

:

1 2 3 4 5 6 7 8 9 10 11 12

SA

4

= 12 11 (1 8) 4 6 9 2 5 7 10 3

ISA

4

= 3 8 12 5 9 6 10 3 7 11 2 1

Observe that as a result of the pre�x-doubling, the h-groups (2 9) and (3 10) have

be
ome 
ompletely sorted.

To entries in h-groups that be
ome 
ompletely sorted by pre�x-doubling, SS ap-

plies Algorithm S: if suÆx i is in �xed position in SA, then the �nal position of suÆx

i�1 
an also be determined. Thus, in our example, the sort of the h-group (2 9) that

yields 2h-order 9; 2 indu
es a 
orresponding sorted order 8; 1 for the 2h-group (1 8),


ompleting the sort.

Algorithm SS iterates this se
ond phase { pre�x-doubling followed by indu
ed


opying { until all entries in SA are singletons. Note that after the �rst iteration, the

indu
ed 
opying will as a rule re�ne the h-groups so that they break down into (h+k)-

groups for various values of k � 0; thus, after the �rst iteration, the pre�x-doubling

is approximate.

Algorithm SS has worst-
ase time 
omplexity O(n

2

) and appears to be very fast

in pra
ti
e, 
ompetitive with Algorithm MF. However, it is not quite lightweight,

requiring somewhat more than 4n bytes of additional working storage.

Burkhardt & K�arkk�ainen [BK03℄

In a similar way to the re
ursive algorithms of Se
tion 3.2, Algorithm BK 
omputes

SA

x

by �rst ordering a sample of the suÆxes S. The relative ranks of the suÆxes in
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S are then used to a

elerate a basi
 string sorting algorithm, su
h as MKQS [BS97℄,

applied to all the suÆxes.

Central to BK is a mathemati
al 
onstru
t 
alled a di�eren
e 
over, whi
h de�nes

the suÆxes in S. A di�eren
e 
over D

h

is a set of integers in the range 0::h� 1 su
h

that for all i 2 0::h�1, there exist j; k 2 D

h

su
h that i � k�j(mod h). For a 
hosen

D

h

, S 
ontains the suÆxes of x beginning at positions i su
h that i mod h 2 D

h

.

For example D

7

= f1; 2; 4g is a di�eren
e 
over modulo 7. If we were to sample

a

ording to D

7

then for the string

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

x = b a d d a d d b a d d a d d b a d d $

we would obtain S = f1; 2; 4; 8; 9; 11; 15; 16; 18; 22; 23; 25g. Observe for every i 2 S

that i mod 7 is in D

7

.

In pra
ti
e, only 
overs D

h

with jD

h

j 2 �(

p

h) are suitable. However, for the


hosen D

h

a fun
tion Æ(i; j) must also be pre
omputed. For any integers i; j, Æ(i; j)

is the smallest integer k 2 0::h � 1 su
h that (i + k) mod h and (j + k) mod h are

both in D

h

. A lookup table allows 
onstant time evaluation of Æ(i; j) | we omit the

details here.

Algorithm BK 
onsists of two main phases. The goal of the �rst phase is to


ompute a data stru
ture ISA

x

0

allowing the lexi
ographi
al rank of i 2 S, relative

to the other members of S, to be 
omputed in 
onstant time. To this end, BK �rst

h-sorts S using MKQS (or alternative) and then assigns ea
h suÆx its h-rank in the

resulting h-ordering. For our example the h-ranks are:

i 2 S 1 2 4 8 9 11 15 16 18

h-rank 3 6 4 3 6 4 2 5 1

These ranks are then used to 
onstru
t a new string x

0

(
ompare to x

0

for Algo-

rithm KS) as follows

i 2 S 1 8 15 2 9 16 4 11 18

x

0

= (3 3 2) (6 6 5) (4 4 1)

The stru
ture of x

0

is de
eptively simple. The h-ranks, r

i

, appear in jD

h

j groups

in x

0

(indi
ated above with ()) a

ording to i modulo h. Then, within ea
h group,

ranks r

i

are sorted in as
ending order a

ording to i. Be
ause of this stru
ture in

x

0

, its inverse suÆx array, ISA

x

0

, 
an be used to obtain the rank of any i 2 S in


onstant time. To 
ompute ISA

0

, BK makes use of Algorithm LS as an auxiliary

routine (re
all that LS 
omputes both the ISA and the SA). Although LS is probably

the best 
hoi
e, any SACA suitable for bounded integer alphabets 
an be used.

With ISA

x

0


omputed, 
onstru
tion of SA

x


an begin in earnest. All suÆxes are

h-ordered using a string sorting algorithm, su
h as MKQS, to arrive at SA

h

. The

sorting of non-singleton h-groups whi
h remain is then 
ompleted with a 
omparison

based sorting algorithm using ISA

x

0

[i + Æ(i; j)℄ and ISA

x

0

[j + Æ(i; j)℄ as keys when


omparing suÆxes i and j.

In [BK03℄ it is shown that by 
hoosing h = log

2

n an overall worst 
ase running

time of O(n logn) is a
hieved. Another attra
tive feature of BK is its small working

spa
e { less then 6n bytes { made possible by the small size of S relative to x and by

use of inpla
e string sorting.

22



A Taxonomy of SuÆx Array Constru
tion Algorithms

Finally, we remark that the ideas of Algorithm BK 
an be used to ensure any of

the indu
ed 
opying algorithms des
ribed in this se
tion exe
ute in O(n logn) worst


ase time.

Manis
al
o [M05℄

Algorithm M di�ers from the other algorithms in this se
tion in that it dire
tly


omputes ISA

x

and then transforms it into SA

x

inpla
e. At the time of writing,

Algorithm M is published as C++ 
ode on the Internet [M05℄, the details of whi
h

are examined in [P05℄.

At the heart of Algorithm M is an eÆ
ient bu
ket sorting regime. Most of the

work is done in what is eventually ISA

x

, with extra spa
e required for a few sta
ks.

The bu
ket sorting begins by linking together suÆxes that are 2-equal, to form 
hains

of suÆxes. For example, the string

0 1 2 3 4 5 6 7

x a a a b a b a a $

would result in the 
reation of the following 
hains

7 6,1,0 4,2 5,3

a$ aa ab ba

We de�ne an h-
hain in the same way as an h-group { that is, suÆxes i and j are in

the same h-
hain i� they are h-equal. Thus, the 
hains above are all 2-
hains, and

the 
hain for a$ is a singleton.

The spa
e allo
ated for the ISA provides a way to eÆ
iently manage 
hains.

Instead of storing the 
hains expli
itly as above, AlgorithmM 
omputes the equivalent

array

0 1 2 3 4 5 6 7

x a a a b a b a a $

ISA ? 0 ? ? 2 3 1 ?

in whi
h ISA[i℄ is the largest j < i su
h that x[j::j + 1℄ = x[i::i+ 1℄ or ? if no su
h j

exists. In our example, the 
hain of all the suÆxes pre�xed with aa 
ontains suÆxes

6, 1 and 0 and so we have ISA[6℄ = 1, ISA[1℄ = 0 and ISA[0℄ = ?, marking the end

of the 
hain. Observe that 
hains are singly linked, and are only traversable right-

to-left. We keep tra
k of h-
hains to be pro
essed by storing a sta
k of integer pairs

(s; h), where s is the start of the 
hain (its rightmost index), and h is the length of

the 
ommon pre�x. Chains always appear on the sta
k in as
ending lexi
ographi
al

order, a

ording to x[s::s+ h� 1℄. Thus for our example, initially (7; 2) for 
hain a$

is atop the sta
k, and (5; 2) for 
hain ba at the bottom.

Chains are popped from the sta
k and progressively re�ned by looking at further

pairs of 
hara
ters. So long as we pro
ess the 
hains in lexi
ographi
al order, when we

pop a singleton 
hain, the suÆx 
ontained has been di�erentiated from all others and


an be assigned the next lexi
ographi
 rank. Elements in the ISA whi
h are ranks are

di�erentiated from elements in 
hains by setting the sign bit, that is, if ISA[i℄ < 0,

then the rank for suÆx i is �ISA[i℄. The evolution of the ISA of our example string

subsequent sorting rounds pro
eed as follows.
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formInitialChains()

repeat

(h; `)  
hainSta
k.pop()

if ISA[h℄ = ? then

ISA[h℄  nextRank()

else

while h 6= ? do

sym  getSymbol(h+ `)

updateSubChain(sym,h)

h  ISA[h℄

sortAndPushSubChains()

until 
hainsta
k is empty

Figure 7: Bu
ket sorting of Algorithm M

0 1 2 3 4 5 6 7

x a a a b a b a a $

ISA ? 0 ? ? 2 3 1 ? Initial 
hains (7; 2)

a$

(6; 2)

aa

(4; 2)

ab

(5; 2)

ba

ISA ? 0 ? ? 1 2 1 -1 Pop (7; 2)

a$

and assign rank

ISA ? ? ? ? 1 2 ? Split 
hain (6; 2)

aa

into (6; 4)

aa$

(0; 4)

aaab

(1; 4)

aaba

ISA -3 -4 ? ? 1 2 -2 Pop (6; 4)

aa$

(0; 4)

aaab

(1; 4)

aaba

, assign ranks

ISA ? ? ? 2 Split 
hain (4; 2)

ab

into (4; 4)

abaa

(2; 4)

abab

ISA -6 ? -5 2 Pop (4; 4)

abaa

(2; 4)

abab

, assign ranks

ISA ? ? Split 
hain (5; 2)

ba

into (5; 4)

baa$

(3; 4)

baba

ISA -8 -7 Pop (5; 4)

baa$

(3; 4)

baba

, assign ranks

ISA

x

3 4 6 8 5 7 2 1 Completed Inverse SuÆx Array

When the value in a 
olumn be
omes negative, the suÆx has been assigned its

(negated) rank and is e�e
tively sorted. We reiterate here that when a 
hain is

split, the resulting sub
hains must be pla
ed on the sta
k in lexi
ographi
al order for

the subsequent assignment of ranks to singletons to be 
orre
t. This is illustrated in

the example above when the 
hain for aa is split, and the next 
hain pro
essed is the

singleton 
hain for aa$. An algorithm embodying these ideas is listed in Figure 7.

AlgorithmM adds two powerful heuristi
s to the string sorting algorithm des
ribed

in Figure 7. We dis
uss only the �rst (and more important) of these heuristi
s here

and refer the reader to [M05, P05℄ for details of the se
ond.

The pro
essing of 
hains in lexi
ographi
al order allows for the possibility to use

previously assigned ranks as sort keys for some of the suÆxes in a 
hain. To elu
idate

this idea we �rst need to make some observations about the way 
hains are pro
essed.

When pro
essing an h-
hain, suÆxes 
an be 
lassi�ed into three types: suÆx i is

of type X if the rank for suÆx i + h � 1 is known, and is of type Y if the rank for

suÆx i+ h is known. If i is not of type X or type Y , then it is of type Z. Any suÆx


an be 
lassi�ed to its type in 
onstant time by virtue of the fa
t we are building the

ISA (we inspe
t ISA[i+ h� 1℄ or ISA[i+ h℄ and a 
he
ked sign bit indi
ates a rank).

Now 
onsider the following observation: lexi
ographi
ally, type X suÆxes are smaller

than type Y suÆxes, whi
h in turn are smaller than type Z suÆxes.
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To use this observation, when we re�ne a 
hain, we pla
e only type Z suÆxes into

sub
hains and pla
e type X and type Y suÆxes to one side. Now, the order of the m

suÆxes of type X suÆxes 
an be determined via a 
omparison based sort, using for

suÆx i the rank of suÆx i+h�1 as the sort key. On
e sorted, the type X suÆxes 
an

be assigned the next m ranks by virtue of the fa
t that 
hains are being pro
essed in

lexi
ographi
al order. Type Y suÆxes are treated similarly, using the rank of j + h

as the sort key for suÆx j. Manis
al
o refers to the sorting of suÆxes in this way as

indu
tion sorting

2

.

Loosely speaking, as the number of assigned ranks in
reases, the probability that

a suÆx 
an be sorted using the rank of another also in
reases. In fa
t, every 
hain

of suÆxes with pre�x �

1

�

2

su
h that �

2

< �

1

will be sorted entirely in this way.

Clearly, indu
tion sorting will lead to a signi�
ant redu
tion in work for many texts.

One 
ould 
onsider the indu
tion sorting of Algorithm M an extension of the ideas

in Algorithm IT. As noted above, suÆxes in a 2-
hain with 
ommon pre�x �

1

�

2

and

�

1

> �

2

are sorted entirely by indu
tion (like the type A suÆxes of Algorithm IT.

However the lexi
ographi
al pro
essing of suÆxes in AlgorithmMmeans this property


an be applied to suÆxes at deeper levels of sorting (when h > 2).

The 
omplexity of AlgorithmM is likely to be O(n

2

logn) in the worst 
ase, though

on average it is usually as fast as Algorithm MF. By 
arefully using the spa
e in the

ISA, and 
onverting it to the SA inpla
e, it also a
hieves a small memory footprint

| rarely requiring more than n bytes of additional working spa
e.

4 Experimental Results

To gauge the performan
e of the SACAs in pra
ti
e we measured their runtimes and

peak memory usage for a sele
tion of �les from the Canterbury 
orpus

3

and from the


orpus 
ompiled by Manzini

4

and Ferragina [MF04℄. Details of all �les tested are

given in Table 2.

We implemented Algorithm IT as des
ribed in [IT99℄ and Algorithm KS with

heuristi
s des
ribed in [PST05℄. The implementation of Algorithm KA tested was

that of [LP04℄. Implementations of all other algorithms were obtained either online

or by request to respe
tive authors. For 
ompleteness we also tested a tuned suÆx tree

implementation [K99℄. AlgorithmMF was run with default parameters and Algorithm

SS with parameter h=7 for genomi
 data and h=3 otherwise, as per testing in [SS05℄.

Algorithm BK used parameter h=32, as per [BK03℄.

All tests were 
ondu
ted on a 2.8 GHz Intel Pentium 4 pro
essor with 2Gb main

memory. The operating system was RedHat Linux Fedora Core 1 (Yarrow) running

kernel 2.4.23. The 
ompiler was g++ (g

 version 3.3.2) exe
uted with the -O3 option.

Running times, shown in Table 3, are the average of four runs and do not in
lude time

spent reading input �les. Times were re
orded with the standard unix time fun
tion.

Memory usage, shown in Table 4, was re
orded with the memusage 
ommand available

with most Linux distributions.

Results are summarized in Figure 8. Algorithm MF is the fastest algorithm on

2

In fa
t, we 
an sort the type X and Y suÆxes in the same sort 
all by using as a key for a type

X suÆx i the rank of i+ h� 1 and for a type Y suÆx the negated rank of i+ h.

3

http://www.
os
.
anterbury.a
.nz/
orpus/

4

http://www.mfn.unipmn.it/~manzini/lightweight/
orpus/
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Table 2: Des
ription of the data set used for testing. LCP refers to the Longest

Common Pre�x amongst all suÆxes in the string.

String

Mean Max Size

� Des
ription

LCP LCP (bytes)

E.
oli 17 2; 815 4; 638; 690 4 Es
heri
hia 
oli genome


hr22.dna 1; 979 199; 999 34; 553; 758 4 Human 
hromosome 22

bible 14 551 4; 047; 392 63 King James bible

world192 23 559 2; 473; 400 94 CIA world fa
t book

sprot34 89 7; 373 109; 617; 186 66 SwissProt database

rf
 93 3; 445 116; 421; 901 120 Con
atenated IETF RFC �les

howto 267 70; 720 39; 422; 105 197 Linux Howto �les

reuters 282 26; 597 114; 711; 151 93 Reuters news in XML format

jdk13
 679 37; 334 69; 728; 899 113 JDK 1.3 do
umentation

etext99 1; 108 286; 352 105; 277; 340 146 Texts from Gutenberg proje
t

average, narrowly shading algorithms M and SS. These three algorithms (MF,M,SS)

outperform the next fastest algorithm, LS, by roughly a fa
tor of 2. Note that for

�le jdk13
 it is the suÆx tree whi
h is fastest | leaving room for at least some

improvement in the SACAs.

When testing algorithm M, we observed that the �nal step of transforming the

ISA into the SA 
onstituted 20-30% of the overall runtime. For some appli
ations

though (most notably the BWT [BW94℄), this transformation is not required, making

M signi�
antly faster than MF { see experiments in [P05℄.

The speed of MF and M is parti
ularly impressive given their small working mem-

ory 5:01n and 5:49n bytes on average respe
tively. The lightweight nature, of these

algorithms separates them from SS whi
h requires slightly more than 9n bytes on

average. We also remark that while Algorithm BK is not amongst the fastest algo-

rithms tested the ideas in it are important be
ause they 
ould be used to guarantee

a

eptable worst 
ase behavior of algorithms MF and M, without adversely a�e
ting

the speed or spa
e usage of those algorithms.

Times in Table 3 for Algorithm SS versus Algorithm MF seem to run 
ontrary to

results published in [SS05℄, however our experiment is di�erent. In [SS05℄, �les were

bounded to at most 50,000,000 
hara
ters, making many test �les shorter than their

original form. We suspe
t the full length �les are harder for Algorithm SS to sort.

The large variation in performan
e of Algorithm KS 
an be attributed to the

o

asional ine�e
tiveness of heuristi
s des
ribed in [PST05℄. Of interest also is the

general poor performan
e of the re
ursive algorithms KS, KA and KJP. These algo-

rithms have superior asymptoti
 behaviour, but for many �les run several times slower

than the other algorithms and often 
onsume more memory than the suÆx tree (KJP

in parti
ular). Memory pro�ling reveals that the re
ursive algorithms su�er form

very poor 
a
he behaviour, whi
h largely nulli�es their asymptoti
 advantage. These

results leave open the question: is there a pra
ti
ally fast �(n) time suÆx array


onstru
tion algorithm whi
h is also lightweight?
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Table 3: CPU time (se
onds) on test data. Minimum is shown in bold for ea
h string.

E.
oli 
hr22 bible world sprot rf
 howto reuters jdk13
 etext

M 2 20 2 1 90 89 25 99 60 75

SS 2 25 2 1 99 93 22 133 64 92

MF 2 16 2 1 74 65 18 147 82 76

IT 2 416 1 1 125 108 38 278 286 331

S 3 29 2 1 126 110 37 258 217 290

BK 4 40 3 2 200 171 43 280 152 141

LS 4 35 3 2 144 154 40 183 105 146

KA 6 47 5 3 183 179 63 185 98 202

KS 5 57 4 2 306 288 55 377 204 219

KJP 4 31 4 3 183 189 61 192 102 179

Tree 6 51 5 3 183 193 80 141 52 226

Table 4: Peak Memory Usage (Mbs)

E.
oli 
hr22 bible world sprot rf
 howto reuters jdk13
 etext

M 32 205 29 13 547 599 197 572 357 542

SS 40 297 36 24 942 1; 006 368 988 604 915

MF 22 165 19 12 524 557 188 548 333 503

IT 22 165 19 12 523 555 188 547 332 502

S 22 165 19 12 523 555 188 547 332 502

BK 26 194 23 14 614 652 221 643 391 590

LS 35 264 31 19 836 888 301 875 532 803

KA 58 429 50 31 1; 359 1; 443 526 1; 422 864 1; 406

KS 43 334 37 23 1; 279 1; 230 389 1; 434 870 1; 071

KJP 58 427 58 36 1; 574 1; 673 571 1; 645 1; 000 1; 509

Tree 74 541 54 32 1; 421 1; 554 526 1; 444 931 1; 405
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