1

Suffix arrays were introduced in 1990 by Manber & Myers [MM90, MM93], along
with algorithms for their construction and use as a space-saving alternative to suffix
trees. In the intervening fifteen years there have certainly been hundreds of research
articles published on the construction and use of suffix trees and their variants. Over

A Taxonomy of Suffix Array Construction
Algorithms*

Simon J. Puglisi!, W. F. Smyth!'?, and Andrew Turpin®

I Department of Computing, Curtin University, GPO Box U1987
Perth WA 6845, Australia
e-mail: puglissj@computing.edu.au

2 Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton ON L8S 4K1, Canada
e-mail: smyth@mcmaster.ca
www.cas.mcmaster.ca/cas/research/groups.shtml

3 School of Computer Science & Information Technology
RMIT University, GPO Box 2476V
Melbourne V 3001, Australia
e-mail: aht@cs.rmit.edu.au

Abstract. In 1990 Manber & Myers proposed suffix arrays as a space-saving
alternative to suffix trees and described the first algorithms for suffix array
construction and use. Since that time, and especially in the last few years, suf-
fix array construction algorithms have proliferated in bewildering abundance.
This survey paper attempts to provide simple high-level descriptions of these
numerous algorithms that highlight both their distinctive features and their
commonalities, while avoiding as much as possible the complexities of imple-
mentation details. We also provide comparisons of the algorithms’ worst-case
time complexity and use of additional space, together with results of recent
experimental test runs on many of their implementations.

Introduction

that period, it has been shown that

e practical space-efficient suffix array construction algorithms (SACAs) exist that

require worst-case time linear in string length [KA03, KS03];

e SACAs exist that are even faster in practice, though with supralinear worst-case

construction time requirements [1.S99, BK03, MF04, M05];

*Supported in part by grants from the Natural Sciences & Engineering Research Council of

Canada and the Australian Research Council.

Proceedings of the Prague Stringology Conference 05

e any problem whose solution can be computed using suffix trees is solvable with
the same asymptotic complexity using suffix arrays [AKOO04].

Thus suffix arrays have become the data structure of choice for many, if not all, of
the string processing problems to which suffix tree methodology is applicable.

In this survey paper we do not attempt to cover the entire suffix array literature.
Our more modest goal is to provide an overview of SACAs, in particular those modeled
on the efficient use of main memory — we exclude the substantial literature (for
example, [CF02]) that discusses strategies based on the use of secondary storage.
Further, we deal with the construction of compressed (“succinct”) suffix arrays only
insofar as they relate to standard SACAs. For example, algorithms such as those of
Grossi et al. and references therein [GGV04] are not covered.

Section 2 provides an overview of the SACAs known to us, organized into a “tax-
onomy” based primarily on the methodology used. As with all classification schemes,
there is room for argument: there are many cross-connections between algorithms
that occur in disjoint subtrees of the taxonomy, just as there may be between species
in a biological taxonomy. Our aim is to provide as comprehensive and, at the same
time, as accessible a description of SACAs as we can.

Also in Section 2 we present the vocabulary to be used for the structured descrip-
tion of each of the algorithms that will be given in Section 3. Then in Section 4, we
report on the results of experimental results on many of the algorithms described and
so draw conclusions about their relative speed and space-efficiency.

2 Overview

We consider throughout a finite nonempty string = x[l..n| of length n > 1,
defined on an indexed alphabet ¥; that is,

e the letters \j,j = 1,2,...,0 of |[¥] are ordered: A\ < Ay < -+ < Ay

e an array A[\;..\,] can be defined in which, for every j € 1..0, A[)\;] is accessible
in constant time;

L])\0'_)\1 € O(n)

Essentially, we assume that 3 can be treated as a sequence of integers whose range is
not too large. Typically, the A; may be represented by ASCII codes 0..255 (English
alphabet) or binary integers 00..11 (DNA) or simply bits, as the case may be. We
shall generally assume that a letter can be stored in a byte and that n can be stored
in one computer word (four bytes).

The use of terminology not defined here follows [S03].

We are interested in computing the suffiz array of x, which we write SAg or
just SA; that is, an array SA[l..n] in which SA[j] = i iff @[i..n] is the 70 suffix of
x in (ascending) lexicographical order (lexorder). For simplicity we will frequently
refer to x[i..n] simply as “suffix i”; also, it will often be convenient for processing to
incorporate into & at position n an ending sentinel $ assumed to be less than any ;.

Then, for example, on alphabet ¥ = {$,a,b,c,d, e}:

A Taxonomy of Suffix Array Construction Algorithms

1 2 3 4 5 6 7 8 9 10 11 12
x=a b e a c adab e a $
SA=12 11 8 1 4 6 9 2 5 7 10 3
Thus SA tells us that ®[12..12] = § is the least suffix, [11..12] = a$ the second least,
and so on (alphabetical ordering of the letters assumed). Note that SA is always a
permutation of 1..n.
Often used in conjunction with SAg is the lep array lcp[l..n]: for every j € 2..n,
leplj] is just the longest common prefix of suffixes SA[j—1] and SA[j]. In our
example:

1 2 3 4 5 6 7 8 9 10 11 12

z=a b e a ¢c a d a b e a $
SA=12 11 8 1 4 6 9 2 5 7 10 3
lep=— 0 1 41 10 3 0 0 0 2

Thus the longest common prefix of suffixes 11 and 8 is 1, that of suffixes 8 and 1
is 4. Since lcp can be computed in linear time from SAg [KLAAPO1, M04], also as a
byproduct of some of the SACAs discussed below, we do not consider its construction
further in this paper. However, the average lecp — that is, the average lcp of the
n—1 integers in the lcp array — is as we shall see a useful indicator of the relative
efficiency of certain SACAs, notably Algorithm S.

We remark that both SA and lcp can be computed in linear time by a preorder
traversal of a suffix tree.

Many of the SACAs also make use of the tnverse suffix array, written ISAg
or ISA: an array ISA[1..n] in which

ISA[i] = j <= SA[j]=1i.

ISA[i] = j therefore says that suffix i has rank j in lexorder. Continuing our example:

1 2 3 4 5 6 7 8 9 10 11 12
r=a b e a c a d ab e a $
ISA=4 8 12 5 9 6 10 3 7 11 2 1

Thus ISA tells us that suffix 1 has rank 4 in lexorder, suffix 2 rank 8, and so on. Note
that ISA is also a permutation of 1..n, and so SA and ISA are computable, one from
the other, in O(n) time:

for j + 1tondo
SA[ISA[j]] - j

As shown in Figure 1, this computation can if required also be done in place.

Many of the algorithms we shall be describing depend upon a partial sort of some
or all of the suffixes of @, partial because it is based on an ordering of the prefixes
of these suffixes that are of length h > 1. We refer to this partial ordering as an
h-ordering of suffixes into h-order, and to the process itself as an h-sort. If two
or more suffixes are equal under h-order, we say that they have the same h-rank
and therefore fall into the same h-group; they are accordingly said to be h-equal.
Usually an h-sort is stable, so that any previous ordering of the suffixes is retained
within each h-group.

Proceedings of the Prague Stringology Conference '05

for j < 1 to n do
i+ SA[j]
— Negative entries already processed
if i > 0 then
JosJ' 4 J
repeat
temp < SA[i]; SA[i] « —j'
j' < 1i; i < temp

until + = jj

SA[i] + —7'
else

SA[j] « —1

Figure 1: Algorithm for computing ISA from SA in place

The results of an h-sort are often stored in an approximate suffix array, written
SAj, and/or an approximate inverse suffix array, written ISA,. Here is the result of
a 1-sort on all the suffixes of our example string:

1 2 3 4 5 6 7 8 9 10 11 12

x=a b e ac a d a b e a $
SA,=12 (1 4 6 8 11) (2 9) 5 7 (3 10)
ISA, =2 7 11 2 9 2 10 2 7 11 2 1
or6 8 12 6 9 6 10 6 8 12 6 1
or2 3 6 2 4 2 5 2 3 6 2 1

The parentheses in SA; enclose 1-groups not yet reduced to a single entry, thus not
yet in final sorted order. Note that SA,, retains the property of being a permutation of
1..n, while ISA; may not. Depending on the requirements of the particular algorithm,
ISA;, may as shown express the h-rank of each h-group in various ways:

e the leftmost position j in SA; of a member of the h-group, also called the head
of the h-group;

e the rightmost position j in SA; of a member of the h-group, also called the tazil
of the h-group;

e the ordinal left-to-right counter of the h-group in SA,.

Compare the result of a 3-sort:

1 2 3 4 5 6 7 8 9 10 11 12

z=a b e a ca d a b e a $
SA;=12 11 (1 8) 4 6 (2 9) 5 7 10 3
ISA;,=3 7 12 5 9 6 10 3 7 11 2 1
ord 8 12 5 9 6 10 4 8 11 2 1
or3d 6 10 4 75 8 3 6 9 2 1

Observe that an (h+1)-sort is a refinement of an h-sort: all members of an (h+1)-
group belong to a single h-group.

A Taxonomy of Suffix Array Construction Algorithms

We now have available a vocabulary sufficient to characterize the main species of
SACA as follows.

(1) Prefix-Doubling

First a fast 1-sort is performed (since ¥ is indexed, bucket sort can be used);
this yields SA;/ISA;. Then for every h = 1,2,..., SAy, /IS Ay, are computed
in ©(n) time from SAj,/IS A until every 2h-group is a singleton. The time
required is therefore O(nlogn). There are two algorithms in this class: MM
[MMO90, MM93] and LS [S98, LS99).

(2) Recursive

Form strings ' and y from z, then show that if SA_ is computed, therefore
SAy and finally SAg can be computed in O(n) time. Hence the problem of
computing SA_.s recursively replaces the computation of SAg. Since |’| is
always chosen so as to be less than 2|x|/3, the overall time requirement of these
algorithms is ©(n). There are three main algorithms in this class: KA [KA03],
KS [KS03] and KJP [KJPO4].

(3) Induced Copying

The key insight here is the same as for the recursive algorithms — a complete sort
of a selected subset of suffixes can be used to “induce” a complete sort of other
subsets of suffixes. The approach however is nonrecursive: an efficient suffix
sorting technique (for example, [BM93, MBM93, M97, BS97, SZ04]) is invoked
for the selected subset of suffixes. The general idea seems to have been first
proposed by Burrows & Wheeler [BW94], but it has been implemented in quite
different ways [IT99, S00, MF04, SS05, BK03, M05]. In general, these methods
are very efficient in practice, but may have worst-case asymptotic complexity
as high as O(n?logn).

The goal is to design SACAs that
e have minimal asymptotic complexity ©(n);

e are fast “in practice” (that is, on collections of large real-world data sets such
as [HO4]);

e are lightweight — that is, use a small amount of working storage in addition
to the bn bytes required by & and SAg.

To date none of the SACAs that has been proposed achieves all of these objectives.
Figure 2 presents our taxonomy of the fourteen species of SACA that have been
recognized so far; Table 1 summarizes their time and space requirements.

Proceedings of the Prague Stringology Conference '05

kMR
i Patterns

MM
Original

PREFIX-DOUBLING

1972

1990

1994

1997

1999

2000

BK
Diff cover

KS
mod3 split

H

KA
<> split

)

J [

KSPP
mod2 split

)

2003

M
ISA

INDUCED COPYING

HSS

RECURSIVE

Succinct DS
N KJP
Succinct O(nloglogn)

2004

2005

Figure 2: Taxonomy of suffix array construction algorithms

Table 1: Performance summary of the construction algorithms. Speed is relative to
MF, the fastest in our experiments, and Memory is given in the number of bytes
required including space required for the suffix array and input.

Algorithm Worst Case Speed Memory

Prefix-Doubling

MM [MM93] O(nlogn) 16 8n

LS [LS99] O(nlogn) 1.7 8n
Recursive

KA [KA03] O(n) 2.2 13-14n

KS [KS03] O(n) 2.8 10-13n

KSPP [KSPP03] O(n) - -

HSS [HSS03] O(n) - -

KJP [KJP04] O(nloglogn) 2.1 13-16n
Induced Copying

IT [IT99) O(n?logn) 4 5n

S [S00] O(n?logn) 2.1 5n

BK [BK03] O(nlogn) 2.1 5-6n

MF [MF04] O(n?*logn) 1 5n

SS [SS05] O(n?) 1 9-10n

M [MO05] O(n?logn) 1 5-Tn
Suffix Tree

K [K99] O(nlogo) 4 15-20n

A Taxonomy of Suffix Array Construction Algorithms

3 The Algorithms

3.1 Prefix-Doubling Algorithms [KMR72]

Here we consider algorithms that, given an h-order SA, of the suffixes of &, h > 1,
compute a 2h-order in O(n) time. Thus prefix-doubling algorithms require at most
log, n steps to complete the suffix sort and execute in O(nlogn) time in the worst
case.

Normally prefix-doubling algorithms initialize SA; for h = 1 using a linear-time
bucket sort. The main idea [KMR72] is as follows:

Observation 1. Suppose that SA;, and ISA, have been computed for some h > 0,
where i = SAy[j] is the jth suffiz in h-order and h-rank[i] = ISA,[i]. Then a sort
using the integer pairs

(ISAL[i], ISA[i+h])

as keys, i+h < n, computes a 2h-order of the suffizes i. (Suffizes i > n—h are
necessarily already fully ordered.)

The two main prefix-doubling algorithms differ primarily in their application of
this observation:

e Algorithm MM does an implicit 2h-sort by performing a left-to-right scan of
SAj, that induces the 2h-rank of SA,[j]—h, j =1,2,...,n;

e Algorithm LS explicitly sorts each h-group using the ternary-split quicksort
(TSQS) of Bentley & Mcllroy [BM93].

Manber & Myers [MM90, MM93]

Algorithm MM employs Observation 1 as follows:

If SA, is scanned left to right (thus in h-order of the suffixes), j =
1,2,...,n, then the suffixes

i—h =SAu[j]-h >0
are necessarily scanned in 2h-order within their respective h-groups in SA,.

After the bucket sort that forms SA;, MM computes ISA; by specifying as the h-rank
of each suffix 7 in SA; the leftmost position in SA; (the head) of its group:

1 2 3 45 6 7 8 9 10 11 12
x=a b eac a d abe a $
SA,=12(1 4 6811) (29)5 7 (3 10)
ISAy=2 71129 2 102 711 2 1

To form SA,, we consider positive values of i—1 = SA[j]—h for j =1,2,...,n:

e for j = 1,7,8,9,10, identify in 2-order the suffixes 11, (1,8),4,6 beginning
with a;

Proceedings of the Prague Stringology Conference '05

e for j = 11,12, identify in 2-order the 2-equal suffixes (2,9) beginning with b;
e for j = 3,6, identify in 2-order the 2-equal suffixes (3,10) beginning with e.

Of course groups that are singletons in SA; remain singletons in SA,, and so, after
relabeling the groups, we get

1 2 3 4 56 7 8 9 10 11 12
SA,=1211 (18) 46 (29)5 7 (3 10)
ISA,=3 71159610 3 711 2 1

To form SA,, we consider positive values of i—2 = SA,[j]—h for j =1,2,... n:
e for j = 11,12, we identify in 4-order the 4-equal suffixes (1, 8) beginning with ab;
e for j = 2,5, we identify in 4-order the 4-distinct suffixes 9, 2 beginning with be;

e for j = 1,9, we identify in 4-order the 4-distinct suffixes 10, 3 beginning with ea.

Hence:
1 2 3 4 56 7 89 10 11 12
SA;,=1211 (1846 9 25 7 10 3
[SA,= 3 812596103711 2 1

The final SA = SAg and ISA = ISAg are achieved after one further doubling that
separates the abea’s (1,8) into 8, 1.

Algorithm MM is complicated by the requirement to keep track of the head of each
h-group, but can nevertheless be implemented using as few as 4n bytes of storage, in
addition to that required for & and SA. It can be represented conceptually as shown
in Figure 3.

A time- and space-efficient implementation of MM is available at [M97].

h <1
initialize S Ay, ISA;
while some h-group not a singleton
for 1+ 1tondo
if + > 0 then
q < head [h-groupli]]

SAQh[q] — 1

head [h-group[i]] + g+1
compute ISAy, — update 2h-groups
h < 2h

Figure 3: Algorithm MM

A Taxonomy of Suffix Array Construction Algorithms

Larsson & Sadakane [S98, LS99]

After using TSQS to form SA;, Algorithm LS computes ISA; using the rightmost
(rather than, as in Algorithm MM, the leftmost) position of each group in SA; to
identify h-rank[i].

1 2 3 45 6 7 8 9 10 11 12
zt=a b eac a d abe a $
SA; =12 (1 4 6811) (29)5 7 (3 10)
ISA, =6 81269 6 10 6 8126 1

In addition to identifying h-groups in SA, that are not singletons, LS also identifies
runs of consecutive positions that are singletons (fully sorted). For this purpose an
array L = L[1..n] is maintained, in which L[j] = ¢ (respectively, —¢) if and only if j
is the leftmost position in SA;, of an h-group (respectively, run) of length ¢:

1 2345678 9 1011 12
L=-15 2 =2 2

Left-to-right processing of L. thus allows runs to be skipped and non-singleton h-groups
to be identified, in time proportional to the total number of runs and h-groups. TSQS
is again used to sort the suffixes 7 in each of the identified h-groups according to keys
ISA,[i+h], thus yielding, by Observation 1, a collection of subgroups and subruns in
2h-order. A straightforward update of . and ISA then yields stage 2h:

1 2 3 4 5 6 7 8 9 10 11 12
SA, =12 11 (18) 4 6(29) 5 7 (310)
[SAp, =4 8125 9 6104 8 12 2 1
= -2 2 -2 2 -2 2
A further doubling yields
1 2 3 4 5 6 7 89 10 11 12
SA,= 1211 (18) 4 6 925 7 10 3
[SAy= 4 8125 9 6104711 2 1
L=-2 2 -8

and then the final results SAg and ISAg are achieved as for Algorithm MM, with
L[1] = —12.

Observe that, like MM, LS maintains ISAy,[i] = ISA,[i] for every suffix i that is
a singleton in its h-group. However, unlike MM, LS avoids having to process every
position in SA, (see the for loop in Figure 3) by virtue of its use of the array L —
in fact, once for some h, i is identified as a singleton, SA,[i] is never accessed again.

We now remark that in fact I can be eliminated! L is not required to determine
non-singleton h-groups because for every suffix ¢ in such a group, ISA,[i] is by defini-
tion the rightmost position in the group. Thus, in particular, at the leftmost position
J of the h-group, where i = SA;[j], we can compute the length ¢ of the group from
¢ =1SA[i]—j+1. Of course L also keeps track of runs of fully sorted suffixes in SAy,,

9

Proceedings of the Prague Stringology Conference '05

but, as just remarked, positions in SA;, corresponding to such runs are thereafter un-
used — it turns out that they can be recycled to perform the run-tracking role. This
implementation requires that SA; be reconstructed from ISA,, in order to provide the
final output, a straightforward procedure (see Section 2).

Algorithm LS thus requires 4n additional bytes of storage (the integer array ISA),
just like MM. As shown in [LS99], LS executes in O(nlogn) time, again the same as
MM; however, in practice its running time is usually several times faster.

3.2 Recursive Algorithms [F97]

In this section we consider a family of algorithms that were all discovered in 2003
or later, that are recursive in nature, and that generally execute in worst-case time
linear in string length. All are based on an idea first put forward by Farach [F97] for
linear-time suffix ¢ree construction of strings on an indexed alphabet: they depend on
an initial assignment of type to each suffix (position) in x that separates the suffixes
into two or more classes. Thus the recursion in all cases is based on a split of the
given string = 2(®) into disjoint (or almost disjoint) components (subsequences)
that are transformed into strings we call z(® and y™, chosen so that, if SA$(1) is
(recursively) computed, then in linear time

° SAm(l) can be used to induce construction of SAy(1), and furthermore
. SAm(o) can then also be computed by a merge of SA$(1) and SAy(l).

Thus the computation of SAm(o) (in general, SAm(i)) is reduced to the computation
of SAm(l) (in general, SAm(i+1))- To make this strategy efficient and effective, two
requirements need to be met.

1. At each recursive step, ensure that
thus the sum of the lengths of the strings processed by all recursive steps is

le|(1+f+f2+...) < |:c|/(1—f).

In fact, over all the algorithms proposed so far, f < 2/3, so that the sum of the
lengths is guaranteed to be less than 3|z| — for most of them < 2|x|.

2. Devise an approximate suffix-sorting procedure, semzisort say, that for some
sufficiently short string £+ will yield a complete sort of its suffixes and thus
terminate the recursion, allowing the suffixes of ®, (=1 . 2(© all to be
sorted in turn. Ensure moreover that the time required for semisort is linear in
the length of the string being processed.

Clearly suffix-sorting algorithms satisfying the above description will compute SAg
(or equivalently ISAg) of a string € = [l..n] in ©(n) time. The structure of such
algorithms is shown in Figure 4.

All of the algorithms discussed in this subsection compute &’ (that is, ™)) and y
(that is, y™®) from z (that is, (°)) in similar ways: the alphabet of the split strings

10

A Taxonomy of Suffix Array Construction Algorithms

procedure construct(z; SA)
split(z; =',y)
semisort(z’; ISA’)
if ISA’ contains duplicate ranks then
construct(ISA"; SAg = SA)
else
invert(ISAg = ISA'; SA)
induce(SA,r, ISA 75 SAy)
merge(SA 7, SAy; SAg)

Figure 4: General algorithm for recursive SA construction

is in fact the set of suffixes (positions) 1..n in @, so that ' and y together form a
permutation of 1..n.

Attention then focuses on computing the ranks of the suffixes (positions) i of that
occur in ': we call this sequence (string) of ranks ISA s, where for j = 1,2,...,[2'|,
ISA,/[i] gives the rank of suffix i = 2'[j] of .

Procedure semisort computes an approximation ISA’ of ISA_,s that ultimately, at
some level of recursion, becomes exact — and so we may write ISA ,» = ISA’, then
invert ISA ,r to form SA /.

If however ISA’ is not exact, then it is used as the input string for a recursive
call of the construct procedure, thus yielding the suffix array, SA’ say, of ISA" — the
key observation made here, common to all the recursive algorithms, is that since SA’
is the suffix array for the (approximate) ranks of the suffixes identified by @’, it is
therefore the suffix array for those suffixes themselves. We may accordingly write
SAr = SA'.

In our discussion below of these algorithms, we focus on the nature of split and
semisort and their consequences for the induce and merge procedures.

Ko & Aluru [KAO03]

Algorithm KA’s split procedure assigns suffixes ¢ < n in left-to-right order to a se-
quence S (respectively, £) iff x[i..n] < (respectively, >) x[i + 1..n]. Suffix n (3$) is
assigned to both S and £. Since «[i| = x[i+1] implies that suffixes i and i+1 belong
to the same sequence, it follows that the KA split requires time linear in .
Then «’ is formed from the sequence of suffixes of smaller cardinality, y from the
sequence of larger cardinality. Hence for KA, |2| < |z|/2.
For example,
1 23456 7 8 91011 12
r=baddaddacca $
type=LSLLSLLSLLLS/L

vields [S| =4, [£] =9, &' = 25812, y = 1346791011 12.

For every j € 1.|z'|, KA’s semisort procedure forms i = &'[j], iy = «'[j +1]
(17, = 2'[j] if j = |2’|), and then performs a radix sort on the resulting substrings
x[i..i1], a calculation that requires ©(n) time. The result of this sort is a ranking ISA’

11

Proceedings of the Prague Stringology Conference '05

of the substrings «[i..i;|, hence an approximate ranking of the suffixes (positions)
i = 2'[j]. In our example, semisort yields

1234567891011 12
x=baddaddacca $
= 2 5 8 12

ISA"= 3 3 2 1

If after semisort the entries (ranks) in ISA” are distinct, then a complete ordering
of the suffixes of ' has been computed (ISA’ = ISA_/); if not, then as indicated in
Figure 4, the construct procedure is recursively called on ISA’. In our example, one
recursive call suffices for a complete ordering (12,8, 5,2) of the suffixes of =/, yielding
ISA .» = 4321.

At this point KA deviates from the pattern of Figure 4 in two ways: it combines the
induce and merge procedures into a single KA-merge (see Figure 5), and it computes
SAg directly without reference to ISAg 1.

initialize SA < SA{, head[l..«], tail[l..a]
for i < |z’| downto 1 do
A z[z'[i]]
SA [tail[\]] + [1]
tail[A] « tail[A\] —1
for j < 1tondo
i < SA[j]
if type[i—1] = L then
A x[i—1]
SA[head[N]] +i—1
head[)\] < head[\]+1

Figure 5: Algorithm KA-merge

First SA; is computed, yielding 1-groups for which the leftmost and rightmost
positions are specified in arrays head[l..a] and tail[1..a], respectively. Since in each 1-
group all the S-suffixes are lexicographically greater than all the L-suffixes, and since
the S-suffixes have been sorted, KA-merge can place all the S-suffixes in their final
positions in SA — each time this is done, the tail for the current group is decremented
by one. (In this description, we assume that |S| < |£[; obvious adjustments yields a
corresponding approach for the case |[£] < |S].)

The SA at this stage is shown below, with “—” denoting an empty position:

1 2 3 4 5 6 7T 8 9 10 11 12
SA=12 (= 852 (=) (- =) (- - - -)
type=S L SSS I L I L LL L

To sort the L-suffixes, we scan SA left to right. For each suffix position i = SA[j]
that we encounter in the scan, if i—1 is an L-suffix still awaiting sorting (not yet
placed in the SA), we place i—1 at the head of its group in SA and increment the

'In [KA03] it is claimed that the ISA must be built in unison with the SA for this procedure to
work, but we have found that this is actually unnecessary.

12

A Taxonomy of Suffix Array Construction Algorithms

head of the group by one. Suffix :—1 is now sorted and will not be moved again. The
correctness of this procedure depends on the fact that when the scan of SA reaches
position j, SA[j] is already in its final position. In our example, placements begin
when j = 1, so that ¢ = SA[1] = 12. Since suffix i—1 = 11 is type L, it is placed at
the front of the a group (of which it happens to be the only member):

1 2 345 6 7 8 9 1011 12
SA=12(11852) (=) (— =) (— = —=—)
type=S L SSS L L L L LL L
Next the scan reaches j = 2, i = SA[2] = 11, and we place i—1 = 10 at the front
of the ¢ group at SA[7] and increment the group head.

1 2 3 4 5 6 7 8 9 10 11 12
SA=12 (118 52) (=) (10 =) (- — — —)
type=S L SSS L L L L LLL

The scan continues until finally

1 2 3456 7 891011 12
SA=1211852110974 6 3

Algorithm KA can be implemented to use only 4n bytes plus 1.25n bits in addition
to the storage required for z and SA.

Karkkiinen & Sanders [KS03]

The split procedure of Algorithm KS first separates the suffixes ¢ of @ into sequences &;
(every third suffix in @: i =1 mod 3) and Sy (the remaining suffixes: i Z 1 mod 3).
Thus in this algorithm three types 0, 1, 2 are identified: @’ is formed from Sy, by

' = (i =2mod 3) (i =0 mod 3),
while y is formed directly from S;. For our example string

123456 7891011 12

r=baddaddacc a$

we find '’ = (25811)(36912), y = 14710. Note that |z’| < [2|x|/3].

Construction of ISA" using semisort begins with a linear-time 3-sort of suffixes
i € Spz based on triples t; = @x[i..i4+2]. Thus a 3-order of these suffixes is established
for which a 3-rank r; can be computed, as illustrated by our example:

t 2 3 5 6 8 9 11 12
t; add dda add dda acc cca a$— $——
r, 4 6 4 6 3 5 2 1

These ranks enable ISA’ to be formed for x’:

r 2 3 4 5 6 7 8

[SA'= (4 4 3 2) (6 6 5 1)

13

Proceedings of the Prague Stringology Conference '05

As with Algorithm KA, one recursive call on @’ = 44326651 suffices to complete
the ordering, yielding ISA ,» = 54328761 — this gives the ordinal ranks in @ of the
suffixes €’ =2581136912.

The induce procedure sorts the suffixes specified by y based on the ordering ISA /.
First SA_,» = 1211852963 is formed by linear-time processing of ISA /. Then a
left-to-right scan of SA ,» allows us to identify suffixes i = 2 mod 3 in increasing order
of rank and thus to select letters x[i—1], i—1 = 1 mod 3, in the same order. A stable
bucket sort of these letters will then provide the suffixes of y in increasing lexorder.
In our example SA_/[2..5] = 11852, and so we consider x[10] = ¢, x[7] = x[4] = d,
x[1] = b. A stable sort yields bcdd corresponding to SAy = 11074.

Thus we may suppose that SA_,» and SAq are both in sorted order of suffix. The
KS merge procedure may then be thought of as a straightforward merge of these two
strings into the output array SAg, where at each step we need to decide in constant
time whether suffix iy of SAm, is greater or less than suffix i; of SAgy. Observing
that i;4+1 = 2 mod 3 and i;+2 = 0 mod 3, we identify two cases:

e if igp = 2mod 3, igx+1 = 0 mod 3, and so it suffices to compare the pairs
(m[iog],rank(i02+1)) and (m[zl],rank(zl—i-l)),

e if jpp = 0 mod 3, igs+2 = 2 mod 3, and so it suffices to compare the triples
(m[iog..im—i—l],rank(i02+2)) and (m[il..i1+1],rank(i1—|—2)).

We now observe that each of the ranks required by these comparisons is available in
constant time from ISA /! For if i =2 mod 3, then

rank(i) = ISA_[| (i+1)/3]],
while if 4 = 0 mod 3, then
rank(i) = ISA /[(n+1)/3]+]i/3]].

Thus the merge of the two lists requires ©(n) time.

Excluding & and SA, Algorithm KS can be implemented in 6n bytes of working
storage. A recent variant of KS [NO5] permits construction of a succinct suffix array
in O(n) time using only O(nlogolog? n) bits of working memory, where ¢ = log, 3.

Kim, Jo & Park [KSPP03, HSS03, KJP04]

The KJP split procedure adopts the same approach as Farach’s suffix tree construction
algorithm [F97]: it forms @', the string of odd suffixes (positions) i = 1 mod 2 in «,
and the corresponding string y of even positions. ISA ./ is then formed by a recursive
sort of the suffixes identified by x’. Algorithm KJP is not quite linear in its operation,
running in O(nloglogn) worst-case time.

For KJP we modify our example slightly to make it more illustrative:

123456 7891011

r=baddddacca$

yielding &’ = 1357911, y =246810.
The KJP semisort 2-sorts prefixes p; = @[i..i+1] of each odd suffix i and assigns
to each an ordinal rank r;:

14

A Taxonomy of Suffix Array Construction Algorithms

7 11 7 1 9 3 5
pi $— ac ba ca dd dd
r, 1 2 3 4 5 5

As in the other recursive algorithms, a new string ISA’ is formed from these ranks;
in our example,

123456

ISA'=355241

As with the other recursive algorithms, one recursive call suffices to find ISA ,» =
365241 corresponding to ' = 1357911. At this point KJP computes the inverse
array SA,» = 1171953. The KJP induce procedure can now compute SAy, the
sorted list of even suffixes, in a straightforward manner: first set SAy[i] <— SA ./[i] -1,
and then sort SAy stably, using x [SAy [z]] as the sort key for suffix SAq[d]:

1 23456

SAy=1171953

SAy = 102864
The KJP merge is more complex. In order to merge SA _.» and SAy efficiently, we
need to compute an array C'[1..[n/2]], in which C[i] gives the number of suffixes in
SA_ that lie between SAy[i] and SAy[i—1] in the final SA (with special attention
to end conditions i = 1 and i = |y|+1). In [KJP04] it is explained how C' can be
computed in log|x’| time using a suffix array search (pattern-matching) algorithm
described in [SKPP03]. We omit the details, however, for our example we would find

123456
C=011011

With C' in hand, merging is just a matter of using each C[i] to count how many
consecutive SA ./ entries to insert between consecutive SAqy entries.

There are two other algorithms which, like KJP, perform an odd/even split of the
suffixes. Algorithm KSPP [KSPP03] was the first of these, and although its worst-case
execution time is O(n), it is generally considered to be of only theoretical interest,
mainly due to high memory requirements. On the other hand, Algorithm HSS [HSS03]
uses “succinct data structures” [M99] effectively to construct a (succinct) suffix array
in O(nloglogo) time with only ©(nlogo) bits of working memory. (Compare the
variant [N05] of Algorithm KS mentioned above.) It is not clear how practical these
lightweight approaches are, since their succinctness may well adversely affect speed.

3.3 Induced Copying Algorithms [BW94]

The algorithms in this class are arguably the most diverse of the three main divi-
sions of SACAs discussed in this paper. They are united by the idea that a (usually)
complete sort of a selected subset of suffixes can be used to induce a fast sort of
the remaining suffixes. This induced sort is similar to the induce procedures em-
ployed in the recursive SACAs; the difference is that some sort of iteration is used in
place of the recursion. This replacement (of recursion by iteration) probably largely
explains why several of the induced copying algorithms are faster in practice than

15

Proceedings of the Prague Stringology Conference '05

any of the recursive algorithms (as we shall discover in Section 4), eventhough none
of these algorithms is linear in the worst case. In fact, their worst-case asymptotic
complexity is generally O(n?logn). In terms of space requirements, these algorithms
are lightweight: for many of them, use of additional working storage amounts to less
than n bytes.

We begin with brief outlines of the induced copying algorithms:

e Itoh & Tanaka [IT99] select suffixes i of “type B” — those satisfying x[i] <
x[i+1] — for complete sorting, thus inducing a sort of the remaining suffixes.

e Seward [S00] on the other hand sorts certain 1-groups, using the results to
induce sorts of corresponding 2-groups, an approach that also forms the basis
of Algorithms MF [MF04] and SS [SS05].

e A third approach, due to Burkhardt & Kéarkkainen, uses a small integer A to
form a “sample” S of suffixes that is then A-sorted; using a technique reminiscent,
of the recursive algorithms, the resulting h-ranks are then used to induce a
complete sort of all the suffixes.

e Finally, the as-yet-unpublished algorithm of Maniscalco [M05] computes [SAg
using an iterative technique that, beginning with 1-groups, uses h-groups to
induce the formation of (h+1)-groups.

Itoh & Tanaka [IT99]

Algorithm IT classifies each suffix 7 of & as being type A if z[i] > z[i + 1] or type B
if z[i] < z[i + 1] (compare types L and S of Algorithm KA). The key observation of
Itoh and Tanaka is that once all the groups of type B suffixes are sorted, the order
of the type A suffixes is easy to derive. For example:

1 2 3 4 5 6 7 8 9 1011 12
r=baddaddacecatl
type=A BBABBABDBAARB

To form the full SA, we begin by computing the 1-group boundaries, noting the
beginning and end of each 1-group with arrays head[l..0] and tail[l..0] (recall o =
|X|). Each 1-group is further partitioned into two portions, so that in the first portion
there is room for the type A suffixes, and in the second for the type B suffixes. For
each group the position of the A/B partition is recorded. Observe that within a
1-group, type A suffixes should always come before type B suffixes. The SA at this
stage is shown below, with “—” denoting an empty position:

1 2 3 4 5 6 7 8 9 10 11 12
SA=12(— 2 5 8) (=) (- 9) (— — 3 6)
type=B ABBB A A B A AAA

Algorithm IT now sorts the B suffixes using a fast string sorting algorithm. In
[IT99] multikey quicksort (MKQS) [BS97] is proposed, but any other fast sort, such as
burst sort [SZ04] or the elaborate approach introduced in Algorithm MF (see below),
could be used:

16

A Taxonomy of Suffix Array Construction Algorithms

1 2 3 4 5 6 7 8 9 1011 12
SA=12 (-8 52) (=) (=9 (—— 6 3)
type=B A BBB A AB AAAA

To sort the A-suffixes, and complete the SA, we scan SA left to right, j =
1,2,...,n. For each suffix position i = SA[j] that we encounter in the scan, if i—1 is
an A-suffix still awaiting sorting (that is, it has not yet been placed in the SA), then
we place i—1 at the head of its group in SA and increment the head of the group by
one. Suffix i—1 is now sorted and will not be moved again. Like Algorithm KA, the
correctness of this procedure depends on SA[j] already being in its final position when
the scan of SA reaches position j. In our example, placements begin when j = 1,
i = SA[1] = 12. Suffix i—1 =11 is type A, so we place 11 at the front of the a group
(of which it happens to be the only unsorted member), and it is now sorted:

1 2 3 4 5 6 7 8 9 10 11 12
SA=12118 5 2 (=) (= 9) (- — 6 3)
type= B ABBB A A B A AAA

Next the scan reaches j = 2, i = SA[2] = 11, and so we place i—1 = 10 at the
front of its ¢ group at SA[7] and increment the group head, completing that group:

1 2 3 4 5 6 7 8 9 10 11 12
SA=12118 5 2 (=) 10 9 (— — 6 3)
type= B ABBB A AB A AAA

The scan continues, eventually arriving at the final SA :

1 2 3456 7 891011 12
SA=1211852110974 6 3

Figure 6 gives an algorithm capturing these ideas. The attentive reader will note
the similarity between it and Algorithm KA (Subsection 3.2). In fact, the set of B-
suffixes used in Algorithm IT is a superset of the S-suffixes treated in Algorithm KA.

initialize SA < SA;
— head[l..0] and tail[l..0] mark 1-group boundaries
— part[l..0| marks A/B partition of each 1-group
for h < 1to o do

suffixsort (SA [part[h]], SA [part[h]+1],...,SA [tail[h]])
for j < 1tondo
i < SA[j]
if type[i—1] = A then
A x[i—1]
SA[head[\]] +i—1
head[)\] < head[\]+1

Figure 6: Algorithm IT

17

Proceedings of the Prague Stringology Conference '05

Clearly IT executes in time linear in n except for the up to o suffix sorts of the
possibly ©(n) B-suffixes in each 1-group; these sorts may require O(n*logn) time
in pathological cases. In practice, however, IT is quite fast. It is also lightweight:
with careful implementation (for example, both head and tail arrays do not need to
be stored, and suffizsort can be executed in place), IT requires less than n bytes of
additional working storage when n is large (megabytes or more) with respect to o.

Seward [SO00]

Algorithm S begins with a linear-time 2-sort of the suffixes of &, thus forming SA, in
which the boundaries of each 2-group are identified by the head array — also used to
mark boundaries between the 1-groups. Therefore in this case head = head[l..0, 1..0],
allowing access to every boundary head [\,] for every A, € . For our example the
result of the 2-sort could be represented as follows:

1 2 3 4 5 6 7 8 9 10 11 12
x=0b a dd add a ¢c ca $
SA; =12 (11 8 [25]) 1 (10 9) ([4 7] [3 6])

where () encloses non-singleton 1-groups, || encloses non-singleton 2-groups.

Now consider a 1-group G, corresponding to a common single-letter prefix .
Suppose that the suffixes of Gy are fully sorted, yielding a sequence G5 in ascending
lexorder. Imagine now that G is traversed in lexorder: for every suffix ¢ > 1, the
suffix —1 can be placed in its final position in SAg at the head of the 2-group for
x[i—1]\ — provided head [z[i—1], \] is incremented by one after the suffix is placed
there, thus allowing for correct placement of any other suffixes in the same 2-group.
The lexorder of G ensures that the suffixes :—1 also occur in lexorder within each
2-group.

This is essentially the strategy of Algorithm S: it uses an efficient string sort
[BM93] to sort completely the unsorted suffixes in a 1-group that currently contains
a minimum number of unsorted suffixes, then uses the sorted suffixes ¢ to induce
a sort of suffixes 1—1. Thus all suffixes can be completely sorted at the cost of a
complete sort of only half of them.

The process can be made still more efficient by observing that when G, is sorted,
the suffixes with prefix A\? can be omitted, provided the 2-group corresponding to
A% is traversed after the traversal of G%. To see this, suppose there exists a suffix
Muv in Gy, k > 2, # X. Then the suffix \yv will have been sorted into G% and
already processed to place suffix z[i.n] = A\?uwv at head[\, A\]. Thus when \pwv is
itself processed, suffix z[i—1]\?pv will be placed at head [m[i—l],)\] — this will again
be (the now incremented) head[\, A] if &£ > 3 (x[i—1] = \).

We can apply Algorithm S to our example string:

Iteration 1 The 1-group corresponding to A = $ contains only the singleton unsorted
suffix ¢ = 12. Thus the sort is trivial: 12 is already in its final position in SA,
and suffix 7—1 = 11 is put in final position at head[a, $] = 2.

Iteration 2 The minimum 1-group corresponding to b contains only suffix i = 1,
which is therefore in final position. Since i—1 = 0, there is no further action.

18

A Taxonomy of Suffix Array Construction Algorithms

Iteration 3 The minimum 1-group corresponds to A = ¢; it again has only one entry
to be sorted, since one of the 2-groups represented is cc. Thus suffix ¢ = 10
is in final position at head[c,a] = 7, and determines the final position of suffix
i—1 =9 at head[c,c¢] = 8. Then finally for i = 9, the final position of suffix
i—1 = 8 is fixed at head[a, ¢] = 3.

Iteration 4 The 1-group for A = a now contains only the two unsorted suffixes 2
and 5, since 11 and 8 have been put in final position by previous iterations. The
sort yields SA[4] = 5, SA[5] = 2, so that the completely sorted 1-group becomes
SA[2..5] = 11852. For i = 11, suffix i—1 = 10 is already in final position; for
i = 8, suffix i—1 = 7 is placed in final position at head[d,a] = 9; then, for
i =5, after head|d, a] is incremented, suffix i—1 = 4 is placed in final position
at head[d, a] = 10; for i = 2, i—1 =1 is already in final position.

Iteration 5 The final group corresponds to A = d; by now its only unsorted suffixes,
3 and 6, belong to the 2-group dd and so do not require sorting. As a result
of Tteration 4, SA[9..10] = 74. Thus, for i = 7, suffix i—1 = 6 is placed
at head[d,d] = 11, while for i = 4, the final suffix i —1 = 3 is placed at
head[d, d] = 12.

For this example, only one simple sort (of suffixes 2 and 5 in Iteration 4) needs to be
performed in order to compute SAg!

Algorithm S shares the O(n?logn) worst case time of other induced copying algo-
rithms, but is nevertheless very fast in practice. However, its running time sometimes
seems to degrade significantly when the average lcp, lcp, is large, for reasons that are
not quite clear. This problem is addressed by a variant, Algorithm MF, discussed
next. Like IT, Algorithm S can run using less than n bytes of working storage.

Manzini & Ferragina [MF04]

Algorithm MF is a variant of Algorithm S that replaces TSQS [BM93], used to sort the
2-groups within a selected 1-group, by a more elaborate and sophisticated approach
to suffix-sorting. This approach is two-tiered, depending initially on a user-specified
integer lep®, the longest lep of a group of suffixes that will be sorted using a standard
method. (Typically, for large files, Icp® will be chosen in the range 500..5000.) Thus,
if a 2-group of suffixes is to be sorted, then MKQS [BS97] (rather than TSQS) will be
employed until the recursion of MKQS reaches depth lep™: if the sort is not complete,
this defines a set I, = {i1, 2, ..., im }, m > 2, of suffixes such that

ICp(il, ig, ceey Zm) > ICp>k

At this point, the methodology used to complete the sort of these m suffixes is chosen
depending on whether m is “large” or “small”.

If m is small, then a sorting method called blind sort [FG99] is invoked that
uses at most 36m bytes of working storage. Therefore, if blind sort is used only for
m < n/Q, its space overhead will be at most (36/Q)n bytes; by choosing @ > 1000,
say — and thus giving special treatment to cases where “not too many” suffixes share

19

Proceedings of the Prague Stringology Conference '05

a “long” lcp — it can be ensured that for small m, the space used is a very small
fraction of the 5n bytes required for x and SAg.

Blind sort of I,, depends on the construction of a blind trie data structure
[FG99]: essentially the strings

xlij+lep*.n], 1=1,2,...,m

are inserted one-by-one into an initially empty blind trie; then, as explained in [FG99],
a left-to-right traversal of the trie obtains the suffixes in lexorder, as required.

If m is large (> n/Q), Algorithm MF reverts to the use of a slightly modified
TSQS, as in Algorithm S; however, whenever at some recursive level of execution of
TSQS a new set of suffixes I! is identified for which m < n/@, then blind sort is
again invoked to complete the sort of I .

Following the initial MKQS sort to depth lep®, the dual strategy (blind sort/TSQS)
described so far to complete the sort is actually only one of two strategies employed
by Algorithm MF. Before resorting to the dual strategy, MF tries to make use of
generalized induced copying, as we now explain.

Suppose that for i; € I,,, and for some least £ € 1..1cp*—1,

iy +L.i+0+1] = A,

where [, u] identifies a 2-group that as a result of previous processing has already
been fully sorted. Since the m suffixes in I,,, share a common prefix, it follows that
every suffix in I, occurs in the same 2-group [A, u|. Since moreover the m suffixes
in I,,, are identical up to position /, it follows that the order of the suffixes in [, is
determined by their order in [\, pu]. Thus if such a 2-group exists, it can be used to
“induce” the correct ordering of the suffixes in I,,, as follows:

(1) Bucket-sort the entries i; € I, in ascending order of position (not suffix), so
membership in I,,, can be determined using binary search (step (3)).

(2) Scan the 2-group [\, p] to identify a match for suffix i1+, say at some position g.

(3) Scan the suffixes (positions) listed to the left and to the right of ¢ in 2-group
[\, u]; for each suffix i, use binary search to determine whether or not i—¢ occurs
in (the now-sorted) I,,. If it does occur, then mark the suffix i in [\, p].

(4) When m suffixes have been marked, scan the 2-group [\, u] from left to right:
for each marked suffix i, copy i—/¢ left-to-right into I,,,.

Step (2) of this procedure can be time-consuming, since it may involve a ©(n)-time
match of two suffixes; in [MF04] an efficient implementation of step (2) is described
that uses only a very small amount of extra space.

Of course if no such ¢, hence no such 2-group, exists, then this method cannot be
used: the dual strategy described above must be used instead.

In practice Algorithm MF runs faster than any of Algorithms KS, IT or S; in
common with other induced copying algorithms, it uses less than n bytes of additional
working storage but can require as much as O(n?logn) time in the worst case.

20

A Taxonomy of Suffix Array Construction Algorithms

Schiirmann & Stoye [SS05]

Algorithm SS could arguably be classified as a prefix-doubling algorithm. Certainly
it is a hybrid: it first applies a prefix-doubling technique to sort individual A-groups,
then uses Seward’s induced copying approach to extend the sort to other groups of
suffixes.

For SS, the integer h is actually a user-specified parameter, chosen to satisfy
h < log, n. First a radix sort is performed to compute SA;, then the corresponding
ISA};, in which the A-rank of each h-group is formed from the tail of the h-group
in SA;, (the same system used in Algorithm LS). Thus, for example, using h = 2,
the result of the first phase of processing would be just the same as after the second
iteration of LS:

1 2 3 456 7 8 910 11 12
x=a b e acad abe a $
SA,= 1211 (18)46 (29)5 7 (3 10)
[SA, =4 8 1259610 4 812 2 1

In its second phase, SS considers h-groups in SA,, that are not singletons. Let H
be one such h-group. The observation is made that since every suffix 2 in H has the
same prefix of length h, therefore the order of each ¢ in H is determined by the rank
of suffix i+h; that is, by ISA,[i+h]. A sort of all the non-singleton h-groups in SA,
thus leads to the construction of SAg;, and ISA,y,:

1 2 3 4 56 7 89 10 11 12
SA,=1211 (1846 9 25 7 10 3
ISA,= 3 812596103711 2 1

Observe that as a result of the prefix-doubling, the h-groups (29) and (310) have
become completely sorted.

To entries in h-groups that become completely sorted by prefix-doubling, SS ap-
plies Algorithm S: if suffix 7 is in fixed position in SA, then the final position of suffix
i—1 can also be determined. Thus, in our example, the sort of the h-group (29) that
yields 2h-order 9,2 induces a corresponding sorted order 8,1 for the 2h-group (18),
completing the sort.

Algorithm SS iterates this second phase — prefix-doubling followed by induced
copying — until all entries in SA are singletons. Note that after the first iteration, the
induced copying will as a rule refine the h-groups so that they break down into (h+k)-
groups for various values of k£ > 0; thus, after the first iteration, the prefix-doubling
is approximate.

Algorithm SS has worst-case time complexity O(n?) and appears to be very fast
in practice, competitive with Algorithm MF. However, it is not quite lightweight,
requiring somewhat more than 4n bytes of additional working storage.

Burkhardt & Kéarkkdinen [BK03]

In a similar way to the recursive algorithms of Section 3.2, Algorithm BK computes
SAg by first ordering a sample of the suffixes S. The relative ranks of the suffixes in

21

Proceedings of the Prague Stringology Conference '05

S are then used to accelerate a basic string sorting algorithm, such as MKQS [BS97],
applied to all the suffixes.

Central to BK is a mathematical construct called a difference cover, which defines
the suffixes in §. A difference cover D, is a set of integers in the range 0..h — 1 such
that for all i € 0..h—1, there exist j, k € D), such that i = k— j(mod h). For a chosen
Dy, S contains the suffixes of beginning at positions ¢ such that ¢ mod h € Dy,

For example D; = {1,2,4} is a difference cover modulo 7. If we were to sample
according to D7 then for the string

0123456789 1011 12 13 14 15 16 17 18

r=baddaddbaddaddbdadd?$

we would obtain & = {1,2,4,8,9,11,15,16, 18, 22,23,25}. Observe for every i € S
that ¢ mod 7 is in Ds.

In practice, only covers D, with |D,| € ©(vh) are suitable. However, for the
chosen Dy, a function §(7, j) must also be precomputed. For any integers i, j, d(i, j)
is the smallest integer & € 0..h — 1 such that (: + k) mod h and (j + k) mod h are
both in Dj,. A lookup table allows constant time evaluation of §(i, j) — we omit the
details here.

Algorithm BK consists of two main phases. The goal of the first phase is to
compute a data structure ISAg allowing the lexicographical rank of i € S, relative
to the other members of S, to be computed in constant time. To this end, BK first
h-sorts S using MKQS (or alternative) and then assigns each suffix its h-rank in the
resulting h-ordering. For our example the h-ranks are:

1€S 1 2 4
h-rank 3 6 4

8 9 11 15 16 18
36 4 2 5 1
These ranks are then used to construct a new string «’ (compare to 2’ for Algo-
rithm KS) as follows
1€S 1 815 2 916 4 11 18
x'=(332)(665)(441)

The structure of @’ is deceptively simple. The h-ranks, r;, appear in |Dy| groups
in ' (indicated above with ()) according to ¢ modulo h. Then, within each group,
ranks r; are sorted in ascending order according to i. Because of this structure in
x’, its inverse suffix array, ISAg/, can be used to obtain the rank of any ¢ € S in
constant time. To compute ISA', BK makes use of Algorithm LS as an auxiliary
routine (recall that LS computes both the ISA and the SA). Although LS is probably
the best choice, any SACA suitable for bounded integer alphabets can be used.

With ISA g computed, construction of SAg can begin in earnest. All suffixes are
h-ordered using a string sorting algorithm, such as MKQS, to arrive at SA;,. The
sorting of non-singleton h-groups which remain is then completed with a comparison
based sorting algorithm using ISAg[i + (7, j)] and ISAg/[j + (i,)] as keys when
comparing suffixes ¢ and j.

In [BKO03] it is shown that by choosing h = log, n an overall worst case running
time of O(nlogn) is achieved. Another attractive feature of BK is its small working
space — less then 6m bytes — made possible by the small size of S relative to & and by
use of inplace string sorting.

22

A Taxonomy of Suffix Array Construction Algorithms

Finally, we remark that the ideas of Algorithm BK can be used to ensure any of
the induced copying algorithms described in this section execute in O(nlogn) worst
case time.

Maniscalco [MO05]

Algorithm M differs from the other algorithms in this section in that it directly
computes ISAg and then transforms it into SAg inplace. At the time of writing,
Algorithm M is published as C++ code on the Internet [M05], the details of which
are examined in [P05].

At the heart of Algorithm M is an efficient bucket sorting regime. Most of the
work is done in what is eventually ISA g, with extra space required for a few stacks.
The bucket sorting begins by linking together suffixes that are 2-equal, to form chains
of suffixes. For example, the string

01234567
raaababaa$

would result in the creation of the following chains

7 6,1,0 42 5,3
a$ aa ab ba

We define an h-chain in the same way as an h-group — that is, suffixes 7 and j are in
the same h-chain iff they are h-equal. Thus, the chains above are all 2-chains, and
the chain for a$ is a singleton.

The space allocated for the ISA provides a way to efficiently manage chains.
Instead of storing the chains explicitly as above, Algorithm M computes the equivalent
array

012 3456 7
r aaababaal
ISA LOL 12311

in which ISA[i] is the largest j < i such that z[j..j + 1] = x[i..i + 1] or L if no such j
exists. In our example, the chain of all the suffixes prefixed with aa contains suffixes
6, 1 and 0 and so we have ISA[6] = 1, ISA[1] = 0 and ISA[0] = L, marking the end
of the chain. Observe that chains are singly linked, and are only traversable right-
to-left. We keep track of h-chains to be processed by storing a stack of integer pairs
(s,h), where s is the start of the chain (its rightmost index), and h is the length of
the common prefix. Chains always appear on the stack in ascending lexicographical
order, according to z[s..s + h — 1]. Thus for our example, initially (7,2) for chain a$
is atop the stack, and (5, 2) for chain ba at the bottom.

Chains are popped from the stack and progressively refined by looking at further
pairs of characters. So long as we process the chains in lexicographical order, when we
pop a singleton chain, the suffix contained has been differentiated from all others and
can be assigned the next lexicographic rank. Elements in the ISA which are ranks are
differentiated from elements in chains by setting the sign bit, that is, if ISA[i] < 0,
then the rank for suffix i is —ISA[i]. The evolution of the ISA of our example string
subsequent sorting rounds proceed as follows.

23

Proceedings of the Prague Stringology Conference '05

formInitialChains()
repeat
(h,l) + chainStack.pop()
if ISA[h] = L then
ISA[h] < nextRank()
else
while h # | do
sym < getSymbol(h + ¢)
updateSubChain(sym,h)
h < ISAJh]
sort AndPushSubChains()
until chainstack is empty

Figure 7: Bucket sorting of Algorithm M

0 1 2 3 4 5 6 71

x a a ab ab aal

ISA L 0 L L 23 1 L Initial chains (7,2)as(6,2)aa(4, 2)a(5, 2)ta

ISA L 0 L L 1 2 1 -1 Pop(7,2). and assign rank

ISA L 1 1 1121 Split chain (6,2)ea into (6,4)aas(0, 4)aaas (1, 4)aabe
ISA 341 1 1 2 -2 Pop (6,4)445(0,4) aaan (1, 4) aaba, assign ranks

ISA 1L 1 2 Split chain (4,2)4 into (4,4)apaa(2, 4)abab

ISA 6 L -5 2 Pop (4,4) abaa(2,4) apay, assign ranks

ISA L L Split chain (5,2)p, into (5,4)paas(3, 4)baba

ISA -8 -7 Pop (5, 4)paas (3, 4)papa, assign ranks

ISA, 3 4 6 8 5 7 21 Completed Inverse Suffix Array

When the value in a column becomes negative, the suffix has been assigned its
(negated) rank and is effectively sorted. We reiterate here that when a chain is
split, the resulting subchains must be placed on the stack in lexicographical order for
the subsequent assignment of ranks to singletons to be correct. This is illustrated in
the example above when the chain for aa is split, and the next chain processed is the
singleton chain for aa$. An algorithm embodying these ideas is listed in Figure 7.

Algorithm M adds two powerful heuristics to the string sorting algorithm described
in Figure 7. We discuss only the first (and more important) of these heuristics here
and refer the reader to [M05, P05] for details of the second.

The processing of chains in lexicographical order allows for the possibility to use
previously assigned ranks as sort keys for some of the suffixes in a chain. To elucidate
this idea we first need to make some observations about the way chains are processed.

When processing an h-chain, suffixes can be classified into three types: suffix 7 is
of type X if the rank for suffix i + A — 1 is known, and is of type Y if the rank for
suffix 7 + h is known. If 7 is not of type X or type Y, then it is of type Z. Any suffix
can be classified to its type in constant time by virtue of the fact we are building the
ISA (we inspect ISA[i +h — 1] or ISA[i 4+ h] and a checked sign bit indicates a rank).
Now consider the following observation: lexicographically, type X suffixes are smaller
than type Y suffixes, which in turn are smaller than type Z suffixes.

24

A Taxonomy of Suffix Array Construction Algorithms

To use this observation, when we refine a chain, we place only type Z suffixes into
subchains and place type X and type Y suffixes to one side. Now, the order of the m
suffixes of type X suffixes can be determined via a comparison based sort, using for
suffix 7 the rank of suffix i+h—1 as the sort key. Once sorted, the type X suffixes can
be assigned the next m ranks by virtue of the fact that chains are being processed in
lexicographical order. Type Y suffixes are treated similarly, using the rank of j + A
as the sort key for suffix 5. Maniscalco refers to the sorting of suffixes in this way as
induction sorting 2.

Loosely speaking, as the number of assigned ranks increases, the probability that
a suffix can be sorted using the rank of another also increases. In fact, every chain
of suffixes with prefix ajas such that oy < oy will be sorted entirely in this way.
Clearly, induction sorting will lead to a significant reduction in work for many texts.

One could consider the induction sorting of Algorithm M an extension of the ideas
in Algorithm IT. As noted above, suffixes in a 2-chain with common prefix a;as and
a; > ay are sorted entirely by induction (like the type A suffixes of Algorithm IT.
However the lexicographical processing of suffixes in Algorithm M means this property
can be applied to suffixes at deeper levels of sorting (when h > 2).

The complexity of Algorithm M is likely to be O(n?logn) in the worst case, though
on average it is usually as fast as Algorithm MF. By carefully using the space in the
ISA, and converting it to the SA inplace, it also achieves a small memory footprint
— rarely requiring more than n bytes of additional working space.

4 Experimental Results

To gauge the performance of the SACAs in practice we measured their runtimes and
peak memory usage for a selection of files from the Canterbury corpus® and from the
corpus compiled by Manzini* and Ferragina [MF04]. Details of all files tested are
given in Table 2.

We implemented Algorithm IT as described in [IT99] and Algorithm KS with
heuristics described in [PST05]. The implementation of Algorithm KA tested was
that of [LP04]. Implementations of all other algorithms were obtained either online
or by request to respective authors. For completeness we also tested a tuned suffix tree
implementation [K99]. Algorithm MF was run with default parameters and Algorithm
SS with parameter h=7 for genomic data and h=3 otherwise, as per testing in [SS05].
Algorithm BK used parameter h=32, as per [BK03].

All tests were conducted on a 2.8 GHz Intel Pentium 4 processor with 2Gb main
memory. The operating system was RedHat Linux Fedora Core 1 (Yarrow) running
kernel 2.4.23. The compiler was g++ (gcc version 3.3.2) executed with the -O3 option.
Running times, shown in Table 3, are the average of four runs and do not include time
spent reading input files. Times were recorded with the standard unix time function.
Memory usage, shown in Table 4, was recorded with the memusage command available
with most Linux distributions.

Results are summarized in Figure 8. Algorithm MF is the fastest algorithm on

’In fact, we can sort the type X and Y suffixes in the same sort call by using as a key for a type
X suffix ¢ the rank of i + h — 1 and for a type Y suffix the negated rank of i + h.

*http://www.cosc.canterbury.ac.nz/corpus/

“http://www.mfn.unipmn.it/ manzini/lightweight/corpus/

25

Proceedings of the Prague Stringology Conference '05

Table 2: Description of the data set used for testing. LCP refers to the Longest
Common Prefix amongst all suffixes in the string.

Mean Max Size

String LCP LCP (bytes) Description

E.coli 17 2,815 4,638,690 4 Escherichia coli genome
chr22.dna 1,979 199,999 34,553,758 4 Human chromosome 22

bible 14 551 4,047,392 63 King James bible

world192 23 559 2,473,400 94 CIA world fact book

sprot34 89 7,373 109,617,186 66 SwissProt database

rfc 93 3,445 116,421,901 120 Concatenated IETF RFC files
howto 267 70,720 39,422,105 197 Linux Howto files

reuters 282 26,597 114,711,151 93 Reuters news in XML format
jdk13c 679 37,334 69,728,899 113 JDK 1.3 documentation

etext99 1,108 286,352 105,277,340 146 Texts from Gutenberg project

average, narrowly shading algorithms M and SS. These three algorithms (MF,M,SS)
outperform the next fastest algorithm, LS, by roughly a factor of 2. Note that for
file jdk13c it is the suffix tree which is fastest — leaving room for at least some
improvement in the SACAs.

When testing algorithm M, we observed that the final step of transforming the
ISA into the SA constituted 20-30% of the overall runtime. For some applications
though (most notably the BWT [BW94]), this transformation is not required, making
M significantly faster than MF — see experiments in [P05].

The speed of MF and M is particularly impressive given their small working mem-
ory 5.01n and 5.49n bytes on average respectively. The lightweight nature, of these
algorithms separates them from SS which requires slightly more than 9n bytes on
average. We also remark that while Algorithm BK is not amongst the fastest algo-
rithms tested the ideas in it are important because they could be used to guarantee
acceptable worst case behavior of algorithms MF and M, without adversely affecting
the speed or space usage of those algorithms.

Times in Table 3 for Algorithm SS versus Algorithm MF seem to run contrary to
results published in [SS05], however our experiment is different. In [SS05], files were
bounded to at most 50,000,000 characters, making many test files shorter than their
original form. We suspect the full length files are harder for Algorithm SS to sort.

The large variation in performance of Algorithm KS can be attributed to the
occasional ineffectiveness of heuristics described in [PST05]. Of interest also is the
general poor performance of the recursive algorithms KS, KA and KJP. These algo-
rithms have superior asymptotic behaviour, but for many files run several times slower
than the other algorithms and often consume more memory than the suffix tree (KJP
in particular). Memory profiling reveals that the recursive algorithms suffer form
very poor cache behaviour, which largely nullifies their asymptotic advantage. These
results leave open the question: is there a practically fast ©(n) time suffix array
construction algorithm which is also lightweight?

26

A Taxonomy of Suffix Array Construction Algorithms

Table 3: CPU time (seconds) on test data. Minimum is shown in bold for each string.

E.coli chr22 bible world sprot rfc howto reuters jdkl3c etext

M 2 20 2 1 90 89 25 99 60 75
SS 2 25 2 1 99 93 22 133 64 92
MF 2 16 2 1 74 65 18 147 82 76
IT 2 416 1 1 125 108 38 278 286 331
S 3 29 2 1 126 110 37 258 217 290
BK 4 40 3 2 200 171 43 280 152 141
LS 4 35 3 2 144 154 40 183 105 146
KA 6 47 bt 3 183 179 63 185 98 202
KS 5 S7 4 2 306 288 55 377 204 219
KJP 4 31 4 3 183 189 61 192 102 179
Tree 6 51 5 3 183 193 80 141 52 226

Table 4: Peak Memory Usage (Mbs)

E.coli chr22 bible world sprot rfc howto reuters jdkl3c etext

M 32 205 29 13 047 299 197 272 357 042
SS 40 297 36 24 942 1,006 368 988 604 915
MF 22 165 19 12 524 557 188 548 333 503
IT 22 165 19 12 523 255 188 547 332 502
S 22 165 19 12 923 255 188 047 332 502
BK 26 194 23 14 614 652 221 643 391 590
LS 35 264 31 19 836 888 301 875 932 803
KA o8 429 50 31 1,359 1,443 526 1,422 864 1,406
KS 43 334 37 23 1,279 1,230 389 1,434 870 1,071
KJP 58 427 58 36 1,574 1,673 571 1,645 1,000 1,509
Tree 74 041 54 32 1,421 1,554 526 1,444 931 1,405

References

[AKOO4] = Mohamed Ibrahim Abouelhoda, Stefan Kurtz & Enno Ohlebusch, Re-
placing suffix trees with enhanced suffix arrays, J. Discrete Algs.
2 (2004) 53-86.

[BKO03] Stefan Burkhardt & Juha Kérkkédinen, Fast lightweight suffix array
construction and checking, Proc. 1/th Ann. Symp. Combinatorial
Pattern Matching, LNCS 2676, Springer-Verlag (2003) 55-69.

[BM93] Jon L. Bentley & M. Douglas Mcllroy, Engineering a sort function,
Software — Practice & Erperience 23-11 (1993) 1249-1265.

27

Proceedings of the Prague Stringology Conference '05

Time (1000 sec/symbol)

Average performance

0.003 T T T T T T T T
IT &
0.0025 ixiTree -
0.002 4
—aKS—
0.0015 | %KA 4
S» 4BK
LS
0.001 | 1 i
MF S
0.0005 —
0 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

Memory (bytes/symbol)

Figure 8: Resource requirements of the algorithms averaged over the test corpus.
Error bars are one standard deviation. Abscissa error bars for algorithms MF, S, IT,
BK and LS are insignificantly small. Ordinate error bars for algorithms S and IT are
not shown to improve presentation (sd 0.009 and 0.0036 respectively).

[BS97]

[BWO4]

[CF02]

[F97]

[FGOY]

[GGV04]

Jon L. Bentley & Robert Sedgewick, Fast algorithms for sorting and
searching strings, Proc. ACM-STIAM Symp. Discrete Algs. (1997) 360
369.

Michael Burrows & David J. Wheeler, A Block-Sorting Lossless Data
Compression Algorithm, Research Report 124, Digital Equipment Cor-
poration (1994) 18 pp.

Andreas Crauser & Paolo Ferragina, A theoretical and experimental
study on the construction of suffix arrays in external memory,
Algorithmica 32-1 (2002) 1-35.

Martin Farach, Optimal suffix tree construction with large alpha-
bets, Proc. 38th IEEE Symp. Found. Comp. Sci. (1997) 137-143.

Paolo Ferragina & Roberto Grossi, The string B-tree: a new data
structure for string search in external memory and its applica-
tions, J. Assoc. Comput. Mach. /6-2 (1999) 236—280.

Roberto Grossi, Ankur Gupta & Jeffrey Scott Vitter, When indexing
equals compression: experiments with compressing suffix ar-
rays and applications, Proc. 15th ACM-SIAM Symp. Discrete Algs.
(2004) 636—645.

28

A Taxonomy of Suffix Array Construction Algorithms

[HO4]

[HSS03]

[IT99]

[K99]

[KAO3]

[KJPO4]

[KLAAPO1]

[KMR72]

[KS03]

[KSPP03]

[LPO4]

[LS99]

[M97]

[M99]

Michael Hart, Project Gutenberg: http://www.gutenberg.net

Wing-Kai Hon, Kunihiko Sadakane & Wing-Kin Sung, Breaking a
time-and-space barrier in constructing full-text indices, Proc.
44th IEEE Symp. Found. Comp. Sci. (2003) 251-260.

Hideo Itoh & Hozumi Tanaka, An efficient method for in memory
construction of suffix arrays, Proc. IEEE Symp. String Process.

& Inform. Retrieval (1999) 81-88.

Stefan Kurtz, Reducing the space requirement of suffix trees, Software —
Practice & Ezxperience 29-13 (1999) 1149-1171.

Pang Ko & Srinivas Aluru, Space Efficient Linear Time Construc-
tion of Suffix Arrays, Proc. 1/th Ann. Symp. Combinatorial Pattern
Matching, LNCS 2676, Springer-Verlag (2003) 200-210.

Dong Kyue Kim, Junha Jo & Heejin Park, A fast algorithm for con-
structing suffix arrays for fixed-size alphabets, Proc. Workshop on
Ezperimental Algorithms, LNCS 3059, Springer-Verlag (2004) 301-314.

Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa & Kunsoo
Park, Linear-time longest-common-prefix computation in suffix
arrays and its applications, Proc. 12th Ann. Symp. Combinatorial
Pattern Matching, LNCS 2089, Springer-Verlag (2001) 181-192.

Richard M. Karp, Raymond E. Miller & Arnold L. Rosenberg, Rapid
identification of repeated patterns in strings, trees and arrays,
Fourth Annual ACM Symp. Theory of Comput. (1972) 125-136.

Juha Kérkkiinen & Peter Sanders, Simple Linear Work Suffix Ar-
ray Construction, Proc. 30th Internat. Collog. Automata, Languages
& Programming, LNCS 2719, Springer-Verlag (2003) 943-955.

Dong Kyue Kim, Jeong Seop Sim, Heejin Park & Kunsoo Park, Linear-
time Construction of Suffix Arrays, Proc. 1/th Ann. Symp. Combi-
natorial Pattern Matching, LNCS 2676, Springer-Verlag (2003) 186-199.

Sunglim Lee & Kunsoo Park, Efficient implementations of suffix array
construction algorithms, Proc. 15th Australasian Workshop on Combi-
natorial Algs. , Seok-Hee Hong (ed.) (2004) 64-72.

N. Jesper Larsson & Kunihiko Sadakane, Faster Suffix Sorting, Technical
Report LU-CS-TR:99-214, Lund University (1999) 20 pp.

M. Douglas Mcllroy, ssort.c:
http://cm.bell-labs.com/cm/cs/who/doug/source.html

J. Tan Munro, Succinct data structures, Proc. Workshop on Data
Structures (1999) 3-7.

29

Proceedings of the Prague Stringology Conference '05

IMO04]

[MO5]
[MBM93]

[MF04]

[MMOO]

[MM93]

[N05]

[PO5]

[PSTO5]

[598]

[S00]

S03]

[SKPP03]

[SZ04]

[SS05]

Giovanni Manzini, Two space saving tricks for linear time LCP ar-

ray computation, Proc. Scandinavian Workshop on Algorithm Theory
(2004) 372-383.

Michael Maniscalco, MSufSort: http://www.michael-maniscalco.com/

Peter M. Mcllroy, Keith Bostic & M. Douglas Mcllroy, Engineering
radix sort, Computing Systems 6—1 (1993) 5-27.

Giovanni Manzini & Paolo Ferragina, Engineering a lightweight suf-
fix array construction algorithm, Algorithmica 40 (2004) 33-50.

Udi Manber & Gene W. Myers, Suffix Arrays: A new method for
on-line string searches, Proc. First ACM-SIAM Symp. Discrete Algs.
(1990) 319-327.

Udi Manber & Gene W. Myers, Suffix Arrays: A new method for
on-line string searches, SIAM J. Comput. 22 (1993) 935-948.

Jeong Chae Na, Linear-time construction of compressed suffix
arrays using O(nlogn)-bit working space for large alphabets,
Proc. 16th Ann. Symp. Combinatorial Pattern Matching, LNCS 3537,
Springer-Verlag (2005) 57-67.

Simon J. Puglisi, Fxposition and analysis of a suffiz sorting algorithm,
Technical Report CAS-05-02-WS, Department of Computing and Soft-
ware, McMaster University (2005) 19 pp.

Simon J. Puglisi, Bill F. Smyth & Andrew Turpin, The performance
of linear time suffix sorting algorithms, Proc. Data Compression
Conf. (2005) 358-367.

Kunihiko Sadakane, A fast algorithm for making suffix arrays
and for Burrows-Wheeler transformation, Proc. Data Compres-
sion Conf. (1998) 129-138.

Julian Seward, On the performance of BWT sorting algorithms,
Proc. Data Compression Conf. (2000) 173-182.

Bill F. Smyth, Computing Patterns in Strings, Pearson Addison-Wesley
(2003) 423 pp.

Jeong Seop Sim, Dong Kyue Kim, Heejin Park & Kunsoo Park, Linear-
time search in suffix arrays, Proc. 1/th Australasian Workshop on
Combinatorial Algs. (2003) 139-146.

Ranjan Sinha & Justin Zobel, Cache-conscious sorting of large sets
of strings with dynamic tries ACM J. Ezperimental Algs. 9 (2004)
1-31.

Klaus-Bernd Schiirmann & Jens Stoye, An incomplex algorithm for
fast suffix array construction, Proc. 7th Workshop on Algorithm En-
gineering € FExperiments

30

