
Enhanced Extraction from

Huffman Encoded Files

Shmuel T. Klein1 and Dana Shapira2

1 Dept. of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
tomi@cs.biu.ac.il

2 Dept. of Computer Science, Ariel University, Ariel 40700, Israel
shapird@ariel.ac.il

Abstract. Given a file T , and the Huffman encoding of its elements, we suggest using
a pruning technique for Wavelet trees that enables direct access to the i-th element of
T by reordering the bits of the compressed file and using some additional space. When
compared to a traditional Wavelet tree for Huffman Codes, our different reordering of
the bits usually requires less additional storage overhead by reducing the need for aux-
iliary rank structures, while improving processing time for extracting the i-th element
of T .

1 Introduction and previous work

Research in Lossless Data Compression was originally concerned with finding a good
balance between the competing efficiency criteria of compressibility of the input,
processing time and additional auxiliary storage for the involved data structures.
Working directly with compressed data is now a popular research topic, including
not only classical text but also various useful data structures, and with a wide range
of possible applications. One of the fundamental components of these structures is
known as a Wavelet tree, suggested by Grossi et al. [11], which has meanwhile become
a subject of investigation in its own right, as ever more of its useful properties are
discovered [7]. It is on enhancing the usefulness of the extract operation of Wavelet
trees when applied to Huffman encoded text that we wish to concentrate in this
paper.

The simple way to encode our digital data is by using some standard fixed length
code, like ascii. This has many advantages, for example, allowing direct access to
the ith codeword for any i, which might be useful when partial or parallel decoding is
required. However, fixed length codes are wasteful from the storage point of view, and
have therefore been replaced in many applications by variable length codes. This may
improve the compression performance, but at the price of losing the simple random
access, because the beginning position of the ith codeword is the sum of the lengths
of all the preceding ones.

A possible solution to allow random access to variable length codes is to divide
the encoded file into blocks of size b codewords, and to use an auxiliary vector to
indicate the beginning of each block. The time complexity of random access depends
on the size b, as we can begin from the sampled bit address of the i

b
th block to retrieve

the ith codeword. This method thus suggests a processing time vs. memory storage
tradeoff, since direct access requires decoding i− ⌊ i

b
⌋b codewords, i.e., less than b.

Brisaboa et al. [4] introduced directly accessible codes (DACs), based on Vbyte

coding [20], in which the codewords represent integers. The Vbyte code splits the

Shmuel T. Klein, Dana Shapira: Enhanced Extraction from Huffman Encoded Files, pp. 67–77.

Proceedings of PSC 2015, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05787-2 c© Czech Technical University in Prague, Czech Republic

68 Proceedings of the Prague Stringology Conference 2015

⌊log xi⌋ + 1 bits needed to represent an integer xi in its standard binary form into
blocks of b bits and prepends each block with a flag-bit as follows. The highest bit is
0 in the extended block holding the most significant bits of xi, and 1 in the others.
Thus, the 0 bits act as a comma between codewords. In the worst case, the Vbyte

code loses one bit per b bits of xi plus b bits for an almost empty leading block,
which is worse than Elias-δ encoding. Using a space overhead of O(n log logn

b logn
), DACs

achieve direct access to the ith codeword in O(log(M)
b

) processing time, where M is
the maximum integer to be encoded, and n is the size of the encoded file.

Another line of investigation led to the development of Wavelet trees, which allow
direct access to any codeword, and in fact recode the compressed file into an alter-
native form. Wavelet trees can be defined for any prefix code and the tree structure
is inherited from the tree usually associated with the code. The internal nodes of the
Wavelet tree are annotated with bitmaps. The root holds the bitmap obtained by
concatenating the first bit of each of the sequence of codewords in the order they ap-
pear in the compressed text. The left and right children of the root hold, respectively,
the bitmaps obtained by concatenating, again in the given order, the second bit of
each of the codewords starting with 0, respectively with 1. This process is repeated
similarly on the next levels: the grand-children of the root hold the bitmaps obtained
by concatenating the third bit of the sequence of codewords starting, respectively,
with 00, 01, 10 or 11, if they exist at all, etc.

The data structures associated with a Wavelet tree for general prefix codes require
some amount of additional storage (compared to the memory usage of the compressed
file itself). Given a text string of length n over an alphabet Σ, the space required
by Grossi et al.’s implementation can be bounded by nHh + O(n log logn

log|Σ| n
) bits, for

all h ≥ 0, where Hh denotes the hth-order empirical entropy of the text, which
is at most log |Σ|; processing time is just O(m log |Σ| + polylog(n)) for searching
any pattern sequence of length m. Multiary Wavelet trees replace the bitmaps by
sequences over sublogarithmic sized alphabets in order to reduce the O(log |Σ|) height
of binary Wavelet trees, and obtain the same space as the binary ones, but their
times are reduced by an O(log log n) factor. If the alphabet Σ is small enough, say
|Σ| = O(polylog(n)), the tree height is a constant and so are the query times.

Brisaboa et al. [3] used a variant of a Wavelet tree on Byte-Codes. This induces a
128 or 256-ary tree, rather than a binary one, and the root of the Wavelet tree contains
the first byte, rather than the first bit, of all the codewords, in the same order as they
appear in the original text. The second level nodes then store the second byte of
the corresponding codewords, and so on. The reordering of the compressed text bits
becomes an implicit index representation of the text, which is empirically shown to
be better than explicit main memory inverted indexes, built on the same collection
of words, when using the same amount of space.

Külekci [15] suggested the usage of Wavelet trees for Elias and Rice variable length
codes. The method is based on handling separately the unary and binary parts of the
codeword in different strings so that random access is supported in constant time. As
an alternative, the usage of a Wavelet tree over the lengths of the unary section of
each Elias or Rice codeword is proposed, while storing their binary section, allowing
direct access in time log r, where r is the number of distinct unary lengths in the file.

Recently Klein and Shapira [14] adapted the Wavelet tree to Fibonacci Codes,
so that in addition to supporting direct access to the Fibonacci encoded file, the
compression savings when compared to the original Fibonacci compressed file are

Shmuel T. Klein and Dana Shapira: Enhanced Extraction from Huffman Encoded Files 69

increased. We use a similar approach in this paper and prune the traditional Wavelet
trees for general prefix codes without losing the direct access property. The topology
of the reduced Wavelet tree is a Skeleton Huffman tree suggested by Klein [13], so that
there are fewer internal nodes, and shorter paths from the root to the leaves, resulting
in better processing time and less memory storage. This compact representation of
Huffman trees was also used for improving the processing time for compressed pattern
matching [19].

The skeleton Huffman tree used herein groups alphabet symbols according to
their frequencies. A similar, yet different, alphabet partition according to frequencies
has already been suggested by Gagie et al. [8], who study the problem of efficient
representation of prefix codes, under the assumption that the maximum codeword
length is O(w), where w is the length of a machine word. They divide the alphabet into
frequent and rare characters according to their Huffman codeword length, and store
information just for the frequent ones, while the rare ones are lexicographically sorted.
Using a multiary Wavelet tree, constant time encoding and decoding is achieved for
small enough alphabets, at the price of increasing the codeword length of the rare
characters, hurting the optimality of the Huffman code. Our approach is designed for
all sizes of alphabets and the optimality of the Huffman codewords is retained at the
price of slower processing.

Another data structure based on partitioning the alphabet into group of characters
of similar frequencies is due to Barbay et al. [1]. This data structure stores the text
in nH0 + o(n)(H0 +1) bits and supports operations in worst-case time O(log log |Σ|)
and average time O(logH0). The sequences of sub-alphabet identifiers are stored in a
multiary Wavelet tree, while the subsequences corresponding to each group are stored
in uncompressed format.

Many of the data structures mentioned above use efficient access to bit vectors
based on fast implementations of operations known as rank and select. These are
defined for any bit vector B and bit b ∈ {0, 1} as:

rankb(B, i) – returns the number of occurrences of b up to and including position i;
selectb(B, i) – returns the position of the ith occurrence of b in B.

Note that rank1−b(B, i) = i− rankb(B, i), thus, only one of the two, say, rank1(B, i)
needs to be computed. However, for the select operation the structures for both
select0(B, i) and select1(B, i) are necessary [16]. Jacobson [12] showed that rank, on a
bit-vector of length n, can be computed in O(1) time using n+O(n log logn

logn
) = n+o(n)

bits.
It is important to stress that the overhead o(n) of the rank and select data struc-

tures for a bitmap of size, say, n = 232 is about 0.66n, which is not at all negligible.
We suggest to reduce the size of the Wavelet tree without hurting the direct access
capabilities. Methods proposed in [10] suggest practical implementations for rank and
select, reducing the storage overhead to merely a few percent, at the price of losing
the constant time access but with only a negligible increase in processing time. By
applying our suggested strategy, these implementations can further be improved.

The selectb(B, i) operation can be done by applying binary search on the index j

so that rankb(B, j) = i and rankb(B, j−1) = i−1. As for the constant time solution for
select [5], the bitmap B is partitioned into blocks, similar to the solution for the rank
operation. Other efficient implementations are due to Raman et al. [18], Okanohara
and Sadakane [17], Barbay et al. [2] and Navarro and Providel [16]. We refer to the
thesis of Clark [5] for more details.

70 Proceedings of the Prague Stringology Conference 2015

The rest of the paper is organized as follows. Section 2 deals with random access to
Huffman encoded files, using Wavelet trees especially adapted to Huffman compressed
files. Section 3 improves the self-indexing data structure by pruning the Wavelet tree
using a skeleton Huffman tree. Section 4 further improves the overhead storage by
pruning the Wavelet tree even further by means of a reduced skeleton tree. Finally,
Section 5 concludes.

2 Random Access to Huffman Encoded Files

Recall that the binary tree TC corresponding to a prefix code C is defined as follows:
we imagine that every edge pointing to a left child is labeled 0 and every edge pointing
to a right child is labeled 1; each node v is associated with the bit string obtained by
concatenating the labels on the edges on the path from the root to v; finally, TC is
defined as the binary tree for which the set of bit strings associated with its leaves is
the code C.

0001111101001010101001100001011011

10010011100110011

111000010

1100011110010001

11100100

0011

010110001

01100 0110

100 10 10 10

0

0 1

1 3

-

E A T

F M

R H L N S U V W

Figure 1. The Wavelet tree induced by the canonical Huffman tree corresponding to the
frequencies {8,5,4,4,2,2,2,1,1,1,1,1,1,1} of {-,E,A,T,F,M,R,H,L,N,S,U,V,W},
respectively, assigned to the leaves, left to right.

A Huffman tree is canonical if, when scanning its leaves from left to right, they
appear in non-decreasing order of their depth. To build a canonical tree, Huffman’s
algorithm is only used for generating the lengths ℓi of the codewords, and the ith
codeword then consists of the first ℓi bits immediately to the right of the “binary
point” in the infinite binary expansion of

∑i−1
j=1 2

−ℓj , for 1 ≤ i ≤ n [9].
As mentioned above, the nodes of the Wavelet tree are annotated by bitmaps.

These bitmaps can be stored as a single bit stream by concatenating them in order
of any predetermined top-down tree traversal, such as depth-first or breadth-first. No
delimiters between the individual bitmaps are required, since we can restore the tree
topology along with the bitmaps lengths at each node once the size n of the text is
given in the header of the file. Figure 1 depicts the canonical Huffman tree for the
example text T = A--HUFFMAN--WAVELET--TREE--MATTERS . The Wavelet tree of our
running example is the entire figure including the annotating bitmaps. It should be
noted that the shape of the traditional Wavelet tree is not restricted to the underlying
canonical Huffman tree. For any distribution, there are many different Huffman trees,
and for some distributions, there might even exist Huffman trees of different depths.

Shmuel T. Klein and Dana Shapira: Enhanced Extraction from Huffman Encoded Files 71

Different topologies would imply different Wavelet trees and for convenience, we refer
to the canonical one for the discussion in the next sections.

The algorithm for extracting the i-th element of the text T by means of a Huffman
Wavelet tree rooted by vroot is given in Figure 2, using the function call extract(vroot,i).
Bv denotes the bitmap belonging to vertex v of the Wavelet tree, and · denotes
concatenation. Computing the new index in the following bitmap is done by the rank
operation in lines 2.1.3 and 2.2.3. The decoding of the codeword cw in line 3 by means
of the decoding function D can be done by a preprocessed lookup table.

extract(v, i)
1 cw ←− ǫ
2 while v is not a leaf
2.1 if Bv[i] = 0 then
2.1.1 v ←− left(v)
2.1.2 cw ←− cw · 0
2.1.3 i←− rank0(Bv, i)
2.2 else
2.2.1 v ←− right(v)
2.2.2 cw ←− cw · 1
2.2.3 i←− rank1(Bv, i)
3 return D(cw)

Figure 2. Extracting the i-th element of T from a Wavelet tree rooted at v.

3 Enhanced Direct Access

A Skeleton Huffman tree [13], or sk-tree for short, is a canonical Huffman tree from
which all full subtrees of depth h ≥ 1 have been pruned. Thus, a path from the root
to a leaf of an sk-tree may correspond to a prefix of several codewords of the original
Huffman tree. The prefix is the shortest necessary in order to identify the length of
the current codeword. A leaf, v, of the skeleton tree contains the height, h(v), of
the subtree that has been pruned (h(v) = 0 for leaves that were also leaves in the
canonical Huffman tree). In Figure 1, the sk-tree nodes are colored in gray, and the
numbers h(v) are given in the leaves of the sk-tree.

We adjust the Wavelet tree to Huffman skeleton codes in the following way. The
shape of the Wavelet tree will be that of the sk-tree, to which the children of those
nodes have been added, which were leaves in the sk-tree but not in the original Huff-
man tree, that is, the leaves v for which h(v) ≥ 1. Bitmaps will be stored for the
internal nodes of the Wavelet tree, as well as for the leaves that are children of leaves
v of the sk-tree for which h(v) > 1, albeit the nature of these latter bitmaps will be
different. The internal nodes will store the bitmaps as in the original Wavelet tree,
whereas the annotated leaves will store the binary strings obtained by the concatena-
tion of the suffixes of length h− 1 of the corresponding codewords, in the same order
as they appear in the compressed text. That is, each such suffix appears the same
number of times as the number of occurrences of the corresponding alphabet symbol
σ ∈ Σ in T .

Continuing with the running example, the resulting pruned Wavelet tree is given
in Figure 3. Consider the node labeled 3; it refers to the prefix 11 of several codewords,
and the bitmap stored in it relates to the third bit of these codewords, which are all

72 Proceedings of the Prague Stringology Conference 2015

0001111101001010101001100001011011

10010011100110011

111000010

1100011110010001

11100100

0011

010110001

01 11 10 0001 11 10 00 00

0

0 1

1 3

Figure 3. Pruned Huffman Wavelet tree for the text T = A--HUFFMAN--WAVELET--TREE--MATTERS

of length 5. We thus eliminate the 3 bits that were already taken care of (110 for the
left child and 111 for the right one), and consider only the remaining suffixes of size
2. In our example, the left child corresponds to the codewords {11000, 11001, 11010,
11011}, prefixed by 110 and refer to the symbols {R,H,L,N} of Figure 1, respectively.
Their suffixes occur in the bitmap in the same order they appear in T , namely 01 11
10 00 00, corresponding to the order HNLRR. A similar idea to this collapsing strategy
is applied on suffix or position trees in order to attain an efficient compacted suffix
trie [6], and has also been applied on Fibonacci Wavelet trees, producing a compact
Wavelet tree in [14].

The algorithm for extracting the i-th element of T from a pruned HuffmanWavelet
tree requires some adjustments for concatenating the pruned parts. Figure 4 is the
suitable extract function. Line 2.2.1 concatenates the fixed length suffix of size h(v)−1
bits to the end of the codeword. The correct suffix can be accessed directly using
the computed index i by simply extracting the substring of Bv starting at position
(h(v)−1)i and ending at position (h(v)−1)(i+1)−1. We use the notation B[x . . y]
to denote the substring from position x to, and including, position y of a bit-string B.

extract(v, i)
1 cw ←− ǫ
2 while v is not a leaf
2.1 if h(v) = 0 then
2.1.1 if Bv[i] = 0 then
2.1.1.1 v ←− left(v)
2.1.1.2 cw ←− cw · 0
2.1.1.3 i←− rank0(Bv, i)
2.1.2 else
2.1.2.1 v ←− right(v)
2.1.2.2 cw ←− cw · 1
2.1.2.3 i←− rank1(Bv, i)
2.2 else // h(v) 6= 0

2.2.1 cw ←− cw ·Bv

[

(h(v)− 1)i . . (h(v)− 1)(i+ 1)− 1
]

3 return D(cw)

Figure 4. Extracting the i-th element of T from the pruned Huffman Wavelet tree.

The following discussion refers to the select operation, however, a similar approach
could be applied in order to answer the rank operation. Computing select(x, i) for
selecting the ith occurrence of x is done in the traditional Wavelet tree by processing

Shmuel T. Klein and Dana Shapira: Enhanced Extraction from Huffman Encoded Files 73

the tree upwards. One starts from the leaf, ℓ, representing the Huffman codeword
c(x) of x, initializes v to be the father of ℓ, and works its way up to the root. In
each iteration, i is assigned a new value select0(Bv, i) or select1(Bv, i), depending on
ℓ being a left or right child of v, respectively. The node v then proceeds to its father
for the following stage. The running time for select(x, i) is O(|c(x)|).

Taking a closer look at our suggested data structure, the nodes that store the
values h(v) induce a partition of the alphabet into several equivalence classes. Some
of these classes are singletons, while the others are of size 2k for some k. The skeleton
Huffman tree does not have the ability to distinguish between elements of the same
class. Thus, when applying select(x, i) on our pruned data structure, only partial
information is attained. Instead of returning the ith occurrence of x, x becomes a
representative of its class, and the ith occurrence of elements which are in the same
class as x is returned.

However, the classes are formed according to the probabilities of their elements,
which does not necessarily imply any other connection. Nevertheless, whereas the
exact values cannot be calculated using the original select(x, i) algorithm, this algo-
rithm can still be used to derive a lower bound on the index of the ith occurrence of
x. If select(x, i) = j, then the index of the ith occurrence of x is ≥ j. It is equal to j if
all occurrences of elements belonging to the class of x correspond only to occurrences
of x itself. If extract(vroot, j) 6= x, a larger lower bound can be computed by applying
select again with increasing i, until extract(vroot, j) = x.

Although the select query cannot be answered in constant time using the pruned
Wavelet tree, the exact value can still be derived iteratively. For example, find-
ing the index of the first occurrence of x can be done in the following way: if
select(x, 1) = j and extract(vroot, j) = x, the first occurrence of x is found at in-
dex j. If extract(vroot, j) 6= x, but select(x, 2) = k and extract(vroot, k) = x, the first
occurrence of x is found at index k. Otherwise the process continues until there exists
some ℓ for which select(x, ℓ) = m and extract(vroot,m) = x. For larger i, the select(x, i)
query can be computed as follows:

1 counter ←− 0; ℓ←− 1; m←− 0;
2 while counter < i and m ≤ n
3 m←−select(x, ℓ);
3.1 if extract(vroot,m) = x
3.1.1 counter++
3.2 ℓ++

It should be noted that the negative impact of using the pruned Wavelet tree
on the select queries is not as bad as it might seem on the first sight. The equiva-
lence classes of the codewords that have been pruned may be quite large, as can be
seen, for example, in Figure 5 below, but the large classes correspond to the smaller
probabilities. There is, of course, no knowledge about which elements will have to be
retrieved, and we might be asked to perform a select(x, ℓ) query for any x. Nonethe-
less, a reasonable assumption would be to assume that the appearance of codewords
x in such queries will be according to their probability of occurrence in the text. In
that case, the weighted average size of the equivalence classes will be quite small, so
that an iterative search as suggested above is not such a burden. An indication for
this asymmetric behavior of skeleton trees can be found by comparing the savings
they imply on the space and time complexities: while the number of nodes can be

74 Proceedings of the Prague Stringology Conference 2015

reduced by 95% or more on large distributions, the weighted average path length for
the same distributions is only shortened to about half, see the examples in [13].

The extract operation is much easier to apply on fixed length codes than on variable
length codes. In our pruned data structure, nodes v with h(v) > 0 store fixed length
suffixes, hence, the improvement of the extract operation on our data structure over
Wavelet trees for Huffman codes is clear. However, this is not the case when processing
fixed length codes in order to locate and count the occurrences of a given codeword.
Counting occurrences or locating the ith occurrence of a given codeword in the pruned
data structure requires to perform a rank or select operation on the fixed length
suffixes stored in the leaves of the pruned Wavelet tree. It seems, that if no auxiliary
structure is used, then the rank and select queries must be performed sequentially,
and the advantage of using fixed length suffixes disappears.

One could ask, therefore, whether rank and select queries can be done in a more
efficient way for fixed length than for variable length codes. If this is the case, we can
apply such a strategy on the fixed length suffixes of our data structure and support
efficient rank and select queries as well, gaining faster processing time since the lengths
of many of the codewords are shortened.

Note that the bits in the bitmaps stored in the leaves of the pruned Wavelet tree
are the same as for the original Wavelet tree, only their order may have changed. In
our example, the 18 bits appearing in boldface in Figure 3 in the subtree rooted by the
node labeled 3 are the same bits as those appearing in the bitmaps of the nodes in the
corresponding subtree of Figure 1, that has been pruned. The savings of the pruned
Huffman Wavelet tree as compared the original one of Section 2 stem thus from the
fact that the rank and select data structures corresponding to the nodes are not all
necessary for gaining the ability of direct access, because the bits corresponding to
codeword suffixes are stored explicitly, and need not be extracted from bitmaps. The
processing time is improved by accessing a smaller number of nodes. To evaluate the
savings induced by the pruning (restricting the analysis only to the rank function), we
introduce the following notations. For an internal node v of the canonical Huffman
tree, define pref(v) as the prefix of all the codewords corresponding to this node.
So, pref(root) = Λ, denoting the empty string, and in Figure 1, if t is the node on
level 3 annotated by the bitmap 0011, then pref(t) = 110. Let C be the set of all the
codewords. For a codeword c ∈ C denote by x(c) the corresponding character of the
alphabet, and let freq(x) be the number of occurrences of x in the text. The length
of the bitmap Bv stored at node v of the Wavelet tree is then given by

|Bv| =
∑

{c∈C | pref(v) is a prefix of c}

freq
(

x(c)
)

.

In particular, if v is the root, we get that |Bv| is the sum of the frequencies of all the
elements of the alphabet, which is equal to the length of the text in characters.

Summing the lengths of all the bitmaps in the Wavelet tree gives the size, in bits,
of the compressed file:

Size of compressed file = lengths of all bitmaps =
∑

{v | v is an internal node}

|Bv|.

Let R(n) denote the size of the data structures required by the rank function for a
bitmap of size n. This could be O(n log logn

logn
) to allow constant time, and although this

size is o(n), we mentioned above that it is still not negligible, even for very large n.

Shmuel T. Klein and Dana Shapira: Enhanced Extraction from Huffman Encoded Files 75

As alternative, R(n) can be reduced to n
20
, at the price of increased processing time.

The overall size, RSW, required by the rank structure of the original Wavelet tree is
thus

RSW =
∑

{v | v is an internal node}

R(|Bv|).

When using the pruned version, the rank structures for the bitmaps corresponding
to pruned subtrees are not needed. Denote by Tw the subtree rooted at the node w

and by SKL the set of leaves of the sk-tree. The number of bits saved for the rank

structures by the pruning process, RSW’, is given by

RSW’ =
∑

{w | w∈SKL ∧ h(w)>1}

∑

{v | v∈Tw ∧ v 6=w}

R(|Bv|).

For example, for the tree in Figure 4, the outer summation refers to all the leaves
of the sk-tree, which are the gray nodes labeled by the numbers h(v), but only for
one node, the condition h(v) > 1 is satisfied. The inner summation goes over all the
internal nodes, except the root of the subtree.

It follows that the savings depend on the shape of the canonical tree and the
corresponding sk-tree. In the worst cases, the skeleton tree yields no savings at all,
but this happens only for highly skewed distributions implying a depth of Ω(|Σ|) for
the Huffman tree, which is extremely rare for large alphabets. In general, the number
of pruned nodes is substantial, and the overhead for the rank structures, RSW−RSW’,
will be significantly smaller for the pruned version of the Wavelet tree.

4 Reduced skeleton trees

Extending the pruning idea, we wish to prune the Huffman tree even more, possibly
suggesting a tradeoff between space efficiency and processing time. However, it is not
clear that processing time would be hurt by this further reduction, since less internal
nodes would be processed. The idea is replacing the Skeleton tree topology of the
Wavelet tree by a Reduced Skeleton tree suggested in [13]. The Reduced Skeleton
tree prunes the Skeleton Huffman tree at some internal node at which the length of
the current codeword is only partially determined. That is, when getting to a leaf of
a Reduced Skeleton Tree, it is not yet possible to deduce the length of the current
codeword, but some partial information is already available: the possible lengths
belong to a set of size at most 2.

Figure 5. Canonical Huffman tree, sk-tree (bold, red and blue) and reduced sk-tree
(broken lines, blue) for 200 elements of a Zipf distribution, defined by the weights
pi = 1/(iHn), for 1 ≤ i ≤ n, where Hn =

∑n

j=1
(1/j) is the n-th harmonic number.

76 Proceedings of the Prague Stringology Conference 2015

Consider, for example, the canonical Huffman tree given in Figure 5. It corresponds
to the probability distribution of n = 200 elements implied by Zipf’s law [21], which
is believed to govern the distribution of the most common words in a large natural
language text. The bold (red or blue) edges are the corresponding sk-tree, and the
subset of the bold edges, those with broken lines (blue), are the reduced sk-tree. For
instance, when one gets to the leaf of the reduced sk-tree corresponding to 110, one
already knows that the codeword will be of length 8 or 9, so a single comparison
suffices to decide it.

The algorithm for extracting the i-th element of T when the Wavelet tree is con-
structed according to the reduced skeleton tree is similar to the algorithm presented
earlier in Figure 4, and is given in Figure 6. We now need a flag field for each leaf
v, with flag(v) = 0 if v is also a leaf in the skeleton Huffman tree (i.e., the length
of the codeword is known when getting to this leaf while traversing the tree with an
encoded string starting at the root; note that no leaf of the reduced sk-tree in Figure 5
has this property, but for other distributions, such leaves do exist), and flag(v) = 1
otherwise. In the latter case, the suffixes rooted at v are not of the same length, and
we adjust the shorter suffixes to be of the length of the longer ones by padding them
at their right end with a single 0. We then concatenate all these equal sized recon-
structed suffixes in the same order as they appear in the text, as in skeleton Wavelet
trees. The value h(v) now stores the length of the suffix of the longer codeword if v
is a leaf, and 0 if v is an internal node.

When a leaf v is reached, the current suffix is initialized as having length h(v).
This is the correct setting when flag(v) = 0. When flag(v) = 1, we compare the
integer value j obtained by using the retrieved suffix with that of the first codeword
of length |cw|. If j is smaller or equal, we know that the length of the codeword is
|cw| − 1, hence we remove the trailing 0 from the current codeword.

· · ·
4 else // h(v) 6= 0

4.1 cw ←− cw ·Bv

[

(h(v)− 1)i . . (h(v)− 1)(i+ 1)− 1
]

4.2 if flag(v) = 1 then
4.2.1 if cw ≤ first codeword of length |cw| then
4.2.1.1 remove trailing 0 from cw
5 return D(cw)

Figure 6. Extracting the i-th element of T from a Wavelet tree based on a reduced skeleton tree.

5 Conclusion

We have presented a new data structure for reducing the space overhead of a Huffman
shaped Wavelet tree when used to support extract queries to the underlying text by
means of a Skeleton Huffman tree. The running time is expected to be improved as
compared to the running time of the traditional Wavelet tree, since shorter paths
outgoing the root down to the leaves are processed. We intend to implement the
pruned data structure and include experimental results in the full version of this
paper.

Shmuel T. Klein and Dana Shapira: Enhanced Extraction from Huffman Encoded Files 77

References

1. J. Barbay, F. Claude, T. Gagie, G. Navarro, Y. Nekrich, Efficient Fully-Compressed
Sequence Representations, Algorithmica 69(1) (2014) 232–268.

2. J. Barbay, T. Gagie, G. Navarro, Y. Nekrich, Alphabet partitioning for compressed
rank/select and applications, Algorithms and Computation, Lecture Notes in Computer Science
LNCS, 6507 (2010) 315–326.

3. N.R. Brisaboa, A. Fariña, S. Ladra, G. Navarro, Reorganizing compressed text, Proc.
of the 31th Annual Internetional ACM SIGIR Conference on Research and Developing in In-
formation Retrieval (SIGIR) (2008) 139–146.

4. N.R. Brisaboa, S. Ladra, G. Navarro, DACs: Bringing direct access to variable length
codes, Information Processing and Management , 49(1) (2013) 392–404.

5. D. Clark, Compact Pat Trees, Ph.D. Thesis, University of Waterloo, Canada, (1996).
6. M. Crochemore, W. Rytter, Jewels of Stringology , World Scientific (2002).
7. T. Gagie, G. Navarro, S.J. Puglisi, New algorithms on Wavelet trees and applications to

Information Retrieval, Theoretical Computer Science 426 (2012) 25–41.
8. T. Gagie, G. Navarro, Y. Nekrich, Fast and Compact Prefix Codes. Proc. SOFSEM’10,

(2010) 419–427.
9. E.N. Gilbert, E.F. Moore, Variable-length binary encodings, The Bell System Technical

Journal , 38 (1959) 933–968.
10. R. González, S. Grabowski, V. Mäkinen, G. Navarro, Practical implementation of

rank and select queries, Poster Proceedings of 4th Workshop on Efficient and Experimental
Algorithms (WEA05), Greece (2005) 27–38.

11. R. Grossi, A. Gupta, J.S. Vitter, High-order entropy-compressed text indexes, Proceedings
of the 14th Annual SIAM/ACM Symposium on Discrete Algorithms (SODA) (2003) 841–850.

12. G. Jacobson, Space efficient static trees and graphs, Proc. Foundations of Computer Science
(FOCS) (1989), 549–554.

13. S.T. Klein, Skeleton trees for the efficient decoding of Huffman encoded texts, in the Spe-
cial issue on Compression and Efficiency in Information Retrieval of the Kluwer Journal of
Information Retrieval 3 (2000) 7–23.

14. S.T. Klein, D. Shapira, Random access to Fibonacci Codes, The Prague Stringology Con-
ference PSC-2014 (2014) 96–109.

15. M.O. Külekci, Enhanced Variable-Length Codes: Improved Compression with efficient ran-
dom access, Proc. Data Compression Conference DCC–2014 , Snowbird, Utah (2014) 362–371.

16. G. Navarro, E. Providel, Fast, small, simple rank/select on bitmaps, Experimental Algo-
rithms, Lecture Notes in Computer Science (LNCS), 7276 (2012) 295–306.

17. D. Okanohara, K. Sadakane, Practical entropy-compressed rank/select dictionary, Proc.
ALENEX, SIAM (2007).

18. R. Raman, V. Raman, S. Rao Satti, Succinct indexable dictionaries with applications to
encoding k-ary trees and multisets, Transactions on Algorithms (TALG) (2007) 233–242.

19. D. Shapira, A. Daptardar, Adapting the Knuth-Morris-Pratt algorithm for pattern match-
ing in Huffman encoded texts, Information Processing and Management, IP & M 42(2) (2006)
429–439.

20. H.E. Williams, J. Zobel, Compressing integers for fast file access. The Computer Journal
42(30) (1999) 192–201.

21. G.K. Zipf, The Psycho-Biology of Language, Boston, Houghton (1935).

