
Greedy versus Optimal Analysis of

Bounded Size Dictionary Compression

and On-the-Fly Distributed Computing

Sergio De Agostino

Computer Science Department
Sapienza University of Rome

Via Salaria 113, 00198 Rome, Italy
deagostino@di.uniroma1.it

Abstract. Scalability and robustness are not an issue when compression is applied for
massive data storage, in the context of distributed computing. Speeding up on-the-fly
compression for data transmission is more controversial. In such case, a compression
technique merging together an adaptive and a non-adaptive approach has to be con-
sidered. A practical implementation of LZW (Lempel, Ziv and Welch) compression,
called LZC (C indicates the Unix command ’compress’), has this characteristic. The
non-adaptive phases work with bounded size prefix dictionaries built by LZW factor-
izations during the adaptive ones. In order to improve the compression effectiveness,
we suggest to apply LZMW (Lempel, Ziv, Miller and Wegman) factorization to LZC
compression (LZCMW) during the adaptive phases since it builds better dictionaries
than LZW. The LZMW heuristic was originally thought with a dictionary bounded
by the least recently used strategy. We introduce the LZCMW heuristic in order to
have non-adaptive phases. All the heuristics mentioned above employ the greedy ap-
proach. We show, finally, a worst case analysis of the greedy approach with respect
to the optimal solution decodable by the LZC decompressor. Such analysis suggests
parallelization of on the fly compression is not suitable for highly disseminated data
since the non-adaptive phases are too far from optimal.

Keywords: on-the-fly compression, factorization, distributed system, scalability

1 Introduction

Massive data are, usually, defined as big when the order of magnitude is greater
than a terabyte. Compression is considered advantageous and actionable by the big
data community since it is possible to evaluate many predicates without having to
decompress. However, the locality principle stated by Zipf’s law [26] for arbitrarily
large datasets provides another good reason (perhaps an even better reason in the near
future) for massive data compression, that is, compression and, more importantly, de-
compression that are highly parallelizable. In fact, using the computational resources
to speed up compression and decompression could be more practical than employing
sophisticated techniques to query compressed data (as, for example, compressed pat-
tern matching). Moreover, the locality principle is so general that parallelism could
be applied to any kind of data and with any compression technique, even with smaller
order of magnitudes than a petabyte. Indeed, any sequential compression technique
could be applied in parallel and independently to relatively large pieces of data on
standard small, medium and large scale distributed systems.

While speeding up massive data compression for storage on a distributed system
is not an issue for the reasons mentioned above, speeding up on-the-fly compression

Sergio De Agostino: Greedy versus Optimal Analysis of Bounded Size Dictionary Compression and On-the-Fly Distributed Computing, pp. 74–83.

Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

Sergio De Agostino: Compression and On-the-Fly Distributed Computing 75

for data transmission is more controversial. In such case, it seems that the only way to
exploit the full computational power of a distributed system is to employ a technique
comprising an adaptive phase followed by a non-adaptive one which can process the
data until it becomes obsolete. Then, iteratively, the two phases can be repeated. This
iteration of the sequential procedure can be parallelized if we divide the input into
blocks of data long enough to run one step of the iteration on each block. Each block
is, obviously, split in a first sub-block where the adaptive phase is run and a second
one to be compressed in a non-adaptive way. A general parallel approach for this kind
of compression technique is to compress the first sub-block with only one processor
and, afterwards, to parallelize massively the compression of the second sub-block.
We will see that this is possible if we employ a practical implementation of LZW
compression [24], called LZC [1], since it has this characteristic. The non-adaptive
phases work with bounded size prefix dictionaries built by LZW factorizations during
the adaptive ones. In order to improve the compression effectiveness, we suggest to
apply LZMW (Lempel, Ziv, Miller and Wegman) factorization to LZC compression
(LZCMW) during the adaptive phases since it builds better dictionaries than LZW.
The LZMW heuristic was originally thought with a dictionary bounded by the least
recently used strategy [21]. We introduce the LZCMW heuristic in order to have
non-adaptive phases.

All the heuristics mentioned above employ the greedy approach. We show, finally,
a worst case analysis of the greedy approach with respect to the optimal solution
decodable by the LZC decompressor. Such analysis suggests parallelization of on-the-
fly compression is not suitable for highly disseminated data since the non-adaptive
phases are too far from optimal. Massive data compression for storage and the lo-
cality principle are discussed in Section 2, where implementations of Zip and LZW
compressors are described. How to speed-up on-the-fly LZW compression with dis-
tributed computing is faced in Section 3, where the improvement by means of the
LZMW heuristic is discussed. The greedy versus optimal analysis is given in Section
5. Conclusion and future work of this pure theory paper are given in Section 6.

2 Distributed Massive Data Compression

Distributed systems have two types of complexities, the interprocessor communica-
tion and the input-output mechanism. While the input/output issue is inherent to
any parallel algorithm and has standard solutions, the communication cost of the
computational phase after the distribution of data among the processors and before
the output of the final result is obviously algorithm-dependent. So, we need to limit
the interprocessor communication and involve more local computation to design a
practical algorithm. The simplest model for this phase is, of course, a simple array
of processors with no interconnections and, therefore, no communication cost. The
arguments of next subsection imply that compressing massive data for storage is not
an issue for any technique on such a distributed system and the most popular com-
pressors belonging to the Zip family are described. On the other hand, improving
the speed-up of on-the-fly compression for massive data transmission is more contro-
versial and requires characteristics that, to our knowledge, only LZW compression
has. We describe the unbounded and bounded memory versions of this technique in
the second and third subsection so that the issue of massive data transmission and
distributed computing can be faced in the next section.

76 Proceedings of the Prague Stringology Conference 2020

2.1 The Locality Principle

Zipf’s law states that the frequency of any word in a collection is inversely proportional
to its rank in the frequency table. The most frequent word occurs twice as often as the
second most frequent, and so on. The effect of this uneven distribution of byte patterns
is evident in the effectiveness of common compression programs, as for example,
the family of Zip compressors based on the Lempel-Ziv sliding window factorization
technique [18], [19], [23]. Such factorization of a string S is S = f1f2 · · · fi · · · fm where
fi is the longest match with a substring occurring previously in the prefix f1f2 · · · fi if
fi 6= λ (empty string), otherwise fi is the alphabet character next to f1f2 · · · fi−1. fi
is encoded by the pointer qi = (di, ℓi), where di is the displacement back to the copy
of the factor and ℓi is the length of the factor. If di = 0, ℓi is the alphabet character.
In other words, there is a window sliding its right end over the input string and all
the substrings of the prefix read so far in the computation are potential reference
copies for the current factor. In practice, the work space must be bounded and this
is done by sliding a fixed length window and by bounding the match length. Simple
real time implementations are realized by means of hashing techniques providing a
specific position in the window where a good approximation of the longest match is
found on realistic data. In [25], the two current characters are hashed and collisions
are chained via an offset array. The Unix gzip compressor chains collisions too but
hashes three characters [16].

While gzip stores 64 kB of history, it averages approximately 64 percent com-
pression. Instead, bzip2 stores between 100 kB and 900 kB of history and averages
66 percent compression, a very small gain in comparison with the increase of memory.
Therefore, 64 kB of history are enough to compress data and this can be generalized
to any compression technique we want to use. Such locality principle is critical if
we want to speed up compression and, more importantly, decompression on a large
scale network. Indeed, we can apply compression in parallel to data blocks relatively
small (a few hundreds kilobytes) since the locality principle holds for arbitrarily large
datasets on the basis of Zipf’s law and scalability and robustness are guaranteed.
This follows from the fact that the loss of compression effectiveness due to the lack
of history at the beginning of each block is amortized if the block length is one or-
der of magnitude greater than the amount of past data to which we need to refer for
compression [8]. Then, distributing data blocks of size approximately half a megabyte
among the nodes of a network allows an efficient application of any adaptive com-
pression method and guarantees scalability and robustness for massive data (for the
interested reader, improved variants of the sliding window factorization technique ex-
ist employing either fixed-length codewords [2], [20] or variable-length ones [3], [13],
[14], [15], [17]). Parallel decompression is symmetrical.

2.2 LZW Compression

Ziv-Lempel compression is a dictionary-based technique [18], [27], using a string fac-
torization process where the factors of the string are substituted by pointers to copies
stored in a dictionary which are called targets. The standard LZW (Lempel-Ziv-Welch)
factorization of a string S is S = f1f2 · · · fi · · · fm where each factor fi is the longest
match with the concatenation of a previous factor and the next character [24]. fi
is encoded by a pointer qi whose target is such concatenation (LZW compression).
LZW compression can be implemented in real time by storing the dictionary with a
trie data structure. When the string length goes to infinity, also the dictionary size

Sergio De Agostino: Compression and On-the-Fly Distributed Computing 77

does. Such unbounded version was proved to be P -complete [4], [5], [6], [7], [8], mean-
ing that such factorization is hard to parallelize even on a shared memory random
access machine or on a highly interconnected network. Therefore, we need to con-
sider bounded memory versions of LZW compression in order to make such technique
suitable for distributed computing.

2.3 Bounded Size Dictionaries

In practical implementations the dictionary size is bounded by a constant and the
pointers have equal size. Let d + α be the cardinality of the fixed size dictionary
where α is the cardinality of the alphabet. With the most naive approach, there is a
first phase of the factorization process where the dictionary is filled up and “frozen”.
Afterwards, the factorization continues in a non-adaptive way using the factors of the
frozen dictionary. In other words, the factorization of a string S is S = f1f2 · · · fi · · · fm
where fi is the longest match with the concatenation of a previous factorfj , with j ≤
d, and the next character. The shortcoming of this heuristic is that after processing
the string for a while the dictionary often becomes obsolete. If the dictionary elements
were removed with a heuristic, new elements could be added.

The best deletion heuristic is the LRU (last recently used) strategy [22]. The LRU
deletion heuristic removes elements from the dictionary by deleting at each step of
the factorization the least recently used factor, which is not a proper prefix of another
one. If the size of the dictionary is O(logk n), the LRU strategy is log-space hard for
SCk [7],[8],[12]. SC is the class of problems solvable simultaneously in polynomial time
and polylogarithmic space and SCk is the class of problems solvable simultaneously
in polynomial time and O(logk n) space for a fixed k. LZW compression using a
dictionary of size O(logk n) and the LRU deletion heuristic belongs to SCk+1. Indeed,
the LZW algorithm with LRU deletion heuristic on a dictionary of size O(logk n) can
be performed in polynomial time and O(logk n log(log n)) space, where n is the length
of the input string. The trie requires O(logk n) space by using an array implementation
since the number of children for each node is bounded by the alphabet cardinality.
The log(log n) factor is required to store the information needed for the LRU deletion
heuristic since each node must have a different age, which is an integer value between
0 and the dictionary size.

The hardness result is not so relevant for the space complexity analysis since
Ω(logk n) is an obvious lower bound to the work space needed for the computation.
Much more interesting is what can be said about the parallel complexity analysis.
In [12] it was shown that LZW compression using the LRU deletion heuristic with a
dictionary of size c can be performed in parallel either in O(log n) time with 2O(c log c)n
processors or in 2O(c log c) log n time with O(n) processors on a shared memory random
access machine or a highly connected network. This means that if the dictionary size
is constant the compression problem belongs to NC, the class of problems solvable in
polylogarithmic parallel time with a polynomial number of processors on a random
access shared memory machine or a highly connected network. NC and SC are classes
that can be viewed in some sense symmetric and are believed to be incomparable.
Since log-space reductions are in NC, the compression problem cannot belong to NC
when the dictionary size is polylogarithmic if NC and SC are incomparable. We want
to point out that the dictionary size c figures as an exponent in the parallel complexity
of the problem. This is not by accident. If we believe that SC is not included in NC,
then the SCk-hardness of the problem when c is O(logk n) implies the exponentiation

78 Proceedings of the Prague Stringology Conference 2020

of some increasing and diverging function of c. Indeed, without such exponentiation
either in the number of processors or in the parallel running time, the problem would
be SCk-hard and in NC when c is O(logk n). Observe that the P-completeness of the
problem, which requires a superpolylogarithmic value for c, does not suffice to infer
this exponentiation since c can figure as a multiplicative factor of the time function.
Moreover, this is a unique case so far where somehow we use hardness results to ar-
gue that practical algorithms of a certain kind (NC in this case) do not exist because
of huge multiplicative constant factors occurring in their analysis. If in theory LZW
compression with the LRU deletion heuristic cannot be parallelized on any kind of
parallel or distributed system for the reasons explained above, in practice the locality
principle allows an effective distributed implementation. Considering the fact that a
practical bound to the dictionary size is 216 and that about 300 kilobytes are enough
to fill up a dictionary of this size on realistic data, we can argue that compressing in-
dependently blocks of at least 600 kilobytes is a sufficiently robust approach. However,
the process of adding and removing dictionary elements at each step never works in a
non-adaptive way. The deletion heuristic providing such method is RESTART. After
the dictionary is filled up, the RESTART deletion heuristic starts a non-adaptive
phase and monitors the compression ratio. When the ratio deteriorates, the heuristic
deletes all the elements from the dictionary but the alphabet characters and restarts
a new adaptive phase. Let S = f1f2 · · · fj · · · fi · · · fm be the factorization of the input
string S computed by the LZW compression algorithm using the RESTART deletion
heuristic. Let j be the highest index less than i where a restart operation happens.
Then, fj is an alphabet character and fi is the longest match with the concatena-
tion of a previous factor fh, with h ≥ j, and the next character (1 and k + 1 are
considered restart positions by default). This heuristic, called LZC [1], is used by the
Unix command Compress since it has a good compression effectiveness and it is easy
to implement. Since the dictionary size is 216 the number of different concatenations
of a factor with the next character between fh and ft is equal to 216 decreased by
the alphabet size, with h and t two consecutive positions where the restart operation
happens (ft is not counted). Usually, the dictionary performs well in a non-adaptive
way on a block long enough to learn another dictionary of the same size. This is what
is done by the SWAP deletion heuristic. When the other dictionary is filled, they
swap their roles on the successive block. The improvement introduced by the SWAP
heuristic cannot be utilized with distributed computing since the processing of the
successive block cannot start until the dictionary is learned from the previous block.
In conclusion, LZC compression is the version we will adopt in the next section.

3 Speeding up On-the-Fly Data Compression

We have seen in the previous section that LZC compression is a technique comprising
an adaptive phase followed by a non-adaptive one which can process the data until
it becomes obsolete. Since the dictionary size is 216 in practical implementations and
about 300 kB are enough to fill up a dictionary of this size on realistic data, another
300 kB can be considered a robust lower bound to the amount of data for which the
non-adaptive way works properly [9]. Then, we divide conceptually the input into
blocks of about 600 kB with each block split in a first half of about 300 kB, where
the adaptive phase is run sequentially, and a second one to be compressed in a non-
adaptive way with the dictionary just learned, using the computational power of the
distributed system. The second half is, therefore, partitioned into sub-blocks. The

Sergio De Agostino: Compression and On-the-Fly Distributed Computing 79

architecture of the distributed system could be modeled as a star network where the
central node runs the sequential adaptive phase until the dictionary is filled. At each
factorization step, the central node sends the current factor concatenated with the
next character to the adjacent nodes to update their own copy of the dictionary. To
speed up the broadcasting of such concatenation its longest proper prefix (that is, the
current factor) can be compressed with the pointer having such prefix as target. This
means that the processors receiving the factors store the dictionary in a trie using an
auxiliary perfect hashing table where the pointers are the keys and the targets are
the values. Then sub-blocks of the next 300 kilobytes are broadcasted to the adjacent
nodes. We show how to implement the non-adaptive phase on small and medium
scale systems in the next subsection. Then, we scale up the system and modify the
approach to keep its robustness in the second subsection. The third subsection con-
siders decompression. Improvements by the LZMW approach are discussed in the last
subsection.

3.1 Small and Medium Scale

After having just learned the dictionary, 300 kB have to be compressed in a non-
adaptive way using such dictionary. In [10], it is shown that if we distribute sub-
blocks among different processors to compress them independently then the sub-block
length must be the order of a few kilobytes to guarantee robustness. Ten processors
and one hundred processors are the orders of magnitudes for small and medium
scale distributed systems, respectively. Therefore, robustness is guaranteed. On the
other hand, the size of a large scale system is the order of magnitude of a thousand
implying that the sub-block length has the order of magnitude of 100 bytes. In such
case, overlapping of adjacent sub-blocks and a preprocessing of the boundaries are
necessary. We experimented in [10] that, when compressing megabytes of English
text, the LZC average compression ratio is 0.42 while the distributed approach has a
one percent loss in both cases.

3.2 Large Scale

Both overlapping of adjacent sub-blocks and a preprocessing of the boundaries are
necessary since the boundary positions are arbitrary and, therefore, likely not to be
at the beginning of natural factors. Consequently, a sub-block factorization starts
with factors much smaller than the average factor length. This initial disadvantage is
amortized if the sub-block length has the order of magnitude of a kilobyte, which is
not the case of large scale distributed systems as explained in the previous subsection.
Again, after having just learned the dictionary, 300 kB have to be compressed in a
non-adaptive way using such dictionary. Generally speaking, sub-blocks of length
M(k + 2), except for the first one and the last one which are M(k + 1) long, are
broadcasted to the processors, with k a positive integer and M the maximum factor
length. Each sub-block overlaps on 2M characters with the adjacent ones to the left
and to the right, respectively (obviously, the first one overlaps only to the right and
the last one only to the left). We call a boundary match a factor either covering
positions in the first and second half of the 2M characters shared by two adjacent
sub-blocks or being a suffix of the first half. The processors execute the following
algorithm to compress each sub-block:

80 Proceedings of the Prague Stringology Conference 2020

– for each sub-block, every corresponding processor computes the longest boundary
matches to the left and to the right (only to the right (left) if the sub-block is the
first (last) one).

– each processor computes the greedy factorization from the end of the boundary
match on the left boundary of its sub-block to the beginning of the boundary
match on the right boundary.

The parallel running time of the preprocessing phase computing the boundary
matches is O(M2) by brute force. In [10], it is shown experimentally that for k =
10 the compression ratio achieved by such factorization is about the same as the
sequential one. Considering that typically the average match length is about 10, one
processor can compress 100 bytes independently and this is why this approach is
suitable for a large scale distributed system.

3.3 On-the-Fly Decompression

To decode on-the-fly the compressed data on a distributed system, after the sequential
decompression of the first half of a block, it is enough to use during the compressing
phase a special mark occurring in the sequence of pointers each time the coding of a
sub-block ends in the second half of the block. A copy of the dictionary is stored in
every processor since the sequential decompression of the first half is run again by the
central node of the star network, sending a new dictionary element to the adjacent
nodes at each step. Differently from the coding phase, a perfect hashing table rather
than a trie is used to store the dictionary. Moreover, the special marks allow the
broadcasting of the subsequences of pointers coding each sub-block of the second half
to the adjacent nodes. Therefore, the decoding of the sub-blocks is straightforward.

3.4 Improving On-the-Fly Compression of Massive Data

The prefix dictionaries built by LZW have the disadvantage to include useless el-
ements. To ameliorate this, the LZMW factorization builds better dictionaries by
updating it at each step with the concatenation of the last two factors. Therefore,
the LZMW factorization of a string S is S = f1f2 · · · fi · · · fm where each factor fi
is the longest match with the concatenation of two consecutive previous factors. In
practical implementations, the LZMW heuristic was originally thought with a dictio-
nary bounded by the least recently used strategy and fi was encoded by a pointer qi
whose target is in such dictionary [21], improving even ten per cent on LZW in some
cases. We propose the LZCMW heuristic in order to have non-adaptive phases, where
the dictionary is bounded to 216 elements by the RESTART deletion heuristic. This
makes LZMW compression suitable for parallel implementations of on-the-fly com-
pression on small and large scale distributed systems in a similar fashion as for LZC.
Therefore, the amelioration provided by LZMW compression in the sequential case
is kept on every scale distributed system since the loss of compression effectiveness
of the RESTART deletion heuristic with respect to LRU is quite limited [1]. Run-
ning the LZCMW heuristic on different types of data could be an interesting future
experimental work.

4 The Greedy versus Optimal Analysis

A feasible d-restarted LZW factorization S = f1 · · · fm is such that the number of
different concatenations of a factor with the next character between fh and ft (ft is

Sergio De Agostino: Compression and On-the-Fly Distributed Computing 81

not counted) is less or equal than d decreased by the alphabet size, with h and t two
consecutive positions where the restart operation happens, and each factor fi with
h < i < t is equal to fjc, where c is the first character of fj+1 and h ≤ j < i (1 and k+1
are considered restart positions by default). We define optimal the feasible d-restarted
LZW factorization with the smallest number of factors. A practical algorithm to
compute the optimal solution is not known.

A trivial upper bound to the approximation multiplicative factor of a feasible
factorization with respect to the optimal one is the maximum factor length of the
optimal solution, that is, the height of the trie storing the dictionary. Such upper
bound is Θ(d), where d is the dictionary size (O(d) follows from the feasibility of the
factorization and Ω(d) from the factorization of the unary string). We give worst case
examples for the procedures of section 3 using only two characters a and b. It follows
that the worst case analysis is valid for any given alphabet of cardinality greater than
1. If any of the procedures described in subsections 3.1 and 3.2 is applied to the input
block of length d2

bd
2/4−d/2(

d/2−1
∏

i=0

abibai)(
d
∏

i=1

ad/2)

where the dictionary is learned in the first half and employed to compress in a non-
adaptive way the second one, then the factorization of the first half of the block, that

is, bd
2/4−d/2(

∏d/2−1
i=0 abibai) is

b, bb, . . . , bℓ, bℓ
′

, a, b, ab, ba, abb, baa, . . . , abi, bai, . . . , abd/2−1, bad/2−1

where ℓ′ ≤ ℓ + 1 and the dictionary is filled if we assume its size is d + ℓ + 3. The
non-adaptive factorization of the second half is a, a, · · · a, a and the total cost of the
factorization of the block is ℓ + 1 + d + d2/2, which is Θ(d2). On the other hand,
the cost of the optimal solution on the block is ℓ + 5d/2 which is Θ(d) since the
factorization of the first half is

b, bb, . . . , bℓ, bℓ
′

, a, b, ab, b, a, abb, b, aa, . . . , abi, b, ai, . . . , abd/2−1, b, ad/2−1

Observe that the O(d) approximation multiplicative factor depends on the non-
adaptive phase and this happens when the dictionary learned on the first half of
the block performs badly on the second half, that is in practice, when the data
are highly disseminated. In such case, the totally adaptive feasible d-restarted LZW
factorization (restarting as soon as the dictionary is filled with a greedy choice at
each factorization step) is much more appropriate, as shown by the following theorem
(the proof employs techniques similar to the ones for the unbounded dictionary case
of [11]), but unfortunately does not seem to be parallelizable.

Theorem 1. The totally adaptive d-restarted LZW factorization is an O(
√
d) ap-

proximation of the optimal one, where d is the dictionary size.

Proof. Let S be the input string and T be the trie storing the dictionary of factors of
the optimal d-restarted LZW factorization Φ of S between two consecutive positions
where the restart operation happens. Each dictionary element (but the alphabet
characters) corresponds to the concatenation of a factor f of the optimal factorization
with the first character of the next factor, that we call an occurrence of the dictionary

82 Proceedings of the Prague Stringology Conference 2020

element (node of the trie) in Φ. We call an element of the dictionary built by the
greedy process internal if its occurrence is contained in the occurrence of a node of T
and denote with MT the number of internal occurrences. The number of non-internal
occurrences is less than the number of factors of Φ. Therefore, we can consider only
the internal ones. An occurrence f ′ of the greedy factorization internal to an factor
f of Φ is represented by a subpath of the path representing f in T . Let u be the
endpoint at the lower level in T of this subpath (which, obviously, represents a prefix
of f). Let d(u) be the number of subpaths representing internal phrases with endpoint
u and let c(u) be the total sum of their lengths. All the occurrences of the greedy
factorization are different from each other between two consecutive positions where
the restart operation happens. Since two subpaths with the same endpoint and equal
length represent the same factor, we have c(u) ≥ d(u)(d(u) + 1)/2. Therefore

1/2
∑

u∈T

d(u)(d(u) + 1) ≤
∑

u∈T

c(u) ≤ 2n ≤ 2|Φ|HT

where HT is the height of T , |Φ| is the number of phrases of Φ and the multiplicative
factor 2 is due to the fact that occurrences of dictionary elements may overlap. We
denote with |T | the number of nodes in T ; since MT =

∑

u∈T d(u), we have

M2
T ≤ |T |

∑

u∈T

d(u)2 ≤ |T |
∑

u∈T

d(u)(d(u) + 1) ≤ 4|T ||Φ|HT

where the first inequality follows from the fact that the arithmetic mean is less than
the quadratic mean. Then

MT ≤
√

4|T ||Φ|HT = |Φ|
√

√

√

√

4|T |HT

|Π| ≤ 2|Φ|
√

HT

Since the trie height is Θ(d) at worst, the theorem statement follows. ⊓⊔

We wish to point out that the proof works for any alphabet cardinality, so the com-
parative analysis of the procedures of section 3 with the totally adaptive d-restarted
LZW factorization is the same for every non-unary alphabet on the highly dissemi-
nated data illustrated above.

5 Conclusion

We discussed massive data compression and decompression in the context of dis-
tributed computing. The locality principle implies that scalability and robustness
are not an issue when compression is applied for massive data storage. Speeding up
on-the-fly compression for data transmission is more controversial and, in such case,
it seems we need compression techniques merging together an adaptive and a non-
adaptive approach. We proposed a practical implementation of LZW compression,
called LZC, as the most suitable to our knowledge since it has this characteriistic
and introduced a new version of LZC compression, employing LZMW factorization
in order to improve the compression effectiveness. However, a greedy versus optimal
analysis shows such approach is not suitable for highly disseminated data. As future
work, different techniques could be developed or existing ones could be adapted to
work in this fashion with the purpose of improving compression effectiveness further.

Sergio De Agostino: Compression and On-the-Fly Distributed Computing 83

References

1. T. C. Bell and I. H. Witten: Text Compression, Prentice Hall, 1990.
2. M. Crochemore, A. Langiu, and F. Mignosii: Note on the greedy parsing optimality for

dictionary-based text compression. Theoretical Computer Science, 525 2014, pp. 55–59.
3. M. Crochemore, G. M., A. Langiu, F. Mignosi, and A. Restivo: Dictionary-simbolwise

flexible parsing. Journal of Discrete Algorithms, 14 2012, pp. 74–90.
4. S. DeAgostino: P-complete problems in data compression. Theoretical Computer Science, 127

1994, pp. 181–186.
5. S. DeAgostino: Sub-linear algorithms and complexity issues for lossless data compression,

1994.
6. S. DeAgostino: Parallelism and data compression via textual substitution, 1995.
7. S. DeAgostino: Parallelism and dictionary-based data compression. Information Sciences, 135

2001, pp. 43–56.
8. S. DeAgostino: Lempel-ziv data compression on parallel and distributed systems. Algorithms,

4 2011, pp. 183–199.
9. S. DeAgostino: Lzw data compression on large scale and extreme distributed systems, in

Proceedings Prague Stringology Conference, 2012, pp. 18–27.
10. S. DeAgostino: The greedy approach to dictionary-based static text compression on a dis-

tributed system. Journal of Discrete Algorithms, 34 2015, pp. 54–61.
11. S. DeAgostino and R. Silvestri: A worst case analisys of the lz2 compression algorithm,

1997.
12. S. DeAgostino and R. Silvestri: Bounded size dictionary compression: SCk-completeness

and nc algorithms. Information and Computation, 180 2003, pp. 101–112.
13. A. Farrugia, P. Ferragina, A. Frangioni, and R. Venturini: Bicriteria data com-

pression, in Proceedings SIAM-ACM Symposium on Discrete Algorithms (SODA 14), 2014,
pp. 1582–1585.

14. P. Ferragina, I. Nittoi, and R. Venturini: On optimally partitioning a text to improve
its compression. Algorithmica, 61 2011.

15. P. Ferragina, I. Nittoi, and R. Venturini: On the bit-complexity of lempel-ziv compression.
SIAM Journal on Computing, 42 2013.

16. J. Gailly and M. Adler: http://www.gzip.org, 1991.
17. A. Langiu: On parsing optimality for dictionary-based text compression - the zip case. Journal

of Discrete Algorithms, 20 2013, pp. 65–70.
18. A. Lempel and J. Ziv: On the complexity of finite sequences. IEEE Transactions on Informa-

tion Theory, 22 1976, pp. 75–81.
19. A. Lempel and J. Ziv: A universal algorithm for sequential data compression. IEEE Trans-

actions on Information Theory, 23 1977, pp. 337–343.
20. Y. Matias and C. S. Sahinalp: On the optimality of parsing in dynamic dictionary-based

data compression, in Proceedings SIAM-ACM Symposium on Discrete Algorithms (SODA 99),
1999, pp. 943–944.

21. V. S. Miller and M. N. Wegman: Variations on theme by ziv-lempel, 1985.
22. J. A. Storer: Data Compression: Methods and Theory, Computer Science Press, 1988.
23. J. A. Storer and T. G. Szymanski: Data compression via textual substitution. Journal of

ACM, 29 1982, pp. 928–951.
24. T. A. Welch: A technique for high-performance data compression. IEEE Computer, 17 1984,

pp. 8–19.
25. D. Whiting, G. A. George, and G. E. Ivey: Data compression apparatus and method,

1991.
26. G. K. Zipf: The Ppsycology of Language, Houghton-Mifflin, 1935.
27. J. Ziv and A. Lempel: Compression of individual sequences via variable-rate coding. IEEE

Transactions on Information Theory, 24 1978, pp. 530–536.

