
A Family of Data Compression Codes with

Multiple Delimiters

Igor O. Zavadskyi and Anatoly V. Anisimov

Taras Shevchenko National University of Kyiv
Kyiv, Ukraine

2d Glushkova ave.
ihorza@gmail.com

Abstract. A new family of perspective variable length self-synchronazable binary
codes with multiple pattern delimiters is introduced. Each delimiter consists of a run of
consecutive ones surrounded by zero brackets. These codes are complete and universal.
A simple bijective correspondence between natural numbers and any multi-delimiter
code set is established. A fast byte aligned decoding algorithm is constructed. Compar-
isons of text compression rate and decoding speed for different multi-delimiter codes,
the Fibonacci code Fib3 and (s, c)-dense codes are also presented.

Keywords: prefix code, Fibonacci code, data compression, robustness, completeness,
universality, density, multi-delimiter

1 Introduction

For the last few decades, the data compression technology has accumulated a substan-
tial arsenal of powerful string processing methods. For details, we refer to the book by
D. Salomon [11]. The present period of the information infrastructure development
actualizes the demand for efficient data compression methods that on one hand pro-
vide satisfactory compression rate, and, on the other, support fast encoding, decoding
and search in compressed data. Along with this the need for a code robustness in the
sense of limiting possible error propagations has also been strengthened.

As is known, the classical Huffman codes provide good compression efficiency
approaching to the theoretically best [8]. Unfortunately, Huffman’s encoding does
not allow the direct search in compressed data by a given compressed pattern. At
the expense of losing some compression efficiency this was amended by introducing
byte aligned tagged Huffman codes: Tagged Huffman Codes [5], End-Tagged Dense
Codes (ETDC) [4] and (s,c)-dense codes (SCDC) [3]. In these methods codewords are
represented as sequences of bytes, which along with encoded information incorporate
flags for the end of a codeword.

The alternative approach for coding stems from using the Fibonacci numbers
of higher orders. The mathematical study of Fibonacci codes was started in the
pioneering paper [2]. The authors first introduced families of Fibonacci codes of higher
orders with the emphasis on their robustness. Also, they proved completeness of these
codes and their universality in the sense of [6].

The most strong argumentation for the use of Fibonacci codes of higher orders
in data compression was given in [10]. For these codes, the authors developed fast
byte aligned algorithms for decoding and search in the compressed text [9]. They
also showed that Fibonacci codes have better compression efficiency comparing with
ETDC and SCDC codes for middle size text corpora while still being inferior on
decompression and search speed.

Igor O. Zavadskyi, Anatoly V. Anisimov: A Family of Data Compression Codes with Multiple Delimiters, pp. 71–84.

Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

72 Proceedings of the Prague Stringology Conference 2016

Another advantage of Fibonacci codes over ETDC, SCDC and Huffman codes
is their robustness in the sense of limiting possible error propagations. Although
SCDC codes may limit the propagation of errors coursed by bit erroneous inversions,
they are completely not resistant to insertions or deletions of bits. Huffman’s codes
are vulnerable to any of these errors. Whereas in Fibonacci codes errors coursed by
a single bit inversion, deletion or insertion cannot propagate over more than two
adjacent codewords. In other words, they are synchronizable with synchronization
delay at most one codeword.

In this presentation, we study a new family of binary codes with multiple suffix
delimiters. These codes were first introduced in [1]. Each delimiter consists of a run
of consecutive ones surrounded with zero brackets. Thus, delimiters have the form
01 · · · 10. A number of ones in delimiters is defined by a given fixed set of positive
integers m1, . . . ,mt. The multi-delimiter code Dm1,...,mt

consists of t words 11 · · · 10
with m1, . . . ,mt ones and all other words in which delimiters occur only as a suffix.
For example, the multi-delimiter code D2,3 consists of words 110, 1110 and all other
words in which 110 or 1110 occurs only as a suffix, e.g. 0110, 01110, 10110, etc.

By their properties, the multi-delimiter codes are close to the Fibonacci codes of
higher orders. Due to robust delimiters, multi-delimiter codes are synchronizable with
synchronization delay at most one codeword, as well as Fibonacci codes. We prove
completeness and universality of such codes. There also exists a bijection between
any code Dm1,...,mt

and the set of natural numbers. This bijection is implemented
by very simple encoding and decoding procedures. For practical use we present a
byte aligned decoding algorithm with better computational complexity than that of
Fibonacci codes.

Each of ETDC, SCDC, Fibonacci and multi-delimiter codes is well suited for
natural language text compression if words of a text are considered as atomic symbols.
As shown in [10], the Fibonacci code of order three, denoted by Fib3, has the best
compression rate when applied to this kind of data. From our study, it follows that the
simple code D2 with one delimiter 0110 has asymptotically higher density as against
Fib3, although it is slightly inferior in compression rate for realistic alphabet sizes of
natural language texts.

We also note that by varying delimiters for better compression we can adapt multi-
delimiter codes to a given probability distribution and an alphabet size. Thus, for
example, we compare the codesD2,3,D2,3,5 andD2,4,5 with the code Fib3. Those multi-
delimiter codes are asymptotically less dense than Fib3. Nevertheless, in practice the
alphabet size of a text is often relatively small, from a few thousand up to a few
million words. For such texts the aforementioned multi-delimiter codes outperform
the Fib3 code in compression rate by 2−3%, while both Fibonacci and multi-delimiter
codes significantly outperform the ETDC/SCDC codes.

The structure of the presentation is as follows. In Section 2 we define the family of
multi-delimiter codes and discuss their density. A bijective correspondence between
the set of natural numbers and codewords of any code Dm1,...,mt

is established in the
next section. Also, herein we present the bitwise encoding/decoding algorithms. The
completeness and universality of multi-delimiter codes is proven in Section 4. The fast
byte aligned decoding algorithm for the multi-delimiter code D2,3,5 is given in Section
5. This code appears to be the most efficient in compression among all multi-delimiter
codes when applied to small or mid-size texts. In Section 6 we present the results of
computational experiments to compare the compression rate and decoding time of

I. O. Zavadskyi et al.: A Family of Data Compression Codes with Multiple Delimiters 73

Index Fib2 D1 D1,2 Fib3 D2 D2,3 D2,3,4

1 11 10 10 111 110 110 110
2 011 010 010 0111 0110 0110 0110
3 0011 0010 110 00111 00110 1110 1110
4 1011 00010 0010 10111 10110 00110 00110
5 00011 11010 0110 000111 000110 10110 10110
6 01011 000010 00010 010111 010110 01110 01110
7 10011 011010 00110 100111 100110 000110 11110
8 000011 110010 000010 110111 0000110 010110 000110
9 001011 111010 000110 0000111 0010110 100110 010110
10 010011 0000010 111010 0010111 0100110 001110 100110
11 100011 0011010 0000010 0100111 1000110 101110 001110
12 101011 0110010 0000110 1000111 1010110 0000110 101110
13 0000011 1100010 0111010 1010111 1110110 0010110 011110
14 0001011 0111010 1110010 0110111 0100110 0000110
15 0010011 1110010 1110110 1100111 1000110 0010110
16 0100011 1111010 1111010 1010110 0100110
17 1000011 0001110 1000110
18 0101011 0101110 1010110
19 1001011 1001110 0001110
20 1010011 0101110
21 1001110
22 0011110
23 1011110

Table 1. Sample codeword sets of multi-delimiter and Fibonacci codes

SCDC, Fibonacci and multi-delimiter codes. And in the last section we summarize
the advantages of multi-delimiter codes.

2 Definition of multi-delimiter codes

LetM = {m1, . . . ,mt} be a set of integers, given in ascending order, 0 < m1 < · · · <
mt.

Definition 1 The multi-delimiter code Dm1,...,mt
consists of all the words of the form

1mi0, i = 1, . . . , t and all other words that meet the following requirements:

(i) for any mi ∈M a word does not start with a sequence 1mi0;
(ii) a word ends with the suffix 01mi0 for some mi ∈M;
(iii) for any mi ∈ M a word cannot contain the sequence 01mi0 anywhere, except a

suffix.

The given definition implies that code delimiters in Dm1,...,mt
are sequences of the

form 01mi0. However, the code also contains shorter words of the form 1mi0, which
form a delimiter together with the ending zero of a preceding codeword.

The sample of codewords of the length ≤ 7 for some multi-delimiter codes and, for
comparison, some Fibonacci codes is given in Table 1. As is seen, the codes D2,3 and
D2,3,4 with 2 and 3 delimiters respectively contain many more short codewords than
both the Fibonacci code Fib3 and the one-delimiter code D2. This is an important
factor when considering the compression efficiency.

We calculate the number of short codewords for several multi-delimiter codes that
are potentially suitable for natural language text compression. Also, we calculate

74 Proceedings of the Prague Stringology Conference 2016

Code The number of codewords of length ≤ n

Asymptotic n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 15
The codes with the shortest codeword of length 2

Fib2 1.618n 1 2 4 7 12 20 33 986
D1 1.755n 1 2 3 5 9 16 28 1432
D1,2 1.618n 1 3 5 7 10 16 27 799
D1,3 1.674n 1 2 4 7 11 18 30 1106

The codes with the shortest codeword of length 3
Fib3 1.839n 0 1 2 4 8 15 28 2031
D2 1.867n 0 1 2 4 7 13 24 1906
D2,3 1.785n 0 1 3 6 11 19 33 1874
D2,4 1.823n 0 1 2 5 9 17 30 1998
D2,5 1.844n 0 1 2 4 8 15 28 1999
D2,3,4 1.731n 0 1 3 7 13 23 39 1721
D2,4,5 1.796n 0 1 2 5 10 19 34 2019
D2,4,6 1.809n 0 1 2 5 9 18 32 2032

The codes with the shortest codeword of length 4
Fib4 1.928n 0 0 1 2 4 8 16 1606
D3 1.933n 0 0 1 2 4 8 15 1510

Table 2. The number of codewords of multi-delimiter and Fibonacci codes

the asymptotic densities of these codes using the standard technique of generating
functions. The results are presented in Table 2.

In general, codes with more delimiters contain more short words, although they
have worse asymptotic density. This regularity is also related to lengths of delimiters:
the shorter they are the larger quantity of short words a code contains. Considering
the application for text compression, the most efficient seems to be the codes D2,...,
which we thoroughly investigate.

3 Encoding integers

We define a multi-delimiter code as a set of words. There exists a simple bijection
between this set and the set of natural numbers. This bijection allows us to encode
integers.

LetM = {m1, . . . ,mt} be the set of parameters of the code Dm1,...,mt
. By NM =

{j1, j2, . . .} denote the ascending sequence of all natural numbers that do not belong
toM.

By ϕM(i) denote the function ϕM(i) = ji, ji ∈ NM as defined above.
It is easy to see that the function ϕM is a bijective mapping of the set of natural

numbers onto NM. Evidently, this function and the inverse function ϕ−1

M can be
constructively implemented by simple constant time procedures.

A run of consecutive ones in a word w is called isolated if it is a prefix of this
word ending with zero, or it is its suffix starting with zero, or it is a substring of w
surrounded with zeros, or it coincides with w.

The main idea of encoding integers by the code Dm1,...,mt
is as follows. We scan the

binary representation of an integer from left to right. During this scan each isolated
group of i consecutive 1s is changed to ϕM(i) isolated 1s. This way we exclude the
appearance of delimiters inside a codeword. In decoding, we change internal isolated
groups of j consecutive 1s to groups of ϕ−1

M(j) ones. The detailed description of the
encoding procedure is as follows.

I. O. Zavadskyi et al.: A Family of Data Compression Codes with Multiple Delimiters 75

Bitwise Integer Encoding Algorithm

Input : an integer x = xnxn−1 · · · x0, xi ∈ {0, 1}, xn = 1;
Result : the corresponding codeword from Dm1,...,mt

.

1. x← x− 2n, i.e. extract the most significant bit of the number x, which is always
1.

2. If x = 0, append the sequence 1m10 to the string xn−1 · · · x0, which contains only
zeros or empty. Result ← xn−1 · · · x01

m10. Stop.
3. If the binary representation of x takes the form of a string 0r1mi0, r ≥ 0,mi ∈
M, i > 1, then Result ← x. Stop.

4. In the string x replace each isolated group of i consecutive 1s with the group of
ϕM(i) consecutive 1s except its occurrence as a suffix of the form 01mi0, i > 1.
Assign this new value to x.

5. If the word ends with a sequence 01mi0, i > 1, then Result ← x. Stop.
6. Append the string 01m10 to the right end of the word. Assign this new value to x.

Result ← x. Stop.

According to this algorithm, if x 6= 2n, the delimiter 01m10 with m1 ones does
not contain information bits, and therefore it should be deleted during the decoding.
However, delimiters of the form 01mi0, i > 1 are informative parts of codewords, and
they must be processed during the decoding. If x = 2n, the last m1 + 1 bits of the
form 1m10 must be deleted.

Bitwise Decoding Algorithm

Input : a codeword y ∈ Dm1,...,mt
.

Result : the integer given in the binary form which encoding results in y.

1. If the codeword y is of the form 0p1m10, where p ≥ 0, extract the last m1 + 1 bits
and go to step 4.

2. If the codeword y ends with the sequence 01m10, extract the last m1 + 2 bits.
Assign this new value to y.

3. In the string y replace each isolated group of i consecutive 1s, where i /∈M, with
the group of ϕ−1

M(i) consecutive 1s. Assign this new value to y.
4. Prepend the symbol 1 to the beginning of y. Result ← y. Stop.

Let us give the example. We encode the number 14 = 11102 using the code D2,3.
For this code, M = {2, 3}, NM = {1, 4, 5, . . .}, ϕM(2) = 4, ϕM(3) = 5, ϕM(4) = 6
etc.

1. Extracting the most significant bit we obtain the number 110.
2. 110 is the isolated group of ones. Replace it with the isolated group of ϕM(2) = 4

ones, i.e. 11110.
3. Appending the string 01m10 to the right end of the word we get the result 111100110.

Now let us decode the codeword 111100110.

1. Extracting the last m1 + 2 bits we obtain the number 11110.
2. Replace the isolated group of 4 ones in the beginning of the codeword with the

isolated group of ϕ−1

M(4) = 2 ones: 110.
3. Prepend the symbol 1 to the beginning of the word: 1110.

76 Proceedings of the Prague Stringology Conference 2016

4 Some general properties of multi-delimiter codes

Evidently, any multi-delimiter code is prefix-free and thus uniquely decodable (UD).
However, this fact can be proved formally by checking the Kraft inequality. If it holds
as the equality, the code is also complete, which means that no codeword can be
added to a code in a way that preserves the UD property.

Theorem 1. Each multi-delimiter code Dm1,...,mt
is uniquely decodable, complete and

universal.

Proof. Completeness and UD property of any multi-delimiter code Dm1,...,mt
is proved

in [1]. The proof is based on checking the Kraft equality.
Let us prove the universality of multi-delimiter codes. The notion of universality

was introduced by P. Elias [6] to reflect the property of a code to be nearly optimal
for data sources with any given probability distribution. Formally this means that
there exists a constant K such that for any finite distribution of probabilities P =
(p1, . . . , pn), where p1 ≥ p2 ≥ . . ., the inequality

∑n
i=1 lipi ≤ K ·max(1, E(P)) holds

true, where E(P) = −
∑n

i=1 pi log2 pi is entropy of distribution P and li are codeword
lengths.

Note that encoding procedure that transforms a number x into the corresponding
codeword of the code Dm1,...,mt

can enlarge each internal isolated group of sequential
1s in the binary representation of x to a maximum of t ones. The quantity of such
groups does not exceed 1

2
log2 x. To some binary words the delimiter 01m10 could be

externally appended, while the leftmost 1 is always deleted. Therefore the length of
the codeword is upper bounded by the value (1

2
t+ 1) log2 x+m1 + 1.

Let us sort codewords from Dm1,...,mt
in ascending order of their bit lengths:

a1, a2, . . .We map them to symbols of the input alphabet sorted in descending order of
their probabilities. Evidently, the correspondence between an integer and the length
of its codeword is not monotonic. Nevertheless, there are at least i words of lengths
that do not exceed the upper bound for i, which is equal to (1

2
t+ 1) log2 i+m1 + 1.

Thus, the length of ai does not exceed this bound too. To conclude the proof it only
remains to apply general Lemma 6 by Apostolico and Fraenkel taken from [2]. “Let ψ
be a binary representation such that |ψ(k)| ≤ c1+ c2 log k (k ∈ ZZ+), where c1 and c2
are constants and c2 > 0. Let pk be the probability to meet k. If p1 ≥ p2 ≥ · · · ≥ pn,
Σpi ≤ 1 then ψ is universal.” ⊓⊔

5 Fast decoding

The value of a code depends not only on compression rate, but on a number of other
properties. And not least of all it concerns the time of compression and decompression.
The decompression time is more critical than the time of compression. That is why
in this presentation we only concentrate on the accelerating of decoding.

The aforementioned encoding and decoding algorithms are bitwise, and thus, they
are quite slow. To accelerate them we construct a byte aligned lookup table method,
which performs the same mapping as the bitwise decoding algorithm. The main idea
of the proposed method is similar to that developed in [10]. At each iteration, the
algorithm processes some parameters from a table row, which examples are given
in Table 3. The choice of a row depends on two parameters listed in the left two
columns of the table. They are a byte read from the input (column 2) and a value r

I. O. Zavadskyi et al.: A Family of Data Compression Codes with Multiple Delimiters 77

which depends on bits left unprocessed at the previous iteration (column 1). These two
parameters can be considered as indices of the two-dimensional array TAB containing
all decoded numbers which can be extracted from a current byte and also some other
parameters.

As shown, the code D2,3,5 has one of the best compression rates comparing with
other multi-delimiter codes. Therefore, for this code we give the detailed description
of the decoding algorithm. We consider the simplest one byte variant, i.e. process-
ing 8 bits per iteration. It is not difficult to extend considered constructions to any
other multi-delimiter code and to other number of bytes. The table-driven decoding
algorithm is given below. Its parameters have the following meanings:

w1, w2, w3, w4 - decoded numbers that can be extracted at the current iteration.
l1 - the bit length of a number w1.
g - the number of codewords for which decoding is finished at the current iteration.
w - a partially decoded number. We use this variable to transfer decoded bits from
iteration to iteration when some codeword is split among bytes.
rprev - an index, which depends on the bits left unprocessed at the previous itera-
tion.
r - an index, which depends on the bits left unprocessed at the current iteration.
Text - a coded text.
Dict - the dictionary that maps the decoded numbers to the words of the input
text.
TAB - the array containing values dependent on the remainder rprev and the next
byte of the code.

Fast Byte Aligned Decoding Algorithm

Input : a coded Text.
Result : the sequence of integers.

1. w ← 1, rprev ← 0, i← 0
2. while i < length of encoded text
3. (g, w1, w2, w3, w4, r, l1)← TAB[rprev][Text[i]]
4. w ← (w << l1)|w1 // append the w1 bits to the right of w
5. if g > 0
6. output Dict(w)
7. if g > 1
8. output Dict(w2)
9. if g > 2
10. output Dict(w3)
11. w ← w4

12. else

13. w ← w3

14. else

15. w ← w2

16. rprev ← r
17. i← i+ 1

Let us explain how this algorithm works. A byte being processed is divided into
two parts: the left one contains bits, which can be decoded unambiguously, and the
right part contains the rest of the byte. The result of decoding of the left part is

78 Proceedings of the Prague Stringology Conference 2016

rprev Text[i] g w1 w2 w3 w4 l1 r

0 11000 111 1 100 0 6
6 01101 011 2 1110 1 1 4 2
2 11100110 2 0111110 10 1 7 0
0 10100 011 0 10100 5 5
5 01100110 3 1 10 1 0 0

Table 3. Rows of the lookup table

assigned to variables w1, w2, w3 and w4 (since the length of the shortest codeword
of D2,3,5 is 3 bits, one byte cannot contain more than 4 adjacent codewords or their
parts). If some byte contains parts of i codewords, the first part might contain only
the ending of some codeword, while the last one might contain only the beginning of
a codeword. This beginning is stored in the column wi of the table TAB and it is
assigned to the variable w. At the beginning of the next iteration, we append a new
value w1 to the right of the bit representation of w (line 4). This is quite a simple
operation if we know the bit length of w1, which is stored in the column l1.

If there are no bits that can be decoded unambiguously in the last number wi in
the byte, we assign 1 to wi, since the decoded number should always be prepended by
the leftmost ‘1’ bit (see the last step of the bitwise decoding algorithm). If the ending
of the last codeword wi coincides with the ending of the byte (it implies that i = g),
we create the fictitious codeword wi+1 which is equal to 1. Such situation is illustrated
by rows 3 and 5 of Table 3. For the same reason we assign 1 to w at the beginning of
the algorithm. The whole Table 3 shows the rows of TAB array used for decoding the
text 11000111 01101011 11100110 10100011 01100110. The unambiguously decoded
bits are separated from the rest bits with spaces.

Of course, the decoding should be performed with regard to the right part of the
previous byte, which contains bits that cannot be decoded unambiguously. That is, if
some byte begins with bits 10, it is decoded differently when the previous byte ends
with 01 and when it ends with 011. Indeed, in the first case the codeword delimiter
0110 appears, while in the second case we have the sequence 01110, which cannot
appear at the end of a codeword. However, it follows from the bitwise decoding
algorithm that each zero bit clears the decoding history. More precisely, if we process
the code D2,3,5 bit-by-bit from left to right and match the sequence 10 or 00, in
both cases we can decode the first of these two bits unambiguously regardless the
bits right to them. Therefore, all bits of some byte, starting from the left and up to
the bit preceding the rightmost zero, can be decoded unambiguously. Regarding the
rightmost zero bit, it can be decoded unambiguously in the following cases.

1. Some codeword ends with this zero.
2. This zero belongs to the sequence 0 · · · 0, which is the prefix part of some codeword.
3. The byte contains 3 or more ones after this zero.

In all other cases, the rightmost zero either might belong or not belong to the
delimiter 0110. If it belongs to this delimiter, it should be discarded together with
the whole delimiter. Otherwise, it should be present in the decoded number. These
two cases can be distinguished only at the next iteration.

Also, we note that if a byte ends with the run of 6 ones, the first two bits of this
byte do not affect the next ensuing decoding since any of these ones cannot belong
to a delimiter.

I. O. Zavadskyi et al.: A Family of Data Compression Codes with Multiple Delimiters 79

Value of r (type) Number of ones in the end of a byte Is the rightmost zero bit decoded?
0 0 yes
1 0 no
2 1 yes
3 1 no
4 2 yes
5 2 no
6 3 yes
7 4 yes
8 5 yes
9 ≥ 6 yes

Table 4. The types of the byte endings in the fast decoding

Thus, we have 10 types of byte endings, which differently affect the next byte
decoding. These types are listed in Table 4 and correspond to 10 possible values of r.

Now we can calculate the space complexity of the byte aligned decoding algorithm.
It is easy to show that the value w1 cannot be longer than 11 bits and each of the other
values wi fit into one byte. Thus, if for each value we use a whole number of bytes,
then one row of the array TAB could be stored in 8 bytes and the whole array requires
8 × 10 × 256 bytes =20K memory. However, on the bit level each row of the array
TAB can be packed only into 4 bytes. For such representation, we have built more
sophisticated, but several times faster implementation of the table decoding algorithm
in assembly language (its details are out of the scope of this presentation). In such
case 10K memory needed to store the array TAB. For comparison, the fastest one-
byte table decoding algorithm for Fib3 code reported in [10] requires 21,4K memory
for precomputed arrays.

If the code is applied to represent a sequence of numbers, one need only store
the array TAB. However, if it is used for compressing many other data types, the
dictionary also should be stored. The application of multi-delimiter codes to natural
language text compression is discussed in the next section. Also, the experimental
estimates of the time complexity of the fast decoding algorithm are presented.

6 Data compression by multi-delimiter codes

To determine the data compression efficiency of a code, first of all it is useful to cal-
culate the number of codewords of the length not greater than n. The corresponding
results are presented in Table 2. As is seen, one-delimiter codes Dm−1 are asymptoti-
cally denser than Fibonacci codes Fibm although they contain less short codewords.
As we add other delimiters to a code, the asymptotic density decreases, while the
number of short codewords increases. In general, the multi-delimiter codes family is
more adaptive as against Fibonacci codes. Choosing appropriate values of m1, . . . ,mt

allows us to tightly approach the code Dm1,...,mt
to the specific distribution of input

symbols and their alphabet size.
For natural language text compression, as noted above, the most efficient seem to

be codes with the shortest delimiter 0110. The “champions” are the codes D2,3, D2,3,4,
D2,3,5 and D2,4,5. However, the code D2,3,4 has quite low asymptotic density, which
narrows its application to only small alphabets. We investigate more thoroughly the
other three codes.

80 Proceedings of the Prague Stringology Conference 2016

Before presenting the experimental results, let us discuss one specific property of
multi-delimiter codes, which relates to use a dictionary in the decoding. In particular,
this relates to decoding of natural language texts.

All the encoding/decoding algorithms we discussed fit the following schema. Dur-
ing the encoding, the mapping (word of text, codeword) is used, where the words of
a text are sorted in descending order of frequency, while the codewords are sorted
in ascending order of codeword lengths. The decoding process is reverse: one should
construct a mapping from the set of codewords to the set of text words. In order to
fasten the decoding, a data structure with low access time should be used to store
the words of a text. For these purposes, the most efficient data structure is the array
with integer indices. It allows us to access the words in a Dictionary[i] style, that is
∗(Dictionary + i) in C notation. This only requires one addition and three memory
readings to obtain a word; however, it also requires constructing a mapping between
the set of codewords and the set of integer indices. For Fibonacci codes such mapping
can be efficiently performed using some remarkable properties of Fibonacci numbers
(the method is developed in [10]); in the SCDC decoding the arithmetic properties
of the codes are utilized.

For multi-delimiter codes, we described the encoding and decoding mappings in
Section 3. Denote them by ψ and ψ−1 respectively. However, they have one essential
disadvantage: the codewords ψ(1), ψ(2), . . . are not sorted in ascending order of their
lengths. It follows that the words of a text in the array Dictionary could be ordered
not in descending order of frequencies f(wi). This is not a problem since the main
ordering principle holds: if f(wi) > f(wj), then the length of the codeword ψ(wi) is
equal or less than the length of the codeword ψ(wj). However, the problem is that the
codewords ψ(1), . . . , ψ(n) do not constitute the set of n shortest codewords. We see
three ways to resolve this issue, which represents the trade-off between time, space,
and compression efficiency.

1. Encode the text using the codewords ψ(1), . . . , ψ(n), i.e. not the shortest code-
words. As the computational experiment shows, this decreases the compression
rate up to 2% but does not increase the time and space complexity of the decod-
ing.

2. Enlarge the size of the dictionary to some value k > n and assign the values to
its elements with the indices ψ−1(c1), . . . , ψ

−1(cn), where c1, . . . , cn is the set of n
shortest codewords, so that ψ−1(ci) < k, 1 ≤ i ≤ n. The enlarged dictionary is
sparse since k−n elements are empty. This requires more memory for the decoding
but does not enlarge the size of the dictionary that should be transmitted to a
recipient along with the encoded file, because only the set of text words ordered
according to their frequencies has to be transmitted. For the code D2,3,5, it is
enough to increase the Dictionary array to four times its original size to achieve
the compression less than 0.1% away from the optimal for this code. However, the
actual memory consumption increases less than three times, since the enlarged
array is sparse. In this case, the decoding time remains optimal.

3. Build the array of some fixed length t for the words with higher frequencies and
store the other words in a map (number, word of text). The non-empty elements
of the array have the indices that correspond to shortest codewords. In this case,
the access to the map is rather longer, but this data structure is not sparse. If we
choose a value of t so that the space complexity is increased by 10%, the time is
increased approximately twice. However, the compression rate remains optimal.

I. O. Zavadskyi et al.: A Family of Data Compression Codes with Multiple Delimiters 81

Text Words Dictionary Entropy SCDC Fib3 D2,3,5 DL
2,3,5 D2,3 D2,4,5

size bits
Hamlet, 30 694 4 501 9.2112 10.47 10.01 9.76 10.05 9.83 9.85

Shakespeare 13.7% 8.7% 6.0% 9.1% 6.7% 6.9%
Text in 90 691 14 879 10.6455 12.04 11.4 11.26 11.61 11.35 11.33

Ukrainian 13.1% 7.1% 5.8% 9.1% 6.6% 6.4%
Robinson Crusoe, 121 325 5 994 8.73519 10.13 9.41 9.13 9.31 9.13 9.21

D. Defoe 16.0% 7.7% 4.5% 6.6% 4.5% 5.4%
Bible, KJV 779 079 12 452 8.6279 10.138 9.219 8.954 9.05 9.044 9.071

17.5% 6.9% 3.8% 4.9% 4.8% 5.1%
Articles from 19 507 783 288179 11.0783 12.869 11.564 11.492 11.544 11.488 11.471
Wikipedia 16.2% 4.4% 3.7% 4.2% 3.7% 3.5%

Table 5. Average codeword lengths and excesses over entropy bits for Fib3 and some multi-delimiter
codes

In our computational experiments, we follow the second approach by default since
usually in natural language texts the size of a vocabulary is never greater than a
few megabytes. For modern computers related RAM overheads are quite acceptable.
However, some results of the first approach are also presented for comparison.

The results of experiments on compression efficiency of different codes are shown
in Table 5. Compression efficiency of SCDC, the Fibonacci code Fib3 and multi-
delimiter codes is measured for the texts of different size in two languages: 4 texts
in English and 1 in Ukrainian. The largest corpus contains the articles randomly
chosen from the English Wikipedia. The punctuation signs in the texts are ignored;
lowercase and uppercase symbols are not distinguished. For each text the values of
s and c giving the best compression rate of SCDC are determined. Also the “RAM
economy” version of the code D2,3,5 is tested, which does not enlarge dictionary array
(the results are in the columnDL

2,3,5). The word-level entropy of the texts is calculated.
The compression rate is presented as the average codeword length in bits (the first
value in a cell) and also as the excess over the entropy bound in percents.

As seen, the multi-delimiter and Fibonacci codes significantly outperform the
SCDC codes by compression rate. And codes with 3 delimiters, in its turn, perform
1.2 − 1.8 times closer to the entropy bound than the Fib3. Among all tested multi-
delimiter codes, D2,3,5 demonstrates the best compression rate for small and mid-size
texts (up to 1M words), but for the large text of 19M words the code D2,4,5 becomes
slightly better. That is to be expected, since D2,4,5 has the better asymptotic density
as shown in Table 2. The code D2,3 is superior to Fib3, and this shows the usefulness
of a second delimiter, but it is inferior to D2,3,5 or D2,4,5, which demonstrates the
benefit of a third delimiter. The rest of multi-delimiter codes presented in Table 2 are
inferior at least to one of these three tested codes for all five texts. However, the code
D2,3,4 shows the best performance on some extremely small texts, which alphabets
are less than 2000 words, but, in general, this is too small size for natural language
text compression.

The excesses over entropy bounds for the codes Fib3, D2,3, D2,4,5 and D2,3,5 are
also shown in Fig. 1.

We also compared the decompression time for three codes: the optimal (s, c)-
codes, Fib3 and D2,3,5. We applied the one-byte variant of the fastest byte-aligned
decoding method described in [10] (with two precomputed tables and no multiplica-
tions) for Fib3, the bitwise and byte-aligned decoding algorithms for D2,3,5 described

82 Proceedings of the Prague Stringology Conference 2016

Figure 1. Excesses over entropy bits for the codes Fib3, D2,3, D2,4,5, D2,3,5.

Text SCDC D2,3,5, byte-aligned D2,3,5, bitwise Fib3, byte-aligned
algorithm algorithm algorithm algorithm

Robinson Crusoe, 15.1 17.3 48.2 31.2
D. Defoe 14.6% 219.2% 106.6%

Bible, KJV 103 111 270 200
7.8% 162.1% 94.2%

Table 6. Empirical comparison of decoding time, in milliseconds

in sections 3 and 5, respectively. The values are averaged over 1000 runs of decod-
ing on a PC with AMD Athlon II X2 245 2.9GHz processor, 4GB RAM, running
Windows 7 32-bit operating system. The result of decompression is stored in RAM
as the array of words; the time needed to write this array to file is excluded since
this is too expensive operation and it dissolves the differences between decompression
methods themselves. The results for two texts in English are presented in Table 6.
Values are given in milliseconds and the overrun comparing to SCDC in percents is
also presented.

As seen, for the code D2,3,5 the fast byte-aligned decoding performs significantly
faster than that of the Fib3 code. This is expected, since the fast decoding algorithm
for D2,3,5 performs on average many fewer operations to obtain the index of a word
in the dictionary (lines 4 − 15), while the reading from the precomputed array (line
3) is roughly of the same time as the similar operation in the fast Fib3 decoding.
However, the byte-aligned decoding algorithm for D2,3,5 remains slightly inferior to
SCDC decoding.

The code Fib3, in comparison with the multi-delimiter codes, also has a drawback,
which refers to the characteristic of the instantaneous separation that is important
for searching a word in a compressed file without its decompression. As Fib3, so
multi-delimiter codes as well as many other codes used for text compression are
characterized by the following: for any codeword w, if a bit sequence w occurs in a
compressed file, we can not guarantee that it truly corresponds to the occurrence of
the whole codeword w. It could be a suffix of another codeword or it could contain
another word as a suffix. In multi-delimiter codes, to check if w is truly a separate
codeword, it is enough to consider the fixed number of bits that precede w. For
example, it is enough to check four bits for the code D2. If they turn out to be 0110,

I. O. Zavadskyi et al.: A Family of Data Compression Codes with Multiple Delimiters 83

then w is a codeword, otherwise it is not. However, it is not enough to check any
fixed number of bits preceding a codeword in the code Fib3, since the delimiter and
the shortest word in this code is 111. Several such codewords can “stick together” if
they are adjacent.

This property of multi-delimiter codes allows to perform the pattern search in a
compressed file a bit faster. However, we do not discuss the search problem in this
presentation in details. General binary search methods (e.g., [9], [7]) can be applied
to multi-delimiter codes as well.

7 Conclusion

We introduce a new family of variable length prefix multi-delimiter codes. They pos-
sess all properties known for the Fibonacci codes such as completeness, universality,
simple vocabulary representation, and strong robustness. But also they have some
more advantages:

(i) Adaptability. Varying delimiters we can adapt a multi-delimiter code to a given
source probability distribution and an alphabet size.

(ii) The better compression rate for natural language text compressing.
(iii) The faster byte aligned decoding method.
(iv) Instantaneous separation of codewords allowing faster compressed search.

The multi-delimiter codes seem to be preferable over (s, c) dense codes in the
compression of small and mid-size natural language texts, since they have significantly
better compression rate but only slightly greater decompression time. These codes
together with the Fibonacci codes can be useful in many practical applications.

References

1. A. Anisimov and I. Zavadskyi: Variable length prefix (δ, k)-codes, in Proc. IEEE Interna-
tional Black Sea Conference on Communications and Networking, BlackSeaCom’15, Constanta,
Romania, 2015, pp. 43–47.

2. A. Apostolico and A. S. Fraenkel: Robust transmission of unbounded strings using fi-
bonacci representations. IEEE Transactions Information Theory, 33 1987, pp. 238–245.

3. N. Brisaboa, A. Farina, G. Navarro, and M. Esteller: (s,c)-dense coding: an optimized
compression code for natural language text databases, in Proc. Symposium on String Processing
and Information Retrieval SPIRE’03, no. 2857 in Lecture Notes in Computer Science, Manaus,
Brazil, 2003, Springer-Verlag, Berlin, pp. 122–136.

4. N. Brisaboa, E. Iglesias, G. Navarro, and J. Parama: An efficient compression code
for text databases, in 25th European Conference on IR Research, no. 2633 in Lecture Notes in
Computer Science, Springer-Verlag, Berlin, 2003, pp. 468–481.

5. E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates: Fast and flexible word
searching on compressed text. ACM Transactions on Information Systems, 18(2) 2000, pp. 113–
119.

6. P. Elias: Universal codeword sets and representations of the integers. IEEE Transactions
Information Theory, 21 1975, pp. 194–203.

7. S. Faro and T. Lecroq: An efficient matching algorithm for encoded dna sequences and binary
strings, in Proc. of the 20th Annual Symposium on Combinatorial Pattern Matching, CPM’09,
no. 5577 in Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2009, pp. 106–115.

8. D. Huffman: A method for the construction of minimum-redundancy codes. Proc. IRE, 40
1952, pp. 1098–1101.

84 Proceedings of the Prague Stringology Conference 2016

9. S. T. Klein and M. Ben-Nissan: Accelerating boyer moore searches on binary texts, in Proc.
Intern. Conf. on Implementation and Application of Automata, CIAA’07, no. 4783 in Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 2007, pp. 130–143.

10. S. T. Klein and M. Ben-Nissan: On the usefulness of fibonacci compression codes. Computer
Journal, 53(6) 2010, pp. 701–716.

11. D. Salomon: Variable-Length Codes for Data Compression, Springer-Verlag, London, U.K.,
2007.

