Generating All Minimal Petri Net Unsolvable Binary Words ${ }^{\star}$

Evgeny Erofeev ${ }^{1}$, Kamila Barylska 2, Łukasz Mikulski ${ }^{2}$, and Marcin Piątkowski ${ }^{2}$
${ }^{1}$ Parallel Systems, Department of Computing Science Carl von Ossietzky Universität, D-26111 Oldenburg, Germany evgeny.erofeev@informatik.uni-oldenburg.de
${ }^{2}$ Faculty of Mathematics and Computer Science Nicolaus Copernicus University, 87-100 Toruń, Poland
\{kamila.barylska,lukasz.mikulski,marcin.piatkowski\}@mat.umk.pl

Abstract

Sets of finite words, as well as some infinite ones, can be described using finite systems, e.g. automata. On the other hand, some automata may be constructed with the use of even more compact models, like Petri nets. We call such automata Petri net solvable. In this paper we consider the solvability of singleton languages over a binary alphabet (i.e. binary words). An unsolvable (i.e. not solvable) word w is called minimal if each proper factor of w is solvable. We present a complete language-theory characterisation of the set of all minimal unsolvable binary words. The characterisation utilises morphic-based transformations which expose the combinatorial structure of those words, and allows to introduce a pattern matching condition for unsolvability.

Keywords: binary words, labelled transition systems, generations, Petri nets, synthesis

1 Introduction

To deal with infinite sets of words automata which are known as a clas: equivalent to fil use of even mor

In this pape the form of lab
 ly, we are concerned with finding a net, whose en labelled transition system. Labelled Petri n finite automata, and hence labelled transiee class of anguages is
as
to
fre etri net languages. In tl what classes of automa ie may use the theory transition system, the solution of a number of linea the theory of regions exists if and only if there exist

[^0]

Due to the page limitati version of this paper contail able for more inquisitive rea

2 Basic notions

In this section we introduce notions used throughout the paper.

Words

A word (or a string) over alphabet T is a finite sequence $w \in T^{*}$, and it is binary if $|T|=2$. For a word w and a letter $t, \#_{t}(w)$ denotes the number of times t occurs in w. A word $w^{\prime} \in T^{*}$ is called a subword (or factor) of $w \in T^{*}$ if $\exists u_{1}, u_{2} \in T^{*}: w=u_{1} w^{\prime} u_{2}$. In particular, w^{\prime} is called a prefix of w if $u_{1}=\varepsilon$, a suffix of w if $u_{2}=\varepsilon$, and an infix of w if $u_{1} \neq \varepsilon$ and $u_{2} \neq \varepsilon$. For a word $w=x_{1} x_{2} \cdots x_{n}$ we use a notation for a factor $w[i . . j]=x_{i} \cdots x_{j}$ and for a single letter $w[i]=x_{i}$.
A mapping $\phi: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ is called a morphism if we have $\phi(u \cdot v)=\phi(u) \cdot \phi(v)$ for every $u, v \in \Sigma_{1}^{*}$ whenever all operations are defined. A morphism ϕ is uniquely determined by its values on the alphabet. Moreover, ϕ maps the neutral element of Σ_{1}^{*} into the neutral element of Σ_{2}^{*}.

Transition systems

A finite labelled transition system (or simp $\left(S, T, \rightarrow, s_{0}\right)$ with nodes S (a finite set of s edges $\rightarrow \subseteq(S \times T \times S)$, and an initial st denoted by $s[t\rangle$, if execution of $\sigma \in T$ edges are labelled $[s\rangle$. A sequence σ some state s^{\prime} such and $T S_{2}=\left(S_{2},-\right.$

tate is a tuple $T S=$ finite set of letters), s enabled at $s \in S$, from s through the I from s to s^{\prime} which from s is denoted by d by $s[\sigma\rangle$, if there is ed transition systems $T S_{1}=\left(S_{1}, \rightarrow_{1}, T, s_{0_{1}}\right)$ ic if there is a bijection $\zeta: S_{1} \rightarrow S_{2}$ with $\left.\zeta\left(s^{\prime}\right)\right) \in \rightarrow_{2}$, for all $s, s^{\prime} \in S_{1}$.

[^1]A word $w=t_{1} t_{2} \cdots t_{n}$ of length $n \in \mathbb{N}$ uniquely corresponds to a finite transition system $T S(w)=\left(\{0, \ldots, n\},\left\{\left(i-1, t_{i}, i\right) \mid 0<i \leq n \wedge t_{i} \in T\right\}, T, 0\right)$.

Petri nets

An initially marked (free labelled) Petri net is denoted as $N=\left(P, T, F, M_{0}\right)$ where P is a finite set of places, T is a finite set of transitions, F is the flow function $F:((P \times T) \cup(T \times P)) \rightarrow \mathbb{N}$ specifying the arc weights, and M_{0} is the initial marking (where a marking is a mapping $M: P \rightarrow \mathbb{N}$, indicating the number of tokens in each place). A transition $t \in T$ is enabled at a marking M, denoted by $M[t\rangle$, if $\forall p \in P: M(p) \geq F(p, t)$. The firing of t at marking M leads to M^{\prime}, denoted by $M[t\rangle M^{\prime}$, if $M[t\rangle$ and $M^{\prime}(p)=M(p)-F(p, t)+F(t, p)$ for every $p \in P$. This can be naturally extended to $M[\sigma\rangle M^{\prime}$ for sequences $\sigma \in T^{*}$, and $[M\rangle$ denotes the set of all markings reachable from M. The reachability graph $R G(N)$ of a bounded (such that the number of tokens in each place does not exceed a certain finite number) Petri net N is the labelled transition system with the set of vertices $\left[M_{0}\right\rangle$, labels set T, set of edges $\left\{\left(M, t, M^{\prime}\right) \mid M, M^{\prime} \in\left[M_{0}\right\rangle \wedge M[t\rangle M^{\prime}\right\}$, and initial state M_{0}. If a labelled transition system $T S$ is isomorphic to the reachability graph of a Petri net N, we say that $N P N$-solves (or simply solves) $T S$, and that $T S$ is synthesisable to N. We say that N solves a word w if it solves $T S(w)$. A word w is then called solvable, otherwise it is called unsolvable.

Solvability

Theory of regions constitutes the most common tool for proving solvability of labelled transition systems. Let $\left(S, T, \rightarrow, s_{0}\right)$ be an lts and $N=\left(P, T, F, M_{0}\right)$ be a Petri net, which we hope to synthesise. The synthesis comprises solving systems of linear inequalities in integer numbers. Those inequalities guaranty satisfiability of the following properties:

State separation property (ssp in short)
For every pair $s, s^{\prime} \in S$ of distinct states $\left(s \neq s^{\prime}\right)$ there exists a place $p \in P$ such that $M(p) \neq M^{\prime}(p)$ for markings $M, M^{\prime} \in\left[M_{0}\right\rangle$ corresponding to s and s^{\prime}.
Event/state separation property (essp in short)
For every state-transition pair $s \in S$ and $t \in T$ with $\neg(s[t\rangle)$ there exists a place $p \in P$ such that $M(p)<F(p, t)$ for the marking $M \in\left[M_{0}\right\rangle$ corresponding to s.

Figure 1. A general form of a place p containing initially m tokens and preventing a transition (a or b) to satisfy essp.

Note that if the lts is defined by easy to satisfy by introducing a co event/state separation property, for

Figure 2. N_{1} solves $T S_{1}$. No soluti
graph of N_{1} is isomorphic to $T S_{1}$, while the latter separation problem represented by event a and st tion). Note that word $a b b a a$, isomorphic to $T S_{2}$, is swapping a / b) which is not PN-solvable. However
event/state ed explanard (modulo olvable.

Minimal unsolvable words
If a word w is PN-solvable, then all of its subwords w are. 10 see tins, let the Petri net solving w be executed up to the state before w^{\prime}, take this as the new initial marking, and add a pre-place with $\#_{a}\left(w^{\prime}\right)$ tokens to a and a pre-place with $\#_{b}\left(w^{\prime}\right)$ tokens to b. 1 of a minimal unsolvable word (muw in short) is well-defined, ole word all of which proper subwords are solvable. A complete able words up to length 110 can be found, amongst some other

assification of minimal unsolvable words

; of solvable and of unsolvable words have already been dewe shall indicate some important restrictions which grant all nal unsolvable words.

4 Generative nature of minimal unsolvable binary words

In this section we provide a complete characterisation of minimal unsolvable binary words. The general idea into two classes: extendable (which are origins for more com e words) and non-extendable (which might be also seen as or words). In the former cl words in which the facto base extendable. After i an extension operation b nature is used in subseq compression. unsolvable, but not minimal, binary simplest extendable muw's, i.e. the form a^{i} or b^{i}. Such words are called base extendable words, we provide ns, which are prefix codes. The code define the converse operation, called

4.1 Base extendable and non-extendable words

The following definitions must be understood modulo swapping a / b.
Definition 2. Base extendable words
A word $u \in\{a, b\}^{*}$ is called base extendable if it is of the form

$$
a b w(b a w)^{k} a \text { with } w=b^{j}, j>0, k \geq 1, \quad \text { or }
$$

$$
\text { baw }(a b w)^{k} b \text { with } w=b^{j}, j \geq 0, k \geq 1
$$

The class of base extendable words is denoted by $\mathcal{B E}$.

Definition 3. Non-extendable words

A word $u \in\{a, b\}^{*}$ is called non-extendable if it is of the form $a b b^{j} b^{k} b a b^{j} a$ with $j \geq 0, k \geq 1$.

The class of all non-extendable words is denoted by $\mathcal{N E}$.
We now establish that all words from classes $\mathcal{B E}$ and $\mathcal{N E}$ are minimal u

Lemma 4. Minimal unsolvability of base extendable and non-extendable words If w belongs to class $\mathcal{B E}$ or $\mathcal{N E}$, then it is unsolvable and minimal with that
 a word w is a muw if and only if w is unsolvable and every roper suffix of w is solvable. Every word w from $\mathcal{B E} \cup \mathcal{N E}$ is solvable. We shall prove the minimality of w by indicating per prefix and suffix.
able words):
ry (modulo swapping a / b) ba he form $j \geq 0$ and $k \geq 1$. This form $=b^{j}$, the ero times, and the plus ${ }^{+} \mathrm{b} \quad$ Due to words of this form are unsol fix $a b b^{j}\left(b a b^{j}\right)^{k}$ of this word c et N_{1} in s net enables the initial a, and unen unsadies 10 umess b has fter the execution of block $b b^{j} b$ there are $k-1$ tokens more on place q. These surplus tokens allow a to be fired after each t earlier. Place p has initially 1 token on it, which is necessary after the first a, and this place has only $j+1$ tokens after each next a, preventing b at states where a must occur. Places d and c_{b} prevent undesirable occurrences of b at the very beginning and at the very end of the prefix, respectively.

$$
M\left(\begin{array}{l}
p \\
q \\
d \\
c_{a} \\
c_{b}
\end{array}\right)=\left(\begin{array}{c}
1 \\
1+k \cdot(j+1) \\
0 \\
k+1 \\
(j+1)(k+1)
\end{array}\right)
$$

$$
M\left(\begin{array}{c}
p \\
q \\
c_{a} \\
c_{b}
\end{array}\right)=\left(\begin{array}{c}
j+2 \\
0 \\
k+1 \\
(k+1)(j+1)
\end{array}\right)
$$

Figure 3. N_{1} solves the pre

For the general form of maximal Petri net N_{2} on the right-hand sid q prevents premature occurrences this and each next block $b^{j} b$. Doin which allows this place to enable t allows to execute the sequence $b b^{\top}$
 suffix $b b^{j}\left(b a b^{j}\right)^{k} a$. a of w, one can consider ble solution. Indeed, place , and enables a only after ional token after each $b^{j} b$, ce b^{j}. The initial marking at most $j+1$'s in a row after that, thanks to place p. Place c_{b} restricts the total number of b 's allowing only block b^{j} at the end. Thus we deduce that any word of the form $a b b^{j}\left(b a b^{j}\right)^{k} a$ with $j>0$ and $k \geq 1$ is a muw.
(b) $w=b a b^{j}\left(a b b^{j}\right)^{k} b$

We can similarly ex another form $w=b$ $\alpha=b^{j}$, the star ${ }^{*} \mathrm{~b}$ a and b swapped. D Petri nets N_{1} and N for maximal proper
ping a / b) base ϵ ≥ 1. The word olus ${ }^{+}$being rep words of this fo ions for maxima

Figure 4. N_{1} solves the prefix $b a b^{j}\left(a b b^{j}\right)^{k} . N_{2}$ solves the suffix $a b^{j}\left(a b b^{j}\right)^{k} b$.

Figure 6. N_{1} solves the prefix $a b b b a b . N_{2}$ solves the suffix $b b b a b a$.

Notice that both Petri nets contain core parts consisting of places p and q, which are responsible for the required behaviour of the nets, as well as auxiliary places - a delay place d and counter places c_{a} and c_{b}.

4.2 Extension operation and extendable words

Let us now explain how some minimal unsolvable words can be obtained from other minimal unsolvable words. For this purpose we use the following notion of extension operation:

Definition 6. Extension operation

For a word $u=x w x\left(w \in\{a, b\}^{*}, x \in\{a, b\}\right)$ an extension operation E is defined as follows:

$$
\begin{aligned}
& E(a w a)=\bigcup_{i=1}^{\infty}\left\{a b M_{a, i}(w) a^{i+1}, a M_{b, i}(w a)\right\}, \\
& E(b w b)=\bigcup_{i=1}^{\infty}\left\{b a M_{b, i}(w) b^{i+1}, b M_{a, i}(w b)\right\},
\end{aligned}
$$

where $M_{a, i}$ and $M_{b, i}$ are morphisms defined as follows

$$
M_{a, i}=\left\{\begin{array}{l}
a \mapsto a^{i+1} b \\
b \mapsto a^{i} b
\end{array} \quad \text { and } \quad M_{b, i}=\left\{\begin{array}{l}
a \mapsto b^{i} a \\
b \mapsto b^{i+1} a
\end{array} .\right.\right.
$$

In what follows, for a given $w \in\{a, b\}^{*}$, we shall call $u \in E(w)$ an extension of w.
We are now ready to define the class of extendable words.
Definition 7. (Derivative) Extendable words
For a word $w \in\{a, b\}^{*}$

1. if $w \in E(v)$ for some base extendable v, then w is (derivative) extendable,
2. if $w \in E(v)$ for some extendable v, then w is (derivative) extendable
3. there are no other (derivative) extendable words.

The class of all (derivative) extendable words is denoted by \mathcal{E}. In what fo them simply extendable words.

The following lemmata constitute unsolvability and minimality of all words.

Lemma 8. Unsolvability $a b v(b a v)^{k} a(k>0)$, then ever

Proof: It follows directly by

\widetilde{N}_{1}
Figure 7. Core parts of Petri nets: \widetilde{N}_{1} for a net solving prefix, \widetilde{N}_{2} for a net solving suffix.

Transformations of core part w.r.t. morphisms

Table 1. Correspondence bet

Proof: (Sketch) Unsolvability follows fr there is a sequence $w_{0}, w_{1}, \ldots, w_{r}$ such $1 \leq j \leq r$, and $w_{r}=w$. With induction core parts of Petri nets, solving maxim parts of these nets can be implemented
Let us note that the extension operation being a duces another extendable word which is unsolvable and nnmmirar. Ont tie from a non-extendable word this operation derives unsolvable but not mil

Lemma 10. Unsolvability of extensions of non-extendable words

Figure 8. N_{1} solves the prefix ababababaababa and N_{2} solves the suffix babababaababaa of $w_{a, 1}=a b a b a b a b a a b a b a a$.
 \mathcal{E} is disjoint with $\mathcal{B E}$ and $\mathcal{N E}$, we have $\mathcal{E} \subseteq \mathcal{C}$.

5.1 Morphic compression and reducibility

In the previous section we showed how to construct new minimal unsolvable words on the basis of extendable words. The purpose of this section is to introduce an inverse transformation, which allows to compress longer minimal unsolvable words into shorter ones.

Definition 12. COMPRESSION FUNCTION

For a word $v=x u x\left(u \in\{a, b\}^{*}, x \in\{a, b\}\right)$ a compression function C is defined as follows :

$$
\begin{align*}
C\left(a b u a^{i+1}\right) & =a M_{a, i}^{-1}(u) a, & C\left(b a u b^{i+1}\right) & =b M_{b, i}^{-1}(u) b, \\
C(a u b a) & =a M_{b, i}^{-1}(u b a), & C(b u a b) & =b M_{a, i}^{-1}(u a b), \tag{5}
\end{align*}
$$

where $i \geq 1$ and $M_{a, i}^{-1}, M_{b, i}^{-1}$ are functions defined as follows:

$$
M_{a, i}^{-1}:\left\{\begin{array}{ll}
a^{i+1} b & \mapsto a \\
a^{i} b & \mapsto b
\end{array} \quad \text { and } \quad M_{b, i}^{-1}: \begin{cases}b^{i} a & \mapsto a \\
b^{i+1} a & \mapsto b .\end{cases}\right.
$$

It is easy to see that among all possible forms from the classificatio unsolvoblownde function and be applied to patterns from class the for citly defines the particular functid
is used \quad. Let us also notice that since $\mathcal{E} \subseteq \mathcal{C}$, all words from c nction C.
From that the morphisms $M_{x, i}$ are reciprocal to the functic The following lemma establishes that the extension ol of compression function C are complement to each o

Lemma 13. Compression and extension operations

1. If $v \in \mathcal{B E} \cup \mathcal{E}$ and u
2. If $u \in \mathcal{C}$ and $v=C($

Proof: Can be ascertair of extension and operations according to

5.2

By use shown that $\mathcal{C} \subseteq \mathcal{E}$, implying that classes of extendable and co imal u of the le. This fact completes the characterisation of all ming their generative nature, and allows us introduce one

Theorem 14. Generative nature of minimal unsolvable binary words Let w be a minimal Petri net unsolvable binary word. Then we have the following exclusive alternatives:

Generation of maximal partial solu

In the last case of the alternative fron tion C to w consecutively, we can reco $w_{0}, w_{1}, \ldots, w_{r}$, such that $w_{0} \in \mathcal{B E}, w_{r}=$
ral unsorvadie words

$$
C\left(w_{i}\right) \text { for } 1 \leq i \leq r
$$

Moreover, starting from a word w_{0}, its maximal proper prefix and maximal proper suffix, and Petri nets solving them (in special forms, that have been provided in the paper), using appropriate transformations, we can derive Petri nets solving maximal
 proper suffix of w_{i} fo
mple:
er word $v=$ ba aaba
is of the form ba a^{*}
ith $\alpha=$ aabaaabaa,
ted just once. Due
es $\mathcal{B E}, \mathcal{N} \mathcal{E}, \mathcal{E}$. Since
eck whether $v \in \mathcal{E}$. I
function C. It can be easily seen that the word
he \quad the function $M_{a, 2}^{-1}:\left\{\begin{array}{ll}a a a b & \mapsto a \\ a a b & \mapsto b\end{array}\right.$, and by the compression $a b a b$. Let us notice that $v_{a, 2}^{-1}$ is dual to the word $w=a b b b a b a$ a minimal unsolvable word. Function d with the fact that $w \in \mathcal{B E}$.
ι, together with Petri nets solving its ing the morphism $M_{b, 2}: \begin{cases}a & \mapsto b b a \\ b & \mapsto b b b a\end{cases}$ $a b b a$ which is dual to v up to swapping asily construct Petri nets solving the er suffix of $w_{b, 2}$, hence, by swapping
maximal p
letters we c
are depicte
but also mi a proper prefix and a proper suffix of v. Such nets an state that the word v is not only unsolvable,
we obtain
a / b. By th

Recall that a word $v \in\{a, b\}^{*}$ is also unsolvable. Moreover, due one of the patterns (Ia) (Ib), (II a binary word can be reduced to

The algorithm described belo true if v is solvable and false othen
nsolvable word as a factor vable if it contains at least hecking the solvability of em.
as an input and returns e mentioned patterns was found inside v).

As the first step we search for the patterns (Ia) and (Ib). We scan the input word from left to right comparing the sizes of the two blocks of consecutive b 's between any three consecutive occurrences of a and the sizes \quad isecutive
a 's between any three consecutive occurrences of b. and $O(1)$ space.

The second step is to search for the patterns (IIa) Morris-Pratt failure function called also the border i in v it contains the length of the longest factor u, wl prefix and a proper suffix of $v[1 . . i]$. Such a factor is c
(n) time

Knuthosition proper For the relation between borders and periods of a word see f

The search for the patterns (IIa) and (IIb) is perfo \quad ossible pair of letters $v[i . . i+1]=a b(v[i . . i+1]=b a$ respecti \quad vap $v[i]$ with $v[i+1]$ and then build the border table for the si sition i. After discoveri border divides report the occt

The border time and $O(n)$ the second ster
nether it is followed by a (b respectively) and needed.
of the input word v can be constructed in $O(n)$ to process at most $O(n)$ suffixes of v, therefore im runs in $O\left(n^{2}\right)$ time and $O(n)$ space.

7 Conclus

 workIn this paper we studied the class of binary words which can not be generated by any
 ogous regularities. The present work can also be of interest in a wider context a natural extension of this work would consist in analyzing more complex labelled transition systems in terms of their solvability, utilizing the presented results. For instance, for an unsolvable word w, we might find a net N whose reachability graph consists of only two maximal branches labelled by w and w^{\prime}, for some w^{\prime}. Then we can deliberate over "approximate solvability" of w.

References

1. E. Badouel, L. Bernardinello, and P. Darondeau: Petri Net Synthesis, Texts in Theo-

[^0]: * This research has been partially supported by the Polis by DFG (German Research Foundation) through grant Be 1267/14-1 CAVER (Design and Analysis Methods for Real-Time Systems) and Graduiertenkolleg GRK-1765 SCARE (System Correctness under Adverse Conditions).

[^1]: ${ }^{1}$ Note that an lts m. automata with no specified set of accepting states.
 ${ }^{2}$ For compactness, in case of long formulas we write $\left.\left.\left.\right|_{r} \alpha\right|_{s} \beta\right|_{t}$ instead of $r[\alpha\rangle s[\beta\rangle t$.

