
Generating All Minimal Petri Net Unsolvable

Binary Words⋆

Evgeny Erofeev1, Kamila Barylska2, Lukasz Mikulski2, and Marcin Pia֒tkowski2

1 Parallel Systems, Department of Computing Science
Carl von Ossietzky Universität, D-26111 Oldenburg, Germany

evgeny.erofeev@informatik.uni-oldenburg.de
2 Faculty of Mathematics and Computer Science

Nicolaus Copernicus University, 87-100 Toruń, Poland
{kamila.barylska,lukasz.mikulski,marcin.piatkowski}@mat.umk.pl

Abstract. Sets of finite words, as well as some infinite ones, can be described using
finite systems, e.g. automata. On the other hand, some automata may be constructed
with the use of even more compact models, like Petri nets. We call such automata
Petri net solvable. In this paper we consider the solvability of singleton languages over
a binary alphabet (i.e. binary words). An unsolvable (i.e. not solvable) word w is called
minimal if each proper factor of w is solvable. We present a complete language-theory
characterisation of the set of all minimal unsolvable binary words. The characterisation
utilises morphic-based transformations which expose the combinatorial structure of
those words, and allows to introduce a pattern matching condition for unsolvability.

Keywords: binary words, labelled transition systems, generations, Petri nets, syn-
thesis

1 Introduction

To deal with infinite sets of words we need to specify them in a finite way. Finite
automata which are known as a classical model for describing regular languages, are
equivalent to finite labelled transition systems [9]. Some sets may be expressed with
use of even more compact system models.

In this paper we investigate the synthesis problem with a specifications given in
the form of labelled transition systems. The sought system model is a free-labelled
place/transition Petri net [12], with its reachability graph as a natural bridge between
specification and implementation. Namely, we are concerned with finding a net, whose
reachability graph is isomorphic to a given labelled transition system. Labelled Petri
nets are known to be more powerful than finite automata, and hence labelled transi-
tion systems [10]. On the other hand, the class of free-labelled Petri net languages is
a subset of the class of all Petri net languages. In the present paper we draw attention
to the following question: what classes of automata can or cannot be generated by
free-labelled Petri nets.

To address this issue one may use the theory of regions [1]. For a given labelled
transition system, the solution of a number of linear inequations systems provided by
the theory of regions exists if and only if there exists an implementation in a net form.

⋆ This research has been partially supported by the Polish grant No.2013/09/D/ST6/03928, and
by DFG (German Research Foundation) through grant Be 1267/14-1 CAVER (Design and Analysis
Methods for Real-Time Systems) and Graduiertenkolleg GRK-1765 SCARE (System Correctness
under Adverse Conditions).

Evgeny Erofeev, Kamila Barylska, Lukasz Mikulski, Marcin Pia֒tkowski: Generating All Minimal Petri Net Unsolvable Binary Words, pp. 33–47.

Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

34 Proceedings of the Prague Stringology Conference 2016

Moreover, solutions of such linear inequations systems are usually utilised during the
synthesis of the resulting system (see Synet [5] and APT [13]).

Our aim is to suggest a combinatorial approach and to provide a complete char-
acterisation of a generative nature for a special kind of labelled transition systems –
non-branching and acyclic transition systems having at most two labels (i.e. binary
words) [2]. More precisely, we characterise all minimal unsolvable binary words.

The paper is organized as follows. First we give some basic notions and notations
concerning labelled transition systems, Petri nets and theory of regions. After that
we present a necessary condition for minimal unsolvability in the form of extended
regular expressions [6]. It allows to formulate possible shapes of minimal unsolvable
words. In section 4 we introduce the notion of (base) extendable and non-extendable
binary unsolvable words. In the following sections we provide the main results of this
paper: a generic characterisation of all minimal unsolvable binary words (section 5)
and its utilization for an efficient verifying procedure (section 6). We conclude the
paper with a short section containing some directions for further research.

Due to the page limitation, most of technical proofs were omitted. The extended
version of this paper containing all the proofs and a detailed argumentation is avail-
able for more inquisitive readers (see: [3]).

2 Basic notions

In this section we introduce notions used throughout the paper.

Words
A word (or a string) over alphabet T is a finite sequence w ∈ T ∗, and it is binary if
|T | = 2. For a word w and a letter t, #t(w) denotes the number of times t occurs in w.
A word w′ ∈ T ∗ is called a subword (or factor) of w ∈ T ∗ if ∃u1, u2 ∈ T ∗ : w = u1w

′u2.
In particular, w′ is called a prefix of w if u1 = ε, a suffix of w if u2 = ε, and an infix
of w if u1 6= ε and u2 6= ε. For a word w = x1x2 · · · xn we use a notation for a factor
w[i..j] = xi · · · xj and for a single letter w[i] = xi.

A mapping φ : Σ∗

1 → Σ∗

2 is called a morphism if we have φ(u·v) = φ(u)·φ(v) for every
u, v ∈ Σ∗

1 whenever all operations are defined. A morphism φ is uniquely determined
by its values on the alphabet. Moreover, φ maps the neutral element of Σ∗

1 into the
neutral element of Σ∗

2 .

Transition systems
A finite labelled transition system (or simply lts) with an initial state is a tuple TS =
(S, T,→, s0) with nodes S (a finite set of states), edge labels T (a finite set of letters),
edges →⊆ (S × T × S), and an initial state s0 ∈ S.1 A label t is enabled at s ∈ S,
denoted by s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈→. A state s′ is reachable from s through the
execution of σ ∈ T ∗, denoted by s[σ〉s′, if there is a directed path from s to s′ which
edges are labelled consecutively by σ. The set of states reachable from s is denoted by
[s〉. A sequence σ ∈ T ∗ is enabled, or firable, at a state s, denoted by s[σ〉, if there is
some state s′ such that s[σ〉s′.2 Two labelled transition systems TS1 = (S1,→1, T, s01)
and TS2 = (S2,→2, T, s02) are isomorphic if there is a bijection ζ : S1 → S2 with
ζ(s01) = s02 and (s, t, s′) ∈→1 ⇔ (ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1.

1 Note that an lts may be considered as a finite automata with no specified set of accepting states.
2 For compactness, in case of long formulas we write |r α |s β |t instead of r [α〉 s [β〉 t.

E.Erofeev et al.: Generating All Minimal Petri Net Unsolvable Binary Words 35

A word w = t1t2 · · · tn of length n ∈ N uniquely corresponds to a finite transition
system TS(w) = ({0, . . . , n}, {(i− 1, ti, i) | 0 < i ≤ n ∧ ti ∈ T}, T, 0).

Petri nets
An initially marked (free labelled) Petri net is denoted as N = (P, T, F,M0) where
P is a finite set of places, T is a finite set of transitions, F is the flow function
F : ((P ×T)∪ (T ×P)) → N specifying the arc weights, and M0 is the initial marking
(where a marking is a mapping M : P → N, indicating the number of tokens in
each place). A transition t ∈ T is enabled at a marking M , denoted by M [t〉, if
∀p ∈ P : M(p) ≥ F (p, t). The firing of t at marking M leads to M ′, denoted by
M [t〉M ′, if M [t〉 and M ′(p) = M(p) − F (p, t) + F (t, p) for every p ∈ P . This can be
naturally extended to M [σ〉M ′ for sequences σ ∈ T ∗, and [M〉 denotes the set of all
markings reachable from M . The reachability graph RG(N) of a bounded (such that
the number of tokens in each place does not exceed a certain finite number) Petri
net N is the labelled transition system with the set of vertices [M0〉, labels set T , set
of edges {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧ M [t〉M ′}, and initial state M0,. If a labelled
transition system TS is isomorphic to the reachability graph of a Petri net N , we say
that N PN-solves (or simply solves) TS, and that TS is synthesisable to N . We say
that N solves a word w if it solves TS(w). A word w is then called solvable, otherwise
it is called unsolvable.

Solvability
Theory of regions constitutes the most common tool for proving solvability of la-
belled transition systems. Let (S, T,→, s0) be an lts and N = (P, T, F,M0) be a
Petri net, which we hope to synthesise. The synthesis comprises solving systems of
linear inequalities in integer numbers. Those inequalities guaranty satisfiability of the
following properties:

State separation property (ssp in short)
For every pair s, s′ ∈ S of distinct states (s 6= s′) there exists a place p ∈ P such
that M(p) 6= M ′(p) for markings M,M ′ ∈ [M0〉 corresponding to s and s′.

Event/state separation property (essp in short)
For every state-transition pair s ∈ S and t ∈ T with ¬(s[t〉) there exists a place
p ∈ P such that M(p) < F (p, t) for the marking M ∈ [M0〉 corresponding to s.

m

p

a b

a
−

a+

b
−

b+

Figure 1. A general form of a place p containing initially m tokens and preventing a transition
(a or b) to satisfy essp.

Note that if the lts is defined by a word w then the state separation property is
easy to satisfy by introducing a counter place. On the other hand, satisfiability of
event/state separation property, for every state-transition pair s ∈ S and t ∈ T with
¬(s[t〉), requires a place preventing t at s. In the case of binary word w ∈ {a, b}∗ such
a place p ∈ P is of the form depicted in figure 2.

The labelled transition systems TS1 and TS2 depicted in figure 2 correspond to the
words aabba and abbaa, respectively. The former is PN-solvable, since the reachability

36 Proceedings of the Prague Stringology Conference 2016

[4, 0, 2]

[2, 1, 2]

[0, 2, 2] [1, 2, 1]

[2, 2, 0]

[0, 3, 0]

a

a

b

b

a

TS1, w = aabba

a b

p1

p2

p3

2

2

2

N1

0

1

2 3

4

5
a

b

b

a

a

TS2, w = abbaa

Figure 2. N1 solves TS1. No solution of TS2 exists.

graph of N1 is isomorphic to TS1, while the latter contains an unsolvable event/state
separation problem represented by event a and state 2 (see [2] for detailed explana-
tion). Note that word abbaa, isomorphic to TS2, is the shortest binary word (modulo
swapping a/b) which is not PN-solvable. However, its reverse (aabba) is solvable.

Minimal unsolvable words
If a word w is PN-solvable, then all of its subwords w′ are. To see this, let the Petri net
solving w be executed up to the state before w′, take this as the new initial marking,
and add a pre-place with #a(w

′) tokens to a and a pre-place with #b(w
′) tokens to b.

Thus, the unsolvability of any proper subword of w entails the unsolvability of w. For
this reason, the notion of a minimal unsolvable word (muw in short) is well-defined,
namely, as an unsolvable word all of which proper subwords are solvable. A complete
list of minimal unsolvable words up to length 110 can be found, amongst some other
lists, in [11].

3 Structural classification of minimal unsolvable words

In [2,4] some properties of solvable and of unsolvable words have already been de-
scribed. In this section we shall indicate some important restrictions which grant all
possible shapes of minimal unsolvable words.

Basing on [2] we can state the following proposition which provides a sufficient con-
dition for unsolvability:

Proposition 1. Sufficient condition for unsolvability If a word over {a, b}
has a subword of the form (1), then it is not PN-solvable.

(a b α) b∗ (b a α)+ a , with α ∈ T ∗ (1)

Further in this paper we show that it is also a necessary condition.

Remark: Let us notice that for an arbitrary α the language described by the expres-
sion (abα)b∗(baα)+a is not regular, not even context free.

It can be shown ([3]) that, up to swapping a/b, all minimal unsolvable words match
one of the following three general patterns:

abx+kabxa, with x > 0, k > 2 or

abx+2(abx+1)∗abxa, with x > 0 or

abx1abx2a · · · abxna, with x1 = x + 1, xn = x, xi ∈ {x, x + 1} for x > 0, n ≥ 3

(2)

E.Erofeev et al.: Generating All Minimal Petri Net Unsolvable Binary Words 37

babx(abx+1)∗abx+2, with x > 0 or

babx2abx3a · · · abxn , with x2 = x, xn = x + 1, xi ∈ {x, x + 1} for x > 0, n ≥ 3
(3)

abxaa, with x > 2 or abb(ab)kaa, with k ≥ 0 (4)

Remark: Let us notice that words of the form (3) start and end with b, while the
other start and end with a. For some technical purpose, let us concentrate on words
containing not less b’s than a’s. In the case of equal numbers of a’s and b’s we con-
centrate on words starting with a.

Note that both last forms of patterns (2) and (3) do not satisfy (1). In order to
prove the necessity of the condition from proposition 1 we restrict them even more,
obtaining as a side effect complete characterisation and the compatibility with (1).
Moreover, the sets of words generated by all the patterns listed above are mutually
disjoint. In the following section we divide them into classes of extendable and non-
extendable words.

4 Generative nature of minimal unsolvable binary words

In this section we provide a complete characterisation of minimal unsolvable binary
words. The general idea is to split the whole set into two classes: extendable (which
are origins for more complex minimal unsolvable words) and non-extendable (which
might be also seen as origins of more complex unsolvable, but not minimal, binary
words). In the former class we distinguish the simplest extendable muw’s, i.e. the
words in which the factor α from (1) is of the form ai or bi. Such words are called
base extendable. After introducing the class of base extendable words, we provide
an extension operation based on simple morhisms, which are prefix codes. The code
nature is used in subsequent section, where we define the converse operation, called
compression.

4.1 Base extendable and non-extendable words

The following definitions must be understood modulo swapping a/b.

Definition 2. Base extendable words

A word u ∈ {a, b}∗ is called base extendable if it is of the form

abw(baw)ka with w = bj, j > 0, k ≥ 1, or

baw(abw)kb with w = bj, j ≥ 0, k ≥ 1.

The class of base extendable words is denoted by BE . � 2

Definition 3. Non-extendable words

A word u ∈ {a, b}∗ is called non-extendable if it is of the form

abbjbkbabja with j ≥ 0, k ≥ 1.

The class of all non-extendable words is denoted by NE . � 3

We now establish that all words from classes BE and NE are minimal unsolvable.

38 Proceedings of the Prague Stringology Conference 2016

Lemma 4. Minimal unsolvability of base extendable and non-extendable
words If w belongs to class BE or NE , then it is unsolvable and minimal with that
property.

Proof: Let us notice that a word w is a muw if and only if w is unsolvable and every
proper prefix and every proper suffix of w is solvable. Every word w from BE ∪NE is
of the form (1), hence unsolvable. We shall prove the minimality of w by indicating
Petri nets solving its proper prefix and suffix.

CASE 1 (base extendable words):

(a) w = abbj(babj)ka

Consider first an arbitrary (modulo swapping a/b) base extendable word of the form
w = abbj(babj)ka with j ≥ 0 and k ≥ 1. This form satisfies (1) with α = bj, the
star ∗ being repeated zero times, and the plus + being repeated k times. Due to
proposition 1, all binary words of this form are unsolvable.

The maximal proper prefix abbj(babj)k of this word can be solved by Petri net N1 in
figure 4.1. Place q in this net enables the initial a, and then disables it unless b has
been fired j + 2 times. After the execution of block bbjb there are k − 1 tokens more
than a needs to fire on place q. These surplus tokens allow a to be fired after each
sequence bjb, but not earlier. Place p has initially 1 token on it, which is necessary
to execute block bbjb after the first a, and this place has only j + 1 tokens after each
next a, preventing b at states where a must occur. Places d and cb prevent undesirable
occurrences of b at the very beginning and at the very end of the prefix, respectively.

a b

p

d

cbca

q1 + k · (j + 1)
k

j + 1N1 :

M




p

q

d

ca
cb




=




1
1 + k · (j + 1)

0
k + 1

(j + 1)(k + 1)




a b

p

q

cbca k + 1

j + 1

k + 1

(k + 1) · (j + 2)− 1

: N2

M




p

q

ca
cb


 =




j + 2
0

k + 1
(k + 1)(j + 1)




Figure 3. N1 solves the prefix abbj(babj)k. N2 solves the suffix bbj(babj)ka.

For the general form of maximal proper suffix bbj(babj)ka of w, one can consider
Petri net N2 on the right-hand side of figure 4.1 as a possible solution. Indeed, place
q prevents premature occurrences of a in the first block bbjb, and enables a only after
this and each next block bjb. Doing so, it collects one additional token after each bjb,
which allows this place to enable the very last a after sequence bj. The initial marking
allows to execute the sequence bbjb at the beginning, and at most j + 1 b’s in a row
after that, thanks to place p. Place cb restricts the total number of b’s allowing only
block bj at the end. Thus we deduce that any word of the form abbj(babj)ka with
j > 0 and k ≥ 1 is a muw.

(b) w = babj(abbj)kb

E.Erofeev et al.: Generating All Minimal Petri Net Unsolvable Binary Words 39

We can similarly examine arbitrary (modulo swapping a/b) base extendable word of
another form w = babj(abbj)kb with j ≥ 0 and k ≥ 1. The word w satisfies (1) with
α = bj, the star ∗ being repeated zero times, the plus + being repeated k times, and
a and b swapped. Due to proposition 1, all binary words of this form are unsolvable.
Petri nets N1 and N2 in figure 4 are possible solutions for maximal proper prefix and
for maximal proper suffix of w, respectively.

a b

p

d

ca cb

q

k + 1(j + 1) · (k + 1)− 1

j + 1

N1 :

M




p

q

d

ca
cb




=




k + 1
j + 1
0

k + 1
(k + 1)(j + 1)




a b

p

ca cb

q

k + 1

2k + 1k · (j + 1) + 1

j + 1

: N2

M




p

q

ca
cb


 =




0
j + 2
k + 1

(k + 1)(j + 1)




Figure 4. N1 solves the prefix babj(abbj)k. N2 solves the suffix abj(abbj)kb.

CASE 2 (non-extendable words):

We now demonstrate that any (modulo swapping a/b) binary word of the form w =
abbjbkbabja with j ≥ 0 and k ≥ 1 from class NE is minimal unsolvable. The word
w satisfies (1) with α = bj, the star ∗ being repeated k times, and the plus + being
repeated only once. Due to proposition 1, w is unsolvable. To show minimality of w,
we provide Petri nets N1 and N2 (see figure 4.1) solving its maximal proper prefix
and maximal proper suffix, respectively. � 4

Remark (On special structure of Petri nets which solve prefixes and suffixes):
Petri net N1 in figure 4.1, which solves maximal proper prefix abbj(babj)k of word
w = abbj(babj)ka from class BE , has a special structure. Place d serves for preventing
undesirable b in the very beginning of w, and places ca and cb restrict the total number
of a’s and b’s, correspondingly. So, the internal structure of the word, being executed
by N1, is determined by two places p and q, which prevent b and a, respectively,
whenever it is necessary. In what follows, we will call the part of N1 consisting of
these two places (and transitions) the core part . So, Petri net N2 if figure 4.1 has the
core part made of places p and q. Similarly, such parts are formed by places p and
q for both nets in figure 4 as well as both nets in figure 4.1. In future consideration
we shall sometimes concentrate only on such core parts, as the other necessary places
may be easily added and does not influence the main behaviour of the nets.

Example 5. Let us consider a word w = abbbaba, which is of the form (1), with
α = b, the star ∗ being repeated zero times, and the plus + being repeated just
once. By definition 2, w is a base extendable word with j = 1 and k = 1. The word
w is unsolvable (by proposition 1) and minimal with that property. We show the
minimality by introducing Petri nets solving a proper prefix abbbab and a proper

40 Proceedings of the Prague Stringology Conference 2016

a b

p

cbca

qj + k + 2

j + k + 2N1 :

M




p

q

ca
cb


 =




0
j + k + 2

2
2 · (j + 1) + k




a b

p

cbca

q

j + 1

k + 2

j + k + 2

: N2

M




p

q

ca
cb


 =




j + k + 2
0
2

2 · (j + 1) + k




Figure 5. N1 solves the prefix abbjbkbabj . N2 solves the suffix bbjbkbabja.

suffix bbbaba of w. Those Petri nets, constructed on the basis of the proof of lemma
4, are depicted in figure 5.

a b

p

d

cbca

q3

2N1 :

a b

p

q

cbca 2

2

2
5

: N2

Figure 6. N1 solves the prefix abbbab. N2 solves the suffix bbbaba.

Notice that both Petri nets contain core parts consisting of places p and q, which
are responsible for the required behaviour of the nets, as well as auxiliary places – a
delay place d and counter places ca and cb.

4.2 Extension operation and extendable words

Let us now explain how some minimal unsolvable words can be obtained from other
minimal unsolvable words. For this purpose we use the following notion of extension
operation:

Definition 6. Extension operation

For a word u = xwx (w ∈ {a, b}∗, x ∈ {a, b}) an extension operation E is defined as
follows:

E(awa) =
⋃

∞

i=1

{
abMa,i(w)ai+1, aMb,i(wa)

}
,

E(bwb) =
⋃

∞

i=1

{
baMb,i(w)bi+1, bMa,i(wb)

}
,

where Ma,i and Mb,i are morphisms defined as follows

Ma,i =

{
a 7→ ai+1b

b 7→ aib
and Mb,i =

{
a 7→ bia

b 7→ bi+1a
.

� 6

E.Erofeev et al.: Generating All Minimal Petri Net Unsolvable Binary Words 41

In what follows, for a given w ∈ {a, b}∗, we shall call u ∈ E(w) an extension of w.

We are now ready to define the class of extendable words.

Definition 7. (Derivative) extendable words

For a word w ∈ {a, b}∗

1. if w ∈ E(v) for some base extendable v, then w is (derivative) extendable,
2. if w ∈ E(v) for some extendable v, then w is (derivative) extendable,
3. there are no other (derivative) extendable words.

The class of all (derivative) extendable words is denoted by E . In what follows we call
them simply extendable words. � 7

The following lemmata constitute unsolvability and minimality of all extendable
words.

Lemma 8. Unsolvability of extendable words If u ∈ {a, b}∗ is of the form
abv(bav)ka (k > 0), then every w ∈ E(u) is unsolvable.

Proof: It follows directly by definitions 2 and 7, and proposition 1. � 8

a b

p

q

a+ b−

a− b+

Ñ1

M

(
p

q

)
=

(
b−

a−

)
; a b

p

q

a+ b−

a−0

a+0

b+

Ñ2

M

(
p

q

)
=

(
a+ + b−

0

)

Figure 7. Core parts of Petri nets: Ñ1 for a net solving prefix, Ñ2 for a net solving suffix.

Transformations of core part w.r.t. morphisms

As it has been demonstrated above, for every base extendable word w there are
Petri nets N1 and N2, which solve maximal proper prefix w1 and maximal proper
suffix w2 of w, respectively. Recall that the nets N1 and N2 have a special structure:

so called “core” parts Ñ1 and Ñ2 (general patterns of Ñ1 and Ñ2 are depicted in
figure 4.2) determining internal order of firings of a’s and b’s during execution of
w1 and w2, while the remaining parts of N1 and N2 take responsibility for correct
implementation of the beginnings and the ends of w1 and w2. Applying operation
E to w, one can easily obtain new minimal unsolvable word w′. Moreover, applying
appropriate transformation (which is determined by the particular morphism that

has been used to gain w′ from w) to Ñ1 or to Ñ2, one derives new core part Ñ ′

1 or

Ñ ′

2, which correctly implements the internal structure of maximal proper prefix w′

1 or
maximal proper suffix w′

2 of w′, respectively. In table 1 the correspondence between
morphisms from definition 6 and such transformations of nets is provided for general

forms of Ñ1 and Ñ2. This fact is confirmed throughout the proof of the following
lemma

Lemma 9. Minimality of extendable words If w ∈ E , then w is minimal
unsolvable.

42 Proceedings of the Prague Stringology Conference 2016

Ma,i Mb,i

a+ 7−→ a+ + b− a+ 7−→ a+ + i · (a+ + b−)
b− 7−→ b− + i · (a+ + b−) b− 7−→ a+ + b−

b+ 7−→ b+ + i · (a− + b+) b+ 7−→ a− + b+

Ñ1 a− 7−→ a− + b+ a− 7−→ a− + i · (a− + b+)
M(p) 7−→ b− + i · (a+ + b−) M(p) 7−→ a+ + b−

M(q) 7−→ a− + b+ M(q) 7−→ a− + i · (a− + b+)

a+ 7−→ a+ + b− a+ 7−→ a+ + i · (a+ + b−)
b− 7−→ b− + i · (a+ + b−) b− 7−→ a+ + b−

b+ 7−→ b+ + i · (a−0 + b+ − a+0) b+ 7−→ b+ + a−0 − a+0
Ñ2 a−0 7−→ a−0 + b+ a−0 7−→ a−0 + i · (b+ + a−0 − a+0)

a+0 7−→ a+0 a+0 7−→ a+0
M(p) 7−→ b− + (i+ 1) · (a+ + b−) M(p) 7−→ a+ + (i+ 1) · (a+ + b−)
M(q) 7−→ 0 M(q) 7−→ 0

Table 1. Correspondence between morphisms and transformations

Proof: (Sketch) Unsolvability follows from lemma 8. By definition 7, for every w ∈ E
there is a sequence w0, w1, . . . , wr such that w0 ∈ BE , wj ∈ E and wj ∈ E(wj−1) for
1 ≤ j ≤ r, and wr = w. With induction on r and using table 1, one can construct the
core parts of Petri nets, solving maximal proper prefix and suffix of w. Additional
parts of these nets can be implemented in an uncompliceted way. � 9

Let us note that the extension operation being applied to an extendable word, pro-
duces another extendable word which is unsolvable and minimal. On the other hand,
from a non-extendable word this operation derives unsolvable but not minimal words.

Lemma 10. Unsolvability of extensions of non-extendable words
If w ∈ NE , then extension u ∈ E(w) is unsolvable but not minimal.

Proof:
Follows from definition 3 and 6, and decomposition of the result using proposition 1.

� 10

Example 11. Observe again the word w = abbbaba. From the previous considerations
(see example 5) we know that this word is base extendable, and therefore is a muw.

By the application of the extension operation, using the morphism Ma,1 =

{
a 7→ aab

b 7→ ab
we obtain word wa,1 = ab ababa ba ababa a, which is of the form (1) with α = ababa,
the star ∗ being repeated zero times, and the plus + being repeated just once, hence –
by proposition 1 – unsolvable. On the basis of the Petri nets of figure 5, and according
to table 1 we construct Petri nets (depicted in figure 11) solving the maximal proper
prefix ababababaababa and the maximal proper suffix babababaababaa of wa,1. Thus,
wa,1 is a minimal unsolvable word.

E.Erofeev et al.: Generating All Minimal Petri Net Unsolvable Binary Words 43

a b

p

d

cbca

q

8 6

4 5

43
N1 :

a b

p

q

cbca
8 6

7

2

3 4

77

: N2

Figure 8. N1 solves the prefix ababababaababa and N2 solves the suffix babababaababaa of
wa,1 = ababababaababaa.

5 Generation-based classification of minimal unsolvable
binary words

Regard minimal unsolvable words w.r.t. the classification obtained earlier. All possible
patterns from (2)–(4), can be distinguished into base extendable

ab(ba)k+1a, with k ≥ 0, for the second pattern from (4),

abbx(babx)ka, with x > 0, k > 0, for the second pattern from (2),

babx(abbx)kb, with x > 0, k > 0, for the first pattern from (3),

non-extendable

abbx−1baa, with x > 2 for the first pattern from (4),

abbxbk−1babxa, with x > 0, k > 2 for the first pattern from (2),

and the rest, which we call C (compressible)

abx1abx2a · · · abxna, with x1 = x + 1, xn = x, xi ∈ {x, x + 1}, x > 0, n ≥ 3,

for the third pattern from (2),

babx2abx3a · · · abxn , with x2 = x, xn = x + 1, xi ∈ {x, x + 1}, x > 0, n ≥ 3,

for the second pattern from (3).

From this classification we derive that the class of all minimal unsolvable words
MUW = BE ∪ NE ∪ C, where BE , NE and C are mutually disjoint classes. Note,
that since all words from class E are unsolvable and minimal with that property, and
E is disjoint with BE and NE , we have E ⊆ C.

5.1 Morphic compression and reducibility

In the previous section we showed how to construct new minimal unsolvable words on
the basis of extendable words. The purpose of this section is to introduce an inverse
transformation,which allows to compress longer minimal unsolvable words into shorter
ones.

Definition 12. Compression function

For a word v = xux (u ∈ {a, b}∗, x ∈ {a, b}) a compression function C is defined as
follows :

C(abuai+1) = aM−1
a,i (u)a, C(baubi+1) = bM−1

b,i (u)b,

C(auba) = aM−1
b,i (uba), C(buab) = bM−1

a,i (uab),
(5)

44 Proceedings of the Prague Stringology Conference 2016

where i ≥ 1 and M−1
a,i , M−1

b,i are functions defined as follows:

M−1
a,i :

{
ai+1b 7→ a

aib 7→ b
and M−1

b,i :

{
bia 7→ a

bi+1a 7→ b.

� 12

It is easy to see that among all possible forms from the classification of minimal
unsolvable words, function C can only be applied to patterns from class C. Moreover,
the form of a given word from C explicitly defines the particular function M−1

x,i which
is used when applying C to the word. Let us also notice that since E ⊆ C, all words
from class E are compressible with function C.

From definitions 6 and 12 it is clear that the morphisms Mx,i are reciprocal to the
functions M−1

x,i for x ∈ {a, b}, i ≥ 1. The following lemma establishes that the exten-
sion operation E and the application of compression function C are complement to
each other in the following sense.

Lemma 13. Compression and extension operations

1. If v ∈ BE ∪ E and u ∈ E(v), then C(u) = v;
2. If u ∈ C and v = C(u), then u ∈ E(v).

Proof: Can be ascertained by consecutive application of extension and compression
operations, according to definition 6 and 12. � 13

5.2 Compression of a muw is an unsolvable word

By use of lemma 13, it can be shown that C ⊆ E , implying that classes of extendable
and compressible words coincide. This fact completes the characterisation of all min-
imal unsolvable words regarding their generative nature, and allows us introduce one
of the main results of the paper:

Theorem 14. Generative nature of minimal unsolvable binary words
Let w be a minimal Petri net unsolvable binary word. Then we have the following
exclusive alternatives:

• w is a non-extendable word (w ∈ NE), or
• w is a base extendable word (w ∈ BE), or
• w is an extendable word (w ∈ E).

Basing on theorem 14 and proofs of lemmata 4 and 8 we can formulate the following

Corollary 15 (The necessary condition for unsolvability).
If a word over {a, b} is not PN-solvable, it has a subword of the form (1).

Generation of maximal partial solutions of minimal unsolvable words

In the last case of the alternative from theorem 14 (case w ∈ E), applying func-
tion C to w consecutively, we can recover a sequence of minimal unsolvable words
w0, w1, . . . , wr, such that w0 ∈ BE , wr = w, wi ∈ E and wi−1 = C(wi) for 1 ≤ i ≤ r.

E.Erofeev et al.: Generating All Minimal Petri Net Unsolvable Binary Words 45

Moreover, starting from a word w0, its maximal proper prefix and maximal proper
suffix, and Petri nets solving them (in special forms, that have been provided in the
paper), using appropriate transformations, we can derive Petri nets solving maximal
proper prefix and maximal proper suffix of wi for all 1 ≤ i ≤ r. We now demonstrate
this with the following example:

Example 16. Let us consider word v = ba aabaaabaa ab aabaaabaa b. It is unsolvable
by proposition 1, because it is of the form baα a∗ (abα)+ b (which is exactly the form (1)
– modulo swapping a/b) with α = aabaaabaa, the star ∗ being repeated zero times,
and the plus + being repeated just once. Due to theorem 14, if v is minimal, then it
belongs to one of the classes BE ,NE , E . Since it does not fit the patterns of classes
BE ,NE , we now aim to check whether v ∈ E . In order to do this we compress v with
function C. It can be easily seen that the word could be written in the form

v = b(aaab)(aaab)(aaab)(aab)(aaab)(aab),

hence we need to consider the function M−1
a,2 :

{
aaab 7→ a

aab 7→ b
, and by the compression

we obtain word v−1
a,2 = baaabab. Let us notice that v−1

a,2 is dual to the word w = abbbaba
(see example 5), up to swapping a/b, hence it is a minimal unsolvable word. Function
C cannot be applied to w = C(v), which accord with the fact that w ∈ BE .

Moreover, starting with the word w = abbbaba, together with Petri nets solving its

proper prefix and suffix (see figure 5) and applying the morphism Mb,2 :

{
a 7→ bba

b 7→ bbba

we obtain the word wb,2 = ab bbabbbabb ba bbabbbabb a which is dual to v up to swapping
a/b. By the previous considerations we can easily construct Petri nets solving the
maximal proper prefix and the maximal proper suffix of wb,2, hence, by swapping
letters we can obtain Petri nets for a proper prefix and a proper suffix of v. Such nets
are depicted in figure 16. Now we can state that the word v is not only unsolvable,
but also minimal with that property.

b a

p

d

cacb

q

6 16

11
11 4

38
N1 :

b a

p

q

cacb
6 16

11

2

8 3

515

: N2

Figure 9. N1 solves the prefix baaabaaabaaabaabaaabaa and N2 solves the suffix
aaabaaabaaabaabaaabaab of v = baaabaaabaaabaabaaabaab .

6 Algorithm for checking unsolvability

The classification of minimal unsolvable words presented in sections 3 and 4 leads to
an efficient algorithm for verifying solvability/unsolvability of a binary word. By def-
inition 3 all non-extendable words are of the form (Ia) abxabya or (Ib) baxbayb, where
x > y + 2, y ≥ 0, and by definition 2 and 6 all extendable words (including base
extendable ones) are of the form (IIa) abw(baw)ka or (IIb) baw(abw)kb, where k ≥ 1
and w ∈ {a, b}∗.

46 Proceedings of the Prague Stringology Conference 2016

Recall that a word v ∈ {a, b}∗ containing a minimal unsolvable word as a factor
is also unsolvable. Moreover, due to theorem 14, v is unsolvable if it contains at least
one of the patterns (Ia) (Ib), (IIa) or (IIb). Therefore, checking the solvability of
a binary word can be reduced to a pattern-matching problem.

The algorithm described below takes a binary word v as an input and returns
true if v is solvable and false otherwise (i.e. any of the above mentioned patterns was
found inside v).

As the first step we search for the patterns (Ia) and (Ib). We scan the input word
from left to right comparing the sizes of the two blocks of consecutive b’s between
any three consecutive occurrences of a and the sizes of the two blocks of consecutive
a’s between any three consecutive occurrences of b. This can be done in O(n) time
and O(1) space.

The second step is to search for the patterns (IIa) and (IIb). It utilizes the Knuth-
Morris-Pratt failure function called also the border table (see [7]). For any position
i in v it contains the length of the longest factor u, which is at the same time a proper
prefix and a proper suffix of v[1..i]. Such a factor is called a border of v[1..i]. For the
relation between borders and periods of a word see for instance [8].

The search for the patterns (IIa) and (IIb) is performed as follows. For any possible
pair of letters v[i..i + 1] = ab (v[i..i + 1] = ba respectively) we temporarily swap v[i]
with v[i+ 1] and then build the border table for the suffix of v starting at position i.
After discovering a repetition v[i..j] (i.e. difference between j and the lenght of the
border divides j − i + 1) we check whether it is followed by a (b respectively) and
report the occurrence of the pattern if needed.

The border table for a single suffix of the input word v can be constructed in O(n)
time and O(n) space (see [7]). We have to process at most O(n) suffixes of v, therefore
the second step and the whole algorithm runs in O(n2) time and O(n) space.

7 Conclusions and future work

In this paper we studied the class of binary words which can not be generated by any
injectively-labelled Petri net, and which are minimal with that property. We examined
in detail all possible shapes of such words. The presented classification of minimal
unsolvable words results in the construction of a pattern-matching based algorithm
for checking the solvability/unsolvability for binary words. The implementation could
be found at [11]. Moreover, we introduced the extension and compression functions,
which can be foundations of a fixed-point procedure for the generation of the set of
all minimal unsolvable binary words. The non-extendable and base extendable words
are defined by simple parametrized formulas (see definitions 3 and 2). Choosing all
possible values of the parameters j and k we can generate all non-extendable and
base extendable words of a given length. Then by using recursive calls of extension
and compression function we can generate all extendable words of a given length.

It would be interesting to examine larger alphabets in the hope of finding anal-
ogous regularities. The present work can also be of interest in a wider context –
a natural extension of this work would consist in analyzing more complex labelled
transition systems in terms of their solvability, utilizing the presented results. For
instance, for an unsolvable word w, we might find a net N whose reachability graph
consists of only two maximal branches labelled by w and w′, for some w′. Then we
can deliberate over “approximate solvability” of w.

E.Erofeev et al.: Generating All Minimal Petri Net Unsolvable Binary Words 47

References

1. E. Badouel, L. Bernardinello, and P. Darondeau: Petri Net Synthesis, Texts in Theo-
retical Computer Science. An EATCS Series, Springer, 2015.

2. K. Barylska, E. Best, E. Erofeev, L. Mikulski, and M. Pia֒tkowski: On binary words

being Petri net solvable, in Proceedings ATAED 2015, vol. 1371, CEUR-WS.org, 2015, pp. 1–15.
3. K. Barylska, E. Erofeev, L. Mikulski, and M. Pia֒tkowski: Gen-

erating all minimal Petri net unsolvable binary words - full version, 2016,
http://folco.mat.umk.pl/papers/generating-binary-muws.pdf.

4. E. Best, E. Erofeev, U. Schlachter, and H. Wimmel: Characterising petri net solvable

binary words, vol. 9698 of Lecture Notes in Computer Science, 2016, pp. 39–58.
5. B. Caillaud: 2002, http://www.irisa.fr/s4/tools/synet.
6. C. Câmpeanu, K. Salomaa, and S. Yu: A formal study of practical regular expressions.

International Journal of Foundations of Computer Science, 14(6) 2003, pp. 1007–1018.
7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, eds., Introduction to algo-

rithms, MIT Press, third ed., 2009.
8. M. Crochemore, L. Ilie, and W. Rytter: Repetitions in strings: Algorithms and combina-

torics. Theoretical Computer Science, 410(50) 2009, pp. 5227–5235.
9. M. Droste and R. M. Shortt: From petri nets to automata with concurrency. Applied

Categorical Structures, 10(2) 2002, pp. 173–191.
10. J. L. Peterson: Petri Net Theory and the Modelling of Systems, Prentice-Hall, 1981.
11. M. Pia֒tkowski et al.: 2015, http://folco.mat.umk.pl/unsolvable-words.
12. W. Reisig: Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case Studies,

Springer, 2013.
13. U. Schlachter et al.: 2013, http://github.com/CvO-Theory/apt.

http://folco.mat.umk.pl/papers/generating-binary-muws.pdf
http://www.irisa.fr/s4/tools/synet
http://folco.mat.umk.pl/unsolvable-words
http://github.com/CvO-Theory/apt

