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Abstract. A Wavelet Tree (WT) is a compact data structure which is used in order
to perform various well defined operations directly on the compressed form of a file.
Many algorithms that are based on WTs consider balanced binary trees as their shape.
However, when non uniform repetitions occur in the underlying data, it may be better
to use a Huffman structure, rather than a balanced tree, improving both storage and
average processing time. We study distinct range queries and several related problems
that may benefit from this change and present theoretical and empirical improvements
in time and space complexities.

1 Introduction

Given an array A of n elements from an alphabet Σ, and indices low and high,
consider the problem named Distinct Range Queries that returns the d distinct el-
ements in A[low, high]. Here and below, A[i, j] denotes the sub-array of A, consist-
ing of the consecutive elements A[i], A[i + 1], . . . , A[j], for i ≤ j. For example, if
A = xxxABRACADABRAyyyyy, then n = 19, and for range [4, 14], we have d = 5 and
the sought elements are {A, B, C, D, R}. The goal is to preprocess A and generate a
bounded amount of auxiliary information so that given a specific range, the query
could be answered efficiently. There are several applications that use such queries.
To mention just one, consider the case a list of the most traded stocks for the past
n days is given, and one wishes to calculate the set of most traded stocks in some
specific period of time, e.g., two months ago.

A trivial solution, without preprocessing, sorts the elements in the given range
of size r, and computes the set of distinct elements by sequentially rescanning the
sorted range in time r log r = O(n log n), and without auxiliary storage.

A possible solution with preprocessing and auxiliary storage, would use a sliding
window of size r, 1 ≤ r ≤ n. Given a fixed range of size r, it will first compute, in
O(r) processing time, the set of distinct elements in the prefix A[1, r] of the array,
based on a constant time computation of the corresponding set for A[1, r− 1], r ≥ 2.
A table of size |Σ|⌈log n⌉ bits will store the number of occurrences of each character
in A[1, r]. The algorithm then slides the window of fixed size r, one character at a
time, and compares the outgoing character to the incoming one, that is, it compares
the first character of the current sliding range to the character just after that range.
If these characters are equal, the set of distinct elements does not change. Otherwise,
the new set of distinct elements can be determined in constant time by updating the
table, for a total of O(n − r + 1) time to process the entire array. The algorithm
repeats this process for every r, 1 ≤ r ≤ n, and stores the answer for every range
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[i, j], 1 ≤ i, j ≤ n. Thus, this solution uses (|Σ|n2 log n) memory space and O(n2)
preprocessing time, but then answers the range query in constant time.

Another line of investigation considers Wavelet trees, defined by Grossi et al. [12].
A Wavelet tree (WT) T for an array A of n elements is a full binary tree whose
leaves are labeled by the elements of Σ, and the internal nodes store bitmaps. The
bitmap at the root contains n bits, in which the ith bit is set to 0 or 1 depending on
whether A[i] is the label of a leaf that is stored in the left or right subtree of T . Each
internal node v of T , is itself the root of a WT Tv for the subarray of A consisting
only of the labels of the leaves of Tv, which are not necessarily consecutive elements
of the array A. Balanced WTs can be constructed in O(n log |Σ|) time and require
n log |Σ|(1 + o(1)) bits.

The data structures associated with a WT for general prefix codes require some
amount of additional storage (compared to the memory usage of the compressed
file itself). Given a text string of length n over an alphabet Σ, the space required
by Grossi et al.’s implementation can be bounded by nHh + O(n log logn

log|Σ| n
) bits, for

all h ≥ 0, where Hh denotes the hth-order empirical entropy of the text, which is
at most log |Σ|; processing time is just O(m log |Σ| + polylog(n)) for searching any
pattern sequence of length m. Multiary WTs replace the bitmaps by sequences over
sublogarithmic sized alphabets in order to reduce the O(log |Σ|) height of binary
WTs, and obtain the same space as the binary ones, but their times are reduced by
an O(log log n) factor. If the alphabet Σ is small enough, say |Σ| = O(polylog(n)),
the tree height is a constant and so are the query times.

Many algorithms that are based on WTs consider balanced binary trees as their
shape, that is, during the construction of each of the subtrees of the WT, the corre-
sponding set of elements of Σ is split, at each stage, into two subsets of equal size,
±1. However, when repetitions occur in the underlying data, it may be better using a
Huffman structure, rather than a balanced tree, as suggested already in [16], improv-
ing both storage and average processing time. The contribution of this paper is to
formalize this approach and conduct some empirical studies supporting its efficiency.
Let H denote the zeroth order entropy of the given elements in A, and d the number
of distinct elements in the range of the query, we show how to answer distinct range
queries using a Huffman based WT, in O(d(H + 1)) processing time on average, and
only O(n(H + 1)) auxiliary storage.

The rest of the paper is organized as follows. Section 2 reports on previous research.
Section 3 presents the algorithm for solving the distinct range query problem by means
of a Huffman WT. Section 4 considers other problems that can benefit from the use
of Huffman WTs rather than balanced ones. Section 5 brings preliminary empirical
evidence that using Huffman WTs may enhance processing time as well as storage
usage as compared to the corresponding balanced WT.

2 Previous Work

Previous work has focused mainly on finding the kth element in a given range, also
named Range Selection Queries, and specifically on Range Median Queries in which
k is equal to n

2
. Krizanc et al. [14] presented the first preprocessing solution for mode

and median queries, the mode of a given set being its most frequent element. In
addition to mode and median range queries on lists, they also considered the general
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settings of path queries, in which the input is given as a node labeled tree, and the
query consists of two nodes. For the mode query they suggest an O(nǫ log n) time
and O(n2−2ǫ) space algorithm, where 0 < ǫ < 1

2
, while the median query could be

answered in constant time using an O(n
2 log logn
log n

) space algorithm. For the median

query, Petersen [18] improves the space to O(n
2 log(k) n
logn

), still answering the query in

constant time, where k is a constant and log(k) is the k times iterated logarithm.
Unlike the near quadratic space of Petersen, the best known linear space solution is

due to Chan et al. [4] and requires O(
√

n

logn
) query time.

Range Least Frequent Element Queries on arrays were studied by Chan et al.
in [5], and improved by Durocher et al. in [6]. Durocher et al. [7] study the Range
Majority Query problem, which asks to report the mode in A[low, high] only if the
mode occurs more than half of the times in the range. Given a real number 0 < τ ≤ 1,
Navarro et al. [17] consider a generalization where any element occurring a fraction
of times larger than τ in A[low, high] can be reported. Thus a majority corresponds
to τ = 1

2
. They prove a lower bound of Ω(n⌈log( 1

τ
)⌉) bits, without storing A, for

any data structure supporting τ majorities within any range, and present a data
structure that returns a single position of each τ -majority, and obtains this space
lower bound, in running time O( 1

τ
log logw(

1
τ
) log n), on a RAM machine with word

size w. As extension, Huffman WTs can also be used when considering Range Least
Frequent Element Queries and Range Majority Queries, yielding an improvement as
can be found in Table 1.

A problem related to the range selection queries is Range Rank Queries (or range
dominance queries), where, given indices i, j and a value e, the goal is to return
the number of elements from A[i, j] that are less than or equal to e (dominated by
e). Brodal et al. [3] designed a static linear space data structure that supports both
range selection and range rank queries in O(log n/ log log n) time. In [2] the authors
suggest a linear space and O(n log n) preprocessing time solution to the median range
queries problem, with the same time complexity per query. Their data structure sorts
the input elements and places them in the leaves of a balanced binary search tree.
Consider a search for the kth smallest element in A[i, j]. If the left subtree of the root
contains k or more elements from A[i, j] then it contains the kth smallest element
from A[i, j]. If not, the sought element is in the right subtree. Each node of the tree
stores the prefix sum such that the number of elements from A[1, j] contained in the
left subtree can be determined for any j. The space is then reduced to O(n) using
rank and select data structures defined as:

rankσ(A, i) – returns the number of occurrences of σ ∈ Σ in A up to and including
position i;

selectσ(A, i) – returns the position of the ith occurrence of σ ∈ Σ in A.

Given a range [low, high] and an element x, the Range Counting Query problem
is counting the number of occurrences of x in A[low, high]. Krizanc et al. [14] use a
series of sorted arrays, one for each element in Σ. The array for element x, denoted
by Ax, contains the indices 1 ≤ i ≤ n such that ai = x in sorted order. Given a
range [low, high] and an element x, binary search is applied on Ax in order to find
the indices ℓ and h of low and high, respectively. The number of occurrences of x
is then h − ℓ + 1. This solution uses O(n) words of storage and O(log n) processing
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time. It should be noted that a space of O(n) words is equal to O(n log n) bits in the
word-RAM model, in which a word size is Θ(log n). By applying the predecessor data
structure of van Emde Boas [8] instead of binary search, Range Counting Queries
over the integer alphabet [1..u] can be answered in O(log log u) time using O(u log u)
bits. If the length of the string is much smaller than the alphabet size, i.e., if n≪ u,
then Y-fast tries can be used, with O(log log n) time using O(n log n) bits [20].

Muthukrishnan [15] solved the Distinct range query problem, also called the col-
ored range listing problem, as part of a solution to the document listing problem for
listing all distinct documents containing a given pattern. His solution is based on
defining an additional array C, so that C[k] is the largest value i < k such that
A[i] = A[k], or 0 if there is no such i. A[k] is then the first occurrence of this element
in the range A[i, j] if and only if C[k] < i. Thus, if the minimum value in C[i, j]
is C[k], the element A[k] is reported as a new element in the range if and only if
C[k] < i. All other distinct elements in the (original) range are reported by recur-
sively applying the same method on the sub-arrays C[i, k − 1] and C[k + 1, j]. The
constant time Range Minimum Queries (RMQ) data structure, due to Gabow et al.
[9] is used for a total of O(d) time and O(n log n) space, where d is the number of
distinct elements.

Välimäki and Mäkinen [19] reduce the space of Muthukrishnan’s data structure

by means of a multiary wavelet tree, using O(n log |Σ|) bits and O(d log(|Σ|
log logn

) time.

Their idea is based on the rank and select data structures used in the internal nodes
of the mulitary wavelet tree. They give an alternative way for computing the value
C[k] used in Muthukrishnan’s solution as C[k] = selectA[k](A, rankA[k](A, k)− 1).

Gagie et al. [10] eliminate the use of RMQ’s and suggest a binary WT for solving
range quantile queries and distinct range queries, using the same size of auxiliary space
and O(d log |Σ|) processing time. In particular, range counting queries are solved by
them in O(log |Σ|) time. Unlike this solution which is based on a binary balanced
Wavelet tree, we examine the use of the Huffman tree that corresponds to the number
of occurrences of the items in A as the structure of the WT.

Concentrating on the shape of the WT was recently done by Klein and Shapira [13]
and Baruch et al. [1], where a pruning strategy was applied to the WTs in order
to reduce the overhead of the additional storage used by the data structures for
processing the stored bitmaps. Moreover, the average path lengths corresponding to
the codewords was also decreased, thus implying a reduction of the average random
access time.

Table 1 summarizes the results. The variable w = Ω(log n) stands for the word size.

3 Distinct Range Queries

Recall that the binary tree TC corresponding to a prefix code C is defined as follows:
we imagine that every edge pointing to a left child is labeled 0 and every edge pointing
to a right child is labeled 1; each node v is associated with the bit string obtained by
concatenating the labels on the edges on the path from the root to v; finally, TC is
defined as the binary tree for which the set of bit strings associated with its leaves is
the code C.

WTs can be defined for a text array over any prefix code and the tree structure
is inherited from the tree usually associated with the code. Considering the WT as
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Processing Time Space (bits)
Distinct Range Queries

Välimäki et al. [19] O(d log(|Σ|)
log logn

) O(n log |Σ|)
Gagie et al. [10] O(d log |Σ|) O(n log |Σ|)
Section 3 O(d(H + 1)) average time O(n(H + 1))

Range Counting Queries

Krizanc et al. [14] O(log log n) O(n log n)
Gagie et al. [10] O(log |Σ|) O(n log |Σ|)
Section 4 O(H + 1) average time O(n(H + 1))

Range Mode Queries

Petersen [18] O(1) O(n
2 log(k)

n

logn
)

Chan et al. [4] O(
√

n/ log n) O(n log n)
Section 4 O(d(H + 1)) average time O(n(H + 1))

Range Least Frequent Element Queries

Chan et al. [5] O(
√
n) O(n log n)

Durocher et al. [6] O(
√

n/w) O(n log n)
Section 4 O(d(H + 1)) average time O(n(H + 1))

Range Majority Queries

Chan et al. [7] O(1) O(n log n)
Section 4 O(H + 1) average time O(n(H + 1))

Table 1. Time and space complexities for range queries.

associated with the prefix code, rather than with the text array itself, yields the
following equivalent definition, as alternative to the one given in the introduction.
The root holds the bitmap obtained by concatenating the first bit of each of the
sequence of codewords in the order they appear in the encoded text. The left and
right children of the root hold, respectively, the bitmaps obtained by concatenating,
again in the given order, the second bit of each of the codewords starting with 0,
respectively with 1. This process is repeated similarly on the next levels: the grand-
children of the root hold the bitmaps obtained by concatenating the third bit of the
sequence of codewords starting, respectively, with 00, 01, 10 or 11, if they exist at all,
etc.

The bitmaps in the nodes of the WT can be stored as a single bit stream by
concatenating them in order of any predetermined top-down tree traversal, such as
depth-first or breadth-first. No delimiters between the individual bitmaps are re-
quired, since we can restore the tree topology along with the bitmaps lengths at each
node once the size n of the text is given in the header of the file.

Let the weights {w1, w2, . . . , wk} be the number of occurrences of the individual
characters in Σ = {σ1, . . . , σk}, respectively. It is well known that Huffman’s encoding

is optimal, and assigns codeword lengths {ℓ1, ℓ2, . . . , ℓk} so thatW =
∑

k

i=1 wiℓi is min-
imal. Let us assume that σ1, . . . , σk ∈ Σ occur {w′

1, w
′
2, . . . , w

′
k
} times in A[low, high]

(w′
i
= 0 for characters that do not occur in the given range). A Huffman based WT

requires only O(W ) space and O(
∑

k

i=1 w
′
i
ℓi) processing time. Notice the following:

1. There are d non zero terms in
∑

k

i=1 w
′
i
ℓi;

2. W ≤ n log |Σ|;
3.

∑

k

i=1 w
′
i
ℓi ≤ d log |Σ|;
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The last two points indicate that Huffman based WTs may improve both space
and processing time of the WTs of Gagie et al. [10].

The algorithm for extracting the distinct elements in the range
[low, high] of an array A by means of a Huffman WT rooted by vroot is given in
Algorithm 1, using the function call distinct(vroot, low, high). Bv denotes the bitmap
belonging to vertex v of the Wavelet tree. The variables num0 and num1 are assigned
the number of 0s and 1s in the given range in lines 3.1 and 3.2, respectively, by sub-
tracting the number of 0s/1s up to the beginning of the range from the number of
0s/1s up to the end of the range. Branching left or right depends on whether there
are 0s or 1s in the current range. If num0 is greater than 0, the process continues
on the left subtree, and if num1 is greater than 0, it continues (also) on the right
subtree. Computing the new range in the following bitmap is done by applying the
rank operation on both ends of the current range. As a side effect, when processing
a leaf v, the number of occurrences of the corresponding element is also computed,
based on the number of 0s or 1s in the parent node of v.

Distinct(v, low, high)
1 num← high− low + 1
2 if v is a leaf
2.1 output element corresponding to v and its frequency num
2.2 return
3 else
3.1 num0 ← rank0(Bv, high)− rank0(Bv, low − 1)
3.2 num1 ← num− num0

3.3 if num0 > 0
3.3.1 Distinct (left(v), rank0(Bv, low − 1) + 1, rank0(Bv, high))
3.4 if num1 > 0
3.4.1 Distinct (right(v), rank1(Bv, low − 1) + 1, rank1(Bv, high))

Algorithm 1. Extracting the distinct elements of A[low, high] from a Wavelet tree.

Consider for example the tree in Figure 1, which represents a Wavelet tree for
some array A. Assume that the substring of A from position 4 to position 14 contains
abracadabra and consider the query with low = 4 and high = 14. Note that the
leaves are sorted from left to right according to the number of their occurrences in
the entire array A. At the beginning we are looking for the leftmost leaf corresponding
to an element that occurs in the given range. There are 0s in the given range in the
bitmap stored in the root, meaning that the range contains elements corresponding
to the left subtree, thus v is assigned the left child of the root. The new range is
computed to be from 3 to 7, according to the number of 0s num0 = 5 in the range
[4, 14] in the bitmap of the root, and the number of 0s preceding the range, which
is 2 in this example. As all bits in the range [3, 7] in the bitmap of the left child
of the root are 1s, the element e does not occur in the range, and the left subtree
can be skipped, going directly to the right child of the left child of the root. The
new range is computed to be [2,6], and as the corresponding bitmap is all 0s, the
algorithm continues with the left child, and character a with frequency 5 is reported.
This process continues until all elements of the range are reported, skipping subtrees
that do not contain leaves with labels in the range.
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u

4 5 6 7 8 9 10 11 12 13 14

...a b r a c a d a b r a ...
1 0 0 0 1 1 0 1 0 1 0 1 1 0 ...

3 4 5 6 7

...a a a a a...
0 1 1 1 1 1 1...

2 3 4 5 6 7

...b r c d b r...
1 0 1 1 1 0 1...

2 3 4 5 6

...a a a a a...
1 0 0 0 0 0...

1 2

b b...
1 1...

2 3 4 5

...r c d r...
1 0 1 1 0...

1 2

r r...
1 1...

2 3

...c d...
1 0 0...

1 2

c d...
0 1...

Figure 1. A Range Query on the Wavelet tree induced by the canonical Huffman tree corresponding
to the frequencies {20, 9, 9, 9, 5, 5, 5, 5, 2, 2, 2, 2} of {e, a, t, i, n, b, u, r, c, d, m, s}, respectively.

As mentioned in Section 2, the algorithm of Gagie et al. [10] for Distinct Range
Queries, runs in O(d log |Σ|) time, and uses O(n log |Σ|) space. It is important to note
that given a specific range, the running time O(d(H + 1)) of Algorithm 1, could be
longer than the O(d log |Σ|), suggested by Gagie. This happens when the distribution
of the characters within the given range significantly deviates from this distribution
in the entire text. However, the improvement of the average running time is based on
the assumption that there is no such discrepancy between the partial range and one
spanning the entire text, resulting in a reduction in running time. Nevertheless, the
storage of the entire WT requires generally less space than a balanced WT, and only
if the distribution of the character frequencies is close to uniform, both will produce
an O(n log |Σ|) space data structure.

Another interesting bound can be derived on the worst case running time of
Algorithm 1. The Range Distinct Elements algorithm runs on the Huffman tree,
possibly skipping several subtrees in case the relevant bitmap contains only 0s or
only 1s. In the worst case, when all characters of Σ appear in the given range, the
entire Huffman tree is processed. Thus, the running time is bounded by the total
number of nodes in the Huffman tree, which is O(|Σ|), and may be independent of n.

The results can be summarized in the following theorem:

Theorem 1: There exists a data structure of size O(W ) bits which can be built

in O(W ) time, that answers distinct range queries on A[i, j] for 1 ≤ i ≤ j ≤ n in

O(d(H + 1)) average time.

4 Range Mode, Range Least, Range Counting,

and Range Majority Queries

The operation rankσ(A, i) is defined as computing the number of occurrences of σ in
A up to position i. This can be adapted quite easily in order to compute the number
of occurrences of σ in a given range [low, high] by simply calculating rankσ(A, high)−
rankσ(A, low − 1). A WT can be used to compute rankσ(A, i) in time proportional
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to the length of the path starting at the root and ending at the leaf corresponding
to σ. Using a Huffman based WT, this time is O(H + 1) on average, where the WT
occupies O(W ) bits. Though the O(log log n) time algorithm of Krizanc et al. [14]
for Range Counting Queries is usually faster than the O(H + 1) average time of our
suggested algorithm, their O(n log n) memory space is larger than the O(W ) space
we use.

Given a range [low, high], the Range Mode Query reports the most frequent ele-
ment in A[low, high], or one of them if there are several. As mentioned above, Chan et

al. [4] present an O(
√

n

logn
) query time algorithm for this problem, using O(n log n)

bits for storage. We note that the problem of finding the mode of a given range
can also be solved by using a balanced Wavelet tree, by computing Range Count-
ing Queries for each distinct element in the range. This solution suggests a method
requiring O(d log |Σ|) processing time and O(n log |Σ|) space. By applying Huffman
shaped WTs, the time is reduced to O(d(H + 1)) and to only O(W ) space. In more
details, the algorithm presented for Distinct Range Queries can also be used to solve
Range Mode Queries, no matter whether the underlying shape of the Wavelet tree
is balanced or Huffman. As described above, as a side effect of this algorithm, the
number of occurrences of each element is also computed each time a leaf is processed.
We can therefore answer Range Mode Queries in time O(d(H +1)), using a Huffman
shaped WT, and in both cases the times are bounded by O(|Σ|).

Note that if an unbounded alphabet Σ is assumed, the traditional WT and the
Huffman shaped WT algorithms are worse than the O(

√

n/ log n) of Chan et al.,
but reduce the processing time in the case of a finite alphabet. However, the WTs
algorithms may still be useful when the number of distinct elements d in the given
range is small, e.g., when d = log n, which can happen even in the case of an un-
bounded alphabet. Moreover, in the bounded and unbounded cases, using WTs needs
only O(n log |Σ|) and O(W ) space for traditional and Huffman shaped Wavelet trees,
respectively, as compared to O(n log n) of Chan et al.. The same discussion applies
also to a symmetric problem named Range Least Frequent Element.

The algorithm for solving Range Majority Queries in a given range [low, high] of an
array A, by means of a Huffman WT rooted at vroot, is given in Algorithm 2, using the
function call majority(vroot, low, high, (high−low+1)/2). As the majority depends on
the number of elements in the original range, the last argument of the function giving
the majority bound is passed through all recursive calls. The variables Bv, num0 and
num1 are the same as in Algorithm 1. Branching left or right depends on whether the
number of 0s or 1s is greater than the required target value m = (high− low+1)/2 in
the current range. This time, at most one of the subtrees will be processed. If num0

is greater than m, the process continues on the left subtree, otherwise, if num1 is
greater than m, it continues on the right subtree. If neither of num0 and num1 are
greater than m, there is no majority element in A, and the process terminates after
reporting so. This algorithm runs in H +1 time on average, unlike the constant time
of Durocher et al. [7]. However, it only uses O(W ) ≤ O(n(H + 1)) space rather than
O(n log n).

Gagie et al. [10] use a balanced WT for finding the kth element in time O(log |Σ|)
and O(n log n) space. In our paradigm the elements are sorted by frequencies in the
entire array, thus the problem is now finding the kth frequent element in a given range.
In fact, the same algorithm can be used on a Huffman shaped WT, and produces an
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majority(v, low, high,m)
1 num← high− low + 1
2 if v is a leaf
2.1 output element corresponding to v
2.2 return
3 else
3.1 num0 ← rank0(Bv, high)− rank0(Bv, low − 1)
3.2 num1 ← num− num0

3.3 if num0 ≥ m
3.3.1 Majority (left(v), rank0(Bv, low − 1) + 1, rank0(Bv, high),m)
3.4 else if num1 ≥ m
3.4.1 Majority (right(v), rank1(Bv, low − 1) + 1, rank1(Bv, high),m)
3.5 else
3.5.1 output “no Majority in Range”
3.5.2 return

Algorithm 2. Majority Query on A[low, high].

average running time of O(H+1) and only O(W ) ≤ O(n(H+1)) space. The algorithm
is similar to Algorithm 2.

5 Experimental Results

For our preliminary experiments we considered two different files of different languages
and alphabet sizes. The Bible (King James version) in English, ebib, in which the text
was stripped of all punctuation signs, and the French version of the European Union’s
JOC corpus, ftxt , which is a collection of pairs of questions and answers on various
topics used in the arcade evaluation project. Our implementation used the Succinct
Data Structure Library [11], which is an open-source library implementing succinct
data structures efficiently in C++. All experiments were conducted on a machine
running 64 bit Linux Ubuntu with an Intel Core i7-4720 at 2.60GHz processor, 6144K
L3 cache size of the CPU, and 4GB of main memory.

The files were encoded as a sequence of characters as well as a sequence of words (a
maximal sequence of non whitespace characters), producing two different alphabets,
a small and a large one. Table 2 presents some information on the data files involved.
The second column presents the original file sizes in MB. The third and fourth columns
give the number of elements in the character alphabet (chars) and the word alphabet
(words), respectively. The size of the word alphabet is given in thousands of (different)
words. The number of words in the file, including repetitions, is given in the fifth
column, in millions.

Our first experiment compares the processing times for the distinct elements range
query problem, using balanced and Huffman WTs. The range sizes were chosen as a
series of increasing powers of 2, starting with 1 and up to the size of 256. For each
of the test files and range sizes, the range query was run 1000 times, with randomly
chosen starting points. The displayed plots are the averages over these runs. Figures 2
and 3 present the processing times for our dataset for the alphabet of characters and
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File size chars words Words in text

(MB) (in thousands) (in millions)
ebib 3.5 53 11 0.6

ftxt 7.6 132 75 1.2

Table 2. Information about the used datasets

words, respectively. The plots are given on a log scale, showing the processing time,
in microseconds, as function of the range size, measured in number of characters.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  4  8  16  32  64  128  256

m
ic

ro
se

co
nd

s

ebib character balanced
ebib character Huffman

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  4  8  16  32  64  128  256

m
ic

ro
se

co
nd

s

ftxt character balanced
ftxt character Huffman

Figure 2. Processing time as function of the range size with character alphabet.
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Figure 3. Processing time as function of the range size with word alphabet.

As can be seen, processing the Huffman WT is consistently faster than processing
the balanced one, for ranges up to 256. The ratio of the improvement of Huffman
over balanced WTs reduces as the ranges become longer. This can be explained by
the fact that the probability that longer ranges include also less frequent characters
becomes higher, requiring longer processing times for the deeper leaves. Thus, there
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are cases in which for a given range the running time of the balanced WT can be
faster than the Huffman one, and the advantage of the Huffman structure vanishes.

In the following table we present the storage usage in MBs of balanced versus
Huffman WTs on both our datasets, and for the two kinds of alphabets. As expected,
the storage of the entire Huffman WT, including the rank and select data structures,
requires less space than the corresponding balanced WT, because of the skewed prob-
abilities of the underlying alphabets. Although we expected that the word based WTs
will generally save space as compared to that corresponding to characters, this is not
the case for the Huffman WTs on ftxt. This can be explained by the overhead re-
quirements of the rank and select data structures that are needed for a larger set of
nodes.

File Character alphabet Word alphabet

Balanced Huffman Balanced Huffman

ebib 3.92 2.77 2.54 2.01

ftxt 11.38 7.16 9.69 8.34

Table 3. Comparison of storage usage.
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