Combinatorics of the Interrupted Period

Adrien Thierry
Advanced Optimization Laboratory
McMaster University, Hamilton, Ontario, Canada
adrien.thierry@gmail.com

Abstract

This article is about discrete periodicities and their combinatorial structures. It presents and describes the unique structure caused by the alteration of a pattern in a repetition. Those alterations of a pattern arise in the context of double squares and were discovered while working on bounding the number of distinct squares in a string. Nevertheless, they can arise in other phenomena and are worth being presented on their own.

Keywords: string, period, primitive string, factorization

If x is a primitive word, and x_{1} a prefix of x, the sequence $x^{n} x_{1} x^{m}$ has a singularity: it has a periodic part of period x, an interruption, and a resumption of the pattern x. That interruption creates a different pattern, one that does not appear in x^{n}. The goal of this article is to unveil that pattern.

1 Preliminaries

In this section, we introduce the notations and pr its corollaries. These observations are not complica technique used in the proof of the main theorem
 ments of A. If $|A|=2$, the words are referred to as Another well known example for $|A|=4$ is DNA. A vector of A^{n} is a word w of length $|w|=n$, which can also be presented under the form of an array $w[1 \ldots n]$. Two words are homographic if they are equal to each other. If $x=x_{1} x_{2} x_{3}$ for non-empty words x_{1}, x_{2} and x_{3}, then x_{1} is a prefix of x, x_{2} is a factor of x, and x_{3} is a suffix of x (if both the prefix and the suffix are non empty, we refer to them as proper). We define multiplication as concatenation. In english, breakfast $=$ break \cdot fast. In a traditional fashion, we define the $n^{\text {th }}$ power of a word w as n time the multiplication of w with itself. A word x is primitive if x cannot be expressed as a non-trivial power of another word x^{\prime}.
A word \tilde{x} is a conjugate of x if $x=x_{1} x_{2}$ and $\tilde{x}=x_{2} x_{1}$ for non-empty words x_{1} and x_{2}. The set of conjugates of x together with x form the conjugacy class of x which is denoted $C l(x)$.
A factor $x,|x|=n$ of w has period p if $x[i]=x[i+|p|], \forall i \in[1, \ldots, n-|p|]$.
The number of occurrences of a letter c in a word w is denoted $n_{c}(w)$, the longest common prefix of x and y as $l c p(x, y)$, while $l c s(x, y)$ denotes the longest common suffix of x and y (note that $\operatorname{lcs}(x, y)$ and $\operatorname{lcp}(x, y)$ are words).

The properties presented next rely on a simple counting argument. If the proofs are not interesting in themselves, they still allow for meaningful results.

Proposition $1 A$ word w and all of its conjugates have the same number of occurrences for all of th $\longrightarrow(w), \forall a \in A, n_{a}(w)=n_{a}(\tilde{w})$.
Proof. Note that
$\forall a \in A, n_{a}(w)=n$
The negation o
Corollary 1. If tr such that $w=w_{1} w_{2}, \tilde{w}=w_{2} w_{1}$. Then,
letter, they are not
Another important corollary o
Corollary 2. Let x be a word, $|x|$ ollowing corollary: other, then $x[1$ of occurrence for the same
wing:
$n]$ and $v=x[2 \ldots n+1]$ are cyclic shift of u.
u and v have the factor $x[2 \ldots n]$ in common. Since u and v are ave the same number of occurrences for all of their letters (Propothat $n_{x[1]}(u)=n_{x[1]}(x[1 \ldots n])=n_{x[1]}(x[2 \ldots n])+1=n_{x[1]}(v)=$ ${ }_{x[1]}(x[n+1])$, hence $n_{x[1]}(x[n+1])=1$, i.e. $x[1]=x[n+1]$.

Discrete periods were described by
"Uniqueness theorem for periodic f
synchronization principle, was prove
Theorem 3. If w is primitive, then
Which is about the synchronization of p :
impossible synchronization when a pattern is interrupted.
First, we need to formalize what we call an interruption of the pattern. Let x be a primitive word and x_{1} be a proper prefix of x, i.e. $x_{1} \neq x$. Write $x=x_{1} x_{2}$ for some suffix x_{2} of x.

Let $W=x^{e_{1}} x_{1} x^{e_{2}}$ with $e_{1} \geq 1, e_{2} \geq 1, e_{1}+e_{2} \geq 3$.
We see that W has a repetition of a pattern x as a prefix: $x^{e_{1}} x_{1}$, and then the repetition is interrupted at position $\left|x^{e_{1}} x_{1}\right|$, before starting again in the suffix $x^{e_{2}}$. We need one more definition (albeit that definition is not necessary, it is presented here for better understanding) before introducing the two factors that we claim have very restricted occurrences in W.

Definition 4. Let \tilde{p} be the prefix of length $\left|\operatorname{lcp}\left(x_{1} x_{2}, x_{2} x_{1}\right)\right|+1$ of $x_{1} x_{2}$ and \tilde{s} the suffix of length $\left|\operatorname{lcs}\left(x_{1} x_{2}, x_{2} x_{1}\right)\right|+1$ of $x_{2} x_{1}$. The factor $\tilde{s} \tilde{p}$ starting at position $\left|x^{e_{1}}\right|+$ $\left|x_{1}\right|-\left|l c s\left(x_{1} x_{2}, x_{2} x_{1}\right)\right|-1$ is the core of the interrupt of W.

If W and its interrupt are clear from the context, we will just speak of the core (of the interrupt).

Example 5. Consider $x=$ aaabaaaaaabaaaa and $x_{1}=$ aaabaaaaaabaaa, then $x x_{1} x^{2}$ has $x x_{1} x=$ aaabaaaaaabaaaaaaabaaaaaabaaaaaabaaaaaabaaaa as a prefix and $x_{2}=a$. It follows that $\operatorname{lcp}\left(x_{1} x_{2}, x_{2} x_{1}\right)=a a a$, and $\tilde{p}=a a a b, \operatorname{lcs}\left(x_{1} x_{2}, x_{2} x_{1}\right)=a a a$, and $\tilde{s}=b a a a$. The core of the interrupt, $\tilde{s} \tilde{p}$, is the underlined in:
$x x_{1} x=$ aaabaaaaaabaaaaaaabaaaaaa $\underbrace{\text { baaaaab }}_{\widetilde{s} \tilde{p}}$ aaaaaabaaaa.

The factors tha to the best of the F. Franek and A.

Definition 6. Let $1, e_{1}+e_{2} \geq 3$. An which:
$-W[i+j]=W\left[i+j+|x|+\left|x_{1}\right|\right]$ for $0 \leq j<\left|x_{1}\right|$, and
$-W[i+j]=W\left[i+j+\left|x_{1}\right|\right]$ for $\left|x_{1}\right| \leq j \leq|x|+\left|x_{1}\right|$.
Those inversion factors, which have the structure of $x_{2} x_{1} x_{1} x_{2}=\tilde{x} x$, and which length are twice the length of x, were used as two notches that forces a certain synchroniza in the problem o of squares in a word, application has already three squar the New Pe

Now, let W as a suffi

in W.

Theorem 7. Let x be a primitive word, x_{1} a proper prefix of x and $W=x^{e_{1}} x_{1} x^{e_{2}}$ with $e_{1} \geq 1, e_{2} \geq 1, e_{1}+e_{2} \geq 3$. Let w_{1} be the factor of length $|x|$ of W ending with the core of the interrupt of W, and let w_{2} be the factor of length $|x|$ starting with the core of the interrupt of W. The words w_{1} and w_{2} are not in the conjugacy class of x.

Proof. Define $p \quad s=\operatorname{lcs}\left(x_{1} x_{2}, x_{2} x_{1}\right)$ (note that p and s can be empty).
Deza, Franek, an when $x_{1} x_{2}$ is prir $|x|-2, w_{1} w_{2}$ al Write $x=p r_{p} r r$ maximality of t possibly homogr
We have, by construction, $w_{1}=r^{\prime} r_{s}^{\prime} s p r_{p}$ and $w_{2}=r_{s}^{\prime} s p r_{p} r$.
Note that $n_{r_{p}}\left(w_{1}\right)=n_{r_{p}}(\tilde{x})+1$ and that $n_{r_{p}^{\prime}}(\tilde{x})=n_{r_{p}^{\prime}}\left(w_{1}\right)+1$ and, by
w_{1} is not a conjugate of \tilde{x}, nor of x. And because $\left|w_{1}\right|=|x|, w_{1}$ is neith $x^{e_{1}} x_{1}$ nor of $x^{e_{2}}$.
Similarly for $w_{2}, n_{r_{s}^{\prime}}\left(w_{2}\right)=n_{r_{s}^{\prime}}(x)+1$ and $n_{r_{s}}(x)=n_{r_{s}}\left(w_{2}\right)+1$ and, b, w_{2} is not a conjugate of x, and because $\left|w_{2}\right|=|x|, w_{2}$ is neither a factor of $x^{e_{2}}$.

Example 8. Consider again $x=$ aaabaaaaaabaaaa, $x_{1}=$ aaabaaaaaaabaa
We have $|x|=15$, and:

$$
x x_{1} x=\text { aaabaaaaaabaaaaaaabaaaaaaa } \underbrace{w_{1}}_{w_{2}} \underbrace{\text { baaaaaab }} \text { aaaaaaab } a a a a
$$

The core of the interrupt is presented in bold.
The two factors w_{1} and $w_{2}=w_{1}=$ baaaaaabaaaaaab (note that w_{2} needs not be equal to w_{1}), starting at different positions, are not factors of x^{2}. Yet, the factor aaaaaabaaaaaabaaaaaa of length $|x|+|\operatorname{lcs}(x, \tilde{x})|+|\operatorname{lcp}(x, \tilde{x})|$ and which contains the core of the interrupt is a factor of x^{2}. The same goes for the factors of length $|x|-1$ that starts and ends with the core of the interrupt, aaaaaabaaaaaab and baaaaaabaaaaaa: they both are factors of x^{2}. For those reasons, the theorem can be regarded as tight

 article.

References

1. N. J. Fine and H. S. Wilf: Uniqueness theorems for periodic functions, in Proceedings of the American Mathematical Society, vol. 16, no. 1, 1965, pp. 109-114.
2. B. Smyth: Computing Patterns in Strings. ACM Press Bks, Pearson/Addison-Wesley, 2003.
3. L. Ilie: A simple proof that a word of length n has at most $2 n$ distinct squares. Journal of Combinatorial Theory, Series A, vol. 112, no. 1, 2005, pp. 163-164.
4. A. Deza, F. Franek, and A. Thierry: How many double squares can a string contain? Discrete Applied Mathematics, vol. 180, 2015, pp. 52-69.
5. M. Crochemore and W. Rytter: Squares, cubes, and time-space efficient string searching. Algorithmica, vol. 13, no. 5, 1995, pp. 405-425.
6. H. Bay, A. Deza, and F. Franek: On a Lemma of Crochemore and Rytter, to appear in Journal of Discrete Algorithms.
7. H. Bay, F. Franek, and W. Smyth: The New Periodicity Lemma Revisited, to appear in Journal of Discrete Applied Mathematics.
