
Fibonacci Based Compressed Suffix Array

Ekaterina Benza1, Shmuel T. Klein2, and Dana Shapira1

1 Dept. of Computer Science, Ariel University, Ariel 40700, Israel
benzakate@gmail.com, shapird@g.ariel.ac.il

2 Dept. of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
tomi@cs.biu.ac.il

Abstract. We propose Fibonacci based compressed suffix arrays, and show how re-
peated decompression can be avoided using our scheme. For a given file T of size n,
the implementation requires 1.44nHk + n + o(n) bits of space, where Hk is the k-th
order empirical entropy of T , while retaining the searching functionalities. Empirical
results support this theoretical bound improvement, and show that on most files, our
implementation saves space as compared to previous suggestions.

1 Introduction

Given a text and some pattern we wish to locate in it, the suffix array of the text
is a self index , meaning that the retrieval is done directly on the suffix array itself,
without the use of the text. That is, the text is implicitly encoded, and the searching
process decompresses only the necessary portion of the text. More formally, let T be
a string of length n − 1 over an alphabet Σ of size σ. A suffix array (SA) for T$,
$ /∈ Σ, is an array SA[1 : n] of the indices of the suffixes of T$ which have been
arranged in lexicographic order. By convention, $ is lexicographically smaller than all
other characters.

Suffix arrays have been introduced by Manber and Myers [17], and are more
space efficient than suffix trees (compact tries), because suffix trees generally require
additional space to store all the internal pointers in the tree. The compressed suffix

array (CSA) introduced by Grossi and Vitter [9] is a text index that uses 2n log σ
bits in the worst case, and O(m) processing time for searching a pattern of length m.
Sadakane [19] extended the searching functionality to a self index, and proved that it
uses search time O(m log n), and space ǫ−1nH0 +O(n log log σ) bits, where 0 < ǫ < 1

and σ ≤ logO(1) n, H0 being the 0-order empirical entropy of T .
Grossi et al. [8] present an implementation of compressed suffix arrays that achieves

asymptotic entropy space as well as fast pattern matching. More precisely, the CSA
uses nHk +O(n log logn

log
σ
n

) bits and O(m log σ+polylog(n)) searching time, where Hk is

the k-th order empirical entropy of T .
Ferragina and Manzini [6] introduce the FM-index: a text index based on the

Burrows-Wheeler Transform [4], which supports efficient pattern matching using a
Backwards Search. The FM-index uses at most 5nHk+o(n) bits for small alphabet size
σ, and O(m+log1+ǫ n) searching time. We refer the reader to the book of Navarro [18]
for a comprehensive review on compact data structures in general and compressed
suffix arrays in particular.

Huo et al. [10] construct a space efficient CSA; Huo et al. [11] extend their work
for the reference genome sequence and propose approximate pattern matching on
the compressed suffix array for short read alignment. Their implementation uses
2nHk + n + o(n) bits of space, for k ≤ c logσ n − 1 and any c < 1. They report

Ekaterina Benza, Shmuel T. Klein, Dana Shapira: Fibonacci Based Compressed Suffix Array, pp. 3–11.

Proceedings of PSC 2018, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06484-9 c© Czech Technical University in Prague, Czech Republic



4 Proceedings of the Prague Stringology Conference 2018

on extensive experiments to evaluate their CSA compression, construction time, and
pattern matching processing time performance. The results suggest that their com-
pression performance is better than that of the implementation of Sadakane [19] and
the FM-index [6], except for evenly distributed data like that of DNA files.

In this paper we suggest the usage of Fibonacci Codes instead of Elias’ Cγ code
used in [10,11], and show how decompression can be avoided using our scheme. The
implementation requires 1.44nHk+n+o(n) bits of space, while retaining the searching
functionalities. Empirical results support this theoretical bound improvement, and
show that on most files, our implementation saves space as compared to the one
of [10,11].

The paper is organized as follows. Section 2 recalls the details of CSA and Sec-
tion 3 presents its Fibonacci coding based variant, including the analysis of its space
requirements and the summation process applied on the compressed form. Empirical
results are given in Section 4.

2 Compressed Suffix Array

A suffix array (SA) for T$, where T is a string over Σ and $ /∈ Σ, is an array
SA[1 : n] of the indices of the suffixes of T$, stored in lexicographical order. That is,
if SA[i] = j then the suffix starting at the j-th position of T , T [j : n], is the i-th item
in the lexicographically sorted list of all n suffixes of T$.

The numbers in a suffix array can be stored using n log n bits, as they are a
permutation of the numbers {1, . . . , n}, that require log n! = Ω(n log n) bits, at least.
However, not all permutations correspond to actual suffix arrays, as there are only σn

different texts of length n over Σ. Thus a better lower bound is, in fact, n log σ bits.
Grossi and Vitter [9] improve the space requirements of a suffix array by decomposing
it based on the neighbor function defined as follows.

Φ[i] = j, if SA[j] = 1 + SA[i] mod n.

The inverse function SA−1[j] gives the position of T [j : n] in the sorted list of the
suffixes of T . The function Φ can also be rewritten as:

Φ[i] = SA−1[1 + SA[i] mod n]

If SA[i] refers to the suffix T [j : n], then Φ[j] = i′ is the position where SA[i′] = j+1
refers to suffix T [j + 1 : n]. If SA[i] = j then SA[Φ[i]] = j + 1, SA[Φ[Φ[i]]] = j + 2,
and generally, SA[Φ(k)[i]] = j + k.

It has been shown that the values of Φ at consecutive positions referring to suffixes
that start with the same symbol must be increasing. This claim is explained as follows.
Let i and i + 1 be two adjacent indices in SA that correspond to suffixes that start
by the same symbol. The index i cannot be 1, as the symbol at the first position
corresponds to $ that occurs only once. Let j = SA[i] and j′ = SA[i + 1]. Following
our assumption that they belong to suffixes starting with the same symbol, we get
that T [j] = T [j′]. Since T [j : n] ≺ T [j′ : n], it follows that T [j + 1, n] ≺ T [j′ + 1, n],
and j′ + 1 appears to the right of j + 1 in SA. The position where j′ + 1 appears in
SA is SA−1[j′ + 1] = SA−1[SA[i + 1] + 1] = Φ[i + 1]. Using the same argument, the
position where j + 1 appears in SA is Φ[i], thus, Φ[i] < Φ[i+ 1].

As Φ is an increasing function for suffixes starting with the same symbol, Φ can
be partitioned into σ increasing arrays Φa = [1 : na], for all a ∈ Σ, where na is the



E.Benza, S. T.Klein, D. Shapira: Fibonacci Based Compressed Suffix Array 5

number of occurrences of the character a in the text. As an example, consider the text
T = mississippi$. The text itself, the suffix array SA, its inverse function SA−1,
and Φ are given in the first rows in Figure 1. The last row partitions the Φ row into
subintervals, denoted by Φi, Φm, Φp and Φs, each referring to a different character of
T . The first cell does always refer to the special character $, denoted by Φ$. To better
understand this partition, we have preceded it with a row giving the first character
of the corresponding suffix, that is, holding T [SA[i]] at position i.

1 2 3 4 5 6 7 8 9 10 11 12

T m i s s i s s i p p i $

SA 12 11 8 5 2 1 10 9 7 4 6 3

SA−1 6 5 12 10 4 11 9 3 8 7 2 1

Φ 6 1 8 11 12 5 2 7 3 4 9 10

T [SA] $ i i i i m p p s s s s

Φa Φ$ Φi Φm Φp Φs

Figure 1. CSA example for T = mississippi$

The implementation for CSA used in [10,11] applies differential encoding. Instead
of Φ itself, the values ∆Φ[i] = Φ[i]−Φ[i− 1] in each block are encoded, except for the
first entry, which is assumed to be 0, thus need not be encoded. These differences are
then encoded using Elias’ methods [5]. Elias considered mainly two fixed codeword
sets, Cγ and Cδ, in what he calls universal codes, in which the integers are represented
by binary sequences.

The Elias Cγ encoding of an integer x starts with a unary codeword of the number
of bits in x followed by the standard binary codeword for x without its leading 1 bit.
That is, 1 + ⌊log2 x⌋ is coded in unary, and x− 2⌊log2 x⌋ is coded in binary for a total
of 1 + 2⌊log2 x⌋ bits. The Elias Cδ encoding uses the Cγ codeword for the number of
bits in x, which requires 1 + 2⌊log2 log2 2x⌋ bits, and again is followed by the binary
codeword for x without the leading 1 bit, for a total of 1 + 2⌊log2 log2 2x⌋+ ⌊log2 x⌋.
A sample of Elias Cγ and Cδ codewords appears in Table 1 where blanks are inserted
between the unary and the binary parts for clarity.

To provide faster access to the Cγ encoded sequence S of integers, which we
denote as Cγ(S), it is partitioned into so-called super-blocks , which in turn are sub-
partitioned into blocks , and three auxiliary tables SB, B and SAM are defined. For
given values of a and b, which are defined in the following paragraph, SB[0 : n

a
− 1]

stores the starting position of the encoding of each super-block in Cγ(S), i.e., the
total number of bits in super-blocks preceding the current super-block; B[0 : n

b
− 1]

stores the starting position in Cγ(S) of the encoding of every block relative to the
beginning of its corresponding super-block; and SAM[0 : n

b
− 1] contains sampling

values of Φ, so that the first value in each block is stored.
Each super-block refers to the encoding of a = log3 n elements, and each block

refers to the encoding of b = log2 n elements. While the super-blocks store the absolute
number of bits up to that position, the blocks record the relative position with respect
to the beginning of the super-block. Figure 2 uses our running example illustrating
the parsing of Φ into super-blocks of size a = 8 and into blocks of size b = 4. The
differences are given in the row denoted by ∆Φ, and are encoded according to Elias’



6 Proceedings of the Prague Stringology Conference 2018

Cγ. More precisely, the series Φ[ib+ 1]− Φ[ib], . . . , Φ[(i+ 1)b− 1]− Φ[(i+ 1)b− 2] is
Cγ encoded, for all 0 ≤ i ≤ n

b
, and Φ[ib] = 0 is not encoded. In case the difference is

negative, the value Φ[i]− Φ[i− 1] + n is used. The table also contains the encodings
corresponding to the Fibonacci variants Fib1 and Fib2, presented in the next section,
as well as the matching SB and B arrays.

1 2 3 4 5 6 7 8 9 10 11 12

SAM 6 12 3

Φ 6 1 8 11 12 5 2 7 3 4 9 10

∆Φ 0 8 7 3 0 6 10 5 0 1 5 1

Cγ(∆Φ) 0001000 00111 011 00110 0001010 00101 1 00101 1

SB 0 32

B 0 15 0

Fib1(∆Φ) 000011 01011 0011 10011 010011 00011 11 00011 11

SB 0 31

B 0 15 0

Fib2(∆Φ) 100101 101001 1001 100001 1010001 10101 1 10101 1

SB 0 34

B 0 16 0

Figure 2. Super blocks and regular blocks parsing of Φ for a = 8 and b = 4
using Cγ , Fib1 and Fib2 codes.

The decoding function, denoted by D(E , s, ℓ), is given the encoded array E to
be decoded, the starting position s within E , and the number of codewords ℓ to be
decoded. The values of Φ are then computed using:

Φ[i] = SAM
[⌊

i
b

⌋]

+D
(

E , SB
[⌊

i
a

⌋]

+ B
[⌊

i
b

⌋]

, i mod b
)

. (1)

To obtain Φ[i], SB and B are accessed to determine the corresponding bit position
within E . Starting at that position, i mod b codewords are decoded and added to
the sample values stored in SAM. As an example using Fib2, Φ[11] = SAM[11/4] +
D(E , SB[11/8] +B[11/4], 11 mod 4) = SAM[2] +D(E , SB[1] +B[2], 2) = 3+D(E , 34+
0, 2). Two consecutive values, 1 and 5, are decoded, and are added to 3, so that the
final result 9 is returned.

3 Fibonacci Encodings

The lengths of the Cγ codewords grow logarithmically, which yields good asymptotic
behavior. However, Cγ is then often efficient only for quite large alphabets, whereas
the number of different elements in the CSA for natural language texts is usually
small. The same is true for several other universal codeword sets such as ETDC [3]
and (s, c)-dense codes [2]. This was also the motivation of using Cγ instead of the
asymptotically better Cδ representation in the implementation of Huo et al. [10]. The



E.Benza, S. T.Klein, D. Shapira: Fibonacci Based Compressed Suffix Array 7

Fibonacci code is yet another universal variable length encoding of the integers, based
on the sum of Fibonacci numbers rather than on the sum of powers of 2, as in the
standard binary representation. More precisely, any number x ≥ 0 can be uniquely
represented by the string brbr−1 · · · b2b1, with bi ∈ {0, 1}, such that x =

∑r

i=1 biFi,
where the Fibonacci numbers Fi are defined by:

Fi = Fi−1 + Fi−2 for i ≥ 1,

and the boundary conditions

F0 = 1 and F−1 = 0.

The uniqueness of the representation for every integer x is achieved by building
the representation according to the following procedure: find the largest Fibonacci
number Fr smaller than or equal to x, and repeat the process recursively with x−Fr.
For example, 79 = 55 + 21 + 3 = F9 + F7 + F3, so its Fibonacci representation
would be 101000100. As a result of this encoding scheme, there are never consecutive
Fibonacci numbers in any of these sums, implying that in the corresponding binary
representation, there are no adjacent 1s. It thus suffices to precede the Fibonacci
based representation of any integer by a single 1-bit, which can act like a comma, to
obtain a uniquely decipherable code.

The properties of Fibonacci codes have been exploited in several useful appli-
cations: robustness to errors [1], direct access [16], fast decoding and compressed
search [13,15], compressed matching in dictionaries [14], faster modular exponentia-
tion [12], etc. The present work is yet another application of this idea.

One variant of the Fibonacci code, denoted here by Fib1, simply reverses the
codewords in order to achieve an instantaneous code [7]. The adjacent 1s are then
at the right instead of at the left end of each codeword, yielding the prefix code, a
sample of which is presented in Table 1 in the column headed by Fib1.

Another variant, denoted here by Fib2, was introduced in [7], and found to be often
preferable for the ∆Φ encoding. The set of codewords Fib2 is constructed from the set
Fib1 by omitting the rightmost 1-bit of every codeword and prefixing each codeword
by 10; for example, 0100011 (for encoding the number 15 in Fib1) is transformed into
10010001 (for encoding the number 16 in Fib2). As a result, every codeword now starts
and ends with a 1-bit, so codeword boundaries may still be detected by the occurrence
of the string 11. Since, as a result of this transformation, the shortest codeword 101
is of length three, one may add 1 as a single codeword of length 1, which explains the
shift in the indices of corresponding codewords. Table 1 presents several codewords
for Elias Cγ and Cδ, presented in the first two columns, followed by Fib1 and Fib2.
For each presented value, the codewords of shortest length are emphasized, unless all
are of the same length. Although most of the codewords of Fib1 are the shortest, its
disadvantage over the other codes is the encoding of the value 1 that uses two bits
instead of a single one. This was found to be empirically crucial for our data sets, as
the number 1 was the most common value to be encoded.

3.1 Space Analysis

Recall that Hk denotes the k-th order empirical entropy. Huo et al. [10] prove that
the space used for the Elias Cγ based ∆Φ encoding is 2nHk + n + o(n) bits in the
worst case for any k ≤ c loga n − 1 and any constant c < 1. Navarro [18] shows that
if ∆Φ is encoded using Cδ, the space for CSA is nHk + n+O(n).



8 Proceedings of the Prague Stringology Conference 2018

i Cγ Cδ Fib1 Fib2
1 1 1 11 1

2 01 0 010 0 011 101

3 01 1 010 1 0011 1001
4 001 00 011 00 1011 10001
5 001 01 011 01 00011 10101
6 001 10 011 10 10011 100001
7 001 11 011 11 01011 101001
8 0001 000 00100 000 000011 100101

9 0001 001 00100 001 100011 1000001
10 0001 010 00100 010 010011 1010001
30 00001 1110 00101 1110 10001011 10 0000101
100 0000001 100100 00111 100100 0010100001 100100100001

Table 1. Several codewords of universal codes Cγ , Cδ, Fib1 and Fib2.

Cγ and Cδ require 2⌊log x⌋+1 and ⌊log x⌋+1+2⌊log(⌊log x⌋+1)⌋ bits, respectively,
to encode the number x. To evaluate the corresponding Fibonacci codeword lengths,
let Fr be the largest Fibonacci number smaller than or equal to the given number
x. Then r bits are necessary to encode x. A well known approximation to Fibonacci

number Fr is φr

√
5
, where φ = 1+

√
5

2
= 1.618 is the golden ratio. From the fact that

Fr−1 < x ≤ Fr we may extract that r is of the order of

logφ x = (logφ 2) log2 x = 1.4404 log x.

That is, the lengths of Fibonacci codewords are asymptoticly between those of Cγ

and Cδ. However, in practice, Fibonacci codes may be preferable in case the numbers
are not uniformly distributed, as in our application of compressed suffix arrays.

Emulating the space analysis given in [10] for the Elias Cγ encoded CSA, replac-
ing the length estimates of 2 log x for a value x by 1.44 log x, we get that at most
1.44nHk(1 + o(1)) +O(n) bits are needed for the Fibonacci based representation of
the CSA, for any k ≤ c logσ n− 1, and any constant c < 1.

3.2 Compressed addition

According to equation (1), in order to obtain Φ[i], i mod b codewords need to be
decoded. The traditional approach is to decode each codeword and add the decoded
values. One of the advantages of using a Fibonacci based representation of the integers
is that it is possible to perform this addition directly on the compressed form of the
CSA, without individually decoding each summand.

To add i mod b Fibonacci encoded numbers, first strip the appended 1 for Fib1 or
the prepended 10 for Fib2 (except for the first codeword 1, which is given a special
treatment), and pad, if necessary, the shorter codewords with zeros at their right end
so that all representations are of equal length ℓ. Considering this as an (i mod b) ×
ℓ matrix, we record the number of 1-bits in each column into an array C[1 : ℓ].

The sought result is obtained by summing
∑ℓ

j=1 C[j]Fj for Fib1, or by summing
∑ℓ

j=1 C[j]Fj + i for Fib2.

For example, assume that (i mod b) = 5 differences ∆Φ[i], 2, 3, 5, 6, and 4, should
be added to obtain 2+ 3+ 5+ 6+ 4 = 20. They are represented in Fib1 as 011, 0011,
00011, 10011, and 1011, respectively.



E.Benza, S. T.Klein, D. Shapira: Fibonacci Based Compressed Suffix Array 9

The steps proposed are:

1. Strip the appended 1: resulting in 01-1, 001-1, 0001-1, 1001-1, and 101-1.
2. Pad the shorter codewords with 0s so that all of them are of length ℓ = 4: 0100,

0010, 0001, 1001, and 1010.
3. Regard them as an (i mod b)× ℓ = 5× 4 matrix:













0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1
1 0 1 0













4. Record the number of ones in each column in C[1 : 4] = [2, 1, 2, 2].

5.
∑ℓ

j=1 C[j]Fj for i is 2 · 1 + 1 · 2 + 2 · 3 + 2 · 5 = 20, as expected.

Encoding the same example, 2, 3, 5, 6, 4, using Fib2, attains 101, 1001, 10101,

100001, and 10001, respectively. Striping the prepended 10 and padding by 0s, we
receive 1-000, 01-00, 101-0, 0001, and 001-0. Finally, putting them in a matrix:













1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1
0 0 1 0













C[1 : 4] is then [2, 1, 2, 1], and
∑ℓ

j=1 C[j]Fj + i is 2 · 1 + 1 · 2 + 2 · 3 + 1 · 5 + 5 = 20,
as expected.

The processing time is thus proportional to the size of the compressed file, which
is, asymptotically and empirically on our test files, smaller than the corresponding
Cγ encodings used in [10], and does not require decoding tables.

Similarly, the Elias Cγ code could be partially used directly in its compressed
form, as the summation of integers represented by codewords of the same length can
be evaluated by adding the binary parts, and copying the common unary part, or
extending it by a single 1-bit if there has been a carry in the addition. However,
handling codewords of different lengths is more involved.

4 Experimental Results

We considered the same test files as [10], taken from the Pizza & Chili Corpus1 as well
as from the Canterbury Corpus2. We used the implementation of [10]3 and adapted
it to encode the ∆Φ values with Fib1 and Fib2, instead of Elias Cγ. We also report the
space usage of Elias Cδ, as it is asymptotically the best of these four universal codes.
The space usage for the super-blocks and blocks in our implementation is about the
same as for the implementation of [10]. Tables 2 and 3 report the sizes in MBs of
the encodings of ∆Φ using these universal codes, Table 2 corresponding to files taken

1 http://pizzachili. dcc.uchile.cl
2 http://corpus.canterbury.ac.nz
3 https://github.com/Hongweihuo-Lab/CSA



10 Proceedings of the Prague Stringology Conference 2018

from the Canterbury Corpus, and Table 3 referring to files of size 100MB each taken
from the Pizza & Chili corpus.

As can be seen, Fib2 based CSA encoding performs the best on most files. Sur-
prisingly, Cγ gives the best results for dna and E.coli, which are two files in the test
files of [10] for which FM-index and Sadakane’s CSA implementation produce better
results than Cγ. Huo et al. explain this performance by the frequency of small values
(1 and 2) in ∆Φ, which tends to be lower in these files than in the others. The other
file for which Fib2 does not produce the most efficient CSA is Proteins, for which
it is outperformed by Fib1.

Name size (MB) Cγ Cδ Fib1 Fib2
E.coli 4.42 1.923 2.158 2.033 2.025
Bible 3.859 1.342 1.378 1.557 1.320

world192 2.36 0.776 0.772 0.923 0.747

news 0.36 0.178 0.175 0.183 0.169

book1 0.73 0.348 0.358 0.361 0.341

paper1 0.05 0.024 0.024 0.025 0.023

Kennedy 0.98 3.360 3.155 3.640 3.049

Table 2. Canterbury Corpus CSA using Cγ , Cδ, Fib1 and Fib2.

Name Cγ Cδ Fib1 Fib2
dna 40.32 44.99 43.79 42.24
dblp.xml 22.90 23.15 32.12 22.51

sources 31.92 31.69 38.48 30.72

english 37.53 38.23 42.40 36.79

proteins 65.51 64.89 62.21 62.72

Table 3. Pizza & Chili Corpus CSA using Cγ , Cδ, Fib1 and Fib2.

5 Conclusion

Huo et al. [10] present experiments showing that their CSA implementation is em-
pirically better than the FM-index and Sadakane’s CSA implementations on most
tested files. We suggest here a Fibonacci based CSA, which generally achieves even
better compression performance on the same data-sets.

However, the power of Fibonacci encoding has still not been fully exploited, es-
pecially the fact that adjacent 1’s indicate the codewords’ boundaries for both Fib1
and Fib2. For instance, this feature can replace the usage of the array B needed to
indicate the beginning of each block of codewords relative to the start position of the
corresponding super-block, yielding additional savings. This trade-off of time versus
space will be addressed in future work.

Acknowledgement: We would like to thank Hongwei Huo for sharing the imple-
mentation of [10].



E.Benza, S. T.Klein, D. Shapira: Fibonacci Based Compressed Suffix Array 11

References

1. A. Apostolico and A. S. Fraenkel: Robust transmission of unbounded strings using Fi-

bonacci representations. IEEE Trans. Information Theory, 33(2) 1987, pp. 238–245.
2. N. R. Brisaboa, A. Fariña, G. Navarro, and M. F. Esteller: (s, c)-dense coding:

An optimized compression code for natural language text databases, in String Processing and
Information Retrieval, 10th International Symposium, SPIRE 2003, Manaus, Brazil, October
8-10, 2003, Proceedings, 2003, pp. 122–136.

3. N. R. Brisaboa, E. L. Iglesias, G. Navarro, and J. R. Paramá: An efficient compression

code for text databases, in Advances in Information Retrieval, 25th European Conference on IR
Research, ECIR 2003, Pisa, Italy, April 14-16, 2003, Proceedings, 2003, pp. 468–481.

4. M. Burrows and D. J. Wheeler: A block sorting lossless data compression algorithm, in
Technical Report 124, Digital Equipment Corporation, 1994.

5. P. Elias: Universal codeword sets and representations of the integers. IEEE Trans. Information
Theory, 21(2) 1975, pp. 194–203.

6. P. Ferragina and G. Manzini: Indexing compressed text. J. ACM, 52(4) 2005, pp. 552–581.
7. A. S. Fraenkel and S. T. Klein: Robust universal complete codes for transmission and

compression. Discrete Applied Mathematics, 64(1) 1996, pp. 31–55.
8. R. Grossi, A. Gupta, and J. S. Vitter: High-order entropy-compressed text indexes, in

Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’03, Philadelphia, PA, USA, 2003, Society for Industrial and Applied Mathematics, pp. 841–850.

9. R. Grossi and J. S. Vitter: Compressed suffix arrays and suffix trees with applications to

text indexing and string matching. SIAM Journal on Computing, 35(2) 2005, pp. 378–407.
10. H. Huo, L. Chen, J. S. Vitter, and Y. Nekrich: A practical implementation of compressed

suffix arrays with applications to self-indexing, in Data Compression Conference, DCC 2014,
Snowbird, UT, USA, 26-28 March, 2014, 2014, pp. 292–301.

11. H. Huo, Z. Sun, S. Li, J. S. Vitter, X. Wang, Q. Yu, and J. Huan: CS2A: A compressed

suffix array-based method for short read alignment, in 2016 Data Compression Conference, DCC
2016, Snowbird, UT, USA, March 30 - April 1, 2016, 2016, pp. 271–278.

12. S. T. Klein: Should one always use repeated squaring for modular exponentiation? Inf. Process.
Letters, 106(6) 2008, pp. 232–237.

13. S. T. Klein and M. K. Ben-Nissan: On the usefulness of Fibonacci compression codes.
Comput. J., 53(6) 2010, pp. 701–716.

14. S. T. Klein and D. Shapira: Compressed pattern matching in JPEG images. Int. J. Found.
Comput. Sci., 17(6) 2006, pp. 1297–1306.

15. S. T. Klein and D. Shapira: Compressed matching for feature vectors. Theor. Comput. Sci.,
638 2016, pp. 52–62.

16. S. T. Klein and D. Shapira: Random access to Fibonacci encoded files. Discrete Applied
Mathematics, 212 2016, pp. 115–128.

17. U. Manber and G. Myers: Suffix arrays: A new method for on-line string searches. SIAM
Journal on Computing, 22(5) 1993, pp. 935–948.

18. G. Navarro: Compact Data Structures - A Practical Approach, Cambridge University Press,
2016.

19. K. Sadakane: New text indexing functionalities of the compressed suffix arrays. J. Algorithms,
48(2) 2003, pp. 294–313.


